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Classification of Cell Images Using MPEG-7-influenced

Descriptors and Support Vector Machines in Cell Morphology

Abstract—Counting and classifying blood cells is an important diagnostic

tool in medicine. Support Vector Machines are increasingly popular and ef-

ficient and could replace artificial neural network systems. Here a method

to classify blood cells is proposed using SVM. A set of statistics on images

are implemented in C++. The MPEG-7 descriptors Scalable Color Descrip-

tor, Color Structure Descriptor, Color Layout Descriptor and Homogeneous

Texture Descriptor are extended in size and combined with textural features

corresponding to textural properties perceived visually by humans. From a set

of images of human blood cells these statistics are collected. A SVM is im-

plemented and trained to classify the cell images. The cell images come from

a CellaVisionTM DM-96 machine which classify cells from images from micro-

scopy. The output images and classification of the CellaVisionTM machine is

taken as ground truth, a truth that is 90-95% correct. The problem is divided

in two — the primary and the simplified. The primary problem is to classify

the same classes as the CellaVisionTM machine. The simplified problem is to

differ between the five most common types of white blood cells. An encouraging

result is achieved in both cases — error rates of 10.8% and 3.1% — consider-

ing that the SVM is misled by the errors in ground truth. Conclusion is that

further investigation of performance is worthwhile.

Klassificering av cellbilder med hjälp av MPEG-7-inspirerade

mått och support vector machines i cellmorfologi

Sammanfattning—Att räkna och klassificera blodceller är ett viktigt dia-

gnostiskt redskap inom läkarvetenskapen. Support Vector Machines är effekt-

iva, ökar i popularitet och kan ersätta artificiella neurala nätverkssystem. Här

föresl̊as en metod för att klassificera blodceller m.h.a. SVM. En mängd stat-

istika p̊a bilder implementeras i C++. De s.k. MPEG-7 descriptors Scalable

Color Descriptor, Color Structure Descriptor, Color Layout Descriptor och

Homogeneous Texture Descriptor utvidgas i storlek och kombineras med textur-

mått motsvarande textur-egenskaper som uppfattas visuellt av människor. Fr̊an

en mängd bilder av mänskliga blodceller samlas dessa mått. En SVM imple-

menteras och tränas att klassificera cellbilderna. Cellbilderna kommer fr̊an

en CellaVisionTM DM-96 som klassificerar celler fr̊an mikroskoperade bilder.

Bilderna och dess klasser fr̊an en CellaVisionTM DM-96-maskin tas som facit,

ett facit som är 90-95% korrekt. Problemet delas i tv̊a — det primära och

det förenklade. Det primära problemet är att skilja mellan de klasser som

CellaVisionTMs maskin gör. Det förenklade problemet är att skilja mellan de

fem vanligaste typerna av vita blodkroppar. Ett glädjande resultat uppn̊as

i b̊ada fallen — felfrekvenser om 10,8% och 3,1% — med tanke p̊a att SVM

missleddes av felen i det tagna facitet. Slutsatsen är att vidare studier ang̊aende

prestanda är lönsamma.



to Britta,

to my family





Contents

Contents v

List of Tables vi

Acknowledgments vii

1 Introduction 1

2 Background 5
2.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Linear Learning Machines . . . . . . . . . . . . . . . . . 5
2.1.3 Maximum Margin Classifier . . . . . . . . . . . . . . . . 6
2.1.4 Optimization Theory . . . . . . . . . . . . . . . . . . . . 7
2.1.5 The Kernel Trick . . . . . . . . . . . . . . . . . . . . . . 8
2.1.6 Gradient Ascent . . . . . . . . . . . . . . . . . . . . . . 9
2.1.7 Multiclass SVM . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Scalable Color Descriptor . . . . . . . . . . . . . . . . . 11
2.2.2 Color Structure Descriptor . . . . . . . . . . . . . . . . 11
2.2.3 Color Layout Descriptor . . . . . . . . . . . . . . . . . . 11
2.2.4 Homogeneous Texture Descriptor . . . . . . . . . . . . . 12
2.2.5 Visual Texture Features . . . . . . . . . . . . . . . . . . 14

2.3 Fast 2D Convolution . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Scaling data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Material and Methods 19
3.1 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Support Vector Machine . . . . . . . . . . . . . . . . . . 19
3.2.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.4 Data View . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Experimental Setup and Results 27
4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 27

v



4.1.1 Performance test method . . . . . . . . . . . . . . . . . 27
4.1.2 Description of the simplified problem . . . . . . . . . . . 27

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1 Primary Problem . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Simplified Problem . . . . . . . . . . . . . . . . . . . . . 28

5 Discussion 31

References 35

A Software Usage 39
A.1 train – Train a model . . . . . . . . . . . . . . . . . . . . . . . 40
A.2 cellfeatures – Generate examples from the cell database . . 41
A.3 jpeg genfeature – Feature generation from images . . . . . . 41
A.4 predict – Predicting a set of features . . . . . . . . . . . . . . 41
A.5 extractcelltype – Extract a class of images from the cell database 41
A.6 extractcellid – Extract given instances from the cell database 42
A.7 extractcellinfo – Extract statistics of instances from the cell

database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.8 tolibsvm – Save cell features in libSVM format . . . . . . . . . 42

List of Tables

1.1 Abundance of different types of white blood cells (leukocytes) in
healthy humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3.1 Cell types classified in the data set . . . . . . . . . . . . . . . . . . 20

4.1 Cell types left in the simplified problem . . . . . . . . . . . . . . . 28
4.2 SVM cell classifier results for the primary problem . . . . . . . . . 29
4.3 Confusion Matrix for the primary problem . . . . . . . . . . . . . . 29
4.4 SVM cell classifier results for the simplified problem . . . . . . . . 30
4.5 Confusion matrix for the simplified problem . . . . . . . . . . . . . 30

vi



Acknowledgments

First of all thanks to Doc. Christian Balkenius and Doc. Jacek Malec for
supervising my thesis. To Dr. Ferenc Belik for managing all practical details.
to Doc. B.S. Manjunath for inspiration and lending me figure 2.3. To Sebastian
Ganslandt for initial chats about support vector machines and thesis ideas. To
all others that made this work possible.

vii





1
Introduction

After the introduction of MPEG-7 descriptors by the Movie Producers Expert
Group (MPEG) committee[13] it is interesting to see how these features per-
form in the field of machine learning. In this thesis a subset of them will be
tested on the problem of classifying different cell types, i.e. cell morphology,
by using Support Vector Machines.

In medicine, more specifically the fields of hematology and infectious dis-
eases, classifying different kinds of blood cells can be used as a tool in diagnosis
— by counting certain cells’ relative frequencies and comparing to what is nor-
mal, conclusions can be made about possible diagnosis.

Classifying cells using microscopy is used to classify infectious diseases by
determining the relative amount of cells called neutrophils compared to the
amount of cells called lymphocytes. Typical relative frequencies of the cells are
found in table 1.1. Typical images of some common cells are found in figure 1.1.

Another method used is flow cytometry where receptors on the cells are
colored and the different types of cells are counted. Flow cytometry uses a
complicated and expensive apparatus while microscopy is very cheap.

However, microscopy is personnel intensive, many cells are hard to classify
even for human experts, often several experts are needed to be certain. To
be able to classify cells, great efforts of training are required, even more, to

Type Approx. Abundance

neutrophil granulocytes 70%
eosinophil granulocytes 1-6%

basophil granulocytes 0.01-0.3%
lymphocyte 20-40%
monocytes 3-8%

Table 1.1: Abundance of different types of white blood cells (leukocytes) in
healthy humans

1



2 Introduction

(a) Neutrophil Granulo-
cyte, segmented (class
1)

(b) Neutrophil Granulocyte,
band (class 6)

(c) Eosinophil Granulo-
cyte (class 2)

(d) Basophil Granulo-
cyte (class 3)

(e) Lymphocyte (class
4)

(f) Monocyte (class 5)

Figure 1.1: Some typical images of common white blood cells

sustain competence, regular frequent work is required. This competence is im-
possible to sustain at small clinics or in the countryside especially in developing
countries. Instead, samples have to be sent to hematology labs.

As processing power becomes cheaper and machine learning and computer
vision algorithms grow better, machines can help less experienced personnel or
give preliminary results while waiting for definite results.

The problem this thesis try to investigate is how well these different types
of white blood cells can be classified using a Support Vector Machine and a set
of measures on the images, called features.

There has been a lot of hype about Support Vector Machines since its in-
troduction in the 1990’s. SVM is applied within a broad range of fields, from
bioinformatics[11] to food engineering[9], iris recognition[15], texture classifi-
cation and object recognition[25]. It is now one of standard tools available for
machine learning—A recent search for “Support Vector Machine” (SVM) gave
6 394 articles compared to 17 893 for “Artificial Neural Network” (ANN) which
has existed for much longer. That is why my supervisor and I chose to work
with SVM.

The SVM is trained with measures of the cell images, called features or
descriptors. These are values that describe the essence of an image. In this
thesis I will describe and implement a subset of the color and texture descriptors
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found in the MPEG-7 standard with minor variance. I chose to work with
MPEG-7 as a guide because of the MPEG committee’s well known expertise.

The MPEG committee developed e.g. the audio compression techniques
used in MPEG-1 Layer 3 (MP3), the video compression used in e.g. DVDs
(MPEG-4) and MPEG-7. The committee consists of experts from a broad
range of areas that deal with digital information.[14]

MPEG-7 identify several descriptors which has proved useful in the Color
and Texture Core Experiments[13] while developing of the standard. They have
proved useful in image browsing, search and retrieval[24] as well as in image
classification[19]. Color histogram based features has been successful both in
image retrieval[18] and image classification[3, 7, 18] systems. Texture features
like Gabor Wavelet Filter Bank used in MPEG-7 has been successfully applied
to iris[15] and facial expression[5] recognition.





2
Background

2.1 Support Vector Machines

In this section I will briefly introduce Support Vector Machines from a the-
oretical perspective. Further introduction may be found in Bishop’s book[4,
chapters 6,7 and E]. If more substance is wanted I recommend reading the
whole book by Christianini and Shawe-Taylor[8]. The very thorough cover-
age of the topic by its original implementor Vapnik in his book[20], sometimes
called the bible, was often an additional useful source for me.

2.1.1 Supervised Learning

Supervised learning is a kind of machine learning where the machine is fed with
examples, i.e. instances of data tied to their class. The machine is told what
class an instance belongs to.

The task that a learning machine performs is to recognize an element x ∈ X
as a member of a class — to classify it. These classes are called destination
values and I use the notation y ∈ Y. In the binary case for example Y =
{−1,+1}. The task would then be to construct a function such that d(x,α) =
y, given α is the information the machine has previously gathered during the
training process. During training, the machine observes a tuple of pairs

S =
(
(x1, y1), . . . , (x`, y`)

)
⊆ (X × Y)`,

which is called the training set, and produces parameters α ∈ Rn deduced from
this information.[8]

2.1.2 Linear Learning Machines

Imagine the space X which has n dimensions. To be able to classify instances
into the two classes labeled positive, y = +1, or negative, y = −1, a hyperplane,

5



6 Background

i.e. an affine subspace of dimension n − 1, must be found that separates the
instances of the respective classes from each other. If such a hyperplane exists,
the data is said to be linearly separable.

Imagine a two-dimensional coordinate system in which the instances are
placed. If a straight line can be placed between the two classes of instances,
the data is linearly separable. That straight line is a hyperplane of dimension
1. The generalized hyperplane of dimension n− 1 is defined by the equation

〈w,x〉+ b = 0.

The normal vector w is orthogonal to the hyperplane and the bias b is the
hyperplane’s offset from the origin.

Now consider the function

f(x) = 〈w,x〉+ b =
n∑

i=1

wixi + b (2.1)

Where: x – instance
w – coefficients learned
b – system bias

It will tell whether an instance is above or below the hyperplane. This is similar
to linear regression in statistics.

A decision function for the binary classification case then becomes

d(x) = sgn(f(x))

sgn(a) =

{
−1, a < 0

+1, a ≥ 0

An example of an iterative algorithm that find the vector w from a set of
x ∈ X is Rosenblatt’s perceptron which was the first and simplest type of an
Artificial Neural Networks (ANN). It is guaranteed to converge if the data is
linearly separable. This criterion could also be written

∃w∀i : γi = yi(〈w,xi〉+ b) > 0,

i ∈ [0, `),

i.e. all instances are classified correctly. The quantity γi is called the margin
as it specifies how far from the hyperplane an instance is. If w and b are
normalized, to w

‖w‖ and b
‖w‖ , then the margin is called the geometric margin

which measures the euclidean distances of the points x to the hyperplane. The
closest point, the xi with minimal γi, define the margin of a hyperplane which
is a stripe of empty space where no instances are. If the data is not linearly
separable ∃i : γi ≤ 0.[4, 8]

2.1.3 Maximum Margin Classifier

The task of a maximum margin classifier is to maximize the margin which can
be motivated, using statistical learning theory, gives the least generalization
error.
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The maximum margin solution, the optimal w and b, is found by solving

arg max
w,b

{
min

i

γi

‖w‖

}
= arg max

w,b

{
1
‖w‖

min
i
yi(〈w,xi〉+ b)

}
To solve this first rescale w→ κw and b→ κb. The distance to the hyperplane
is still the same mini γi. Then set

γj = yj(〈w,xj〉+ b = 1

for the point xj that is closest to the hyperplane. All points will then have
γi ≥ 1 and since the minimum γj = 1 all that have to be done is to maximize
‖w‖−1 or minimize ‖w‖2. The problem that is left is to

find arg min
w,b

‖w‖2

2
,

subject to γi ≥ 1,
(2.2)

which is much easier. This problem is what is called a quadratic programming
problem and can be solved using the theory of optimization theory and Lagrange
Multipliers.[4, 8]

2.1.4 Optimization Theory

The theory on Lagrangian multipliers states that to

optimize f(x)

subject to g(x) ≥ 0

one should optimize the Lagrangian function

L(x, α) = f(x) + αg(x)

subject to g(x) ≥ 0

α ≥ 0

αg(x) = 0.

These conditions are known as the Karush-Kuhn-Tucker(KKT) conditions.
More generally, to add more constraints gj(x), replace the αg(x) with a linear
combination of all Lagrange multipliers αj and their corresponding functions
gj(x)[4]:

optimize L(x, {αj}) = f(x) +
J∑

j=1

αjgj(x)

subject to ∀j : gj(x) ≥ 0

αj ≥ 0

αjgj(x) = 0.
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In order to quickly find a solution to (2.2) it can now be rewritten as the
Lagrangian function

L(w, b, α) =
1
2
‖w‖2︸ ︷︷ ︸
f(x)

−
∑̀
i=1

αi (yi(〈w,xi〉+ b)− 1)︸ ︷︷ ︸
gi(x)

.

The constraint function is negative because we are minimizing wrt ‖w‖ and b

while maximizing wrt α. To finally arrive at what is called the dual represen-
tation of the maximum margin problem the derivatives of L wrt to w and b,
are set to 0. Maximizing this dual representation,

W (α) = L̃(α) =
∑̀
i=1

αi −
1
2

∑̀
i=1

∑̀
j=1

αiαjyiyj〈xi,xj〉,

by finding α,

subject to ∀i : αi ≥ 0,∑̀
i=1

αiyi = 0,

(2.3)

will construct the maximal margin classifier.[4, 8, 20]
The instances that have a corresponding αi > 0 are called support vectors.

That is because they lie on the margin. They are thus used in the decision
function.

Note how the input variables xi are only used in an inner product which let
the SVM avoid the curse of dimensionality caused by a data set with instances
of too high dimension.[8]

2.1.5 The Kernel Trick

The Kernel Trick is used implicitly in Support Vector Machines but it has also
been tried out in e.g. RBF Networks, which is a kind of ANN.[4]

The inner product used in the dual optimization problem can be a linear
one. Though it will not separate the instances fully when the dataset is not
linearly separable, data must be mapped to another space where it is.

A non-linear feature function φ(x) can do such a mapping. However, there is
no need to know the feature function explicitly, it is easier to define it implicitly
via a Mercer Kernel.[8]

A complete, normed space with an inner product is called a Hilbert Space
One of the beauties of Hilbert spaces lies in that any given function in the L2

space could be approximated infinitely well in the ‖·‖2 and represented by an
infinite linear combination of some coefficients and some basis functions. An
example of this is the Fourier Series using Fourier coefficients and the Dirichlet
Kernel Functions {e−ikx}k.

A special kind of Hilbert spaces are the ones which are called Reproducing
Kernel Hilbert spaces. A function 〈xi,xj〉 = K(xi,xj) = φ(xi)φ(xj) is called
a kernel when it satisfies the criteria in Mercer’s Theorem.
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A Mercer kernel K is defined as an inner product on elements of some space
X .[8] An inner product is a function that is a positive-definite sesqui-linear1

form. In the R case this becomes a function

〈·, ·〉 : X × X → R

such that

K(x, z) = 〈x, z〉 = 〈z,x〉 = K(z,x) (Symmetry)

K(ax + by, cz) = abc
(
K(x, z) +K(y, z)

)
(Bilinearity)

∀x : K(x,x) ≥ 0 (Positivity)

K(x,x) = 0 ⇐⇒ x = 0 (Definiteness)

A Mercer kernel also have non-negative eigenvalues λi of the Gram matrix G
since it’s defined as a Hermitian matrix

∀i : λi ≥ 0|G (Positive semi-definite Gram matrix)

G =
(
K
(
xi,xj

))
i,j∈[1,`]2

(2.4)

Note that the elements of the space X do not need to be real vectors as they
will be in this context, they could also be e.g. strings of symbols as well. As
soon as a symmetric sesqui-linear positive-definite function could be defined on
the elements of the space X , the space becomes an inner product space and the
Support Vector Machine will do its job.[8]

Here are some commonly used Mercer kernels defined on Rn×Rn[4, 8, 20]:

〈x,y〉Linear = xTy (Linear, dot product, kernel)

〈x,y〉Poly =
(
xTy + 1

)d

(Complete Polynomial of degree d)

〈x,y〉RBF = exp
(
− 1

2σ2
‖x− y‖

)
(Gaussian, Radial Basis Function)

〈x,y〉MLP = tanh(xTy + b) (Multilayer perceptron, for some b)

the norm used in RBF is usually the euclidean distance, p = 2 below

‖x− y‖Lp =
(∑

i

|xi − yi|p
)1/p

(Lp distance)

2.1.6 Gradient Ascent

An easy approach to find coefficients α is to update them in the direction of
the gradient of the objective function W (α),

∂W (α)
∂αi

= 1− yi

∑̀
j=1

αjyj〈xi,xj〉.

1anti-linear in the second argument and linear in the first
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To maximize the objective function W (α) one could just iterate

α′i ← αi + η
∂W (α)
∂αi

.

Where: η – the learning rate

It is shown e.g. in Nello’s book that setting η = 1
K(xi,xj)

maximizes the gain
if the αi ∈ [0, C], C ∈ R and that convergence is guaranteed if the hyperplane
exists.[8]

2.1.7 Multiclass SVM

There are three major methods for training a set of classifiers to be able to
classify several classes[10], i.e. |Y| = k > 2.

In the one-against-the-rest method k binary classifiers are created where
classifier i ∈ [0, k) is told that all examples with class i are positive and the
rest are negative. When predicting which class x belongs to all classifiers are
tested and the one which gave the highest certainty wins.

In the one-against-one method k(k−1)/2 binary classifiers are created such
that all 2-combinations of classes i, j have a corresponding classifier.

Cn
2 =

(
n

2

)
=

n!
2!(n− 2)!

=
n(n− 1)(n− 2)!

2(n− 2)!
=
n(n− 1)

2

The prediction is then done by voting, all binary classifiers vote on their re-
spective class i or j. The class with the highest vote wins, this approach is
called the ”Max Wins” strategy.

Direct Acyclic Graph SVM (DAGSVM) is the third method. It uses the
same training method as one-against-one but a different decision mechanism.
The classifiers are placed in a rooted DAG with the classifiers as internal nodes
and the classes as leaves. Starting at the root a binary decision means move
either left or right. When a leaf is reached the decision is done.[10]

2.2 Features

Features, or descriptors, try to take useful information out of an image —
color distribution, measures on edges and texture properties. They capture
information in a more condensed and efficient way than by just using the color
values in each pixel.

These descriptors are also scale invariant — it does not matter which size
the images have. This is necessary as the images have different sizes.

Scalable Color Descriptor, Color Structure Descriptor and Color Layout
Descriptor are the three color descriptors that I describe below and that are
implemented in the project. After the description of those come descriptions
of two texture descriptors. One of them is similar to the Homogeneous Texture
Descriptor from MPEG-7. Another set of descriptors, named Visual Texture
Features, is from an article by Amadasum and King which describe computa-
tional measures which approximate how humans perceive texture.[1]
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(a) Blackness π22 (b) Blackness 4π12

Figure 2.1: These images contain the same amount of black and would yield
an identical color histogram but a different color structure descriptor.

2.2.1 Scalable Color Descriptor

The HSV space is uniformly quantized into a 3D histogram of 256 bins. Hue
is divided into 16 levels, Saturation into 4 and Value into 4. In the MPEG-7
specification the 16×4×4 = 256 bins are truncated to a 11-bit integer mapped
to a non-linear 4-bit representation and then encoded using a Haar transform
to drastically reduce space footprint. The scalability in this descriptor comes
from the ability to choose how many Haar coefficients to store, see an article
by Manjunath et al. for more details.[13]

2.2.2 Color Structure Descriptor

To express local color structure in an image this descriptor slides an 8 × 8-
structuring element across the image counting in how many of these elements
each color exists. By this technique one can differ between the images in
figure 2.1.

This descriptor is scale invariant as the structuring elements spatial extent
scale with the image size. The structure element uses replacement sub-sampling
if the image is larger than 256×256 pixels. If e.g. a 512×512 image is processed
every other row and column will represent the image and the rest of the 2× 2
areas are thrown away. More generally

p = max{0, round(0.5 log2(WH)− 8)} (2.5)

K = 2p, E = 8K (2.6)

Where: E × E – spatial extent of the structuring element
K – sub-sampling factor

Each bin in the generated histogram represents the number of occasions a
structuring element is found to contain the color associated with the bin.

2.2.3 Color Layout Descriptor

This is kind of a low-pass filter capturing spatial information. Again it is
inspired by the MPEG-7 specification. The image is first divided in 8×8 blocks.
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
1 3 4 10 11
2 5 9 12 19
6 8 13 18 20
7 14 17 21 24
15 16 22 23 25


Figure 2.2: Zigzag scan order of a 5× 5 matrix

Then interpolation sub-sampling2 is applied, i.e. calculating the average color
in each block, giving one representative color for each block. A 2D discrete
cosine transform (DCT-II) is performed on the resulting 8 × 8 matrix. Low-
frequency coefficients are selected using zigzag scanning order, see figure 2.2.
In MPEG-7 the 6 first Y, the 3 first of U and V coefficients are extracted.

2.2.4 Homogeneous Texture Descriptor

Gabor wavelets have proved to be the best set of features compared to pyramid-
structured wavelet transform (PWT), tree-structured wavelet transform (TWT)
and multi-resolution simultaneous autoregressive model (MR-SAR) based de-
scriptors.[12] They are used in the MPEG-7 Homogeneous Texture Descriptor
(HTD).

Gabor wavelets are a family of modulated Gaussians, they form a complete
basis set implying that, any given function f(·, ·) can be expanded in terms of
these basis functions. However, as they are not orthonormal, there is redundant
information present in a set of coefficients. To decrease that redundancy I
follow the strategy used by Manjunath et al., that is aligning the Gaussians
such that their half-peaks meet like in figure 2.3.[24] . To achieve this we first
make a change of variables. The Gaussian is a Gaussian in both frequency and
space domains. The width of the Gaussian in the frequency domain (σu, σv) is
inversely related to the Gaussian in the space domain (σx, σy). In other words,
the wider the Gaussian, the narrower its bandwidth.[21, 23]

σx =
1

2πσu
, σy =

1
2πσv

These parameters are needed for scaling

a = (Uhi/Ulo)1/(S−1), σu =
(a− 1)Uhi

(a+ 1)
√

2 ln 2
,

σv = tan
( π

2K

)[
Uhi − 2 ln 2

(
σ2

u

Uhi

)][
2 ln 2−

(
(2 ln 2)σu

Uhi

)2 ] 1
2

2the average of all pixels involved in the block represent the whole block as opposed to
replacement sub-sampling where a single pixel represent the whole block
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Figure 2.3: Uhi = 0.4, Ulo = 0.05, S = 5,K = 6

Where: Ulo ∈ R – lower center frequency of interest
Uhi ∈ R – upper center frequency of interest
m ∈ [0, S) ⊂ Z+ – scale index
S ⊂ N – number of scales
a > 1 ∈ R – scale factor

For different orientations the image needs to be rotated before filtering and
scaling wrt a.

x′ = a−m(x cos θ + y sin θ)

y′ = a−m(−x sin θ + y cos θ)

θ = nπ/K

Where: n ∈ [0,K) ⊂ Z+ – orientation index
K ∈ N – number of orientations
θ ∈ [0, π) – orientation angle

The generated filter bank are matrices that should be convoluted with the
image

I ′ = I ∗G

Where: ∗ – the convolution operator

See section 2.3 for details about 2D convolution. In figure 3.1 images of the
Gabor wavelet filter bank kernels of different orientations are presented.

In MPEG-7, rotation invariance is achieved in this descriptor, by rotating
the features in the direction of the dominant direction.
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2.2.5 Visual Texture Features

The features described in the article by Amadasun and King are implemented.
These are features corresponding to properties of texture that humans can
perceive. In the article measures of coarseness, contrast, busyness, complexity
and strength are introduced and compared by rank with how humans sensed
ten natural textures from the widely used Brodatz’s album. I give here a very
brief overview of the proposed measures. They all use a column vector called
neighborhood gray-tone difference matrix (NGTDM).[1]

Neighborhood Gray-Tone Difference Matrix

In a pixel p with coordinates 〈k, l〉 neighborhood of size d, i.e. of the square
surrounding a pixel, but without the center pixel the mean is calculated.

Āp = Ā(k, l) =
1

W − 1

[
d∑

m=−d

d∑
n=−d

f(k +m, l + n)

]
,

(m,n) 6= (0, 0)

(2.7)

Where: W = (2d+ 1)2

The ith entry in the NGTDM is a sum of deviations from the mean of the
center pixel, only concerning those pixels in the image which do not lie in the
peripheral regions of width d.

s(i) =


∑
p∈Ni

∣∣i− Āp

∣∣ , there is a pixel with gray-tone i

0, otherwise
(2.8)

Where: Ni – the pixels with gray-tone i
Gh – the largest gray-tone

The relative frequency, i.e. the probability of occurrence, of different gray-tones
is calculated as: [1]

pi = |Ni|/n,
n = (width− 2d)(height− 2d). (2.9)

Note that (2.9) allows a rectangular region of interest as opposed to the square
regions used in the article by Amadasun and King, and that n replaces n2 in
the formulas.

Coarseness

Coarseness is a measure of how rough a surface is, e.g. how large particles it
is composed of.

fcos =

[
ε+

Gh∑
i=0

pis(i)

]−1

This is (inversely) a weighted sum of the deviations from the center pixels wrt
the surrounding pixels. The small value ε is to cope with division by 0.
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Contrast

High contrast means the intensity difference between neighboring regions is
large.

fcon =

 1
Ng(Ng − 1)

Gh∑
i=0

Gh∑
j=0

pipj(i− j)2
 1

n

Gh∑
i=0

s(i)


Ng =

Gh∑
i=0

Qi

Qi =

{
1, if pi 6= 0

0, otherwise

Where: Ng – the number of different gray-tones present in the image

The first factor is used to reflect the dynamic range of gray scale weighted
with the product of relative frequencies of the two gray-tone values under con-
sideration. The second factor increases with the amount of local variation in
intensity.

Busyness

A busy texture is one where the spatial frequency of intensity changes are high.

fbus =
Gh∑
i=0

pis(i)

/
Gh∑
i=0

Gh∑
j=i

ipi − jpj,

pi 6= 0, pj 6= 0

The numerator is a measure of the spatial rate of change in intensity, inversely
related to coarseness. The denominator is a summation of the magnitude of
differences between the different gray-tone values. This formula differs slightly
from the one described in the article by Amadasun and King[1] — I’m certain
there’s a typo in that formula making it always zero.

Complexity

Complexity means high information content. This could mean many primitives
or patches, especially if they have different average intensity.

fcom =
Gh∑
i=0

Gh∑
j=0

|i− j|
n(pi + pj)

(
pis(i) + pjs(j)

)
An elaborate description of this formula (and the others in this section) are
found in the article by Amadasun and King[1].

Texture strength

A strong texture is generally referred to as strong if its building blocks are easily
definable and clearly visible. Such texture tend to look attractive. However a
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strong texture is difficult to define concisely[1]. It is defined as

fstr =

Gh∑
i=0

Gh∑
j=0

(pi + pj)(i− j)2

ε+
Gh∑
i=0

s(i)

, pi 6= 0, pj 6= 0.

Where the numerator is a factor stressing the differences between intensity lev-
els, and therefore may reflect intensity differences between adjacent primitives.
The probabilities p. tend to be high for large primitives. The denominator
would be small for coarse texture and high for busy or fine textures consider-
ing the definition in (2.8).

2.3 Fast 2D Convolution

Two-dimensional discrete convolution in the spatial domain is defined as

(f ∗ g)[n] def=
∞∑

m=−∞
f [m] · g[n−m].

By the Circular Convolution Theorem[22] this can instead be done in the
frequency domain considering

F{f ∗ g} = F{f} · F{g} (2.10)

Where: ∗ – the convolution operator
F{·} – the Fourier Transform (FT)

First apply FT to image and to convolution kernel, then multiply the two
matrices element-wise. To get the filtered image just apply inverse FT.

For this to work the kernel has to be placed in a matrix the same size as
the image, wrapped around the origin3, which in FFTW is at position 〈0, 0〉,
like in figure 2.4. Also, there are border cases in the image, it has to be padded
with wraparound pixels.[16]

3origin aka DC component, zero frequency
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Example 5× 5 kernel︷ ︸︸ ︷
11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55

 Layout−−−−→

Image height × Image width matrix︷ ︸︸ ︷

33 34 35 0 . . . 0 31 32
43 44 45 0 . . . 0 41 42
53 54 55 0 . . . 0 51 52
0 0 0 0 . . . 0 0 0

. . . . . .
0 0 0 0 . . . 0 0 0
13 14 15 0 . . . 0 11 12
23 24 25 0 . . . 0 21 22


Figure 2.4: How to make sure the kernel wraps around the origin in frequency
space

2.4 Scaling data

Scaling is very important. If scaling is not applied to all features a feature with
a larger numeric range may dominate others with smaller numeric range.

range = max
i
xi −min

i
xi

midrange =
(

max
i
xi + min

i
xi

)/
2

x′i =


xi −midrange

range/2
, range 6= 0

0, range = 0

Where: xi – feature value of example i
i ∈ [0, `) ⊂ Z+





3
Material and Methods

3.1 Material

Blood samples were taken from four individuals. The cells were photographed
on a CellaVisionTM DM-96. The width of the images lies in the range [119, 267].
The height of the images lies in the range [119, 258]. On average an image is
about 139× 139 pixels. This correspond to about 13.7 µm.

The cells are normal, e.g. there are no cancer cells or malaria infected cells.
There are very few (2) blast cells indicating the only possible cancer type would
be lymphoma, i.e. a cancer in the lymph nodes.

The cells were classified on the CellaVisionTM DM-96 and its result was
taken as ground truth. The machine is 90% to 95% correct depending on the
individual. The cell types of the data set are given in table 3.1. Typical relative
frequencies of the cells are found in table 1.1. Typical images of some common
cells are found in figure 1.1.

From the set of images of the cells a range of descriptors, or features, were
extracted. A set of features extracted from a single image, called instance or
example, is denoted x and the space of all possible features is denoted X .

A Support Vector Machine (SVM) was trained using the set of features
described.

3.2 Implementation details

3.2.1 Support Vector Machine

The SVM was written in C++ within the Boost C++ Libraries framework.
The Gram matrix G, defined in (2.4), the output of the kernel function, is
cached in memory to dramatically reduce running time.

19
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Class No. Class Name

1 neutrophil granulocytes, segmented
6 neutrophil granulocytes, band
2 eosinophil granulocytes
3 basophil granulocytes
4 lymphocytes
7 lymphocytes, variants
5 monocytes
9 myelocytes

10 meta-myelocytes
11 blast, immature cell
21 artifacts
24 broken cell
25 thrombocytes (platelets)
29 clots of thrombocytes

Table 3.1: Cell types classified in the data set

A Stochastic Gradient Ascent Variant

Stochastic gradient ascent differs from ordinary gradient ascent in that the
coefficients αi updated are used right away, instead of in the next iteration.
In this project a variant of the stochastic gradient ascent method of training a
SVM were implemented.

The coefficients αKKT that invalidate the Karush-Kuhn-Tucker (KKT)
conditions are selected first for update. They are likely the ones that will
affect the solution most rapid. When these satisfies the KKT conditions, or
when no progress has been made in some iterations, the greater problem of
updating all coefficients α is considered.

Multiclass SVM

I use the one-against-the-rest method[10] because it is the simplest and it has
similar precision to the latter two[10, 20]. The latter two are however faster to
train because they can train all the classifiers at once.[8]

3.2.2 Features

Scalable Color Descriptor

In MPEG-7 the 3D color histogram bins are reduced in size by truncation and
encoding (see 2.2.1). To release the SVM from this hassle it receives the values
as ordinary real values representing the relative frequency of color channel
values. The bounded time complexity to calculate this descriptor is O(3WH).
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Color Structure Descriptor

This is implemented by calculating a histogram for each structuring element
and then summing over all structuring elements

h(m) =

W−8K
K∑

i=1

H−8K
K∑

j=1

min{1, hsi,j (cm)} (3.1)

Where: m – bin index in the final histogram
cm – quantized color level
hsi,j – histogram for structuring element 〈i, j〉

Calculating this descriptor is much more expensive than Scalable Color De-
scriptor described in section 2.2.1, O( (w−8k)(h−8k)

k 82) for each channel, this is
more than a 30-fold increase on a 640× 480 image compared to the above.

Color Layout Descriptor

The Discrete Cosine Transform of type DCT-II is calculated using the software
library FFTW3 (Fastest Fourier Transform in the West). The zigzag scanning
order described in figure 2.2 is implemented as an C++ STL iterator using
the simple algorithm presented in listing 3.1. A wider low pass band is used
than in MPEG-7. The 10 first Y (6 in MPEG-7), the 5 first of U and V (3)
coefficients are extracted.

Homogeneous Texture Descriptor

By symmetry the filter might as well be rotated instead of the image and since
that is more efficient that is what is done. The bandwidth b is set to 1 octave
by relation (3.2) and setting σ = σx

σ

λ
=

1
π

√
ln 2
2

2b + 1
2b − 1

≈ 0.5622 (3.2)

In MPEG-7 rotation invariance in this descriptor is achieved by rotating the
features in the direction of the dominant direction. This is not implemented in
this project.

In figure 3.1 images of the Gabor wavelet filter bank kernels of different
orientations are presented.

Neighborhood Gray-Tone Difference Matrix

The Ā used in the Neighborhood Gray-Tone Difference Matrix (2.7) can be
divided into subproblems which do not need to be calculated every time. By
keeping the center value (m,n) = (0, 0) in the sum (not writing out normaliza-
tion)

A′(k, l) =
d∑

m=−d

d∑
n=−d

f(k +m, l + n),
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�
x = 0 ; y = 0 ; forward = true ;
va lue type g e t c u r r e n t ( ) { return source (x , y ) ; }
void next ( ) {

i f ( forward )
i f ( y < l ength −1) {

y ++; x −−;
i f ( x < 0) {

x = 0 ;
forward = f a l s e ;

}
} else

i f ( y == length −1) {
x ++;
forward = f a l s e ;

}
else

i f ( x < l ength −1) {
x ++; y −−;
i f ( y < 0) {

y = 0 ;
forward = true ;

}
} else

i f ( x == length −1) {
y ++;
forward = true ;

}
}
� �

Listing 3.1: Simplified source for the implemented zigzag order on a
length×length square matrix

it can also be written as

A′(k, l) =



A′(k, l − 1)︸ ︷︷ ︸
above

+

d∑
m=−d

f(k +m, l + d)− f(k +m, l − d− 1) or as

A′(k − 1, l)︸ ︷︷ ︸
to the left

+

d∑
n=−d

f(k + d, l + n)− f(k − d− 1, l + n).

Given the value above or the value to the left the others can be calculated
faster.

To find all Ā first fill in a table with all A′, from left to right, top-down.
Then for all positions remove the center value and make sure the accumulated
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(a) θ = 0◦ (b) θ = 36◦ (c) θ = 72◦

(d) θ = 108◦ (e) θ = 144◦ (f) θ = 180◦

Figure 3.1: Gabor Filter bank at scale = S − 1 at different orientations. Gray
areas are the ones with zero magnitude, darker is negative, lighter is positive

value is correctly normalized. The time complexity is thereby reduced from
O(d2) per pixel to O(d) per pixel.

3.2.3 Convolution

Using the method for convolution described in section 2.3 is much more ef-
ficient than the naive approach of doing the calculations in the spatial do-
main. It reduces the complexity from O(K2) per pixel, where K is the size
of the convolution kernel, to O(logN), where the image is N ×N in size and
N = 2k, k ∈ Z+. The last requirement make sure that the much more efficient
Fast Fourier Transform (FFT) can be used instead of a normal Discrete Fourier
Transform (DFT).

With the largest kernel used, K2 = 912 = 8281, and a 1000 × 1000 image,
log 1000 ≈ 6.9, a thousandfold speed-up can be achieved.

These figures are however for FFT on matrices of size N = 2k. Padding to
the next larger 2-power is not implemented since the software library used for
FFT, called FFTW1 (Fastest Fourier Transform in the West) supports other
sizes too and still provides great speed.

1Heavily used library with an impressing architecture, used in e.g. Matlab
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Figure 3.2: Abstract class (interface) to data views and their realizations

3.2.4 Data View

The classifiers view data. Rather than giving them the data structure holding
data directly an abstraction was built named DataView. The abstraction was
realized in 11 classes which are found together with their base abstract class
in figure 3.2. The derived classes can all be used transparently releasing the
classifier and data set loader from the tasks of the views.



3.2. Implementation details 25

These three views below contain pointers to the real data.

DataSetView view of data represented by a DataSet instance

ExampleView view of data represented by a vector of Example
instances

ArrayView view of data from an boost::Array, convenient
for the unit tests concerning views

The views below contain other views and just map their values. They are
often chained together to get the wanted view.

DataViewScaled view the features as if they were in the range
[−1, 1], avoids feature-wise bias, see section 2.4

DataViewRange selected only a subset of the examples, used in e.g.
cross-validation

DataViewConcat view two views as if they were one, also used in
cross-validation

DataViewShuffle shuffle the order of examples. It is of course not
wanted to split an ordered set and train on the
first part and test on the other, a class may then
be present only in the latter

DataViewClassMapLinear if e.g. only classes {0, 3, 42, . . .} exists it is conve-
nient if they can be represented by {0, 1, . . .}

DataViewClassMapBinary one class given is said to be positive, all other is
said to be negative. Used in multiclass classifier

DataViewClassJoin join groups of classes into new classes

DataViewClassRemove view with a class removed





4
Experimental Setup and

Results

4.1 Experimental Setup

The CellaVisionTM DM-96 machine achieves an error rate of approx. 5-10%
depending on individual. Thus there are errors in the ground truth.

I have divided the problem in two parts.

• the primary problem — the SVM should classify all classes present in the
data set.

• the simplified problem — some classes are merged and others are removed.

4.1.1 Performance test method

In both cases 2-fold cross-validation is used to test performance. This means
that two models will be trained. In the first, half the data set is the training
set and the other half is the test set. In the other, the roles of the subsets are
swapped. This way both halves will act as both training and test sets.

4.1.2 Description of the simplified problem

Class 1 and 6, Neutrophil granulocytes, segmented and band variants are
merged to form class 30. Even human experts have approx. 25% error rate on
these. It is often more a matter of opinion than of objective decision.

Class 4 and 7, Lymphocytes and their variants, are joined. The variants
are rather uncommon, there are only 8 instances in the dataset, compared to
160 of Lymphocytes. Due to the skew distribution these are merged to form
class 31.

27
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Class No. Class Name

30 (1+6) neutrophil granulocytes
2 eosinophil granulocytes
3 basophil granulocytes

31 (4+7) lymphocytes and variants
5 monocytes

Table 4.1: Cell types left in the simplified problem

The following classes are removed. Class 0 are unidentified objects, it is a
very heterogeneous group but there are only 6 of them. Class 21 are artifacts,
random garbage, they are removed. Class 24 are broken cells, there are only
7 of them. Class 25 and 29 are thrombocytes and clots of them, i.e. platelets.
Since they aren’t even white blood cells they are removed. Class 11, called blast
is a kind of immature cell which would be interesting to classify but there are
only two of them so they are removed as well. Class 9 and 10 are myelocytes
and meta-myelocytes, which are a development stage of different granulocytes.
There can be e.g. eosinophilic myelocytes and basophilic myelocytes. In the
dataset they are also too rare to train a general classifier. There are only a
total of 4 myelocytes in this heterogeneous group. All classes that are left are
presented again in table 4.1.

4.2 Results

4.2.1 Primary Problem

The error rate in the primary problem is 10.8%. The type of kernel function
that was the most successful was the Polynomial kernel. This is compared to
the slightly better result using libSVM, 9.6%. See table 4.2.

Most confusion occurs between classes 1 (segmented neutrophil granulo-
cytes) and 6 (band neutrophil granulocytes). Much confusion is also present
when recognizing class 3 (basophil granulocytes) — they are often (2 of their
total of 7) misclassified as class 1 (segmented neutrophil granulocytes), which
is a very large group.

4.2.2 Simplified Problem

In the simplified problem the error rate is 3.1%. Also in this problem the most
successful kernel was the Polynomial kernel. This is compared to the better
result using libSVM, 2.3%. See table 4.4.

In the simplified problem most confusion (by number) occurs between class
5 (monocytes) and the new class 31 (lymphocytes). By percentage the largest
confusion occurs between class 30 (segmented and band neutrophil granulo-
cytes) and class 3 (basophil granulocytes). Class 3 have only 8 instances of
which 3 were misclassified as 30.
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Implemented SVM Results
Kernel Type Error Rate (%) Parameters

Total Max Min

RBF with L2 norm 11.5 12.0 11.1 σ2 = 20
RBF with L2 norm 11.5 12.0 11.1 σ2 = 22

Polynomial 11.8 12.5 11.1 d = 2
Polynomial 11.1 11.5 10.6 d = 3
Polynomial 11.5 12.0 11.1 d = 4
Polynomial 10.8 11.1 10.6 d = 5
Polynomial 11.3 12.0 10.6 d = 6

libSVM Results

RBF 9.6 C = 512, γ−1 = 8192

Table 4.2: SVM cell classifier results for the primary problem

Number of Confusions

Guessed Class
Class (n) 0 1 2 3 4 5 6 7 11 21 24

0 (4) · · · · · · · · · · ·
1 (205) · · · · · · 1 · · · ·
2 (14) 1 · · · · · · · · · ·
3 (7) · 2 · · · · · · · · ·
4 (104) · · · · · · · 2 · 1 ·
5 (32) · · · · 2 · · 1 · · ·
6 (12) 1 6 · · · 1 · · · · ·
7 (6) · · · · 1 1 · · · · ·

11 (1) · · · · 1 · · · · · ·
21 (31) · · 1 · · · · · · · ·
24 (1) · · · · · · · · · 1 ·

Table 4.3: Confusion Matrix for the primary problem
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Implemented SVM Results
Kernel Type Error Rate (%) Parameters

Total Max Min

RBF 3.6 4.4 2.9 C = 128, σ2 = 16
RBF 3.3 4.2 2.3 C = 512, σ2 = 128

Polynomial 3.1 3.4 2.9 d = 3
Polynomial 3.5 3.9 3.1 d = 5

libSVM results

RBF 2.5 C = 8, γ−1 = 128
Polynomial 2.3 C = 8, γ−1 = 128, d = 3
Polynomial 3.5 C = 8, γ−1 = 128, d = 5

Table 4.4: SVM cell classifier results for the simplified problem

Number of Confusions

Guessed class
Class (n) 2 3 5 30 31

2 (20) · · · · ·
3 (8) · · · 3 ·
5 (56) · · · · 2

30 (517) · · 1 · ·
31 (168) · · 7 · ·

Table 4.5: Confusion matrix for the simplified problem



5
Discussion

The accuracy achieved in the primary problem was 89.2% and in the sim-
plified problem 96.9%. I regard these results as good when compared to
CellaVisionTM DM-96’s result of the primary problem, 90-95%. One has to
consider that there are errors in the ground truth misleading the SVM. Thus,
it is uncertain whether the results are better than the DM-96 or worse. Be-
cause the DM-96 has an error rate of about 5-10% a 0% error rate in the
primary problem would mean something like 5-10% error, while a 5% error
could possibly mean 0-15% error.

I conclude that using the combination of MPEG-7 descriptors and visual
texture features in combination with SVM to classify cells is good but need
further investigation to find out how good. A more comprehensive study could
investigate whether a set of SVM or ANN variants perform better on the set
of features implemented or on the set of features developed at CellaVisionTM.

I would like to stress that using a SVM instead of an Artificial Neural
Network as in the CellaVisionTM DM-96 machine is more statistically rigor —
Confidence intervals of the classifier can be found, which to my knowledge is
impossible in ANNs. In medicine it is important to know the strength of the
method used.

It would be very interesting to test the features on the real training set they
have developed at CellaVisionTM. The company has a training set of thousands
of cells classified by field experts. Some cell images required five experts to be
certain of the cell type. Without the errors in the ground truth the results
could possibly compete with the CellaVisionTMmachine.

The result of the primary problem states that the most confused instances
are those that are guessed to be a segmented neutrophil (class 1) but that
are a band neutrophil (class 6) in the ground truth. These two often look
very similar, humans often have different opinions about which class cells are.
Also the CellaVisionTM DM-96 have problems with these classes indicating
that there are several errors in the ground truth. The errors in ground truth
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probably mislead the SVM. There are only 12 cell images of class 6 of which
some have the wrong class and there are 205 images of class 1, of which not all
are truly class 1. This situation pushes bias to the larger class.

In the result of the simplified problem most confusion occur between the
monocytes (class 5) and the lymphocytes (class 31). This was expected as they
are very hard to classify for both humans and the CellaVisionTM DM-96. Late
in writing this thesis I discovered that there is great discrepancy in size of these
two types of cells. The discrepancy indicates that the size of the cells could be
used as a feature too.

Practical Use

Even the simplified problem would give useful information when applied to
medicine. Standard measures used in diagnosis involve counting the total num-
ber of white blood cells, leukocytes, determining the distribution of lympho-
cytes and granulocytes and determining the number of monocytes.

Malaria infected and cancer cells look different compared to healthy blood
cells. It would be interesting to test the features on these kind of cells to be
able to classify them as well.

Runtime Performance

To increase cache performance in the Color Structure Descriptor (section 2.2.2)
it would be wise to first extract all sub-samples i.e. the representative color for
each K×K area as the other pixels aren’t used. They will otherwise quickly fill
up the cache during memory pre-fetch. Now, the sub-samples are viewed using
a sub sampling view present in Generic Image Library (boost::gil), contributed
to Boost by Adobe. The views in GIL are virtual, meaning they only keep
information about offset calculations — no data is duplicated.

The 2D convolution was first done in the spatial domain but I soon realized
it was way to slow with my bigger Gabor filter kernels of which the largest
are 912 pixels big. Instead the calculations are done in the frequency domain
which is much faster, see sections 2.3 and 3.2.3.

To improve performance of the Gabor Wavelet Filter further the kernels
should of course be kept in memory when generating features of many images,
however they are not.

To improve SVM training performance the Gradient Ascent training algo-
rithm must be replaced or at least improved. The algorithm implemented
divide the problem into a subproblem where the coefficients violating the
KKT conditions are first optimized. This is a heuristic called chunking in
the literature[8]. By using this, fewer elements of the Gram matrix, and their
corresponding support vectors, need to be kept in memory. This is something I
don’t take advantage of because I had enough memory for my purposes. By re-
fining chunking into decomposition where a fixed size chunk is optimized, more
data points can be used and convergence speed is increased. The Sequential
Minimization Optimization (SMO) takes decomposition to the extreme and
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optimizes only two coefficients at a time and can thereby make sure that the
KKT condition,

∑`
i=1 αiyi = 0, is always true. LibSVM uses a variant of this

approach and it offer great performance.[6, 17]

Beyond Gabor Filters

If modeling human brains is the objective, considering other approaches than
the Gabor wavelet would be interesting. A type of neurons in the first vi-
sual cortex, called simple cells, have been recorded from monkey and cat.
The recordings and the elaborate analytical discussion in an article by Wal-
lis show that both difference of Gaussian×Gaussian (DoGG) and Cauchy
functions model cortical cells better than Gabor wavelets for the measured
parameters.[21] In an article by Ashour et al. three other types of transforms
are suggested — ridgelets, curvelets and contourlets.[2] Perhaps they can show
increased performance.
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APPENDIX A
Software Usage

The software produced in this project can be found at

• http://tobbe.nu/pub/2008/cell.morph.mpeg7.svm/

The software has only been tested on an Ubuntu Linux system. However,
the software is written in portable C99 C++ and should work on all *nix
platforms that can supply the dependencies, perhaps even under cygwin under
MS Windows. The dependencies are

• C99 compliant C++ compiler (GNU g++ tested)

• Boost C++ Libraries, http://www.boost.org/

• FFTW3 (Fastest Fourier Transform in the West 3), http://www.fftw.org/

• GSL (GNU Scientific Library), http://www.gnu.org/software/gsl/

• libjpeg

• libpng

Below is a brief overview on how to use the most important programs in
the software package. There are other programs in the package but they are
mostly related to testing.
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A.1 train – Train a model

This is the program where most processing is done. It can

• train a model from a dataset

• test a model with a dataset

• load and/or save a model from/to a file

• perform cross-validation

Here is the syntax of the program train

MAIN ::= (MAIN_HELP | MAIN_DO)

MAIN_HELP ::= ./train [-h]

MAIN_DO ::= ./train MODE DATASET

MODEL_PARAMS SAVE_MODEL

MODE ::= LOAD_MODEL XVALIDATION

LOAD_MODEL ::= -l MODEL.model

XVALIDATION ::= -f N_FOLDS

N_FOLDS ::= 1 | INTEGER

DATASET ::= -d INTEGER

MODEL_PARAMS ::= -k KERN -p KERN_PARAM

-C DOUBLE -g GAP_TOL -m TERM

KERN ::= KERN_LIST | KERN_TYPE

KERN_LIST ::= 0

KERN_TYPE ::= 1 | 2 | 3 | 4 | 5 | 6 | 7

KERN_PARAM ::= DOUBLE

GAP_TOL ::= DOUBLE

TERM ::= BITMASK

BITMASK ::= 1 | 2 | 3

SAVE_MODEL ::= -o MODEL.model

Both cross-validation and saving of a model can be performed at the same
time if wanted. However, this will mean that train will create one model for
each fold but it is just the last one that will be saved. If cross-validation is
not wanted pass one (-f 1) fold. The double precision floating point number
passed with -C is a number used in the classifier, it is related to the KKT
conditions. The gap tolerance is also a double precision floating point number
which is used as a convergence criterion. It is the allowed gap between the
primal and dual objective function, the feasibility gap, which should be a small
number. The default gap is set to 10−3. The m terminator is a bit-mask which
control when a classifier is considered optimal, i.e. when training will stop.
The feasibility gap constraint is not used if -m 2 is passed, i.e. when the first
bit (1) is zero. The primary training terminator bit is 2 which means that
all KKT conditions must be satisfied to terminate training. The default of 3
means that both these conditions must be satisfied.
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A.2 cellfeatures – Generate examples from the cell

database

To generate features from all pairs of (image,ground truth class) in the cell
database the program cellfeatures is used. The file cellfeatures.data is
backed up before writing the features generated to it. This file can be used by
the program train.

MAIN ::= (MAIN_HELP | MAIN_DO)

MAIN_HELP ::= ./cellfeatures

MAIN_DO ::= ./cellfeatures DB

A.3 jpeg genfeature – Feature generation from images

To generate a set of features from image(s) the program called jpeg genfeature

is used. It generate a set of features that can be classified later with predict.

MAIN ::= (MAIN_HELP | MAIN_DO)

MAIN_HELP ::= ./jpeg_genfeature -?

MAIN_DO ::= ./jpeg_genfeature CROPIMAGE* -o FEATURESET.feat

CROPIMAGE ::= -i IMAGE.jpeg [-x left -y top -w width -h height]

A.4 predict – Predicting a set of features

To predict a set of features, generated by jpeg genfeature, the program called
predict is used. It needs a previously trained model generated by train.

MAIN ::= (MAIN_HELP | MAIN_DO)

MAIN_DO ::= ./predict -l MODEL.model -f FEATURESET.feat

MAIN_HELP ::= ./predict -?

A.5 extractcelltype – Extract a class of images from

the cell database

To extract a specific class (as classified by CellaVisionTM DM-96) from the cell
database, the program called extractcelltype is used.

MAIN ::= (MAIN_HELP | MAIN_DO)

MAIN_HELP ::= ./extractcelltype

MAIN_DO ::= ./extractcelltype CLASS DB

CLASS ::= INTEGER

DB ::= ALLXMLFILES | (XMLFILE ’ ’)*

ALLXMLFILES ::= ’.’
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A.6 extractcellid – Extract given instances from the

cell database

To extract given instances from a list of id numbers, the program called extractcellid

is used.

MAIN ::= (MAIN_HELP | MAIN_DO)

MAIN_HELP ::= ./extractcellid

MAIN_DO ::= ./extractcellid IDLIST DB

IDLIST ::= (INTEGER ’ ’)* ’x’

A.7 extractcellinfo – Extract statistics of instances

from the cell database

To extract statistics about size, resolution and number of instances of a specific
class or of all classes the program called extractcellinfo is used.

MAIN ::= (MAIN_HELP | MAIN_DO)

MAIN_HELP ::= ./extractcellinfo

MAIN_DO ::= ./extractcellinfo CLASS DB

CLASS ::= CLASS_ALL | CLASS

CLASS_ALL ::= ’-1’

A.8 tolibsvm – Save cell features in libSVM format

This program load the features saved in cellfeatures.data and dump them
in libSVM format on standard output. It takes no parameters.

./tolibsvm > cellfeatures.data.libsvm


