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Abstract 

Feature selection is of crucial importance in model building process to eliminate 
variables that are not informative. Proper feature selection facilitates the model 
building by reducing noise and the dimensionality of the problem. However, the lack 
of correspondences between the features selected by two different feature selection 
methods raises the question of how to evaluate feature selection methods. Generally, 
for a given data set, feature selection methods are compared based on the prediction 
performance. Nevertheless, there are feature selection methods that output distinct 
subsets of features with statistically equivalent prediction performance. Incorporating 
causation into the diagram of feature selection presents a candidate to clarify such 
ambiguity.  

The purpose of this report is to study different feature selection algorithms and 
their potential application in causal inference. This report first reviews methodologies 
in designing feature selection algorithms and their implications to causal inference. 
Then the performance of several widely used feature selection methods are studied on 
both simulated data and real data. Several modifications for the backward search 
algorithm by Nilsson et al. (2007) are also studied to see whether they will improve 
the performance.  
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Chapter 1  

Introduction 

Feature selection is studied intensively in the theoretical field such as machine 
learning for its vast applications in gene expression microarray analysis, image 
analysis and text processing. Feature selection is of crucial importance in those areas, 
since it helps improve the prediction performance of machine learning models by 
eliminating noisy variables, provide simpler models that facilitate better interpretation 
of the complex stochastic process, save the cost of large amount of experimental 
measurements in practice, and detect subset of variables that can be studied closely 
for causal inference.  

Feature selection methods, though based on results from statistical learning theory, 
rely on thinking in engineering perspective. Feature selection itself can be viewed as a 
model selection process. Therefore, like other methods in the area of data analysis, 
there is no feature selection method that is optimal for all datasets. The methodology 
of feature selection involves feature ranking criterion designs (filter methods), search 
strategies (feature subset selection), model selection (wrappers with proper classifiers) 
and assessment methods (statistical tests for comparison of two methods, controlling 
false discovery rate etc.). By combining different analysis tools, better feature 
selection methods can be created in terms of the performances of classifiers (learning 
machine) or causal inference. 

The goals of feature selection have been divided into two major categories: i) 
identifying minimal subset of features that optimize prediction accuracy and ii) 
finding (all) features that are relevant to the target. It is essential to understand the 
distinctness between these two goals in practice. For instance, in biomedical fields, 
the first goal is to eliminate the effects of noise and improve the accuracy of 
prediction. This is common in diagnosis system implementation and experiment 
design. As for the second goal which is common in pharmaceutical research, 
identifying the causation between the drugs and the genes or the regulative paths of a 
disease is important to efficiently discover the effects of new drugs. Generally, 
discovering (causal) relevance is different from improving prediction accuracy. It is 
seen in most of previous study that features selected based on these two goals do not 
correspond to each other, i.e. the set of features that optimize classification does not 
necessarily include features that are strongly relevant to target (Kohavi and John, 
1997). For example, some classes of genes of biological importance are usually 
present in small amount and their effects cannot be easily detected for a feature 
selection algorithm focusing only on classification performance. Therefore, the need 
to investigate the intrinsic differences of the two aspects in feature selection is crucial 
in application. Nilsson et al. (2007) addressed these differences in various constrained 
probability distributions and proposed several polynomial algorithms which in turn 
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shed light on the complexity of those problems. 
Feature selection has been widely used to improve prediction accuracy of 

classifiers. The improvement in prediction is related to the redundant features or noisy 
features in the data which can be eliminated by feature selection. On the other hand, 
the prediction accuracy can also be the guideline for feature selection, which is basic 
idea of wrapper methods (subset of features that yields the best empirical risk is 
chosen). In image analysis and natural language processing where noise is common, 
feature selection is both necessary and crucial as the first step in building predictive 
models..  

The causal discovery perspective of feature selection becomes more and more 
importance in the area of biomedicine and disease study. Bayesian network is a 
graphical model broadly used to model generating processes of the data. Features that 
are relevant to the target can be seen as connections in the Bayesian network 
representation, under some assumptions. Bayesian network provides a very complete 
view of the generating process regarding the target. However, to learn a Bayesian 
network structure is NP-hard (Chickering et al., 2004). More importantly, Bayesian 
network is heavily parameterized, which requires large size of data to learn a model 
with reasonable power of generalization. Therefore, Bayesian network is usually not 
practical for feature selection. Instead, methods focusing on the local area of the target 
variable- Markov blanket is a compromise way for causal inference, in terms of less 
parameterization and more efficient in space and time. Such methods are partially 
guided by causality which are helpful for identifying more reliable relevance between 
the target and other features.  

In this report, we focus on the study of these two aspects of feature selection 
methods. Simulations are conducted with synthetic data and several real data. Several 
feature selection methods are compared regarding their power in prediction and causal 
inference. In Chapter 2, a preliminary study of methodologies of feature selection is 
summarized. The concepts of relevance, causality, Markov blanket and Bayesian 
network are reviewed in Chapter 3. In Chapter 4, several feature selection algorithms 
are studied and analyzed regarding their design and performance, followed by a set of 
implementations and simulations for comparisons of different feature selection 
algorithms in Chapter 5. Finally, Chapter 6 concludes with a summary of the work, its 
limitation and future work. 
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Chapter 2 

Feature Selection Methodologies 

Feature selection has its root in statistical learning theory, which ensures the selection 
process and results are statistically sound. Many methodologies have been derived for 
feature selection specifically and some from other areas. In the following, a review of 
feature selection methodologies is presented. 

2.1 Definition of feature selection  

In machine learning, predictive modeling is a central problem with feature selection 
as a preprocessing step. Given the training data (features) and the associated outcomes 
(targets), predictive modeling aims to construct models to predict the target from the 
features or describe the relationships between the features and the target. For instance, 
in clinical study, it might be of interest to study the relationships between a certain 
cancer and the physical conditions as well as the genomic expression of the patients. 
To be more concrete, given the observations of the patients and their health status: 
having the cancer or not, the goal is to predict the health status of a new patient (test 
data). The performance of a model on new test data is called generalization.  

We introduce here some notations and assumptions that will be used in the further 
discussions. ( ( ) ( ),i iyx ) i = 1,…,m denote the independent and identically distributed 
(i.i.d.) observations (training data and outcomes) of the random variables X,Y with 
probability distribution ( , )P yx , where 1( ,..., ) n

nX X= ∈ℝX is a feature vector and Y 

is the target variable. Lower case symbol xi denotes the realization of the random 
variable Xi and bold symbols denote vectors. Probability of event is denoted as Pr, e.g. 
Pr(Y=1) is the probability that Y = 1, the probability density is denoted by lower case 
p i.e. p(x,y). Generally, the outcomes or targets can be continuous and multi-valued 
discrete. In this report, we focus on supervised binary classification problem i.e. the 
outcomes of the training data is given (supervised) and the outcomes of the target are 
binary {-1,1}. 

There are a wide variety of models (classifiers) that can be applied on the binary 
classification problem including decision trees (Quinlan, 1986), support vector 
machine (SVM) (Cortes and Vapnik, 1995) and logistic regression (Agresti, 2002) etc., 
which will be discussed in more details in Chapter 4. The classifiers can be viewed as 
families of parameterized functions : , ( , ) ( , )d nf fΛ × → →ℝ ℝ x xα αα αα αα α , where αααα  is 
the associated parameterization.  

To measure the prediction accuracy of a model, a loss function L should be 
defined. Specifically, a loss function is used to assess the difference between the 
prediction and the true outcomes of the target variable. Given a classifier f, the general 
choices of L are shown as follows: 
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i) The 1L  hinge loss 

( ( , ), ) : |1 ( , ) |hingeL f y yf += −α x α x  

where z
+

=z if z>0 and 0 otherwise 

ii) The 2L  loss 
2

2 ( ( , ), ) : | ( , ) |L f y f y= −α x α x  

iii) The logistic loss 
( , )

log ( ( , ), ) : log(1 )yf

isticL f y e−= + α x
α x  

iv) The 0/1 loss 
If the output of f is either -1 or 1, i.e. the membership of a class 

0/1( ( , ), ) : | ( , ) |L f y yf += −α x α x  

L2 is frequently used in linear regression, while the 1L  hinge loss is used in 

SVM. Logistic regression takes the similar loss (negative likelihood) as the logistic 
loss. The 0/1 loss simply adds 1 unit of loss whenever the prediction is different from 
the truth.  

Given the classifier f and the loss function L, an expected risk function R can be 
defined regarding the predictive power of a model by incorporating the stochastic 
nature of the problem. The expected risk function is defined with respect to the joint 
probability distribution of X and Y, P(x,y) i.e.  

,

( ) [ ( , ), ] ( , )
y

R L f y P y d dy= ∫∫
x

x x xα αα αα αα α  

Generally, predictive modeling amounts to finding the optimal parameterization to 
minimize the expected risk function R with the training samples. The step of finding 
optimal alpha is usually regarded learning in the domain of machine learning and as 
model estimation in statistics. 

Besides choosing a classifier f for a specific L with small expected risk, feature 
selection is another key step in predictive modeling. One goal of feature selection is to 
search for a subset of features that will improve the prediction accuracy (smaller R 
empirically). To use a subset of features instead of the full set inevitably brings the 
question of why extra information will not facilitate the prediction, even though some 
features are known to be irrelevant to the target. For instance, in the previous clinical 
example, other than the physical conditions and genomic expressions of the patients, 
room temperatures, diet information, even seasons can also be taken into 
consideration. However, adding such features in fact increases the dimensionality of 
the model and in turn tends to bury the relevant features into noise and irrelevant 
features (relevance is discussed in Chapter 3). Specifically, given finite number of 
samples, in practice, models learned with large number of features tend to be very 
sensitive to noise and fail to provide reliable prediction when present with new data 
(overfitting). Therefore, proper feature selection has the potential in improving 
prediction by reducing the dimensionality of the feature space. 

Feature selection can be generally defined in the following way regarding 
prediction (based on Lal et al., 2003). Let {0,1}nσ ∈  be an n-dimensional indicator 

vector, where 1iσ =  indicating that the feature i is present in the selected subset, and 

0iσ =  indicating the feature is absent. 
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Definition 2.1.1 (Feature Selection) Let f be a parameterized family of 
functions : , ( ) ( )d nf fΛ × → →ℝ ℝ α, x α, x . Feature selection then amounts to finding 

an indicator vector *σσσσ  and a parameterization of f * d∈ Λαααα that minimize the 
expected risk 

 
 
 

where ⊙ denotes element-wise product. L is a loss function and P(x,y) is the 

probability distribution of (X,Y). The feature subsets corresponding to *σσσσ  is the 
optimal subset with respect to L and f.  

 
In practice, however, the definition above is not sufficient to capture the 
characteristics of the problem. We can understand the practical issues by looking at 
the terms in the definition more closely. 

2.1.1 Estimate ( , )R α σ  and generalization errors 

In most cases, especially for high dimensional genomic data, the distribution P(x,y) 
does not have reliable empirically estimate from the data. Actually, estimating P(x,y) 
is a far more difficult problem than predictive modeling. To overcome this, by the law 
of large number, the integral in Definition 2.1.1 can be replaced by the arithmetic 
mean of the losses over the observations (training data) called the empirical risk.  

( )

1

1ˆ( , ) [ ( , ), ]
m i

i
R L f y

m =
= ∑ ⊙

(i)
α σ α σ x  

Empirical risk is a straightforward approximation for expected risk, but in 
practice provide little information about the generalization ability of a model (feature 
subsets), especially when the training data is of small size or dimension of X is large. 
This is due to the fact that the empirical risk is estimated from only the training data, 
and relies heavily on the convergence speed by the law of large number. Therefore, 
another measure for generalization ability is needed.  

There are various schemes to assess the generalization ability of models i.e. 
generalization errors. Intuitive, a separated test data set can be used to evaluate the 
predictive power of the model estimated from training data, given that the test data are 
from the same distribution. For a small data set, the generalization error estimated 
from such a single split is very inaccurate. To overcome this, the general k-fold 
cross-validation (CV) split (usually randomly) the training data into k subsets with 
(approximately) equal sizes. Iteratively, the model is learned with one subset left out 
and that subset is then use to compute an error measure for the learned model by 
averaging the errors over the leave-out subset. Then the k-fold CV generalization 
error estimate is the average of the k averaged error terms. 

,

( , ) [ ( , ), ] ( , )
y

R L f y P y d dy= ∫∫ ⊙

x

α σ α σ x x x
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2.1.2 The indicator vector σσσσ  

To search for the optimalσσσσ for a fixed parameterization *αααα and f is a combinatorial 
problem, which is NP-hard with the search space being 2 1n − . Therefore, feature 
selection algorithms either use greedy heuristics to avoid searching over full space or 
relax the 0/1 integer constraints on indicator vector to real domain [0,1] as weights w 
(as we shall see in embedded methods). Additionally, further constraints can be 
imposed on σσσσ to input prior via the term Ω (σσσσ ) which is some norm measure on the 
(relaxed) indicator vector : 
 
i) 0ℓ  norm: 0( ) ( )Ω = ℓσ σσ σσ σσ σ  the number of non-zero elements in σ  

ii) 1ℓ  norm: 
1

( )
n

i

i

σ
=

Ω =∑σσσσ   

iii) 2ℓ  norm: 
2

1

( )
n

i

i

σ
=

Ω =∑σσσσ . 

 
( )cΩ σσσσ is then either imposed as constraint ( ( ) 1cΩ ≤σσσσ )  

,
min ( , )R
σ α

α σα σα σα σ  subject to ( ) 1cΩ ≤σσσσ  

or is added to the empirical risk term to form a new optimization problem,  

,
min ( , ) ( )cR
σ α

+ Ωα σ σα σ σα σ σα σ σ  

where C is a constant to control the magnitude of penalization by Ω ( σσσσ ) i.e. 
( ) . ( )c CΩ ≡ Ωσ σσ σσ σσ σ  

2.1.3 The loss function L and the classifier f  

Feature selection is sensitive to the choices of L and f. One can proved that optimal 
features selected for a pair (L,f) is not necessary optimal for another pair (L*

,f
*) 

(Tsamardinos et al., 2003a). Therefore, feature selection should be conducted with 
different combinations of (L,f) to compare the results, while the performance of a 
feature subset should always be compared with the same combination of L and f.  

In statistical learning theory, assuming the exact probability distribution P(x,y) is 
known and both X and Y are discrete, Bayes classifier is defined as the function,  

1,  Pr(Y=1| = ) 1/ 2
( )

1,  otherwiseBayesf
+ ≥

= −

X x
x  

Bayes classifier is proved to be the best classifier with minimal 0/1 prediction errors 
(Bayes errors) and is seen as the bound of the prediction performance of a practical 
classifier. The Bayes classifier is of only theoretical importance by providing 
designing principles, since it is assumed that the Bayes classifier knows exactly P(x,y) 
which is rarely possible for high dimensional data.. 

2.1.4 Variations of feature selection 

The previous definition (Definition 2.1.1) focuses on finding a set of features that 
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minimize some loss function (L) for the underlying classifier (f) i.e. improving 
prediction performances. However, a feature that is informative in predicting the 
target Y is not necessary relevant. It is observed for SVM, adding noisy features with 
the same zero mean random noise would reduce the overall influence of a single noisy 
feature to the SVM (Lal et al., 2003). Therefore, when the relevance of a feature to the 
target is of more concern, the design of feature algorithms should have schemes to 
cope with such inconsistency between prediction and relevance (Nilsson et al., 2007, 
Yu and Liu, 2004). We shall look into the problem in more details in Chapter 3. 

2.2 Principles of Model selection 

Feature selection can be regarded as part of model selection, where feature selection is 
performed as integrated part of the model building. On the other hand, feature 
selection can itself be seen as model selection i.e. to choose a model that can select 
the best subset of features for prediction or causal inference. Therefore, it is useful to 
review some general aspects in model selection before looking into specific feature 
selection methods. 

Model selection is the most fundamental step in data analysis. Given a dataset D 
and a set of models {Mi}, model selection amounts to choosing a model that best 
explains the data in a specific perspective (prediction, feature selection or Bayesian 
network learning etc.). A model is a function or functional with a set of 
parameterization. Here, the dataset D is assumed to be stochastic. One of the most 
important statistical principles of model selection is to balance bias and variance of a 
model. In the terms of statistical learning, bias refers to the errors occurring when the 
model is not complex enough to describe the true generating process while variance 
refers to the errors when the model has more degrees of freedom than the true 
generating process (overfitting). Such decomposition is very informative for linear 
regression problem with mean-square loss, where the mean square errors can be 
decomposed into bias term (errors related mismatches between the model and the true 
generating process) and variance term (errors related to learning from finite samples).  

To see the importance of balancing bias and variance, the simplest example is the 
two-dimensional curve fitting problem: given a set of points {u(i),v(i)},fit a curve to the 
data. Bias can be introduced when a linear model is fit to the data when {u(i),v(i)} are 
points in a third degree polynomial curve. On the other hand, variance is large when 
fitting a higher degree polynomial to {u(i),v(i)} with noisy linear relationship. Bias and 
variance tradeoff is the nature of model selection due to its attempt to reverse 
engineering the probabilistic and complex generating process from data with finite 
parameterization, which is known to relate to inverse problem.  

The tradeoff of bias and variance is generally resolved with proper penalization in 
the models. Several penalization criterions have been proposed and widely used. First 
of all, it is useful to introduce the concept of complexity of a model. Models may 
differ in i) sets of features ii) model complexity: e.g. number of parameters in linear 
models, number of support vectors for SVM iii) initial parameter values or stopping 
criteria. Complex models with complicated structures, large amount of parameters or 
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unbounded stopping criterion in search tend to fit the training data well. However, 
estimating such models with small dataset will introduce the problem of overfitting 
where the model fits the training data extremely well but fails to predict new data. To 
address this issue, Akaike (1974) proposed Akaike’s information criterion (AIC) to 
penalize the number of free parameters n in model selection. Schwarz (1978) 
introduced the Bayesian information criterion (BIC) with heavier penalization on the 
n. Neither methods address the intrinsic complexity of the function of the model. 
Alternatively, Vapnik and Chervonenkis (1971) defined a measure of the capacity of a 
classifier (model) as the cardinality of the largest set of points that the classifier can 
shatter, VC-dimension. Structure risk minimization with VC-dimension (SRMVC) 
takes into account of the complexity of the modeling function regarding its power that 
has connection to the number of free parameters. Empirically, cross-validation (CV) 
scheme is used to access the estimation of bias and variance of a model. The errors 
calculated from cross-validation can be proved to be consistent estimate of the bounds 
for errors in a new dataset from the same distribution.  

In practice, Moore (2001) compared the AIC, BIC, SRMVC and CV-errors on 
simulated data and pointed out that as the sample size goes to infinity, AIC is 
equivalent to leave-one-out CV and BIC is asymptotically equivalent to a carefully 
chosen k-fold CV and tends to perform better for Bayesian network structure learning 
and clustering. As for SRMVC, it is observed to be very conservative regarding 
bounds. CV is computational intensive and has larger variance, since CV itself 
involves multiple training on the dataset.  

2.3 Feature selection general guidelines 

It is very useful to understand the general steps of solving a feature selection problem. 
Guyon and Elisseeff (2003) suggested the following steps:  
1. Feature constructions 
2. Feature ranking with filter methods 
3. Excluding outliers 
4. Comparisons between different feature selection methods 
5. Assessing stable solution 

The first step preprocesses the data by transforming them with some prior 
knowledge. For instance, when the measurements involve counts or very small real 
values (e.g. on the order of 10-5), it is reasonable to take the logarithms of data to 
recover the nature of distribution. On the other hand, the measurements of a set of 
features do not usually commensurate. Therefore, normalization over samples or 
features is a basic step to avoid the effects of large differences on levels. Such 
differences might be sensitive to some classifiers such as SVM and Fisher’s linear 
discriminator. Furthermore, conjunctive features or linear combinations of features 
(principle component analysis) are also of interest if features do not need to be 
analyzed separately. The second step is to use filters as baseline results before 
applying more complicated methods. Thirdly, since outliers affect the performance of 
most classifiers, discarding outliers is an essential step before evaluating the 
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performance of feature selection methods. One may detect outlier examples using the 
top ranking variables from filter methods or smooth the effects of outliers with a 
sigmoid function. With outliners eliminated, the fourth step starts with linear classifier, 
combining with forward selection with “probe” as stopping criterion If increasing 
subsets of features can improve or match the performance with a small subset using a 
sequence of predictors of same nature, evaluate the subset with a non-linear classifier. 
Other methods can also be applied and should be compared. Finally, one might 
resample the data (if the data set is not large enough) and evaluate the results with 
bootstrapping. 

2.4 Approaches of feature selection 

Generally, the approaches of feature selection can be divided into three types: filters, 
wrappers and embedded methods. These approaches differ in three ways i.e. 
(according to Guyon and Elisseeff, 2003) 
� search strategies 
� evaluation criterion definition (e.g. relevance index or prediction of classifiers) 
� evaluation criterion estimation (statistical test or cross-validation/performance 

bounds) 

2.4.1 Filters 

Filters estimate a relevance index for each feature to measure how relevant a feature is 
to the target. Then filters rank features by their relevance indices and perform search 
according to the ranks or based on some statistical criterion e.g. significance level. 
The most distinguishing characteristic of filters is that the relevance index is 
calculated based solely on a single feature without considering the values of other 
features. Such implementation implies that filters assume orthogonally between 
features which usually is not true in practice. Therefore, filters omit any conditional 
dependence (or independence) that might exist, which is known to be one of the 
weaknesses of filters, since they might miss optimal subset of features. However, 
filters are efficient and proved to be more robust to overfitting theoretically (Ng, 
1998).  

There are various heuristics to design relevance indices for filters, including 
univariate prediction error rate (i.e. evaluate the relevance of a feature as how 
accurate the prediction is using only itself), correlation-based (e.g. Pearson coefficient, 
signal to noise ratio), distances between distributions (K-L divergence, 
Jeffreys-Matusita distance), information theory (mutual information, Minimum 
Description Length (MDL)), decision trees (C45, CART), Relief (a class of filters 
incorporating sample relations into feature selection). Most of heuristics are derived 
from their relations to the bounds of Bayes errors of single feature. On the other hand, 
they differ in how to use data to evaluate the usefulness of a single feature. Heuristics 
other than decision trees and Relief are global, i.e. they do not account for distances 
between samples. Relief makes use of the local information of an area of the feature 
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space to calculate the average usefulness of a feature, since features can be relevant to 
the target in some area. Decision trees divide the feature space hierarchically to 
investigate the relevance of features at different stages. Such local information will be 
helpful when the data domain is complicated, especially is image analysis. 

There is no general guideline for choosing the most appropriate relevance index 
for a problem. However, the performance of relevance indices are related to the type 
of data (binary, integer or continuous) and prior information about the data 
distribution, according to their definitions and properties. Other than those, the 
following matters are worth noting. First of all, different relevance indices may rank 
features in distinct orders, since the abilities of relevance indices to capture 
dependence might vary. Secondly, there is always bias and variance when the 
relevance indices are estimated from data. Generally, complex relevance indices that 
are less biased could be very unstable (large variance) e.g. MDL is more robust to bias 
regarding discovering the non-linear dependences. However, MDL tends to have large 
variance when estimated from data with low data to features ratio and causes 
over-fitting. Therefore, one should be careful when evaluating the ranking of features 
using complicated relevance indices. 

Contrast to the traditional univariate filters, recently, several authors succeeded in 
applying conditional independence tests to filter out feature that are not in the Markov 
blanket of the target (Aliferis et al., 2003b, Nilsson et al., 2007) (Markov blanket can 
be seen as the subset of features conditional on which the target is independent of any 
other features). Such methods no longer assume orthogonality of features and search 
the feature space in a recursive way to efficiently test conditional independence. They 
have similarities to univariate filters in that they do not rely on any classifiers but 
depend only on the power of the independence tests. The designs of those methods are 
discussed in more details after the formal definition of Markov blanket in Chapter 3. 

2.4.2 Wrappers 

Instead of ranking every single feature, wrappers rank feature subsets by the 
prediction performance of a classifier on the given subset, which were first proposed 
by Kohavi and John (1997). Unlike filters, wrappers can be used to search through all 
possible subsets of features and explore the mutual information between features. 
After choosing a classifier (preferably consistent), wrappers evaluate the prediction 
performance either by cross-validation or theoretical performance bounds. Other than 
the choices of classifiers, wrappers differ in the underlying search strategies. 
Exhaustively searching combinatorial subsets is NP-hard and is prone to overfitting. 
Therefore, greedy search strategies are generally preferred, such as sequential forward 
selection or backward elimination. Since search strategy is a topic important for both 
wrappers and embedded methods, the details of search strategies are discussed later 
(Section 2.5).  

The idea of wrapper has been used before Kohavi and John’s proposal. For 
instance, the use of AIC in model selection for linear regressions, where the feature 
subsets are compared based on AIC, i.e. the subset with smaller AIC is prefer. To 
search for optimal subset, one need to apply search strategy, either evaluate AIC over 
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all possible subsets, or start with whole set and eliminate one at a time the feature 
without which the AIC is the smallest. Kohavi and John (1997) presented a more 
formal discussion of this kind of methodology by introducing variability in choices of 
classifiers and search strategies. 

 

2.4.3 Embedded methods 

Embedded methods select features based on criterions that are generated during the 
learning process of a specific classifier. In contrast to wrappers, they do not separate 
the learning from the feature selection part, i.e. the selected features are sensitive to 
the structures of the underlying classifiers. For this reason, in most cases, the feature 
selected by one embedded methods might not be suitable for others. Formally, 
embedded methods are designed explicitly or implicitly to approximate solutions of 
the minimization problem with respect to weights for features and the 
parameterization of a classifier. The methods to pursue such approximate solutions 
can be 1) Greedy search based on the gradient between the empirical risk and the 
weight indicators. Methods of this kind include Least Angle Regression (LARS) 
(Efron et al., 2004), Recursive feature elimination (Guyon et al., 2002) and decision 
trees, 2) Relaxation of the integrality restriction on weight indicators. The 
minimization problem is then solved either with gradient descent regarding the 
bounds for generalization errors (Weston et al 2000) or incorporating proper priors for 
the weights (Joint Classifier and feature Optimization (JCFO) Krishnapuram et al., 
2004) and 3) Inclusion of a sparsity term in the minimization problem (for linear 
models). Methods of this category combine the loss function in the original problem 
with a regularization term, which is usually the l0 norm or l1 norm of the weights. 
There are some potential advantages of using l0 or l1 norm regularization to the widely 
used l2 norm due to the convexity of l2 norm, which will be discussed in more details 
in the next chapter. Least Absolute Shrinkage and Selection Operator (LASSO, 
Tibshirani, 1996), Generalized LASSO (Roth, 2003) and 1-norm SVM (Zhu et al., 
2003) use l1 norm whereas Feature Selection Concave (Bradley and Mangasarian, 
1998) and Multiplicative Update (Weston et al., 2003) approximate the l0 norm by a 
smooth function whose gradient direction is known to avoid NP-hardness and 
overfitting.  

2.4.4 Comparisons and Ensemble methods 

The three approaches of feature selection methods are different in their design 
methodology and each has its own strongness and weakness. As far as computation 
efficiency is concerned, filters do not require any model learning and thus are time 
efficient. Wrappers are generally the slowest among the three, since the 
cross-validation procedures on every iteration are costly. Embedded methods may 
incorporate schemes to speed up the evaluation of quality of a feature subset to avoid 
the cross-validation. On the other hand, filters have the lowest model complexity. 
Embedded methods and wrappers tend to have higher complexity than filters for the 
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parameterization in classifiers. Nevertheless, filters, as mentioned above, usually miss 
capturing mutual information between features, and thus tend to be biased.  

The choices of feature selection methods are problem-dependent. When the 
training sample size is small, filters are expected to perform better for their ability to 
provide more stable estimation, whereas more advanced wrappers and embedded 
methods will outperform filter methods when the training sample size increases, for 
their abilities to detect mutual information between features. Other than the size of 
data set, a closer look at the data via different data analysis tools will be helpful to 
identifying the characteristics of the data. For classification, visualization of the target 
variable among two or three features could assist in selection of parameterization of 
methods (say. whether the target is linearly separable, if not, choose a non-linear 
kernel for SVM).  

Supervised ensemble methods represent a methodology of constructing a set of 
base algorithms and using their weighted outcome for prediction (feature selection). 
Theoretically, ensemble methods are confirmed to be more stable for generalization 
(Poggio et al., 2002, Poggio et al., 2004). They also tend to perform better when there 
exist redundant features (redundancy is related to relevance, Chapter 3). For feature 
selection, a simple example of ensemble method can be: choose a set of feature 
selection algorithm e.g. a set of different relevance indices for filters, and then take 
the intersections or union of the top ranking features or choose features based on their 
frequency in the top ranking subsets. Another example is that random forest for 
feature selection, where ensemble of decision trees is used to implicitly select features. 
The condition for ensemble methods to reduce variance of the optimal subset is that 
the set of base algorithms should not be correlated (or only weakly correlated) and not 
be of high complexities (capacities).  

2.5 Search strategies 

Search strategies are crucial in designing feature selection algorithms, especially for 
wrappers, where optimal subset is to be identified by searching through the subset 
space. Exhaustive search is both not practical and prone to overfitting, which should 
be overcome by proper search strategies. 

2.5.1 Deterministic Search 

Deterministic search represents a large class of search strategies, which does not 
involve randomness in the search procedures, i.e. search proceeds according to 
pre-specified schemes. 

Sequential backward selection (SBS) and sequential forward selection (SFS) are 
two most basic search strategies that many advanced search strategies based on. SBS 
(Maril and Green, 1963) starts with the full set of features, and eliminates a feature 
whose elimination yields the best result according to an evaluation function (e.g. 
empirical risk function) at each step until a specified number of features are left or 
other stopping criterions are met. On the contrary, SFS (Whitney, 1971) starts with an 
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empty set and adds a feature whose inclusion yields the best result until the method 
reaches a specified number of features or obtains no gain on the evaluation function. 
Concerning the performance for the two, SFS is generally faster than SBS, since it 
involves fewer features in the beginning, while SBS progresses with larger set of 
features backwardly. However, SFS is known to fail in XOR-like problem (Guyon 
and Elisseeff, 2003), where a feature is not informative without the other feature. SFS 
has difficulty in including such a feature when the other feature is not chosen in an 
earlier step. Nevertheless, no empirical evidences suggest that one is superior to the 
other for these two methods (Kudo and Sklansky, 2000), which might imply that such 
XOR effects are mitigated by noise or the present of other features.  

Instead of examining one feature at each step, both SBS and SFS can be 
generalized to evaluating a fixed size k subset every step, which increases the 
computation to polynomial up to the degree of k. Once again, even though there exist 
synthetic examples where one-at-time algorithms fail, no theoretical evidence 
supports that the generalization versions are better.  

Further generalizations of the forward and backward strategies include  
i) Backtracking During Search, in which both inclusion of l features and 

elimination of r features occurs in each step  
ii) Beam Search (Siedlecki and Sklansky, 1988, Aha and Bankert, 1996) which 

generates candidate search branches that can be visited again to extend the 
search space  

iii) Floating Search (Pudil et al., 1994), a combination of a one step SBS (SFS) 
and a SFS (SBS) until the best subset is found.  

There are other modifications varying on how subsets of features are incorporated 
into evaluation or how to avoid redundant processing etc. However, when the search 
strategies become complicated, the problem of overfitting arises. For example, the 
backtracking in floating search might stop after a long time (or may not stop at all). 
Therefore, the optimal subset might be lack of statistical significance for new data. A 
proper stopping criterion is needed in this case to avoid overfitting. 

All the methods presented above maintained the candidate subset(s) which will be 
evaluated at each step. Nilsson et al. (2007) recently suggest a backward-like wrapper 
algorithm that is consistent for strictly positive distribution (in Section 3.2) to identify 
Markov blanket if the black-box classifier is consistent to Bayes classifier. Unlike the 
previously mentioned methods, the algorithm does not evaluate the candidate subset 
directly and adds the feature without which the prediction error increases (by an 
amount set as a parameter) compared to the full set of features. The prediction 
performance of the optimal subset is never evaluated during the search. It is linear to 
the number of features, but its time efficiency depends mainly on the learning of the 
classifier at each step. We will study this method in more details in the experiment 
section. 

2.5.2 Stochastic Search 

For a given data set and a particular initialization, a deterministic search strategy 
always returns the same subset, which makes it extremely sensitive to the change of 
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the data set. Randomizing the search schemes (stochastic search) is a reasonable way 
to introduce randomness to account for the stochastic nature of the data (as in 
boosting). Moreover, stochastic search strategies usually converge fast and have 
sound theoretical consistency in finding sub-optimal results, which is preferable in 
avoiding overfitting. 

2.5.2.1 Simulated Annealing 

Simulated annealing starts with an initial subset that is chosen either randomly or 
from the outputs of some feature selection methods. At each step, the current subset is 
subject to some small random change. If the change produces a subset better 
prediction performance, then it is accepted as a new candidate subset. While the 
change results in worse subset, it is accepted with a probability that is dependent on 
the ‘temperature’. The temperature is high at the initial state and decreases in the 
course in a preset rate. The low temperature at the end ensures that the algorithms will 
produce a local optimal. Simulated Annealing was independently proposed by 
Kirkpatrick, Gelatt and Vecchi in 1983 and by Černý in 1985, and was proved to be 
very useful in optimization problems. It can be easily implemented but rely greatly on 
the choices change schemes, temperature decreasing rate etc. which might be varied 
for different data set.  

2.5.2.2 Genetic Algorithms 

Genetic algorithms utilize a set of candidate subsets (population) instead of one subset 
in simulated annealing. At each step, the set of subsets undergo i) mutations: minor 
random changes in the subset ii) crossover: the subset is changed based on other 
subset in the population by including features that belongs various parts of the other 
subsets. When changes are made accordingly, subsets in the population with better 
performance is chosen with high probability into the next generation. The algorithm 
stops until the pre-specified number of generation is reached or other criterion is met. 
Genetic search algorithms have great power in combinatorial problems such as 
Traveling Salesman Problem (TSP), it is also reviewed by (Kudo and Sklansky, 2000) 
for feature selection.  

2.5.2.3 Randomized backward selection 

For deterministic sequential backward selection, each feature is eliminated only if its 
elimination gives better prediction result. Stracuzzi and Utgoff (2004) proposed a 
randomized version of backward elimination. In their framework, the probability that 
a relevant feature is included in a randomly selected subset of size k is computed. 
Such subset of size k is considered for elimination from the candidate subset and the 
value of k is chosen to ensure that the removal of k variables has high probability of 
being truly irrelevant. If the removal causes the error estimate to increase, one or more 
of the pruned features are considered to be indeed relevant. Therefore, the removal is 
cancelled and another new random subset is chosen. The algorithm stops until a preset 
number of consecutive cancellations are encountered, which can be seen as a sign that 
all the features in the current candidate subset are relevant. Stracuzzi and Utgoff 
pointed out that this scheme works well when the proportion of relevant features is 
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small. 
 
Most of search strategies discussed in this part can be incorporated with various 
classifiers to form wrappers. Similar to the choices of feature selection methods, there 
are generally no empirical evidence supports that any search strategy is universally 
better than others. In practice, such choices are dependent on the sample size and the 
nature of the data distribution.  

2.6 Statistical aspects of feature selection 

The feature subset output by a feature selection algorithm should be evaluated 
statistically. General properties of the selected subset, such as significance level, false 
positive rate, false discovery rate etc. should be assessed after feature selection is 
performed. Additionally, issues related to the performance of feature selection 
algorithms are shortly discussed with respect to statistical learning theory.  

2.6.1 Subset Quality Evaluation 

The false positive rate (FPR) is the probability that a feature is not relevant while 
being selected by the underlying feature selection algorithm. The falsely selected 
features are called false positives. For filters, the false positive rate can generally be 
controlled by setting the significance level of relevance indices, which can be 
computed analytically using parametric or nonparametric hypothesis testing (based on 
large sample properties), e.g. T-test criterion, ANOVA, Wilcoxon test and AUC 
criterion Chi-square statistics etc. However, in reality the assumption for hypothesis 
testing is sometimes not satisfied e.g. the distribution of the features is not Gaussian 
or the number of samples is usually too small to have asymptotic properties. More 
importantly, the distributions of most relevance indices cannot be calculated 
analytically. According to statistical learning theory, when distribution functions are 
not the goal, one should never estimate them due to the complexity of the problem. 
Thus, one should always circumvent such complexity by other techniques. 
Alternatively, Oukhellou et al. (1998) suggested that generating “random probes” i.e. 
features that are not related to Y and comparing their relevance with the relevance of 
candidate features is a good way to estimate false positive rate. In order to mimic the 
‘behavior’ of irrelevant features, the random probes should have connections to the 
data at hand. In Dreyfus and Guyon (2003), two ways to generate random probes were 
given 
i)     generating random features with a distribution which is similar to that of the 
irrelevant candidate features (e.g. a normal distribution)  
ii) permuting the values of the features across observations in the training data 

( similar to the methodology of permutation test) 
By computing the relevance indices of candidate features and generating random 
probes, one can choose a threshold r0 on the relevance index that guarantees an upper 
bound on FPR. The FPR is defined as the ratio of the number of false positives to the 
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total number of irrelevant features. Under the assumption that the distribution of 
probe variables is similar to the distribution of irrelevant variables and that the 
number of generated probes is large, the FPR for this threshold can be estimated as 
the ratio of the number of selected probes to the total number of probes. For instance, 
when univariate forward selection is performed, assessing FPR can be summarized in 
the following steps: 
1. Generate random probes using the methods mentioned above 
2. Compute the relevance index for both candidate features and probes 
3. Rank the features including probes in decreasing order 
4. Stop the selection progress when the ratio of the selected probes to total number of 

probes is larger than or equal to the chosen FPR 
Variants of this can be used in the framework of wrappers or embedded methods. 

In feature subset selection, FPR is misleading by underestimate the p-value since 
multiple testing is performed. Bonferroni correction, as an attempt to overcome this 
problem is based on the first order approximation of the independent testing 
assumption. However, it increases the specificity by overestimate the p-value 
(Perneger, 1998). Benjamin and Hochberg (1995) proposed the false discovery rate 
(FDR) as a further correction which has been used intensively in medical testing. It is 
defined as the ratio of false positives to the total number of selected features. 
Genovese and Wasserman (2002) showed that FDR is a measure that is intermediate 
between Bonferroni correction and no correction. More importantly, FDR is robust in 
the sense that it provides a better estimation of the number of false positives. Two 
ways of estimating FDR approximately using random probes is given in (Dreyfu and 
Guyon, 2003), which should be used based on the fraction of relevant features. 

2.6.2 Performance evaluation 

The prediction performance of feature subsets should be assessed statistically 
especially the size of test samples is small. For a classification problem, the 
misclassification rate (number of misclassifications divided by the number of test 
samples) is usually used to measure the prediction performance of a classifier or 
feature subset. We denote the misclassification rate as E. It has standard error 

stderr(E ) = 
(1 )

t

E E

m

−
, where mt is the number of test samples (Guyon et al., 1998). 

Therefore, the comparisons of the prediction performance between two feature 
subsets should be evaluated with cautions. Guyon et al. (1998) suggested the 
McNemar’s test when comparing the prediction performance with misclassification 
rate for different feature subsets. McNemar’s test a non-parametric method used 
originally to determine the potential treatment effects (where the performance of the 
two subsets can be seen as different effects before and after treatments): 

Assuming i.i.d. errors, one-sided test and approximating binomial with normal 

law, iE  the average number of misclassifications where the misclassifications are 

only made by feature subset i but not by the other. Then the McNemar’s statistic in the 
following is chi-square distributed with 1 degree of freedom. If the statistic is 
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significant (e.g.5% significance level), then the feature subset with small 
generalization errors is significantly better than the other in prediction. 
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 McNemar’s test will lose power when 1 2( )tm E E+  is small (<20), in which case, 

the exact Binomial test should be used instead. For binomial test, the null hypothesis 
is that both models are equivalent. Thus, the rate of errors that only one model makes 
should be equal, i.e. for an observed error, the probability that it is only made by 
either model should be 0.5. Therefore, the differences in number of errors u only 
made by oneself (i.e. 1 2| |tm E E− ) should be distributed with binomial distribution 

Bin( 1 2( )tm E E+ ,0.5). The confidence interval can then be estimated by assessing the 

inverse of the binomial distribution. 

2.6.3 Consistency 

The size of data is an important factor affecting the performance of model selection. 
Consistency evaluates the convergence to a property of a model when the size of the 
data goes to infinity. The convergence and the corresponding property provide 
assessment of the behavior of a model. For example, k-nearest neighbor (k-nn) is 
consistent to Bayes classifier (consistent classifier means the prediction performance 
of such classifiers converge to Bayes classifier when the sample is infinite). In 
practice, the performance of consistent model relies on closely the size of the data. 
When the size of train data is small, consistent methods with slow convergence rate 
might not perform well in practice.  

2.6.4 Overfitting 

In model selection, overfitting is a crucial issue that should be carefully coped with in 
practice. Theoretically, overfitting is related to the ill-posedness of inverse problem 
when trying to model the continuous and infinite world with finite and(or) discrete 
parameters. Overfitting occurs when the model is selected for best describing the 
training data, but fails to fit new data. For feature selection, one should always choose 
methods with caution of overfitting, especially when the size of training data is small. 
As earlier explained, filters might be preferred to more complicated methods like 
wrappers.  

Another practical issue of overfitting is in the process of learning a model. As 
showed before, when estimating a model, besides the parameters, there are other 
factors that should be also decided upon the data. Those factors can be called 
meta-parameters including e.g. the number of features, the number of trees in random 
forest or stopping criterion. In model selection framework, data generally are split into 
three parts: training set that is used for parameter estimation, a validation set that is 
used for model selection and a test set that is used for evaluate the generalization 
ability of the selected model. The comparisons for the performance of feature 
selection algorithms with their errors on validation set should always be avoided. 
Such comparisons are problematic, since the meta-parameters (model selection) are 
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trained on the validation set, which might reduce the generalization ability of the 
model and in turn widen the confidence interval on the generalization error. On the 
other hand, regardless of its high computation requirement, searching for optimal 
parameter (or models, feature subsets) can be problematic since it decreases the 
statistical significance of the solution with finite data size in practice. Therefore, some 
form regularization (e.g. penalization on the some norm of the parameters) and greedy 
criterion (e.g. early stopping in search) should be included in model learning to cope 
with overfitting.  
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Chapter 3 

Relevance and Causality 

In this chapter, we review some concepts on relevance and causality. The relevance 
between the features and the target variable has crucial implication on feature 
selection. Intuitively, features should be selected based on the degree of relevance. 
Therefore, it is necessary to clarify the different definitions of relevance. On the other 
hand, for causal feature selection, the causal structure is the central t that should be 
carefully evaluated.  

3.1 Relevance 

Kohavi and John (1997) defined relevance in strong and weak sense regarding the 
variation of conditional distribution of target Y on different subset of features. 

\{ }i iX∈R X  represents the set of all features in X except Xi. The definitions in this 

chapter assume all the features are discrete if not otherwise stated. The following 
definitions can be extended when any one of the features is continuous, by replacing 
the probability (Pr) with cumulative distribution.  
 
Definition 3.1.1 (Strong relevance). A feature Xi is strongly relevant if and only if 
there exists some xi, y, and ri for which Pr(Xi=xi, Ri= ri) >0 such that  

Pr( | , ) Pr( | )i i i i i iY y X x R Y y R= = = ≠ = =r r  

Definition 3.1.2 (Weak relevance). A feature Xi is weakly relevant if and only if it is 
not strongly relevant, and there exists a subset of features R’

i of Ri for which there 
exists some xi, y and r’i with Pr(Xi=xi, R’i= r’i) >0 such that  

' 'Pr( | , ' ) Pr( | ' )i i i i i iY y X R Y y R= = = ≠ = =x r r  

Relevant features are either weakly relevant or strongly relevant. A strongly 
relevant feature contains information of the distribution of Y which no other features 
can replace, whereas a weakly feature can be useful only when some features are not 
present. As for prediction, Kohavi and John (1997) argued that in practice relevance 
does not imply optimality for classifiers induced from data and vise versa in sense of 
prediction. As a matter of fact, irrelevant features can be informative in prediction 
when the data is noisy, since such features as whole could be included to extract 
information on the noise. To circumvent the ambiguity in KJ’s definition for relevance, 
Yu and Liu (2004) introduced the concept of redundancy, and subcategorized weakly 
relevant features into redundant and non-redundant subsets with their algorithms. 
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Guyon and Elisseeff (2003) defined feature irrelevance and subset relevance 
probabilistically in a similar form as KJ’s (based on conditioning), but focused on the 
specification of redundancy.  

When the performance of prediction is the primary goal for feature selection, it is 
of interest to investigate correspondence between optimal subset for prediction and 
relevant features. As previous discussed, KJ’s definition relevance fails to completely 
capture such a correspondence. Tsamardinos et al. (2003a) suggested the definition of 
relevance for a target Y should be functions of each feature subsets instead of 
individual features. Additionally, they argued that relevance should be defined with 
respect to the underlying classifiers and loss functions by proving that there exists 
feature relevance given the probability distribution of data and the classifier (or loss 
function) that is dependent on the loss function (or the classifier). They pointed out 
that according to the No free lunch theorems for search and optimization (Wolper and 
Macready, 1997), the average performance of different optimization or search 
algorithms (wrappers) over all possible problems is equivalent, which is another 
evidence that feature relevance should be related the classifier and loss function. In all, 
for the existences of such extreme example, Tsamardinos et al. (2003a) concluded that 
in principle, feature selection methods should be evaluated based on specific classes 
of loss functions and classifier. Similar argument is also given by Antos et al. (1999) 
who had shown that no Bayes errors estimate can be trusted for all data distribution, 
not even if the data size goes to infinity. For errors estimated by consistent classifiers 
such as k-nn, the speed of convergence to Bayes errors is arbitrarily slow. Therefore, 
it is not possible to make conclusion of universally superior feature selection methods 
without constraints.  

Regarding feature relevance, Nilsson et al. (2007) defined feature selection in 
new perspective: given the data, to find all the relevant features (both strongly and 
weakly) to the target. They proved that finding all relevant features is much harder 
than finding optimal subset for prediction. It is NP-hard in strictly positive 
distribution for which the latter has polynomial algorithms (O(n), n is the number of 
features). A polynomial algorithm of identifying all relevant features was proposed for 
a more constraint class of distribution which is strictly positive and satisfies 
composition and weak transitivity. The most important implication from their 
discussion is that when evaluating a feature selection algorithm, besides the classifier 
f and the loss function L, the distribution of the given data should also be taken into 
consideration. 

3.2 Markov Blanket 

Markov blanket of a (target) variable is defined as the subset of features conditional 
on which the distribution of the (target) variable is independent of other features. 
Markov blanket in many cases turns out to be a competitive features selection 
guideline to relevance (Koller and Sahami, 1997, Tsamardinos et al., 2003a, Yu and 
Liu, 2004, Nilsson et al., 2007).  
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Definition 3.2.1 (Markov Blanket)  

Let Φ ={X,Y} be a set of variables, the Markov Blanket of a variable Y, denoted as 
MB(Y) is a minimal set of variables, such that \{ },V Y∀ ∈Φ Pr(Y|MB(Y),V) = 

Pr(Y|MB(Y)) 

 
By the form Pr(Y|MB(Y),V) = Pr(Y|MB(Y)), it means that the equality holds for all 
realizations of the variables. We can interpret Markov blanket of Y as the feature 
subset conditional on which Y is independent of any other features in the given set Φ . 
Therefore, theoretically, MB(Y) is the minimal subset sufficient to provide the best 
prediction for Y. We will see later that such assertion is not necessarily true in 
practice.  

Markov blanket has close connections to the concept of Bayesian network which 
gives graphical interpretation of the dependence structures between features. Bayesian 
network is directed acyclic graph (DAG) with its nodes representing random variables 
(features), and edges representing the dependences between features. The edges are 
directed to specify to describe the conditional independence between features. Cycles 
are avoided in the model for cycles introduce ambiguity to the conditional 
independency between features.  

 
Definition 3.2.2 (Bayesian Network )  

Let { , }YΦ = X  be a set of variables and J be a joint probability distribution over Φ  
and G be a directed acyclic graph (DAG) over a subset of variables S ⊂ Φ . Let all 
nodes in G have one-to-one correspondence to the variables in Φ subject to the 
Markov condition i.e. for every node V ∈Φ , V is independent of all of its 
non-descendents in J, given its parents. Then , ,G JΦ  is called a Bayesian network.  

 

Bayesian network is proved to be able to represent any joint probability 
distribution. The following definition connects the joint distribution and the graphical 
structure of Bayesian network. 

 
Definition 3.2.3 (d-separation) A path is said to be d-separated 
(dependence-separated) by a set of nodes Z if and only if it fulfill one of the following 
(Pearl.2000) 
1. contains a chain i m j→ →  or a fork i m j← → such that the middle node m is 

in Z,  
2. contains inverted fork (collider) i m j→ ←  such that the middle node m is not 

in Z and such that no descendant of m is in Z. 
 
A path in graph is a set of consecutive edges in which the ending nodes each 
preceding edge is the starting node of next edge. d-separation is defined in terms of 
Bayesian theorem in the joint distribution and the Markov Condition. Combining both, 
we can prove the following theorem 
 
Theorem 3.2.1 (Probabilistic implications of d-separation) If two variables U and 
W are d-separated by Z in a directed acyclic G, then U is independent of W 
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conditional on Z in every distribution compatible with G. Conversely, if U and W are 
not d-separated by Z in a DAG G, then U and W are dependent conditional on Z in at 
least one distribution compatible with G.  (Pearl, 2000) 
 
Markov Condition ensures that every conditional independence entailed by G is also 
in J. However, it is not sufficient to admit the correspondence of conditional 
dependence between J and G. Hence the following definition is needed. 

 
Definition 3.2.3 (Faithfulness) The graph G of a Bayesian network is faithful to a 
joint probability distribution J over feature set { , }YΦ = X  if and only if every 
dependence entailed by G is also present in J. A Bayesian network is faithful if there 
is a probability distribution J to which it is faithful.  
 
The terminology of faithfulness by Spirtes et al. (2003) is also coined as stability 
(2000) by Pearl. Pearl (2000) defined stability as a property of a distribution such that 
the independences entailed by the distribution are not affected by the parameterization 
of the causal model. Specifically, stability (faithfulness) states that exact cancellation 
of dependences by parameterization can not occur in a faithful Bayesian network, e.g. 
deterministic relations. Stability is a concept introduced on causal model preference 
along with minimality, which is more instructive in the sense of model selection. 

According to the definition of d-separation and Theorem 3.2.1, the Markov 
blanket of a variable Y is the set of variables that d-separate Y, which is the set of 
parents, children and co-parents (parents of the common children) of Y 
(Neapolitan,2000). Under faithfulness assumption, one can prove that Markov blanket 
of a variable is unique. In faithful Bayesian network, one can establish the 
correspondence between KJ’s strongly relevance and Markov blanket. For 
completeness, the proofs for the two following theorems are shown based on 
Tsamardinos et al. (2003a). 
 
Theorem 3.2.2 In a faithful Bayesian network, a variable ( )iX MB Y∈  if and only if 

iX  is strongly relevant to Y. 

Proof:  If ( )iX MB Y∈ , from the definition of d-separation, we can see iX  cannot 

be d-separated from Y by iR  (X/{Xi}) which implies that Y and iX  are 

conditionally dependent given iR  i.e. Pr( | , ) Pr( | )i i i i i iY y X x R Y y R= = = ≠ = =r r . 

Conversely, suppose that iX  is KJ strongly relevant but not in MB(Y). First of all, 

we can see that ( ) iMB Y ⊆ R  if ( )iX MB Y∉ . Therefore, conditional on MB(Y) 

makes iX  and Y independent according to the definition of Markov blanket. Hence, 

iX  and Y cannot be strongly relevant which is contrary to the assumption. 

 
The KJ weakly relevance also has relation to the MB in a faithful Bayesian network. 
 

Theorem 3.2.3 In faithful Bayesian network, a variable iX  is weakly relevant if and 

only if it is not strong relevant and it is an undirected path from iX  to Y., 
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Proof: If there is an undirected path from iX  to Y., we should consider two 

situations: 1) there are a set of colliders Z in p. Then iX  and Y are not d-separated 

given Z, i.e. Pr( | , ) Pr( | )i iY y X x Y y= = = ≠ = =Z z Z z  2) there are no colliders in 

p, denote p

iR as the set of variables exclude iX  and any variables in the path. We 

can see that Pr( | , ) Pr( | )p p p p

i i i i i iY y X x R Y y= = = ≠ = =r R r . For both scenarios, if 

iX  is not KJ-strongly relevant, it must be weakly relevant. Conversely, if iX  is KJ 

weakly relevant, then there exists a set Z such that 
Pr( | , ) Pr( | )i iY y X x Y y= = = ≠ = =Z z Z z . If there is no path between iX  and Y, 

then they are d-separated by any set i.e. conditional independent given any set, 
contrary to the above.  
 
The connection between relevance and Markov blanket (Theorem 3.2.2 and 3.2.3) 
was generalized to the class of strictly positive distributions which is a wider class of 
distribution than DAG-faithful ones by Nilsson et al. (2007). Their work also provides 
solid theoretical background for algorithms aiming at identifying MB for feature 
selection. The equivalence of MB and strongly relevance in strictly positive 
distribution allows MB learning to be meaningful when the underlying distribution is 
not faithful (various real work network has been proved to be non-faithful, e.g. 
networks with deterministic relationships between variables). Nevertheless, there are 
data that violate the assumptions of strictly positive distribution e.g. noise-free data 
(where f(x)>0 is violated), such as inference of logic propositions.  

For arbitrary distributions, Yu and Liu (2004) suggested a framework using a 
concept called approximate Markov blanket, in which the correlations between 
features and target are assessed for relevance, and correlations between features are 
evaluated in the meantime to eliminate KJ weakly relevant but redundant features. 
Redundancy exists when a feature Xi is filtering out by another feature Xj 

(approximate Markov blanket) i.e. if and only if Xj is more correlated to the target 
than Xi, and the correlations between the two features is larger than that between Xi 
and the target. However, there is no established theoretical argument to verify the 
consistency of such framework yet.   

For the task of prediction, Markov Blanket is the minimal set of features that are 
needed for Bayes classifier to produce optimal decisions if data is drawn from strictly 
positive distribution (Nilsson et al., 2007). Similarly, Markov Blanket (or the smallest 
among all MB when the data is not faithful) is solution to feature selection problem 
when a classifier that can approximate any probability distribution with mean-square 
loss metric is used (Tsamardinos et al., 2003a). MB captures all the information of the 
posterior distribution of the target such that the target is conditionally independent of 
other variables in various classes of distribution (e.g. strictly positive distribution). All 
features in MB are needed to generate such posterior probability of the target at either 
state given the features. The advantage of producing such conditional probability is 
that one can use it in decision theory to calculate expected utility and in machine 
learning to evaluate the power the classifier with AUC. However, when only the class 
label corresponding to (0/1-Loss) is of interest (whether the posterior probability to 
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one class is larger 1/2), only some of the features in MB are required or even features 
that do not belong to MB should be needed (Tsamardinos et al, 2003a).  

3.3 Causality  

Recent works have been focus on exploring the possibility of feature selection in 
causal discovery (Tillman and Spirtes, 2008). A feature that is relevant in prediction is 
not necessarily important and stable under manipulation/intervention (policy change 
in economics) of which the joint distribution of the data along is not sufficient to 
capture all the information. Causal Bayesian network is a useful concept for causal 
feature selection.  
 
Definition 3.3.1 (Causal Bayesian network)  
Let P be a joint probability distribution on a set of variables Φ ={X,Y}, and let vP  

denote the distribution resulting from the intervention do(V=v) that sets a subset of 
variables V to constants v. Denote by *P  the set of all interventional distribution vP  

where V ⊆ Φ  including P, which represent no intervention. A DAG G is said to be a 
causal Bayesian network compatible with *P  if and only if the following three 

conditions hold for every *vP P∈  

(i) vP  is Markov relative to G (as the Markov condition in Bayesian network) 

(ii) Pr( | ( )) 1i iU u do= =V = v  for all iU V∈  whenever ui is consistent with V=v 

(iii) Pr( | , ( )) Pr( | )i i i i i i i iU u PA pa do U u PA pa= = = = =V = v for all iU V∉  

whenever ipa is consistent with V=v, where iPA denotes the parent of ui. (Based on 

Pearl, 2000) 
 
The notion that do(V=v) is regarded as intervention or an action, which is intrinsically 
different from observation of V=v. The effect of the former is via ordinary Bayesian 
conditioning on the posterior distribution, while the latter alter the distribution 
factorization by truncating any conditional probability that V is not conditional on, 
which is related to the following properties,  
i) For all i’s, Pr( | ( )) Pr( | )i i i i i iU u do U u PA pa= = = =

i i
PA = pa   

ii) For all i and for every subset S of variables disjoint of Tsamardinos 
{ , }i iU PA , Pr( | ( , )) Pr( | ( ))i i i i iU u do S s U u do= = = =

i i i
PA = pa PA = pa .  

The first property states that intervention of a parent is equivalent to conditioning on. 
The second property states that once the direct causes are controlled, no other 
interventions on other variables will affect the probability of Ui.  

Though the class of distribution that causal Bayesian network can describe could 
be narrower incorporating stronger assumptions, the usefulness and implication of 
causal Bayesian network is essential in designing feature selection algorithm in 
practice. Under intervention, features that are relevant can become non-informative, 
even for features in Markov blanket if the feature selection is conducted before 
intervention. For instance, when the children of the target variable are manipulated to 
set to a fix value, no features other than the parents are relevant to target. Parents are 
the only features that are invariantly relevant under intervention. Therefore, for 
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feature selection on data distribution where interventions exist (policies changes, 
controlled experiments), causal structure learning (differentiating parents and children 
etc.) is important to obtain stable results, where identifying MB along is not sufficient.  
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Chapter 4   

Feature Selection Methods  

In this chapter, several feature selection methods are discussed in more details. A 
feature selection method is an integrated entity of optimization, searching, and 
assessment. Before comparing their performances, it is crucial for one to understand 
the design of those algorithms.  

4.1 Filters 

There are a wide range of filters can be applied for feature selection as described in 
Chapter 2. Here we choose two filter criterions for comparisons: t-test statistic and 
mutual information. 

4.1.1 T-test statistic 

T-test statistic (Snedecorand and Cochran, 1989) is defined as follows to measure the 
weighted mean differences for feature Xi between the two classes of target Y.  

( , )
/ /

i i
i

i i

X X
t X Y

s m s m

+ −

+ + − −

−=
+

  (4.1) 

where m±  is the number of the samples in class 1±  respectively, iX ± and is ±  

denote the sample mean and sample standard deviation of Xi for each class of Y . The 
statistic above has t-distribution. 

With t-test statistic, we take the mean differences between classes as a measure of 
relevance between Xi and Y. We prefer t-test statistic over similar correlation based 
filters in that it provides a way for significance test (unlike Fisher’s criterion) and it is 
more suitable for classification problems (unlike Pearson’s coefficient which is better 
for regression).  

4.1.2 Mutual Information 

Mutual information (Shannon et al, 1949) criterion is derived based on information 
theory to measure the amount of information gained for Y given Xi. It is equivalent to 
KL-divergence and Information Gain (IG), which defined as  

2
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( , ) Pr( , ) log

Pr( ) Pr( )
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k

h l
i j

i i i j

j k j i

X x Y y
MI X Y X x Y y

Y y X x= =

= =
= − = =

= =∑∑  (4.2) 

where h and l are the number of classes (states) of Y and Xi 
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It is straight forward to estimate mutual information for discrete features and target. 
For continuous features and target, they are usually discretized into several intervals 
based on some criterions or use kernel probability estimation method to approximate 
the probabilities in the definition. Generally, to make use of the power of state-of-art 
classifiers to reduce bias and variance, the probabilities are estimated from the output 
of a classifier (e.g. SVM) over the training data. For multi-valued features (or 
multi-level discretizations), several information criterions based on MI exist, for 
instance, Information gain ratio (IGR, Quinlan, 1993) which reduces biases.  

4.2 Naïve Bayesian learning 

Naïve Bayesian (NB) classifier is based on the Bayesian rules and aims to maximize 
the likelihood function. The classifier is naïve in the sense that it treats every feature 
as independent components when constructing the likelihood function and the 
conditional distributions are chosen as priors from simple distributions, e.g. Gaussian 
Mixtures. When there are dependencies between features, naïve Bayesian classifier 
tends to perform worse than more sophisticated models which take into account of the 
dependencies of the features, such as SVM. However, it is suggested by many authors 
that naïve Bayesian classifier will perform equal well in some situations (Bishop, 
1995). The reason is that the simplified assumption of naïve Bayesian classifier 
actually mitigates the effect of overfitting, i.e. there is a tradeoff between bias and 
variance, where naïve Bayesian sacrifices a somewhat larger bias for small variance. 
In many of the application, naïve Bayesian classifier is used as the baseline algorithm 
for evaluation of other classifiers. 

There are various ways to applied NB classifier in feature selection. First of all, 
one can use NB as a filter criterion to rank the features based on each feature’s 
prediction performance with NB. Secondly, it is easy to use NB as a black box 
wrapper to conduct feature subset selection. It is worth noticing that while in the 
model of NB, independences between features are assumed, the procedure of subset 
selection takes into account of the mutual information between features. Finally, since 
NB is a weak learner, it is suitable to be use as ensemble learners, and rank the 
features on the bootstrapped data set, and evaluate the importance according to the 
frequencies.  

4.3 Decision Trees  

Decision tree is a kind of predictive model with tree structure predictors. There exist 
tree learning algorithms with many variants regarding prediction accuracy, time 
efficiency and generalization ability. 

4.3.1 ID3, CART and MARS 

Quinlan developed ID3 (Iterative Dichotomiser 3 s, 1986) and its extension C4.5 and 
C5, which is based on Occam’s razor with heuristic to produce the smallest trees. 
Quinlan’s algorithms perform feature selection implicitly during learning based on 
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information gain, which is actually a filter that suits well to the underlying algorithms. 
While Quinlan’s algorithms only deal with categorical target, CART (classification 
and regression tree) algorithm is suitable for both classification and regression with 
similar implicit feature selection based on a filter score Gini impurity (related to 
squared probabilities of membership for each target category in the node). MARS 
(multivariate adaptive regression splines) uses the similar selection criterion as CART.  

4.3.2 Random Forest   

Random Forest (RF) is another variant of decision trees. The basic idea of RF is to 
grow multiple no-pruning classification trees on bootstrapped data, with a fixed 
number of randomly selected variables at each node splitting (the variable with best 
split is used). The decision is then based on the votes of trees grown. The advantage 
of random forest is that it utilizes the bootstrap technique to maximize the usage of 
the data, and gives superior performance in terms of balance bias and variance in 
many real world data. The extra randomness introduced by bootstrapping and random 
selected feature subsets effectively reduces the variance of RF in practical problems. 

According to Breiman (2001), there are two ways to perform feature selection 
with random forest. The first is based on a ‘variable importance’ score calculated as 
follows: for each variable, permute its values in out of bag (oob) data. Then subtract 
the number of correct votes for the permuted oob data from the number corrected 
votes in the original oob data. The average of this number over all the trees is the raw 
importance score for the variable. Oob data is usually one third of the bootstrapped 
data used in every tree construction to compute an error estimate. A z-score can 
compute as normalized raw score across trees, assuming there are no correlations 
between trees. By normality assumption, significance levels for z-scores follow. One 
may also calculate a local importance score for a variable to a specific observation in 
a similar fashion. This procedure formulates in the form of leave-one-out backward 
selection, which is shown to be consistent for strictly positive distribution (Nilsson et 
al.). The second way to compute feature importance is via a Gini importance score 
that is calculated as the sum of decreasing gini impurity of the two descendents nodes 
to the parent node. This importance score can be computed faster and provide 
corresponding results with the permutation measure. Diaz-Uriarte and Alvarez de 
Andrez (2006) conducted a set of experiments in comparing the performance of 
RF-based feature selection with other methods, and showed that RF-based feature 
selection is comparable to other state-of-art algorithms. 

4.4 Recursive Feature Elimination and l2 norm penalization 

Recursive feature elimination (RFE) is a technique that can be incorporated with a 
class of algorithms where the weights of the features can be viewed as importance of 
the features to prediction. At every iteration, a specified fraction of features are 
eliminated based on the ranking of their weight, until the required number of features 
are left or the prediction errors do not decrease. RFE combined with support vector 
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machine (SVM) is first proposed by Guyon and Weston et al. (2003) to study gene 
microarray where the number of features is up-to thousands. The result was compared 
with Golub’s (1999) univariate ranking methods, and showed that features selected by 
RFE-SVM is superior to Golub’s regardless of the classifiers used. In the following, 
we introduce the version of SVM that will be use in our experiment and other RFE 
algorithms. 

4.4.1 RFE-SVM 

The original SVM algorithm is proposed as a large margin classifier by Vapnik in 
1963. SVM is designed to reduce the expected generalization risk (similar to 
prediction error) as it is defined in learning theory. Since its introduction, SVM has 
shown to be of great power in the area of machine learning and feature selection 
(Guyon et al., 2003). In this report, we use the soft-margin linear SVM (Cortes and 
Vapnik, 1995). It adds flexibility to the original SVM by incorporate slack variables 
aiming to learn a separation hyper-plane with better generalization, which is the 
following optimization problem 

2 ( ) ( ) ( ) ( ) ( )
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1
min      subject to ( ) 1 , 0,1
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i i i i i
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+ − ≥ − ∀ ≥ ≤ ≤∑w w.x  (4.3) 

where w is a weighting vector, and ( ) 'i sξ are slack variables to allow 
misclassification for datum x(i), C is constant to control the tradeoff between margin 
and penalization on  misclassification. The decision rule for a new datum x’ is that 
if ( ') ' 1D b= − ≥x w.x , then y’ = 1; otherwise if ( ') ' 1D b= − ≤ −x w.x , then y’=-1. Data 
that do not satisfy the rules above, will be either regarded as rejection (can not be 
classified by the SVM) or classified by replacing 1 and -1 in the D(x) with 0, 
respectively.  

Geometrically, the inverse of 
2

w  is equal to the distance between the two 

hyper planes that separate the two classes. In the dual form of the minimization 
problem, we can see that w is a linear combination of feature vector weighted by the 
product of class label (y) and the vector weight calculated from the dual. For feature 
selection, the importance of 2

iw ’s is that they are proportional to the gradient effect 

of a feature to the bounds of prediction errors (Guyon et al., 2003), which in turn 
justified the RFE scheme by selecting features that have large effects on the 
generalization error bound. On the other hand, the parameter C is useful in controlling 
the sparsity of the SVM model, where small C tends to shrink the model into fewer 
support vectors. Boser et al. (1992) suggested a non-linear version of SVM with 
kernel tricks by replacing the inner product by a non-linear kernel function in the dual 
form, which can be used to classify data that is not linear separable.  

It is shown in some study that, when applying RFE-SVM, selecting all available 
features actually provides the best prediction results even though some features are 
known to not relevant to the target (Guyon et al., 2003). This can be understood in the 
sense that, for data with noise, SVM is able to extract the information of the noise 
from irrelevant features (e.g. background noise caused by measurement methods) and 
incorporate such information to improve the prediction.  
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If the causality between features and target is of primary concern, the RFE-SVM 
selection algorithm is sometimes not informative. Hardin et al. (2004) studied 
SVM-weighted-based methods in learning causally relevant features theoretically and 
showed that: i) the irrelevant variables will be zero-weighted by a linear SVM in 
sample limit ii) zeros weights may be assigned to causally relevant features and non- 
zero weights may be assigned to non-causally relevant features. On the other hand, 
Statnikov et al. (2006) experimented with simulated data and pointed out that in 
practice SVM-weight-based methods might perform even worse in differentiating 
causally-relevant, non-causally relevant and irrelevant features. One of intrinsic 
reason for this is that in practice, features that are needed to construct large margin (in 
SVM) do not necessarily have correspondence to causality. In all, they suggested that 
one should always be careful when trying to interpret causally the features selected by 
SVM-weighted based algorithms and algorithms that taking into account of causal 
structures are indeed needed. Nevertheless, revised SVM-based feature selection 
algorithms have gained success in the causal feature selection competition, which 
focused on discovering the causal structures from data that incorporate manipulation. 
However, recent study showed that such success is related to the data generation 
methods and most importantly the generalization ability of SVM overcomes the small 
bias when omitting the causal structure (Tillman and Spirtes, 2008).  

4.4.2 RFE-Penalized logistic regression 

Logistic regression is a generalized linear model that predicts the probability of the 
class label by fitting the data to a logistic curve. The decision for the class label is 
then made according to the probability. l2-penalized logistic regression (l2-PLR) adds 
a l2-norm penalization on the weights of the features in the original logistic negative 
regression likelihood, which can be defined as the following optimization problem: 
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Note that to apply logistic regression as above, the target should be coded as {0,1} 
instead of {-1,1}, which is trivial in implementation.  

l2-PLR combined with RFE is also applied in gene selection for gene microarray 
classification problems (Zhu and Hastie, 2002). PLR is a generalized linear model 
with logistic function and an l2 norm penalization on the weights. Zhu and Hastie 
(2002) investigated the performance on several sets of gene microarray data, and 
showed that RFE-PLR algorithm tend to select fewer features and comparable 
prediction accuracy to RFE-SVM in those datasets. Moreover, it also provides the 
probability of certain gene patterns belonging to particular class (probability close to 1 
does not necessarily indicate strong evidence of inclusion into the particular class). 
The reason for the differences of SVM and PLR, as explained by Zhu and Hastie is 
that the dataset under study is usually linear separable by small set of genes. In this 
situation, the solution of RFE-PLR is more sensitive to the regularization parameter 
than SVM-PLR, thus easier to detect such relevant genes. There are also non-linear 
versions of PLR called kernel-PLR (Keerthi et al., 2005).  
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4.5 1ℓ -norm penalization 

Both PLR and SVM applied l2-norm on the regularization term instead of l1-norm. 
Feature selection via l1-norm penalization possesses different statistical properties. 
(Note that l1-norm penalization can also be incorporated in RFE) 

4.5.1 Lasso 

Lasso（ least absolute shrinkage and selection operator）was first proposed by 
Tibshirani (1996) to incorporate l1-norm penalization in ordinary least square 
regression, and has been generalized to general convex loss function such as 
exponential loss in logistic regression combined with the ideas of boosting (Zhao and 
Yu, 2007). 1-norm SVM was also proposed by (Zhu et al., 2004) in the light of lasso. 
The intrinsic differences between l1-norm and l2-norm regularization in the paradigm 
of Bayesian inference are the distinct prior on the parameters of the models. 
Specifically, l1-norm penalty corresponds to double-exponential prior, whereas 
l2-norm relates to Gaussian prior. One advantage of l1 norm penalty is that it tends to 
regulate the algorithms to produce feature weights that equal to 0 due to the heavier 
tails of double-exponential prior. Therefore, feature selection via l1-norm is performed 
automatically during the optimization without the need to combine with RFE (Zhu 
and Hastie, 2002). 

4.5.2 l1-penalized logistic regression 

l1-penalized logistic regression uses l1-norm to penalized the weights w in (4.4). As 
lasso, l1-PLR tends to produce sparser model than l2-norm PLR. It is applied both in 
feature selection (Genkin et al., 2004) and Bayesian network structure learning or 
Markov blanket (Schmidt et al., 2007, Lee et al., 2007, Wainwright et al., 2006). The 
advantage of l1-PLR over lasso is that it has the ability to capture more complex 
relations between features with the logistic function, while retains the sparse property 
of lasso. It is also shown by (Ng. 2004) that l1-PLR is more sample efficient in the 
sense that the number of samples for l1-PLR to learn a ‘good’ model grows only 
logarithmically in the number of irrelevant features while for l2-PLR, SVM etc. based 
on l2-norm penalization, the number of samples required grows at least linearly to the 
number of irrelevant features. This could be a support for the use of l1-PLR or other 
l1-norm penalization methods when the number of irrelevant features is large.  

As far as prediction accuracy is concerned, the performance of l1-norm and l2 
norm regularization relate to the sparsity of “true” mechanism generating the data. 
The sparsity of the true generating function is related to the signal to noise ratio (SNR) 
and the size of basis function dictionary to capture the true function. With data 
generated from generalized linear model, Tibshirani (1996) pointed out that lasso 
produces the best result when the models have small to moderate number of 
moderate-sized effects, following by l2-norm penalized regression. While there is 
small number of large effects univariate subset selection outperform lasso, and l2 
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norm does poorly. l2-norm penalty performs the best when there are large number of 
small effects. l1-norm is preferred by several authors (Zhu et al, 2004, Friedman et al 
2004) in the sense that it produces better prediction when the underlying data are 
generated by a sparse model (e.g. when there are only a small number of coefficients 
are not zero. In this case, l1-norm penalty will perform better even when the actual 
distribution of the coefficients is Gaussian in the simulation). For dense model, 
neither l1- nor l2-norm regularization will perform well according to experiments 
where the data to feature ratio is too small, which can be due to the curse of 
dimensionality. Nevertheless, l1-norm fails when there are a large number of small 
effects in which case it is suggested that l1-norm sacrifices prediction errors for 
sparsity. Therefore, one could see that l1 penalty and l2 penalty actually to some extent 
detect the characteristics of the true function generating the data. When conducting a 
feature selection task, it is of interest to apply both l1 and l2 to investigate the 
underlying properties of the generating function.  

4.6 Markov blanket discovery 

As previously discussed, Markov blanket of the target is a very informative subset 
both theoretically and in the sense of prediction. Due to the importance of MB of the 
target, denoting as MB(Y), many algorithms have been designed to locate this subset. 
Even though global Bayesian network learning algorithm can be an intermediate step 
to determine the MB(Y), it generally lacks computational efficiency and statistical 
significance when the number of features is large. In the following, we focus mainly 
on local structure learning algorithms.  

4.6.1 Koller and Sahami’s algorithm 

The first algorithm designed to learn Markov blanket of a variable is proposed by 
Koller and Sahami (1997). Koller and Sahami aimed to approximate the Markov 
blanket with iterative elimination. Their algorithm starts with the full subset. At each 
iteration, a feature is eliminated when its approximate MB can be found in the current 
subset. Such procedure ensures that the elimination of a feature will not affect the 
elimination of another feature afterwards. Koller and Sahami pointed out that this 
algorithm can only approximate MB due to the coarse measure of conditional 
independence via cross-entropy, and the large conditioning set which require 
exponentially increase number of sample to obtain reliable estimate. This algorithm is 
highly time efficient but is not scalable to data with large number of features due to 
the lack of power with large conditional sets. 

4.6.2 IAMB, MMMB and HITON-MB 

A set of local learning algorithms for MB were proposed mainly by a group in 
Vanderbilt University, including incremental association Markov blanket algorithm 
(IAMB) , the max-min Markov boundary algorithm (MMMB) and HITON-MB. The 
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design and properties of the three algorithms are discussed shortly in the following: 
IAMB (Aliferis et al., 2002a) differs from KS’s algorithm in that instead of 

pruning features that have approximate MB, IAMB starts at first greedily include 
features that are in MB(Y) through reliable independence test, and then tries to 
remove false positive with an additional step. In IAMB, the independence tests are 
run conditional on the current candidate MB, which suggest that the size of samples 
required is exponential to the size of the true MB.  

MMMB (Tsamardinos et al., 2003c) takes into account of the data inefficiency in 
IAMB by divide the algorithms into two parts. The first part is to identify the parents 
and the children of the target Y with max-min parents and children (MMPC) 
algorithm. The second part is to search for the parent of common child by 
investigating the conditional independence between the target Y and the parents and 
children of the features output by MMPC. In doing so, MMMB circumvents the data 
inefficiency problem in IAMB, and depends only on the topological connectivity of 
the underlying network, since the conditional set is always bounded by the number of 
features connected to the target i.e. parents and children  

HITON-MB (Aliferis et al., 2003b) is similar to MMMB with a modification in 
the conditional independence in HITON-PC (MMPC) that the conditional feature set 
(current PC in MMPC) is replace by empty set to further improve the data efficiency.  

All these three algorithms are proved to be completely identified the MB with 
possible false positives under the following assumption:  

i) the underlying distribution is faithful to a DAG.  
ii) samples are i.i.d.  
iii) the independence test is reliable given the sample size.  

The second assumption is generally satisfied and assumed by other methods. As for 
the faithfulness assumption, the authors pointed out that the faithfulness assumption is 
the key to locate the MB efficiently and the success of all three algorithms rely on the 
fact that either biomedical data do not exhibit severe violations of the faithfulness 
assumption or such violation is mitigated by variable connectivity (missed MB 
variables are taken place by their proxies) or other factors. Finally, the third 
assumption concerned about reliability of the independence test related to both the 
sample size and the power of the tests.  To reduce the sample requirement, the 
conditional set should be as small as possible in the test (MMMB and HITON-MB). 
On the other hand, various independence tests can be used. Chi-square independence 
test is used when the features are discrete, and Fisher’s z test is run for the case where 
all but the target Y are continuous. Kernel-based independence test are consistent for 
any probability functions, whose estimation could introduce additional complexity 
into the algorithm and thus is prone to overfitting when sample size is small.  

The advantage of the three local structure learning algorithms is that they 
overcomes the over-fitting problem and time-consuming process by discovering 
Markov blanket which ensures the optimal classification performance under quadratic 
loss (which implies optimal performance under 0/1 loss or AUC). On the other hand, 
due to the possible introduction of false positive, Aliferis et al. (2002a) suggested that 
the produced MB can be post-processed with PC or FCI algorithm (Sprites et al, 2000) 
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or other customized methods (e.g. the criterion of symmetry (Aliferis et al. 2002b), if 
a feature V is in the MB(Y) then Y should also be in MB(V). 

4.6.3 PCMB  

Parents and children based Markov boundary algorithm (PCMB) (Peña et al. 2007) is 
guaranteed to identify MB(Y) with no false positives under the same assumptions of 
the three algorithms above. Unlike the three above-mentioned algorithms where false 
positives are eliminated after MB(Y) is produced, PCMB copes with false positives in 
the recursive conditional independence test by incorporating more tests. The 
searching procedures are conducted similar to that of MMMB and HITON-MB by 
dividing the problems into two sub-problems but the first sub-problem is solved by 
GetPCD(Y) and GetPC(Y). The correctness of identifying MB(Y) is proved 
theoretically when the sample size goes to infinity.  

4.6.4 Backward Search MB 

Nilsson et al. (2007) proposed a simple backward search method based on a real-value 
criterion function that accounts for strong relevance, which is consistent if the 
underlying distribution is strictly positive. They proved the optimality of strongly 
relevant features for prediction as well as the correspondences between the Markov 
blanket of Y and strong relevant features in strictly positive distributions. The class of 
strictly positive distribution is larger than the class of faithful distribution. Then, they 
proposed a polynomial algorithm to identify strongly relevant features which is 
equivalent to MB(Y). The algorithm can be described in the following pseudo-code 
based on Nilsson et al. (2007).   

The algorithm is guaranteed to output MB(Y) under the assumptions i) the 
underlying data is strictly positively distributed ii) samples are i.i.d. iii) the classifier f 
is consistent to Bayes classifier and provides consistent estimate on the ranking of 
subsets regarding generalization errors with L iv) the sample size goes to infinity. 
There are many ways to choose f that satisfied the assumption in iii) e.g. 
k-nearest-neighbor, SVM etc. Therefore, the algorithm is flexible in providing a 
framework to derive consistent wrappers and filters. Nevertheless, Nilsson et al. noted 
that such methods might suffer from the similar problem of large conditional sets as 
IAMB where an implicit left-one-out conditional dependence tests are performed. 

1. Start with an empty set MB(Y), Pick a real-valued criterion function (pair of L 
and f ) F.  

2. for each feature Xi in X 
if ( ) ( )

iR
F D F D ε> +   

where (0, )ε η∈  with ( )min ( ( ) ( ))i MB Y iF R F Xη ∈= −  

 then ( ) ( ) iMB Y MB Y X= ∪  

endif 
endfor 
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Thus, it might not be practical to apply this simple method for small data set with high 
dimension. On the other hand, the theoretical correctness of this algorithm gives a 
solid mathematical support for the success of some feature selection algorithms such 
as RFE (Guyon et al. 2002). Nilsson et al. pointed out the consistency of REF can also 
be proved with slight modification in the proof of the backward search algorithm.  

Though it is possible to chooseε  for controlling false positive rate and false 
negative rate, there is no theoretical result on the defined upper bound forε . The 
heuristic to control the parameter was not extensive discussed and simple chosen as 0 
in Nilsson et al. (2007). In this report, we studied several criterions that might be 
informative to incorporate regarding the undefined magnitude of difference i.e.ε , 
which will be discussed in more details in next section. 
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Chapter 5  

Comparative study 

In this section, we would like to investigate the performance of those algorithms on 
synthetic data regarding prediction and causality. Synthetic data are simulated to 
ensure some characteristics of distributions and dependence are presented which will 
be used to study the possible distinct behaviors of different algorithm. In addition, we 
also compare those algorithms on real data to investigate the correspondence between 
features selected, and the usefulness of those algorithms. 1 

5.1 Data Description 

5.1.1 Synthetic data 

To study the potential of SVM in causal discovery, Statnikov et al. (2006) simulated 
two types of networks that mimic the real-world gene regulatory networks. Both 
networks are simple in the sense that there are generally no dependences between 
features (except the U in Network 2, which is correlated to all Vi’s). This might not be 
the case for data from another domain, or even in gene regulatory networks. 
Nevertheless, Statnikov et al.’s idea (2006) is to prove that even for such simple 
networks, the weighted-based SVM fails to capture causality in a stable way. We 
modify their simulation slightly to gain balance data set (Network 2), and use 
different notations as well as incorporate different dependence structure (Network 1b). 
Network 1a 

The first type of network is generated as follows 
1. U is a binary variable with P(U=-1) = 1/2 and P(U=1) = 1/2. U is hidden, and used 

to generate V only.  
2. {Vi}i=1,…,N are binary variables with P(Vi= -1|U= -1) = q and P(Vi=1|U=1) = q, 

where q is fixed and chosen to be 0.95 for our experiment. 
3. {Wi}i=1,…,M are independent binary variables with P(Wi=-1)=1/2 and 

P(Wi=1)=1/2. 
4. Y is the target variable with P(Y=-1|V1=-1) = 0.95 and P(Y=1|V1=1) = 0.95 
 
In Network 1, feature V1 is the only causally relevant to Y, while are not independent 
of V1, since U is hidden from the observation, it renders all Vi’s to be dependent 
(hidden common parent). Therefore, {Vi}i=2,…,N ,they are non-causally relevant to Y 
                                                        
1 All the experiments are implemented in MATLAB. The source codes are available upon request 
yubin@maths.lth.se. Several packages for algorithms were used in the experiments. See the specific section for 
details. 
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and {Wi}i=1,…,M are irrelevant to Y presenting as noise. Thus, the MB of Y is only V1. 
It represent a kind of gene regulatory network where a gene (U) regulating many 
proteins that may be strongly correlated with each other (Vi’s), but only one of which 
(X1) is responsible for the present of a specified disease (Y).  
  To incorporate higher order of Markov dependence into the network, we modify 
network 1a as follows 
Network 1b 

1. U and Wi’s are generated as in Network 1a 
2. VN is a binary variable with P(VN=-1|U=-1) = 0.95 and P(VN=1|U=1) = 0.95, and 

for {Vi}i=1,…,N-1, P(Vi=-1| Vi+1 =-1) = q and P(Vi=1| Vi+1 =1) = 0.95 
3. Y is the target variable with P(Y=-1|V1=-1) = 0.95 and P(Y=1|V1=1) = 0.95 
Therefore, in Network 1b, the MB of Y is the same as it is in Network 1b. However, 
all Vi with i>1 now become the ancestors of Y, while only V1 is the parent of Y. 
 

 
 
 
 
To increase the number of strongly relevant features, 
Network 2  

1. {Vi}i=1,…,N are independent binary variables with P(Vi=-1) = 1/2, and P(Vi=1)=1/2 
2. {Wi}i=1,…,M are independent binary variables with P(Wi=-1) = 1/2, and 

P(Wi=1)=1/2 

3. U is a variable calculated as U = 
1

/
N

i

i

V N
=
∑ ,i.e. the average of Vi’s 

4. Y is a binary variable defined as 
1

( / )
n

i i

i

sign tV N k
=

−∑ ,where ti is uniformly 

distribution random variable from (0,1) and fix for all experiments. k is chosen to 
be 16 instead of 4 in the Statnikov et al. to ensure that the data is not extremely 
unbalanced when N becomes large.  

In Network 2, all Vi’s are causally relevant to Y (MB of Y), and U is non-causally 
relevant to Y. Wi are simply binary noise which are irrelevant. Network 2 is a 
simplified representation of gene regulatory network where a set of regulatory genes 
(Vi’s) are mutually coordinating regulation of many genes (here U and Y).  

For both networks, noise can be added by replacing k% of the data with 
corresponding values randomly sampled from the distribution of the generated data. 
In experiments of Statnikov et al. (2006), the levels of noise do not affect the results 
on differentiating causality but only decrease the prediction accuracy with more noise.  

U 

V1 V2 VN …… 

W2 
…… WM 

U 

V1 V2 VN …… 

W1 W2 
…… WM Y 

Y VN-1 

W1 

Figure 5.1 Network structures for Network 1a (left, Network 1b with also the dash arrows) and 

Network 2 (right) 
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Since these two synthetic data sets have resemblance to the reality and 
appropriate simplicity, it might be of interest to test different feature selection 
algorithms on them.  

5.1.2 Real data 

Generally, synthetic data do not possess enough information to capture the realistic 
characteristics of data distributions from real world. Therefore, it is important to 
investigate the performance of feature selection methods on real data. 
AML-ALL data 

The AML-ALL data consists of a matrix of gene expression values obtained from 
micro-arrays for a number of Leukemia patients. The intention of study this data is to 
differentiate AML and ALL (two types of Leukemia) with the gene expression. There 
are in total 7129 genes measured for 72 patients which are labeled as AML or ALL. 
The data is split into training set with 38 samples (27 ALL and 11 AML) and test set 
with 34 samples (20 ALL and 14 AML). This data set is studies extensively by various 
authors (Golub et al., 1999, Guyon et al., 2000, Li and Yang, 2005) and is known to 
be linearly separable with few features.  

5.2 Experiment designs 

For synthetic data, we can control various properties of the generated data, such as the 
sample to feature ratio, the levels of noise etc. By monitoring such factors and the 
different networks, we can conduct sensitivity analysis of different feature selection 
methods. We are particular interested in studying the ability of different methods in 
differentiating causally relevant/ non-causally relevant and irrelevant features. The 
experiments for synthetic data is conducted as follows 
1. For the triplet {M,N,m}, where m is the number of training samples, we simulate 

data with {50,50,500},{100,100,200},{100,100,50} for all the networks 
(approximately with sample to feature ratio of 5, 1 and 0.25) for two levels of 
noise 0% and 5%; All the results in the following are averaging over 30 trials. 

2. Assessing the average rankings of features. For filters and feature selection 
methods providing weights for features, such measures can be used to evaluate 
whether causally relevant features are ranked higher than others. The rankings are 
in ascending order of the weights and are normalized to the number of features. 

3. Assessing the average selection frequencies of features. For wrappers, and MB 
discovery methods etc. where a subset of features are output, the differences in 
selection frequencies provide information of the powers of differentiating different 
kinds of features. 

Another set of experiments, are conducted to investigate the possible modification on 
Nilsson et al.’s backward search algorithm with synthetic data. We would like to show 
the intuition of our designed schemes and whether different schemes will improve the 
performance of the original backward search algorithm. 

For real data, we follow similar evaluation procedures except that they are only 
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performed on the training set and additional prediction performance is assessed on test 
set specified.  

For there are large amount plots with different combinations of sample to size 
ratios and noise levels, we only present figures where such factors affect the overall 
performance of the methods. In experiments with Network 1a and 1b, V1 is plotted as 
the first variable, while V2…N as 2 to Nth variables, W’s as N+1th to M+Nth variables. 
With Network 2, Vi’s are plotted as the first N variables, and U is the last variable. 
W’s are those variables between Vi’s and U.  

5.3 Results 

5.3.1 Synthetic data 

5.3.1.1 Filters 

We estimate the t-test statistic and mutual information of each feature to the target for 
different networks. We can see that (Figure 5.2) that both filters are insensitive to the 
sample to feature ratio for network 1a. (actually for all networks). It is reasonable for 
this observation since it is generally understood that the estimation of such univariate 
statistics are stable with small sample size (Guyon et al., 2003). On the other hand, 
noise does not affect the results on ranking at all (Figure 5.3). Interestingly, it is 
observed that, as far as the differentiation of causally-relevance is concerned, all the 
methods are not sensitive to noise.  

Figure 5.2. Average ranking based on t-test statistic and mutual information(with random forest) 

for Network 1a with 5% noise. The three rows are calculated with different number of features and 

sample sizes i.e. {50,50,500},{100,100,200},{100,100,50}. V’s are showed as the first N(50,100) 

variables, while W’s are the last M (50,100) variables. 



40 

When we exam the two filters across different networks, we obtain the following 
observations: 
1. The rankings based on the two filters have strong correspondence. They behave in 

similar way for different kinds of features for different networks. 
2. Both filters rank the features in Network 1a properly regarding their causal 

relevance (strong relevance), i.e. causally relevant feature V1 always ranks the 
first, followed by non-causally relevant ones with clear difference in averaging 
ranking 60% to irrelevant ones.  

3. For network 1b, both filters rank the features regarding their Markov order. As i 
becomes larger, the rankings of non-causally relevant features Vi decrease 
accordingly. When i > 30, the rankings of Vi have no differences than the 
irrelevant ones, 0.9530 ~= 0.20. Both filters lack power in differentiating such 
non-causally relevant features to irrelevant ones. 

4. For Network 2, both filters fail to correctly differentiating features based on their 
causal relevance (Figure 5.4). Specifically, both filters rank the non-causally 
relevant feature i.e. U as the top feature, while the causally relevant features Vi’s 
can have lower ranks than irrelevant features. The strong preference to U for both 
filters is that U have the same function form as Y (linear combination of Vi’s). 
Closer look at the Vi’s that have lower rankings, we see that they actually 
correspond to features that have small random weights ti’s (around 0.2). Therefore, 
both filters in some sense capture the linear correlations of features to the target. 
When the linear correlation is smaller than 0.2, both filters fail to differentiate 
those features from random noise. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the experiments, we can see that the two filters have limited success in 
differentiating the three kinds of features (Network 1a) and they are invariant to small 
sample to feature ratio. However, such univariate filters can not detect the dependence 
between features, thus have no power in discovering conditional independence e.g. in 
Network 2, U is independent of Y given Vi’s. More sophisticated methods are needed.  

Figure 5.3 Average ranking based on mutual information (random forest) for Network 1a 

two levels of noise a) no noise b) 5% noise with {50,50,500}. V’s are shown as the first 50 

variables, while Wi’s are last 50 variables. 
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Figure 5.4 Average ranking based on t-test statistic and mutual information for network 1b and 

Network 2 with {50,50,500}, no noise. V’s are showed as the first 50 variables, while W’s are 

the next 50 variables (51-100). For Network 2, U is the last variable.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3.1.2 Ranking based on weights of SVM and l2-PLR 

Instead of running RFE, we investigate the rankings of features based on the weights 
of linear SVM and l2-PLR. We can assess the weights by learning the SVM l2-PLR on 
the full set of features. We follow the Statnikov et al.’s study to investigate how 
different levels of penalization on the norm will affect the results. In the experiments, 
we vary the C and lambda in {0.001, 1, 1000} 
� C and Lambda control the sparsity of the model, but has limited ability in 

differentiating the strongness of relevance of different features. Generally, 
SVM with larger C tends to produce denser models, while in l2-PLR, larger 
lambda actually favors sparser models (since in l2-PLR lambda is assigned to the 
norm, while in SVM C is assigned to the inseparability term). This is observed 
for all networks. In Network 1b (Figure 5.5, as C increases (lambda decreases), 
fewer and fewer non-causally relevant features (V2…N ) have higher ranks than 
irrelevant ones, which is similar to Network 1a. On the other hand, both SVM and 
l2-PLR can assign higher weights to non-causally relevant features to causally 
relevant ones in Network 2. Such observation is invariant to the change of C and 
lambda. Statnikov et al. pointed out theoretically that for such generation 
mechanism, SVM will always assign higher weight to U than others in Network 2 
in order to produce a large margin.  
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� The rankings based on SVM and l2-PLR weights are sensitive to sample to 
feature ratios. As we exam the results on different feature to sample ratio, we 
can see that the relative rankings between different kind of features are extremely 
volatile. i) For the data are sufficient {50,50,500}, the rankings of features with 
both methods are very similar to the rankings of the two filters tested regardless 
of C and lambda. ii) When data are insufficient, ({100,100,100}, both causally 
relevant features (Network 2) and non-causally relevant features (Network 1a/1b) 
can have lower (or the same) averaging rankings than irrelevant features (Figure 
5.6).  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The first observation is the same as Statnikov et al.’s work and in turn suggests 
that one should be cautious whenever feature selection are based on SVM and l2-PLR 
weights (e.g. RFE). One way to regulate the selection of C and lambda is to choose 
model parameters for both models via cross-validation on the training set and select 
the ones that yield the best prediction performance. With 3-fold cross-validation for 
smallest CV-errors, the C parameter for SVM is tuned to 0.001~0.1, while for l2-PLR, 
the penalization choose 1000 or larger (for network 2) for different networks. For 
Network 1a and Network 1b, lambda equals to 1000, gives the best prediction 
performance and the best lambda for Network 2 seems to be unbounded. With best C 

                 a                                       b 

Figure 5.5: Average ranking based on SVM (a) and l2-PLR (b) weights for Network 1b with 

{50,50,500} and no noise with different levels of penalization. Causally relevant features is V1, 

and non-causally relevant feature(s) are shown with V2-V50, while non-relevant features are W’s 

(51-100). 
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and lambda and sufficient data, SVM and l2-PLR produce the rankings similar to 
filters, except that the rankings of non-causally relevant features in Network 1b 
decrease faster regarding their Markov orders.  
 Aside from the sensitivity to C and lambda, the instability to sample to feature 
ratio seems to more problematic since low sample to feature ratio is the typical 
situation in gene micro-array analysis. For such simple networks, both methods fail to 
differentiate irrelevant feature from non-causally relevant ones (Network 1a), or even 
causally relevant ones (Network 2), when sample size is small. This suggests that why 
filters are of interest to try when the data at hand is small in size and large in 
dimensions. The success of RFE-SVM on micro-array data with very high prediction 
accuracy (Guyon et al., 2001) where the sample to feature ratio is as small as 
approximately 1/200 (38/7129), does not necessarily imply the power of such method 
using in discovering MB of the target.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3.1.3 l1 penalized logistic regression  

Several authors have studied using l1 penalized logistic regression (l1-PLR) to locate 
the Markov Blanket of a variable which are generally used in local Bayesian structure 

Figure 5.5 Average ranking based on SVM weights for Network 1a (left) and Network 2 

(right) with small sample size ({100,100,100}) and no noise. The rows corresponds to 

different levels of penalization of C. V’s are showed as the first 100 variables, while W’s are 

the next 100 variables (101-200). For Network 2, U is the last variable. 
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Figure 5.6 Selection frequencies of features by 1-norm Logistic regression for Network 1a 

(left) and Network 2(right) with {100,100,100} and no noise. The rows correspond to different 

lambda {1,5,10} respectively. Vi’s are showed as the first 100 variables, while Wi’s are the 

next 100 variables (101-200). For Network 2, U is the last variable. 

learning (Lee et al., 2006, Schmidt and Murphy, 2006). On the other hand, Ng (2004) 
proved that l1-PLR is more data efficient to l2-PLR, in the sense that for the equivalent 
prediction performance, the former requires sample size that grows logarithmically to 
the number of irrelevant features compared to the latter which requires linearly 
growing number of samples to the irrelevant features. Here, we run l1-PLR on the data, 
and treat those features that have non-zeros weights (l1-PLR has strong penalty on 
small effects, which are shrink to zeros) as the MB of Y and plot the frequency of 
each feature being selected. We use the Schmidt’s implementation of GeneralL11 
(Schmidt et al., 2007). The default level of penalization (lambda) is 50, where larger 
lambda amounts to preference to sparsity. For the given networks, when lambda 
exceeds 20, the weights for all features become zeros. Therefore, we investigate the 
effects of lambda’s by learning the models with lambda = {1,5,10} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
� l1-PLR can select irrelevant features more frequently than non-causally 

relevant ones. Network 1a (Figure 5.6), when lambda = 1, the averaging 
frequency of selecting irrelevant features can be approximately 20% more than 
non-causally relevant ones (not dependent on the sample size, see also Figure 5.7). 

                                                        
1 Matlab implementation available on http://pages.cs.wisc.edu/~gfung/GeneralL1/ by Schmidt 
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Figure 5.7 Selection frequencies of features by 1-norm Logistic regression for Network 1a 

(left) and Network 2(right) with {50,50,500} and no noise. The rows correspond to different 

lambda {1,5,10} respectively. Vi’s are showed as the first 50 variables, while Wi’s are the next 

50 variables (51-100). For Network 2, U is the last variable. 

As lambda grows, non-causally relevant features seems to be selected more 
frequent than non-relevant ones (see for lambda = 5 and 10).  

� l1-PLR can select non-relevant features more frequently than causally 
relevant ones. For network 2, even though some causally relevant features have 
higher selection frequency than non-relevant ones, some non-relevant features are 
selected in higher probability than many relevant ones.  

� l1-PLR can not detect the causally relevant features over non-causally 
relevant ones in Network 2. U is almost always selected, while Vi are only 
selected in a very low frequency (<0.25). This corresponds to the observation of 
lasso (Tibshirani, 1996), where there are large number of small effects (causally 
relevant features). 

� Sample size matters. The performance of l1-PLR is similar to its l2 counterpart 
(Figure 5.5) with small feature to sample ratio. When sample size increases, the 
difference in probability of selecting causally relevant feature to that of selecting 
non-relevant ones grows in network 2 The probabilities of choosing some 
causally relevant features grow up to 1 (Figure 5.7). Interestingly, with even large 
sample size, for Network 1a, the probabilities selecting non-causally relevant 
features can always be smaller than non-relevant ones. We can see how sample 
size will affect the causal discovery process of such method.  
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Figure 5.9 Selection frequencies of features by Zero-norm SVM for Network 1a (left) and 

Network 2(right) with {100,100,100} and no noise. V’s are showed as the first 100 variables, 

while W’s are the next 100 variables (101-200). For Network 2, U is the last variable. 

5.3.1.4 l0-norm SVM (linear separable) 

By replacing the penalization of SVM in (4.3) with l0-norm, we have the l0-SVM. As 
discussed before, learning with zero-norm penalty is NP-hard. Here, we study the 
zero-norm SVM proposed by Weston et al. (2003). The algorithm approximates the 
zero-norm with multiplicative update and an additional constraint on the number of 
features and is shown to have competitive performance over other zero-norm 
approximations. Specifically, the linear separable case of Weston et al. scheme is the 
following optimization problem: 

min
l

w  subject to ( ) ( )( .( ) ) 1i iy b− ≥⊙w x z  and 
0

r<w  

The multiplicative update is used to search for the optimal for the problem until 
converge, where the weights are updated recursively, that is '= ⊙z z w and w' is the 
previous solution to the problem. l can be 1 or 2 and r is pre-specified or chosen with 
the smallest prediction errors for the training set. 
 
Since zero-norm SVM tends to output zeros weights for features, we can assess both 
rankings and the selection frequencies for each feature. Here, we use the 
implementation of zero-norm SVM in Spider1 (Weston et al., 2005) with default 
settings. It is worth noting that the implementation copes with only linear separable 
cases, which is equivalent to C = Inf. i) When the number of features is decided by 
minimizing generalization errors, the algorithm will almost select only one feature 
(Figure 5.9) V1 (>90%) for Network 1a/1b and U for Network 2). No relevant features 
are never selected ii) On the other hand, the rankings of features are also very similar 
to the previous methods, with no superiority in differentiating causal relevance. 
(Figure 5.10a) iii) the rankings based on zero-norm SVM are also affected by the 
sample size (Figure 5.10b) 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                        
1 Spider is a MATLAB package for machine learning 
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Figure 5.10 Average rankings based on Zero-norm SVM for Network 1a (left) and Network 

2(right) with {100,100,100} and no noise with different feature to sample ratio a) 

{100,100,100}, b) {50,50,500}. V’s are showed as the first 50(100) variables, while W’s are 

the next 50 (100) variables (51-100,101-200). For Network 2, U is the last variable. 

 
 
 
 
 
 
 
 
                                     
 

a 

 
 
 
 
 
 
 
 
 
 
                                  b 
  
 
 
 

5.3.1.5 HITON-MB 

Though HITON-MB has difficulties in eliminate false positives on the fly, it is worth 
trying to compare its performance to other methods that are designed specifically for 
MB discovery. It is implemented in CausalExplorer1 (Aliferis et al. 2003b) and a set 
of features are output as the MB candidate from the training data. Again, we can 
evaluate the quality of the learned MB visually based on the frequency plot. For 
conditional independence tests, we can either choose G2 test (for discrete data) or 
Fisher’s z test (for continuous data). To apply those tests, the variables should either 
all be continuous or discrete. It is not the case for Network 2. In order to run the 
algorithm, we can transform U to discrete variable following the discretization 
scheme in Mitchell’s book (1997). The discretization routine first tests whether the 
continuous variable is significantly correlated with the target using (Wilcoxon rank 
sum test or Kruskal-Wallis ANOVA) with 0.05 significance. The features should be 
discretized differently regarding whether it is significantly correlated with the target. 
For the setting of HITON-MB, we set the significance level of G2 to be 0.05, and the 
maximal number of conditional variables to be 3. From Figure 5.11, we can see that 

                                                        
1 MATLAB package available on discover1.mc.vanderbilt.edu/discover/public/causal_explorer/ 
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� HITON-MB almost always selects only one feature (V1 for Network 1a/1b, U for 
Network 2) for all networks. Non-relevant feature are almost never selected 
(similar to zero-norm SVM).  

� The performance of HITON-MB is robust to the decreasing feature to sample 
ratio. For small feature to sample ratio {100,100,50}, HITON-MB produces the 
similar patterns in selection frequency to {50,50,500}. 

The failure of HITON-MB in discovery the true MB of Y in Network 2 can be due to 
the fact that the network is unfaithful. There is deterministic relations between Vi’s, U 
and Y, since the weights on vi’s in generating Y are fixed, implying that deterministic 
function between Vi’s and U. Any Vi’s can be substituted by U according to the 
generation. In fact, as the number of sample grows, U will contain sufficient 
information to predict Y regardless of Vi’s, since knowing all the values of Vi’s could 
be redundant where Y is a signed function of linear combination of Vi’s.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3.1.6 Backward Search MB 

We implemented the framework of backward search algorithm with different 
classifiers and loss functions with the help of Spider. Generally, the losses with 
different classifiers are estimated via k-fold cross-validations and the model 
parameters are tuned with a pre-run cross-validation. For example, for linear SVM, 
we find the best C with 5-fold cross-validation on the full training data. Then we train 
the linear SVM with the given C through each subset of features with one left out. 
And we choose features whose left-one-out subsets have greater cross-validation 
errors than the full set. We notice that by simply setting ε  to 0, the algorithm has 

Figure 5.11 Selection frequencies by HITON-MB with {100,100,100} and no noise for the 

three networks. Vi’s are showed as the first 100 variables, while Wi’s are the next 100 variables 

(101-200). For Network 2, U is the last variable. 



49 

Figure 5.13 Selection frequencies by backward search (SVM) with {50,50,500} and no noise 

for the Network 2 with epsilon equal to 0 (left) and McNemar’s test (right). Causally relevant 

features are shown in V1-V50, and non-causally relevant feature(s) are shown with U (the last 

one), while non-relevant features are shown with W1-W50(51-100). 

Figure 5.12 The average leave-one-out error of features by backward search (SVM) with 

{50,50,500} and no noise for the Network 2. Causally relevant features are shown in V1-V50, 

and non-causally relevant feature(s) are shown with U (the last one), while non-relevant 

features are shown with W1-W50(51-100). 

very little power in identifying MB of Y regardless of the classifiers and loss 
functions used when the sample to feature ratio is large. Therefore, we study several 
heuristics to be incorporated into the original backward search algorithm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
� For a specified classifier and the CV errors (0/1 loss for all folds) on the training 

subsets, we use the McNemar’s test to assess the significance level of 
( ) ( )

iR
F D F D> , then we select features with significance level 0.05. The exact 

McNemar’s test lacks power due to the small size of samples. We use a 
modification by substituting 1 2( )tm E E+ as the total errors made by the two 

classifiers. In some sense, such tests provide a way of controlling the false 
positives implicitly.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The idea of using statistical test comes from the observations that even though some 
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irrelevant features (without which) do increase the CV errors, the amounts of increase 
are a lot lower than relevant ones on average (for 30 runs, Figure 5.12). Therefore, a 
statistical test based on levels of errors increase might be helpful. We can see that 
(Figure 5.13) that the original method with enough samples behaves similarly to 
filters for Network 2. On the other hand, McNemar’s scheme helps to eliminate 
non-relevant features, but also decrease the probability of selecting relevant ones, 
which suggests that the McNemar’s test is not very sensitive to relevance per se. 
Further study is needed for the potential of incorporating statistical tests.  

Other simple heuristics to be incorporated include i) replace McNemar’s test with 
Wilcoxon test or ii) assuming the distribution of ( ) ( )

iR
F D F D− is normally 

distributed with the same mean and standard variation for and i’s, for feature in MB 
and not in MB respectively. Therefore, we can gather features with ( ) ( )

iR
F D F D> , 

and estimate the mean and standard deviation of ( ) ( )
iR

F D F D> . For all features 

with ( ) ( )
iR

F D F D> , we then discard features with ( ) ( )
iR

F D F D>  that are one 

standard deviation less than the estimated mean. It is of interest to see the whether 
such approximation is valid for such simple networks, where we use histogram to 
study the empirical distribution of ( ) ( )

iR
F D F D>  for different kind of features. In 

the experiments not showed here, we notice that the exact Wilcoxon test fails 
drastically, and the second scheme is not as good as the McNemar’s test. 

From the experiments, we can see that even though backward search algorithm is 
theoretical consistent (guaranteed to find MB when sample size goes to infinity), it 
performs poorly in practice without proper control on epsilon. It is due to the slow 
speed of convergence and also relating to the large conditional set (equivalent to 
conditional independence tests), which can not be mitigated by controlling epsilon. 
Nevertheless, it is of interest to see the limited success of such a simple algorithm. 

5.3.2 Real data 

Even though some of above mentioned algorithms fail to capture the causal structure 
of the simple networks, they have been proved to be able to perform feature selection 
and improve the prediction for real data. Comparisons between those algorithms on 
the same data set might shed light on how feature selection should be conduct in 
practice. Specifically, we apply t-test statistic, RFE-SVM, l1-logistic.regression, 
Zero-norm SVM and HITON-MB to the AML-ALL data and try to interpret the 
correspondence between the features selected by different algorithms. On the other 
hand, we evaluate the quality of the subsets selected by those algorithms by their 
improvement in prediction with two classifier 1) linear SVM and 2) lambda method 
(Golub et al., 1999, Guyon et al., 2003). The lambda method simply weights each 
feature with their importance (Golub, 1999), and adds an intercept regarding their 
class means. Y is then estimated as the sign of their linear combination. McNemar’s 
test is used to assess the significance of the method of one method is different from 
the other due to the small test sample size. For RFE-SVM (Guyon et al., 2001) and 
RFE-PLR (Zhu et al., 2002) have been studied previously. In addition, Li and Yang 
(2005) applied RFE-ridge-regression to the data set and showed that 3 features are 
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sufficient to have no errors on the test set and suggested that feature selection should 
related to both classifiers and loss functions.  

5.3.2.1 Performance evaluation 

All the feature selection methods are used mostly with their default setting with 
exception on RFE-SVM and l1-logistic.regression. Specifically, RFE-SVM is run with 
first an elimination step of factor 2 (half of the features are eliminated) when more 
than 64 features are left followed by the one by one elimination (this might be the 
difference in prediction for test data from Guyon et al., 2002). On the other hand, 
since L1General is unable to optimize such large dimension data, the feature selection 
with l1-logistic.regression is done in three steps i) Eliminate features that are not 
significant with t statistic (0.001), ii) Perform l1-logistic.regression on the features left 
with lambda = 12 iii) We take the top k features on weights with the best prediction on 
the training set. Note that for t statistic, we select the feature with significance level of 
0.01, though the significance level can also be verified with cross-validation. The 
prediction errors (0/1 loss) on both the training set and test set with different feature 
selection method and the two classifiers are shown below. 
 

Table 5.1 Prediction performance for different feature selection algorithms on AML-ALL 

 No 
FS 

T 
statistic 

RFE-SV
M 

l1-PLR l0 SVM HITON- 
MB 

Nr. of 

Features 
7129 799 16 13 3 5 

SVM 3(0) 2(0) 1(0) 3(0) 2(1) 8(1) 

λ -method 3(0) 1(0) 1(0) 1(0) 4(1) 4(0) 

Random 
Forest 

3(0) 3(1) 3(0) 3(1) 6(0) 3(0) 

The two numbers are number of test errors out of 34 samples (number of training errors 

out of 38 samples) respectively. The prediction performance that are significantly (0.05) 

different from the one with no feature selection are underlined. 

From Table 5.1, for the same classifier, we can see that  
i) RFE-SVM seems to be the best candidate for this data set for the overall 

performance for the three classifiers.  
ii) As a matter of fact, l1-PLR is also competitive since it is not fair to compare 

RFE-SVM and l1-PLR on SVM classifier, which favors SVM-based selection.  
iii) l0 SVM shrinks the number of feature down to 3, with slight increase in test 

error (2 compared to only 1 in RFE-SVM). But the feature selected by l0 SVM 
is not informative to both lambda method and random forest in the sense that it 
boosts the test errors into 4 and 6, respectively.  

iv) T-statistic turns out to be useful in the sense that it reduces number of features 
to 799 and obtain relatively low test errors. It again suggests that univariate 
filter can be informative when sample size is small.  

v) HITON-MB seems to be worst for all classifiers (for several choices of 



52 

significance levels and number of conditional set) except random forest (l0 
SVM is the worst in that case). Since the HITON-MB is of size 5, we try all 
the possible subsets of the features in HITON-MB, it turns out that there is one 
feature (#4847 (Zyxin- X95735_at)) very informative, with only which the test 
errors and training errors change into 3(1), 2(3), 3(1). 

 
The performance of feature subsets is sensitive to the classifier used. Given 0/1 loss, 
since the data is known to be linear separable, both linear SVM and lambda methods 
performs equally well for all feature selection methods except HITONMB. Random 
forest has relatively larger prediction errors to the other two. On the other hand, 
random forest gives very similar prediction performance for all feature selection 
methods, but it seems to fail in extract information from the information from the 
feature subset output by l0 SVM.  
 Table 5.1 indicates that feature selection methods should always be compared 
with the same classifiers; otherwise, the conclusion can be misleading when we assess 
the prediction quality of a feature subset. Different feature selection methods might 
favor specific classifiers.  

5.3.2.2 Feature correspondence and MB discovery 

By checking the selected feature subsets more closely, we can study the 
correspondences between those feature subsets. The best reported subset (Li and Yang, 
2005) includes #4211, #6201 and #1882(0 test errors) with RFE-ridge regression, 
which are not in the intersection or a real subset of the union of the six feature 
selection methods. With the three features, the prediction performance improve 
greatly except for lambda classifier (0(0), 4(1), 2(0)). This again suggests the 
sensitivity of feature subset to the classifier used. To look at each method separately 
regarding the correspondence to the Li and Yang’s subset, we can see that RFE-SVM 
contains #6201 and #1882 is in l0-SVM, while HITON-MB recovers none of them. 
On the other hand, it is not surprised that T-statistic contains all three features since its 
size is still very large (when setting significance level to 0.001, #4211 is filtered out). 
l1-PLR fail to recover any of them (it is not related to the preprocessing of T statistic 
filter since with 0.001 significance level, both #6201 and #1822 features are still in 
the feature subset). For this particular data, Yi and Yang pointed out that the ridge 
regression classifier successfully boosts relevant feature and penalizes irrelevant ones 
during the RFE process, which in turn identify this subset. Meanwhile, Ridge 
regression has very low capacity (simply linear regression with 2-norm penalization 
on the weights), and is very good candidate for data with small sample size.  

To investigate the possibility of those algorithms in discovering MB(Y) 
(unknown), we try looking into the intersections of those subsets. There are two 
features selected by all methods, which are feature #3320 (U50136_rna1_at) and 
#5039 (Y12670_at). However, using this smaller subset does not improve the 
performance at all (for SVM the test error increases to 10). This indicates that these 
two features are not informative without the presence of other features, suggesting 
strong feature interactions. In all, we can see that the intersections of subsets given by 
different feature selection methods can be very uninformative by themselves. 
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Therefore, it might not be a good way to try to identify MB as the intersections of 
different methods. Nevertheless, we can see that the methods used here are not ‘weak’ 
in the sense of boosting, and they are partly correlated (e.g. RFE-SVM and Zero-norm 
SVM are all based on SVM, they can be correlated). It is of interest to see how 
weaker feature selection methods with small correlations can be combined to identify 
MB. 

 



54 

Chapter 6 

Discussion and Conclusions 

6.1 Discussion 

The simulations and experiments conducted in this thesis aim to shed light on the 
following questions for two major subjects in feature selection: a. the causal structure 
(dependence structure) b. the prediction accuracy 
1. Will feature selection algorithms without accounting for causal structures give 

better prediction to those designed based on dependence structures? 
2. How well will non-structural based feature selection algorithms discover the 

causal structures of the generating network?  
 
For the first question, we can see that most non-structure based feature selection 

algorithms have the power to greatly reduce size of features needed for the classifiers 
whereas ensuring the prediction accuracy in our study on AML-ALL data and 
simulated data. NIPS 2008’s debate gave some more insights on this question. Robert 
Tillman and Spirtes (2008) conducted experiments on synthetic Bayesian network and 
their intention for this is that in the causal feature selection contest, algorithms like 
RFE-SVM, RFE-PLR, LASSO disregard the existence of causal structure of the data 
while producing equivalent or better prediction than algorithms incorporating the 
information of MB in causal feature selection competition in 2008. They did a set of 
simulations with manipulation on some variables and tried to compare the 
performance of well-designed SVM-variants and Markov-blanket-based algorithms. 
They pointed out that non-causal methods will actually perform worse when they are 
not invariant under manipulation. Furthermore, they suggested that in practice, one 
should handle the trade-off between the errors related to causality and errors due to 
over-fitting and non-true parametric assumptions for a causal model. Methods such as 
SVM which treat over-fitting well will sometimes cancel the errors caused by not 
taking causality into account. Methods based on learning causal structures should 
always be used carefully to avoid over-fitting. It is also suggested that learning 
complete causal structure is more difficult than prediction problem due to the 
existence of equivalent classes.  

Other than the trade-off between bias and variance, feature selection should be 
discussed with respect to the classifiers and loss functions used, as pointed out by 
Tsamardinos et al. (2003a). In our study on the AML-ALL data, we can see that using 
the features from HITON-MB (based on MB), both SVM and lambda methods give 
significantly worse performance to other feature sets. However, the prediction 
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performance of HITON-MB improves greatly when the underlying classifier is 
random forest. For this matter, HITON method actually includes a post-processing 
wrapper to eliminate features from the approximated MB to improve the performance 
of prediction. This is another aspect of the problem one should be cautious about 
when conducting feature selection.  

As for the second question, we can see that non-causal-structure based methods 
can actually extract some limited information on the causal structure of the network 
but some of them fail to distinguishing relevant feature to noise (SVM with large C). 
Nevertheless, we can see that for such feature selection methods, the ability in 
approximating MB should depend on the choice of model parameters. There exist 
parameters that can be controlled regarding the sparsity of the models (e.g. C in SVM), 
which mimic the behavior of controlling false positive in conditional independence 
test with significance level in discovery MB. Unlike the task of prediction where 
parameters can be selected with cross-validation errors (related to generalization 
errors), there is no theoretical argument on how to choose those parameter for MB 
discovery. Under the assumption that MB facilitates prediction accuracy, a 
straightforward heuristic is to simply use the same parameters for best prediction 
(Frey and Fisher et al., 2003). On the other hand, for Bayesian network learning, the 
parameter can be chosen based on the minimization of MDL (Schmidt et al, 2006). 
Some promising results were shown with simulation on simple networks with such 
heuristics for different methods such as decision trees (Frey and Fisher et al., 2003) 
and L1-penalizaed structure learning (Schmidt et al., 2006), which suggest that if 
carefully tuned, non-causality-based methods have potentials in discovering MB.   

6.2 Conclusions and Future work 

In this report, we present our study on several feature methods on both synthetic data 
and real data. This first goal of this study is to investigate the ability of different 
methods in discovering MB (or even causal structure) of the target in classification 
problems. Secondly, we studied and compared the prediction performance of the 
feature selection methods to understand the importance of identifying MB for 
prediction in real data.  

Through the simulations, we are able to get insights on how various algorithms 
will be able to detect different relationships between variables, as well as the factors 
that will affect the performance of the algorithms. Specifically, we noticed that filters 
can be superior to other methods of high capacity when the sample sizes are small and 
that the effects of penalization on the sparsity of the models should be carefully taken 
care of.   

For the real data set, we found that the performance of the feature subset can be 
very sensitive to the classifier used (for the same loss function). Therefore, when 
evaluating the quality of a feature set in prediction, one should always try several 
classifiers to ensure the stability of the feature subset. 

Several aspects of this work should be extended for further study. Since in this 
study, the simulation is focused on simple networks, it is of interest to generate 
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network with other structure (e.g. XOR) to extend the study and see how the 
relaxation of faithfulness (Network 2) will affect the performance of those algorithms 
in MB discovery. Meanwhile, the analysis of feature selection in this report deals only 
with the observable features. The effects of hidden features on prediction are not 
assessable for absence of those features. However, whenever feature selection is used 
as an intermediate step in causal inference, the effects of hidden variables are not 
negligible. For example, the hidden common parent in a Bayesian network will alter 
two features that are non-relevant into relevant. Such effects are not discussed in this 
report. More importantly, it is of interest to study theoretically how various 
penalization function, classifiers and loss function will contribute to discovering MB. 
After that, more sophisticated heuristics on choosing model parameters for MB 
discovery might be derived.  
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