
2014-10-10	

1	

Case study research or anecdotal evidence?
Designing a case study

Prof. Per Runeson

Lund University

Contents

•  Planning
•  Defining scope and goal of a case

study
•  Setting up contracts with the studied

organization
– Ethics
– Secrecy and publicity

Design	

2014-10-10	

2	

Planning in flexible designs
[Yin03 p23]

•  Contradiction?

•  Columbus
– Asked for three ships. Why not one? Or

five?
– Went westward. Why not south?
– Purpose to find India

Design	

Purpose of a Case Study

•  Explore
•  Describe
•  Explain
•  Improve

Case study

Action research

Design	

2014-10-10	

3	

Case study design
[Runeson12, Chap 3.2]

•  Rationale—why this study?
•  Objective—what to achieve?
•  The case—what is studied?
•  Theory—frame of reference
•  Research questions—what to know?
•  Methods—how to collect data?
•  Selection strategy—where to seek

data?

Design	

Rationale

•  Academic
– Novel contribution to knowledge
– Theory
– Hypothesis

•  Industry
– Benchmark
– Assessment of candidate technology
– Pilot study

Design	

2014-10-10	

4	

Industry-Academia
Collaboration

try (of which 1/3 is in kind), 1/3 by the academia partners,
and 1/6 by Vinnova3.

EASE is based on the long term collaboration between
Lund University (LU) and Blekinge Institute of Technology
(BTH) as well as four software-intensive companies with of-
fices in southern Sweden: three product providers: Sony
Mobile, Ericsson, Axis and Softhouse.

The research agenda that has been – and is continuously –
developed in collaboration with the industrial partners and
has been focussed on two main areas and four themes, with
example results listed as references:

• Software Engineering

– analysis and assessment of agile and open source
software engineering practices [7]

– models and tools to bridge gaps between informa-
tion artifacts for requirements and testing [1]

• Software Technology

– tools for ubiquitous interaction and configuration [4]

– implementation of speculative parallelization in
web browsers [5]

The industry–academia collaboration has a long tradi-
tion in the region, which can be described as an industry–
academia collaboration ecosystem. For example, the Blue-
tooth communication protocol and standard emanates from
the industry–academia collaboration between Lund Univer-
sity and Ericsson in the 1980’s. The software engineering
collaboration dates back to the 1990’s in the form of vari-
ous, shorter collaboration projects, typically 3-4 years, and
student projects, while the work to establish an industry–
academia center started 1999. Some startup funding was
granted by a public funding agency, but it took until 2007
before the long-term center funding was in place.

Sigrun was founded in 2010 to constitute a bridge between
applied software research and industrial practice [11]. Sigrun
promotes openness by creating a forum for open collabora-
tion and exchange of software, development and business
experience, and software innovations. Research and innova-
tions are brought to practical use mainly through running
innovation projects including participants from academia,
product companies, consultant companies, and public orga-
nizations. The goal of innovation projects is to try out new
technology, processes, or services in practice in an industrial
setting. Sigrun is open to membership for large companies,
small and medium-sized enterprises, startups, and public or-
ganizations.

A mid-term review of the EASE Industrial Excellence
Center was conducted early 2014, based on a self-assessment
report [6]. In their evaluation report, the external review-
ers note on collaboration aspects, that [t]here is evidence
of excellent collaboration between the academic and indus-
trial partners involved in each theme. Circulation of infor-
mation and of researchers between academia and industry
works very well and has become part of the Centre’s cul-
ture[6]. They also note on the time horizon for the results
from the center: The evaluation team appreciated the fact
that these results are directly useful to the industrial part-
ners, but have all the potential to be generalised to other
applications and domains [6].
3http://www.vinnova.se, The Swedish Governmental
Agency for Innovation Systems

Table 1: Typical time horizons in industry–academia
collaboration (years)

Area Industry Academia
Contracts 1 – 3 3 – 5
Goals 1/4 – 3 3 – 5
Results 0 – 3 3 – 10
Organization 1 – 3 5 – 10
Work practice 0 – 1/2 0 – 3

3. TIME HORIZONS
In this context, we have analyzed the time horizon as-

pect of five important areas for the industry–academia col-
laboration, namely, contracts, goals, results, organization
(in)stability, and work practices. The selected areas rep-
resent aspects with time horizons ranging from the overall
contract and goal setting, down to getting the practical col-
laboration done. There may be other areas worth analyzing,
but these represent key aspects which cover the full range
of time horizons. Each of these is discussed below and sum-
marized in Table 1.

3.1 Contracts
Setting up an industry–academia program is a joint ven-

ture, which requires shared risk taking. In our context,
the academic partners employ most of the staff, and con-
sequently take the financial risk for the project. Therefore
the contracts are needed to mitigate and share these risks.
From the academic point of view, the time horizon for the
risk is up to 5 years, when it comes to recruit PhD students
(they are employed on 5 year contracts in the Swedish sys-
tem). Combined with strong labor laws, the setup creates
a viscous financial system that takes time to change. As a
large share of the research is funded by external, temporary
projects (about 2/3 of the research budget for the faculty of
engineering), the financial risk for the academic side of the
collaboration is significant.

From an industrial point of view, budgets are laid out
annually, and long term commitments are very hard to fit
in to the budgeting system. Even under a signed contract,
the partners have to fight for the funding internally in the
companies, especially in hard financial times.

This conflict is inherent in the external funding system for
academia, and is a hurdle for any externally funded research
project. The key contribution to mitigate the problems is
to have continuous, high-level industrial and academic com-
mitment for the industry–academia collaboration. This is a
shared activity and thus, the responsibilities and risks must
be shared. In the case of EASE, it is reported in the self
evaluation report: The companies have kept their support
despite industry down-sizing, change of ownership, and hard
financial times [9]. However, this is the outcome of continu-
ous work by industry and academia stakeholders, to secure
the funding.

In the EASE context, we have also established Sigrun,
the Software Innovation and Engineering Institute, to miti-
gate some time horizon challenges with respect to contracts.
With Sigrun, project with shorter term commitments and
contracts may be launched. This has enabled new partners

Design	

Runeson, P., S. Minör, and J. Svenér (2014). Get the Cogs in Synch – Time Horizon
Aspects of Industry– Academia Collaboration. In: International Workshop on Long-
term Industrial Collaboration on Software Engineering (WISE). ACM. doi:
10.1145/2647648.2647652. 	

	

Unit(s) of analysis

•  individual
•  group
•  process
•  project
•  product
•  policy
•  role
•  event
•  technology

Design	

2014-10-10	

5	

Holistic vs embedded case studies

Design	

Holistic vs embedded example

Design	

2014-10-10	

6	

Example
Single case Multiple case

Holistic One project at one
company is studied

Three projects at three
different projects are
studied

Embedded Two projects within one
company, or one
project and one role

Case study research questions

How?
Why?

•  Exploratory
•  Descriptive
•  Explanatory
•  Improving

Design	

2014-10-10	

7	

Propositions/theories

•  Underlying assumptions about the case

•  Theory [Webster’s dictionary]:
3 : the general or abstract principles of a body
of fact, a science, or an art
5 : a plausible or scientifically acceptable
general principle or body of principles offered
to explain phenomena
6 a : a hypothesis assumed for the sake of
argument or investigation b : an unproved
assumption

Design	

Theory

•  Use of theory
is scarce in
SE

•  At a
minimum,
map existing
literature

Design	

A Systematic Review of Theory Use
in Software Engineering Experiments

Jo E. Hannay, Dag I.K. Sjøberg, Member, IEEE, and Tore Dybå, Member, IEEE

Abstract—Empirically based theories are generally perceived as foundational to science. However, in many disciplines, the nature,

role and even the necessity of theories remain matters for debate, particularly in young or practical disciplines such as software

engineering. This article reports a systematic review of the explicit use of theory in a comprehensive set of 103 articles reporting

experiments, from of a total of 5,453 articles published in major software engineering journals and conferences in the decade 1993-

2002. Of the 103 articles, 24 use a total of 40 theories in various ways to explain the cause-effect relationship(s) under investigation.

The majority of these use theory in the experimental design to justify research questions and hypotheses, some use theory to provide

post hoc explanations of their results, and a few test or modify theory. A third of the theories are proposed by authors of the reviewed

articles. The interdisciplinary nature of the theories used is greater than that of research in software engineering in general. We found

that theory use and awareness of theoretical issues are present, but that theory-driven research is, as yet, not a major issue in

empirical software engineering. Several articles comment explicitly on the lack of relevant theory. We call for an increased awareness

of the potential benefits of involving theory, when feasible. To support software engineering researchers who wish to use theory, we

show which of the reviewed articles on which topics use which theories for what purposes, as well as details of the theories’

characteristics.

Index Terms—Theory, experiments, research methodology, empirical software engineering.Ç1 INTRODUCTION

T HERE are many arguments in favor of theory use.

Theories offer common conceptual frameworks that

allow the structuring of knowledge in a concise and precise

manner, thus facilitating the communication of ideas and

knowledge. Their level of abstraction enables the general-

ization of knowledge independently of a specific time and

place [5], [66], [91], [95], [98]. Theory is the means through

which one may generalize analytically [85], [103], thus

enabling generalization from situations in which statistical

generalization is not desirable or possible, such as from case

studies [103], across populations [64], and indeed, often

from experiments, especially those in social and behavioral

sciences [85], with which experiments in empirical software

engineering share essential features.
Such arguments have been voiced in the software

engineering community as well, e.g., [6], [27], [43], [57],

[89]. A theory provides explanations and understanding in

terms of basic concepts and underlying mechanisms, which

constitute an important counterpart to knowledge of

passing trends and their manifestations. When developing

better software engineering technology for long-lived

industrial needs, building theories is a means to go beyond

the mere observation of phenomena and to try to under-

stand why and how these phenomena occur.
Thus, theories are of potential use to both researchers

and practitioners. However, the usefulness of theories for

software engineering is a subject of discussion, and the

actual use of theory in empirical studies of software

engineering is not well known. Decisions and discussions

regarding issues of theory in empirical software engineer-

ing must be founded not only on an understanding of what

a theory is and how it can be useful, but also on knowledge

of the actual use of theories. The main motivation of this

article is to contribute to the latter by reviewing the use of

explanatory theories for software engineering.

An important undertaking in empirical software engineer-

ing is to determine what development technology to deploy

and what developers to use in what situations; in other words,

interest lies in comparing various technologies and skills and

in determining their effects on software development. For

this, the experiment is one choice of research method in that it

may be applied more or less directly to make such

comparisons and to measure such effects.
According to Shadish et al., experiments are suitable for

causal description, that is, “describing the consequences

attributable to deliberately varying a treatment” [85, p. 9],

but do not in themselves provide causal explanation, that is,

“clarifying the mechanisms through which and the condi-

tions under which [the cause-effect relationship] holds” [85,

p. 9]. The desire for causal explanation motivates the

development of theory. Thus, the focus of this review is on

theories that are used to explain, in one way or another, the

cause-effect relationships investigated by experiments.

A challenge facing software engineering researchers who

are considering using theories to support their research, is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 2, FEBRUARY 2007

87

. J.E. Hannay and D.I.K. Sjøberg are with Simula Research Laboratory,

Department of Software Engineering, Pb. 134, NO-1325 Lysaker, Norway.

E-mail: {johannay, dagsj}@simula.no.
. T. Dybå is with Simula Research Laboratory and with SINTEF ICT,

Department of Software Engineering, Safety, and Security, NO-7465

Trondheim, Norway. E-mail: tore.dyba@sintef.no.
Manuscript received 2 June 2006; revised 6 Sept. 2006; accepted 3 Nov. 2006;

published online 28 Dec. 2006.
Recommended for acceptance by D. Rombach.

For information on obtaining reprints of this article, please send e-mail to:

tse@computer.org, and reference IEEECS Log Number TSE-0124-0606.
0098-5589/07/$25.00 ! 2007 IEEE Published by the IEEE Computer Society

Using mapping studies as the basis for further research – A participant-observer

case study
Barbara A. Kitchenham a,⇑, David Budgen b, O. Pearl Brereton a

aSchool of Computing and Mathematics, Keele University, Staffordshire ST5 5BG, UK

bDurham University, South Road, Durham City, DH1 3LE, UK

a r t i c l e i n f o
Article history:Available online 25 December 2010

Keywords:
Case study
Systematic literature reviewMapping studiesSoftware engineering

a b s t r a c t
Context: We are strong advocates of evidence-based software engineering (EBSE) in general and system-

atic literature reviews (SLRs) in particular. We believe it is essential that the SLR methodology is used

constructively to support software engineering research.

Objective: This study aims to assess the value of mapping studies which are a form of SLR that aims to

identify and categorise the available research on a broad software engineering topic.

Method: We used a multi-case, participant-observer case study using five examples of studies that were

based on preceding mapping studies. We also validated our results by contacting two other researchers

who had undertaken studies based on preceding mapping studies and by assessing review comments

related to our follow-on studies.
Results: Our original case study identified 11 unique benefits that can accrue from basing research on a

preceding mapping study of which only two were case specific. We also identified nine problems asso-

ciated with using preceding mapping studies of which two were case specific. These results were consis-

tent with the information obtained from the validation activities. We did not find an example of an

independent research group making use of a mapping study produced by other researchers.

Conclusion: Mapping studies can save time and effort for researchers and provide baselines to assist new

research efforts. However, they must be of high quality in terms of completeness and rigour if they are to

be a reliable basis for follow-on research.

! 2010 Elsevier B.V. All rights reserved.

1. Introduction

In 2004–2005, Kitchenham, Dybå and Jørgensen wrote three pa-

pers suggesting that the concept of evidence-based practice, (as

initially developed in medicine, and subsequently adopted by

many different disciplines including economics, psychology, social

science and most health care disciplines) should be adopted in

software engineering [1–3]. By analogy with medicine, they sug-

gested that evidence-based software engineering (EBSE) should

be concerned with the aggregation of empirical evidence and

should use systematic literature reviews (SLRs) as a methodology

for performing unbiased aggregation of empirical results. Based

on the five stages in evidence-based medicine, Kitchenham et al.

[3] suggested equivalent stages for EBSE. Stages 1 to 4 are to:
1. construct an answerable question;
2. track down evidence to answer the question;

3. critically appraise the evidence, and
4. use the evidence to address the question.Stage 5 is rather different in nature. It is about seeking ways to

improve the way in which we undertake evidence-based software

engineering and provides the rationale for this paper.

One of the main technologies underpinning EBSE is a rigorous

procedure for searching research literature called a systematic lit-

erature review (SLR). SLRs are secondary studies (i.e. studies that are

based on analyzing previous research) used to find, critically eval-

uate and aggregate all relevant research papers (referred to as pri-

mary studies) on a specific research question or research topic. The

methodology is intended to ensure that the literature review is

unbiased, rigorous and auditable. The basic SLR methodology is

similar, irrespective of the discipline where it is employed;

although medical standards emphasize meta-analysis (a means of

statistically aggregating the results from different studies of the

same phenomena) more than other disciplines (see for example

[4–7]).
We have been undertaking a program of case study-based re-

search that is aimed at better understanding the role of SLRs in

0950-5849/$ - see front matter ! 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2010.12.011

⇑ Corresponding author. Tel.: +44 1782 733979; fax: +44 1782 734268.

E-mail addresses: b.a.kitchenham@cs.keele.ac.uk (B.A. Kitchenham), david.bud-

gen@durham.ac.uk (D. Budgen), o.p.brereton@cs.keele.ac.uk (O.P. Brereton).

Information and Software Technology 53 (2011) 638–651
Contents lists available at ScienceDirectInformation and Software Technologyjournal homepage: www.elsevier .com/locate / infsof

2014-10-10	

8	

Generalization [Yin03 p32-33]

•  Drawing conclusions about phenomena
outside the studied setting
–  Statistical generalization – “inference… about a

population on the basis of empirical data collected
about a sample”

–  Analytic generalization – “a previously
developed theory is used as a template…to
compare the empirical results of a case study”

Design	

Sampling in general

•  Define the population
•  Sample a subset of the population
•  Investigate the subset
•  Generalize to the population

•  Example: national poll

Design	

2014-10-10	

9	

Sampling/selection in case
studies

Select cases to achieve variability. True
sampling is impossible.
Literal replication – predicts similar
results
Theoretical replication – predicts
contradictory results for predictable
reasons

 Runeson et al 2012

Design	

Case selection

Case types
•  Extreme/deviant
•  Maximum variation
•  Critical
•  Paradigmatic

Focus on
•  Unusual cases
•  Significance and

validity
•  Benchmark
•  Methaphor

Runeson et al 2012, p33
after Flyvbjerg 2007

Design	

2014-10-10	

10	

Generalization (cont.)
Theory	

 Rival

theory	

SURVEY
Population

char’s	

CASE STUDY ���
Case study

findings	

EXPERIMENT	

Exp. findings	

Sample	

 Subjects	

A
na
ly
tic
	

St
at
ist
ic
al
	

Design	

Task on “your” case study

•  Which are the research questions? Are
they clear enough? Defined “after-the-
fact”?

•  Characterize
–  Single/multiple; holistic-embedded

•  Which are the units of analysis?
•  Which propositions are made? Theory

used?
[Runeson12, appendix A.1 p203]

2014-10-10	

11	

Ethics
– the (bad) state of practice
Hall and Flynn survey (2001) of CS&SE
dept in UK:
•  36% considering ethical aspects

important
•  39% neither or
•  18% not important
•  7% don’ know

Design	

Design	

2014-10-10	

12	

Ethics

•  Participants in general:
– Obtain informed consent
–  Identify sensitive results (anonymity?)
– Decide on inducements
– Avoid deception
– Feedback results, in particular

quotations

Design	

Ethical considerations

•  Before the study
•  During the study
•  After the study

Design	

2014-10-10	

13	

Ethics – Before the study

•  Being asked to participate
–  Is “no” a possible answer?
– Who should be asked?

•  Document informed consent in
writing

Design	

Ethics – During the study

•  Participants
–  Informing subjects may destroy the study
– Physical/mental stress?
– Privacy

•  Difficult findings – whistle-blowers
•  Artifacts, derived for other purposes?

– Consent from creators?

Design	

2014-10-10	

14	

Ethics – After the study

•  How to handle
– Anonymity?
– Answers, not asked for?
– Data used for multiple purposes?

Design	

Ethical dilemmas 1(3)
1.  An employee knowingly misled a

superior, to protect themselves, in
the presence of the researcher and
the researcher knew the employee
was misleading the superior

2.  A mandatory process was not
followed by a team

Design	

2014-10-10	

15	

Ethical dilemmas 2(3)
3.  Resolving inconsistencies in

accounts of a situation would reveal
the identify of individual employees

4.  A superior unexpectedly joins a
sensitive group interview with
employees

5.  Analysis by the researcher could
reveal the identify of employees in a
poorly performing department

Design	

Ethical dilemmas 3(3)
6.  Toward the completion of some

research, a superior wanted to
distribute the findings more broadly
in the organization, to help improve
the organization, but this would
reveal weaknesses in the studied
department

7.  Information is provided privately e.g.
upon completion of the formal part
of an interview

Design	

2014-10-10	

16	

Task

Discuss one ethical dilemma in pairs:
What can you do:
•  before
•  during
•  after
the study?

Design	

General Techniques to Manage
Ethical Dilemmas

•  Manipulate data – anonymize,
abstract

•  Develop multiple reports for different
stakeholders

•  Feedback and review opportunites
for participants

•  Use external parties for tasks

Design	

2014-10-10	

17	

Documentation

•  Company contract
•  Consent form
•  Case study protocol

Design	

Documentation –
company contract

•  Purpose
– Lay down the legal foundation for the

collaboration
– Establish procedures for approval,

secrecy, integrity…
–  In Sweden, the Secrecy Act is the basis

Offentlighets- och sekretesslag
(2009:400 5§)

Design	

2014-10-10	

18	

Documentation –
consent form

•  Purpose
– Clarify conditions for the study

•  Procedures
•  Voluntariness
•  Risks
•  Benefits
•  Confidentiality
•  (Review board approval)
•  Use for other purposes

Design	

Documentation –
case study protocol

•  Purpose
– Communicate across researchers
– Story history for reporting and review
– Log book for actions and events

Design	

2014-10-10	

19	

Documentation –
case study protocol content

1.  Background
2.  Design
3.  Case selection
4.  Procedures and

roles
5.  Data collection
6.  Analysis

7.  Validity
8.  Study limitations
9.  Reporting
10. Schedule
11. Appendices

Design	

