
Recognising a Pattern-Featured Object in a
RoboCup Environment

Michael Green

15th August 2003

2

Contents

1 Introduction 5
1.1 Problem Definition . 5

2 RoboCup: The Robot World Cup Soccer Games 7
2.1 Sony Legged Robot League . 8
2.2 Challenges . 9
2.3 Team Sweden . 9

3 The AIBO Robot 11
3.1 Overview of AIBO . 11
3.2 Hardware and Peripherals . 11
3.3 The Aperios Operating System 13
3.4 The OPEN-R Software Development Kit 13

4 Team Sweden Software Architecture 15
4.1 Manipulation and Walking . 15
4.2 Perception . 16
4.3 Behaviours . 17
4.4 Localisation . 17
4.5 Image Processing and Object Recognition 17

5 The Problem 19
5.1 Overview of Challenge 1 . 19
5.2 Properties of a Ball . 19
5.3 Perceiving the Ball . 20
5.4 Related Work . 21

6 Solving the Ball Recognition Problem 23
6.1 Computer Vision and Image Analysis 23

6.1.1 The YCbCr Colour Space 23
6.1.2 Image Analysis . 24

3

6.1.3 Image Processing Techniques 24
6.2 Technical Preparations . 25
6.3 Using a Grey-scale Image . 26

6.3.1 Defining and Using the Roberts Cross 27
6.3.2 Analysing the Histogram 28
6.3.3 The Creation of Blobs 30
6.3.4 Recognising the Ball . 31

6.4 Using a Colour Image . 32
6.4.1 Long Range Algorithm 33
6.4.2 Close Range Algorithm 34

6.5 Results and Implementation . 35

7 Conclusions and Future Improvements 39
7.1 Gray-scale Approach . 39
7.2 Colour Approach . 39
7.3 Challenge 1 . 40
7.4 Suggested Improvements . 40

A Terminology 45
A.1 Abbreviations . 45

B Installation and Configuration of OPEN-R SDK 47
B.1 Background . 47
B.2 Solution . 47

B.2.1 Installing the Development Tools 48
B.2.2 Installing the OPEN-R SDK 48
B.2.3 Installing the Sample Programs 49
B.2.4 Mounting the MSAC-US1 Device 49

B.3 Results . 50

C C++ Code for the Gray-scale Approach 51

D C++ Code for the Colour Approach 76

4

Chapter 1

Introduction

1.1 Problem Definition

RoboCup [1] is an international research and education initiative to foster AI and
robotics in general. The aim of RoboCup is to be able to beat the human world
champions in soccer, using humanoid robots, by the year 2050. The Sony Legged
Robot League(SLRL) [2] is one of many leagues present in RoboCup, using a
soccer game as the standard problem. This specific league uses one of Sony’s
own robots, namely AIBO [3]. Naturally the SLRL, as a part of the RoboCup
initiative, has to constantly evolve and improve the performance of the soccer
game. Evolution in this sense is to remove every bit of information that a human
does not need in order to play a game of soccer, e.g., landmarks, separate goal
colours, etc. Since RoboCup is also starting to attract public attention it is very
important to have a good game play, which means that trying new in the actual
soccer game environment would be a poor solution. Thus every year there are
three technical challenges defined, concerning topics that needs to be added to,
or removed from, the soccer game. This year one of the topics concerns using a
black and white soccer ball instead of the current orange one. The recognition of
the black and white soccer ball is the first of the three challenges, hence it will
be referred to as Challenge 1 throughout this report. In conclusion, the problem
addressed here will consist of the following stages:

1. Investigate the possibility of recognising a black and white ball using the
AIBO robot.

2. Develop an algorithm that can be used in Challenge 1.

3. Test the performance of the algorithm and the theories behind it in Chal-
lenge 1.

5

6

Chapter 2

RoboCup: The Robot World Cup
Soccer Games

RoboCup is an international effort to create a standard problem for a wide range of
AI robotic technologies, so that they can be integrated and evaluated. Originally it
was called “Robot World Cup Initiative”. As a standard domain RoboCup chose
a soccer game. With this in mind they stated an aim for the initiative:

By mid-21st century, a team of fully autonomous humanoid robot
soccer players shall win the soccer game, complying with the official
rules of the FIFA, against the winner of the most recent World Cup.

This competition is intended for a team of multiple fast-moving robots under a
dynamic environment. Several aspects of AI have to be integrated in such a team
in order to successfully participate in RoboCup. They include: design principles
of autonomous agents, multi-agent collaboration, strategy acquisition, real-time
reasoning, robotics, and sensor fusion.

There are three major domains of RoboCup, each serving a special purpose.
The RoboCupJunior consists of a soccer challenge, a dance challenge and a res-
cue challenge. It is primarily intended for young students competing with simple
robots. Then there is the RoboCupRescue which is based on two parts: Rescue
Simulation League and Rescue Robot League. This is an effort to develop efficient
search and rescue robotics in the field of large scale disasters. It is a rather new
branch of RoboCup and demands heterogeneous agents that can perform activities
like long range planning and emergent collaboration. There is also a non-trivial
logistic factor in this branch. The final part of RoboCup is the RoboCupSoc-
cer which contains five different leagues: Simulation League, Small Size Robot
League, Middle Size Robot League, Sony Legged Robot League and Humanoid
League. This report is only concerned with the Sony Legged Robot League so we
will only discuss that part of RoboCup in the remaining part of this section.

7

Figure 2.1: The field used in Sony Legged Robot League.

2.1 Sony Legged Robot League

In the Sony Legged Robot League, abbreviated SLRL, teams of autonomous
AIBO’s are competing against each other in a soccer game. This takes place in
a well defined soccer field which is illustrated in Figure 2.1. There are six land-
marks on the field that the players may use for localisation. It also has different
colours of the goals to further help a player determine its position and orientation.

A soccer game consists of three parts equally divided over 30 minutes. The
first half of the game, a break, and the second half of the game. Each of the teams
has four members including a goalkeeper. During the game there are many rules
that have to be obeyed. These rules basically comply with the rules of a human
soccer game, i.e., one ball, two teams, two goals, two goalkeepers, etc. However,
an AIBO can hardly play the game in the same way a human can, so naturally
there have to be other restrictions regarding kicking and handling of the ball. For
example; a SLRL player may only hold the ball for three seconds, which means
that it has to kick or dribble the ball within this time frame. A goalkeeper, on the
other hand, may hold the ball for up to five seconds as long as it is in the penalty
area. Another important rule is that only the goalkeeper may stay in this area.
Players breaking this rule are transferred back to the half-way line. The rule is
applicable even if the goalkeeper is outside the penalty area. Moreover players

8

may not by physical contact obstruct each other from reaching the ball.

2.2 Challenges

The soccer game is the biggest part of SLRL but there are also three different
challenges for the teams to participate in as well. Each of these challenges targets a
specific problem area within AI robotics, such as vision, localisation, cooperation.
The challenges in 2003 were:

1. Black and White Ball: The purpose of this challenge was to evaluate AIBO’s
ability to recognise a black and white soccer ball and to score a goal with it.

2. Localisation: This challenge was supposed to evaluate localisation ability
in the absence of explicit markers such as landmarks.

3. Obstacle Avoidance: Avoiding unnecessary collisions with other robots
will be demanded in the future, so this challenge was meant to investigate
AIBO’s ability to avoid obstacles.

The sole purpose of these challenges is to take RoboCup to the next level, which
means that all efforts to reduce the difference between real soccer and RoboCup
soccer will be tried in a challenge before they are included in the game.

2.3 Team Sweden

Team Sweden [7] is the Swedish national team that participates in RoboCup’s
SLRL since 1999. The team was created in 1998 and involved three universities
in Sweden located in Stockholm, Ronneby and Örebro. Despite the distance be-
tween these cities the team was able to create a successful project organisation and
cooperation. Team Sweden entered the SLRL with the following corner-stones in
mind:

Scientific value: The software should illustrate its scientific approach to autonomous
robotics, and demonstrate its research lines in this field.

Generality: The software should embody general principles that are needed to
achieve autonomous robot operation, and that can be reused in different
robots operating in different environments.

Effectiveness:The software should effectively address the specific challenges
present in the RoboCup domain in general, and in the legged robot league
in particular.

9

Robustness:The software should degrade smoothly in face of errors and impre-
cision in perception and execution; in particular, the lower layers should
still provide some reasonable response even when the higher layers can not
compute a reliable course of action.

Team Sweden plans to entered the SLRL held in Padova, Italy 2003. Cur-
rently the team involves four academic sites: Lund University, Blekinge Institute
of Technology, the University of Örebro and the University of Murcia, Spain.
Each of these sites has been given an area of responsibility. For instance, Lund
University has been assigned Challenges 1 and 2, i.e., the vision and localisation
parts of the challenges.

10

Chapter 3

The AIBO Robot

In this section the AIBO robot will be introduced, starting by describing its current
hardware. Later a brief overview of Sony’s real-time operating system Aperios
will be given. A quick description of the OPEN-R Software Development Kit
concludes this chapter.

3.1 Overview of AIBO

There are several different models of AIBO on the market today which means
that AIBO is actually a collective name for a series of robots. At the moment
there are 4 different models of AIBO, ERS-210, ERS-220, ERS-311 and ERS-
312. This document will only refer to the ERS-210 model since that is the only
model currently used in the Sony legged league. A picture of the ERS-210 model
can be found in Figure 3.1.

3.2 Hardware and Peripherals

According to the hardware documentation [6], AIBO has a number of sensors,
which correspond to the senses of humans and animals - touch, hearing, sight and
a sense of balance. The core of AIBO is a 64 bits RISC processor operating at
384 MHz, using a MIPS architecture. There is also an IEEE 802.11b wireless
interface that allows for wireless communication equipped. A number of sensors
are present in the robot. These sensors, and other hardware in AIBO, can be
categorised in the following manner:

Touch sensors sensitive to pressure are located on AIBO’s head, chin, back and
legs. These sensors can register pressure between 0.0N and 2.94N.

11

Figure 3.1: The ERS-210 model of AIBO.

Vision is accomplished by a CMOS image sensor capable of taking pictures at
25FPS. The maximum resolution measured in pixels is 352x288. The cam-
era has a 57.6 horizontal angle of view. Vertically it only has 47.8 degrees
angle. AIBO has also a distance sensor operating at ranges between 10 and
90cm.

Hearing can be accomplished by utilising the microphones located at each side of
AIBO’s head. The sound can be recorded in stereo at a sampling frequency
of 16000Hz in 16bits linear PCM.

Audio Output from the speaker located in AIBO’s “mouth” can only be done at
8000Hz in 8bits linear PCM. Since there is only one speaker the sound is
limited to mono playback.

Balance is achieved by using the internal acceleration sensor. The sensor is sen-
sitive to movement in all three dimensions, i.e., left-right, front-back, up-
down. The measuring range is between -2G and 2G.

12

AIBO has 9 movable parts: four legs, a head, two ears, a chin and a tail. Some
of these parts have several joints which allows for a wide range of movements.
Mobility of a robot can be measured in “degrees of freedom”, i.e., the number of
single motions it can perform. For example, an automatic phonograph turntable
has three degrees of freedom. It can spin the turntable, it can raise and lower the
stylus arm, and it can move the arm laterally to the first track. Due to the many
joints of AIBO it has about 20 degrees of freedom.

3.3 The Aperios Operating System

Aperios is an object-oriented, distributed real-time operating system. It was for-
merly known as Apertos [14] and exists in many of Sony’s products today, includ-
ing AIBO. It is very small compared to other operating systems as it only takes up
about 100 KB of storage.

Aperios is based upon a reflective architecture which allows the software to
monitor its own functions and reconfigure itself on the fly as demand on it changes.
This is accomplished by letting objects be the only constituent of the operating
system and allow them to migrate between different environments. Usually an
object defines its own properties and semantics, but in order to maintain object
heterogeneity Aperios separates this task from the object itself and creates a set
of metaobjects. These metaobjects are responsible for supplying the object with
properties and a set of metaoperations, i.e., the semantics of the object. There are
several metaobjects and they are ordered in a metahierarchy. An object in Aperios
is in other words nothing more than a container of information that may roam
freely in a distributed environment.

Using a Java analogy, a set of metaobjects of an object can be viewed as a
virtual machine for that object. It is merely a way of supplying the object with a
set of abstract instructions. Of course in order to actually allow the object to run
on different platforms a metacore must always be present. A metacore is also a
metaobject which provides all other objects with common primitives. It can be
compared to a micro-kernel.

3.4 The OPEN-R Software Development Kit

OPEN-R is a software development kit written by Sony Corporation. It serves
as an abstraction layer to the Aperios operating system and includes a compiler,
binary utilities, software libraries and sample programs. The compiler used with
OPEN-R is developed from GCC1. OPEN-R also includes a feature calledRemote

1GCC is a C/C++ compiler written and maintained by GNU.

13

Processingwhich gives the programmer a possibility to execute parts of the pro-
gram on a different platform, e.g., a computer. It also allows limited debugging
and testing of programs without AIBO.

OPEN-R is a layered architecture based on two layers: aSystem layerand an
Application layer. The system layer takes care of the actual communication with
the hardware of AIBO. It also provides the application layer with a set of services
and an interface to the TCP/IP protocol stack. The services provided are:

• input/output of sound data;

• input of image data;

• output of control data to joints;

• input of data from various sensors.

OPEN-R is a modularised and object-oriented software where each module is
called an object. OPEN-R objects are substantially different from a standard C++
object. There are similarities though. An easy way of considering a module is to
augment the capabilities of the C++ object. Each module is easily replaceable,
and allows multiple entry points. It can also communicate with other modules
in the program through inter-object communication. Every OPEN-R program is
built on one or several concurrently running modules. The fact that the system
is modularised makes it easy to replace a module without recompiling the whole
program. This works because there is no direct communication between modules
in OPEN-R. As we shall see next, all communication is defined externally.

Inter-object communication is the way modules pass information between
each other in OPEN-R. It is achieved by using message passing through prede-
fined communication channels. The channels are defined in a configuration file
named CONNECT.CFG which is loaded at boot time. In module communication
there is always a sending module and a receiving module, calledsubjectandob-
serverrespectively. The subject sends a NotifyEvent to the observer and waits for
a reply containing a ReadyEvent. This event serves to inform the subject whether
it is OK to send the data or not. In other words data is only sent if the observer is
ready to receive it. Every time a transfer of data has been made the observer must
once again inform the subject about its current state by sending a ReadyEvent.

A module can of course have any number of subjects and observers imple-
mented but it can only process one message at a time. The reason for this is that
every module in OPEN-R is single-threaded. Thus every module must have its
own message queue in order to process every message sent to it.

14

Chapter 4

Team Sweden Software Architecture

Team Sweden has developed a simple and straightforward architecture for its soft-
ware, inspired by the Thinking Cap [4] architecture. It is built on three fundamen-
tal layers: lower, middle and upper layer. Each of these layers has its own set
of tasks. The lower layer is responsible for sending motor commands to AIBO,
and to some extent react on sensor input. It also incorporates different walking
styles [12]. The middle layer is supposed to keep a consistent local model of the
world and also define a set of simple behaviours that can be combined and put in
a hierarchy. The upper layer handles real-time planning and strategies, and tries
to maintain a global map of the environment.

Each layer in this architecture has a set of modules that perform the tasks
defined above. As it can be seen in Figure 4.1, there are six modules altogether,
and they all handle their own specific tasks. We will look at some important tasks
and describe their execution in the modules.

4.1 Manipulation and Walking

In the lower layer there is one module at work called Commander(CMD). It is
responsible for sending motor commands to AIBO and generating interrupts when
needed, for instance, when someone picks up the robot and moves it. In order
to provide the middle layer with a simple interface for manipulating AIBO, the
CMD implements head commands, motion commands and some manipulation
commands. This module actually represents the entire lower layer since there are
no other modules resident in this layer.

15

Reactive
Planner

Wireless
Communication

Global
Map

Perceptual
Anchoring
Module

Hierarchical
Behaviour
Module

locomotion
commands

Commander

head
commands

global state

messagesmessages

Other robotsOther robots

behaviour statuslandmarks

local state

perceptual needs

AIBO
sensor data motor commands

up
pe

r
la

ye
r

m
id

dl
e

la
ye

r
lo

w
er

 la
ye

r
Figure 4.1: The Team Sweden software architecture.

4.2 Perception

All perceptual information is processed in the Perceptual Anchoring Module(PAM)
[9], before it is sent further up the hierarchy. One of its major tasks is to identify
objects, e.g., players, nets, and landmarks, in the environment by using a colour
segmentation. More about this will be said in section 4.5. The recognised objects
are positioned in a consistent and updated model of the robots surroundings. To
succeed it uses the following three approaches:

perceptual anchoring which means that it updates the position of an object each
time it is detected by the camera;

global information is used for the static objects and only when the robot relo-
cates itself;

16

odometry lets the PAM calculate the position of an object in the local model in
relation to AIBO’s movement.

A local state is then transferred to the Hierarchical Behaviour Module(HBM).
Another task laid upon the PAM is to recognise landmarks in the field and to send
information about them to the Global Map(GM) for further processing.

4.3 Behaviours

The Hierarchical Behaviour Module(HBM) [10] defines a set of basic motion be-
haviours that can be combined into larger ones using meta-rules and hierarchi-
cal structures. This way the HBM incorporates several complex behaviours that
the Reactive Planner(RP) can use for developing its strategies. At this point the
strategies are merely generated from a set of actions based on the electric field
approach(EFA) [11]. This approach is actually an extended variant of a potential
field which means that a set of positive and negative charges are distributed to the
nets and to the players. A heuristic value of a certain configuration is obtained by
calculating the charge at the position of the ball. The configuration that yields the
best heuristic value is chosen and the RP generates a plan that hopefully will get
AIBO there. The RP then sends this plan to the HBM as a behaviour.

4.4 Localisation

Localisation is implemented in the Global Map(GM) module which utilises a
fuzzy gridmap to estimate AIBO’s position. It relies on the PAM to provide it
with information about the landmarks and the nets. However, since the camera is
needed for many other things than keeping track of landmarks(e.g., following the
ball), the GM can only receive this type of information sporadically. By combin-
ing these observations with the robot’s own movement an approximate gridmap
can be derived. All of this information is combined into a global state, which is in
turn sent to the RP.

4.5 Image Processing and Object Recognition

An image, or more specifically a digital image, is often represented in a computer
as a 2D array. Each element consists of three values describing the colour of the
element, i.e., the pixel. The camera in AIBO uses the YCbCr colour system to
represent these three values. More about the YCbCr colour space will be said in

17

Section 6.1.1. The recognition of different objects in the SLRL environment is
accomplished in four steps:

• Segmenting the image into different colours, creating blobs.

• Applying a region growing algorithm to the newly created blobs.

• Merging all blobs of the same colour that are close to each other.

• Classifying each blob by its colour and size.

The colour segmentation is done entirely by the hardware in AIBO and OPEN-
R provides methods for retrieving the results of that segmentation. Team Sweden
uses this hardware segmentation mainly as a means for producing seeds [13] for
their seeded region-growing(SRG) algorithm [8]. Basically, this algorithm con-
siders the difference in colour between the pixels surrounding the seed and the
seed itself. The difference is defined via a threshold in YCbCr colour space that
is incremental, i.e., the threshold lets the algorithm know how much two adjacent
pixels may differ in order to be classified as the same colour. The pixels surround-
ing the seed, whose colours differ less than the threshold will be included in the
seed1.

The SRG algorithm often performs rather well. However, problems like sharp
shadows often creates gaps between the pixels belonging to the object. For this
reason Team Sweden uses a blob-merging algorithm that searches for blobs of
similar colour and evaluates the distance. If the distance is small enough, e.g., one
or two pixels, the blobs are merged. This way the final classification of the blobs
will be more accurate since it depends only on the colour and the size.

1It actually stops being a seed as soon as the region has grown. It is then referred to as a blob.

18

Chapter 5

The Problem

5.1 Overview of Challenge 1

As mentioned earlier the basic problem in Challenge 1 lies in recognising a minia-
ture version of a football. Challenge 1 features a RoboCup environment that uses
a closed world assumption, i.e., every object is fully described. Thus an agent
can have as mucha priori information as it wants about every encountered object.
There are however disturbances in this environment, such as human referees or
lighting fluctuations. Moreover, this environment is inaccessible [23] due to the
fact that an agent, such as AIBO, can never see the entire environment at once us-
ing its sensory system. The environment is also nondeterministic and nonepisodic
since there are several agents present. To further complicate matters the environ-
ment is also dynamic and continuous which means that the agent has to scan the
environment both before and during deliberation. In other words AIBO has to be
able to deliberate while performing an action.

Going back to the ball recognition problem, we find a number of difficulties to
overcome, e.g., What are the properties of the ball? Are they perceivable? How
can they be represented? What is the best way to filter out false positives?, etc.
All of these questions has to be answered in such a manner that they are robust
with respect to the environment issues discussed above.

5.2 Properties of a Ball

An obvious feature is the shape and colour of the patches. Since the black patches
are pentagons and the white patches are hexagons it would be convenient to check
that this property holds for every black and white patch. However, due to the fact
that 176x144 pixels is the highest resolution that OPEN-R can provide, it is hardly
feasible to check the shape of a single patch, even if the ball is very close.

19

The patch approach could still hold though if one disregards the shape condi-
tion. Even though the quality of the image is rather limited, the camera is able to
capture white and black patches. These patches will from now on be referred to
as blobs. This brings us to the conclusion that a ball will consist of a number of
white and black blobs, which is convenient since this condition will always hold.
Of course it is only applicable within a certain range due to the fact that a ball that
is only a couple of centimetres away from the camera will appear to have only one
big white patch. The effect is the same, if not worse, when the ball is far away
since the black and white patches will blend and create one grayish blob. This
difficulty will be addressed in Section 6.4.1.

5.3 Perceiving the Ball

A colour segmentation, which is already implemented in the hardware of AIBO,
could be used. There are however many setbacks to deal with while using this
approach. A major problem with colour segmentation on AIBO is that the image
is represented in YCbCr colour space, which is a very poor choice when dealing
with colour classification. Another downside of this is that the hardware uses a
rather low-resolution image to do its segmentation on, i.e., 88x72 pixels. This
means that the black patches will not be visible even when the camera is close to
the ball. However, the idea might still work if combined with a region growing
algorithm. In fact this is how Team Sweden recognises all of the objects present
in the RoboCup environment. But these objects are fairly large and one-coloured
which makes the creation of usable colour tables possible. This is not the case with
the black and white ball since it consists of two colours that are inherently difficult
to create colour tables for. A simple explanation to this is that black is more an
absence of a colour than a colour, and white is just a mixture of all colours. White
also easily adapts to surrounding colours which means that near the ground the
white colour looks greenish and by the border it looks very white. The black and
white patches will also blend to a certain degree when captured by the camera
which also complicates this approach. Another way to acquire the blobs would
be to use a convolution mask1 of some sort that could enhance strong gradients
in the picture. Typically we would like to use an edge detection operator, e.g.,
Roberts Cross [18], Sobel [17] or Canny [19] operators. As it will be explained
in the following sections the convolution masks are efficient and easy to use, but
they demand a tremendous amount of CPU cycles to do their work, so they are
not really optimal when it comes to real-time applications.

1See Section 6.1.3

20

5.4 Related Work

Since no RoboCup prior to 2003 has been using a black and white ball there
was not much information to retrieve from the earlier proceedings. Most work
regarding object recognition regards large one-coloured objects, e.g., landmarks,
nets, etc. Comparing the orange ball used in the soccer game with the black and
white ball used in the challenge we find three distinct differences:

• The orange ball is composed of only one colour;

• Orange does not absorb colours to the same extent as white does;

• Orange does not appear in any other object in the RoboCup environment.

Despite these differences J. Bruce, T. Balch, and M. Veloso proposed an interest-
ing and general approach to segmentation and thresholding [22].

21

22

Chapter 6

Solving the Ball Recognition
Problem

In this section two fundamentally different approaches to solving the ball recog-
nition problem are proposed. A discussion of their strengths and weaknesses fol-
lows. In the first approach a gray-scale image was used, i.e., only the Y component
of the YCbCr image received from OPEN-R. The second approach uses a colour
image.

6.1 Computer Vision and Image Analysis

Computer vision is a huge topic, and has been constantly developing since the
1950s. It is also closely related to AI since many of todays robots depend on input
from different types of cameras.

6.1.1 The YCbCr Colour Space

According to Webster’s Revised Unabridged Dictionary (1913) the term colour is
defined as:

A property depending on the relations of light to the eye, by which
individual and specific differences in the hues and tints of objects are
apprehended in vision; as, gay colours; sad colours, etc.

Digital images are always presented in colour, whether it is one or many colours,
and there are numerous theories regarding how to represent them. In other words
a colour space is simply a means for defining colours. One of the most common
colour space is the RGB system which is based on the theory of human vision,
i.e., it defines all colours as different amounts of red, green, and blue.

23

The camera in AIBO uses the YCbCr colour space, which is also known as
YUV. It is also divided into three components. Y is luminance. Cb(U) and Cr(V)
are different chrominance components. Cb represents the chrominance of blue,
and Cr the chrominance from red. An RGB to YCbCr conversion is presented
below.

Y = Y = (0.257∗ R) + (0.504∗G) + (0.098∗ B) + 16 (6.1)

Cb= U = −(0.148∗ R) − (0.291∗G) + (0.439∗ B) + 128 (6.2)

Cr = V = (0.439∗ R) − (0.368∗G) − (0.071∗ B) + 128 (6.3)

This system is more difficult to comprehend than RGB mainly due to the fact
that the human eye does not classify colours in this manner. However, due to
the fact that the neurons located in the human eye are divided into colour sensi-
tive(cones) and non-colour sensitive(rods), the components in the YCbCr system
makes sense. As it can be seen in the equations above the YCbCr system is also
defined using the three fundamental colours. In fact this is true for many colour
spaces, since the cones are sensitive to red, green, and blue.

6.1.2 Image Analysis

When analysing an image it is vital to sort out non-important properties, e.g., noise
or colours that are of no interest for the problem. Image Analysis can be divided
into two stages:

• Image processing;

• Image analysis.

Image processing relates to the preparation of an image for later analysis and use.
An image is rarely in a condition that can be used directly by image analysis rou-
tines. It may require some preparatory manipulation, e.g., filtering, enhancement,
segmentation, etc. In other words; image processing is the collection of routines
and techniques that improve, simplify, enhance, or otherwise alter an image. Im-
age analysis is the collection of processes in which a captured image that is pre-
pared by image processing is analysed in order to extract vital information about
the image and to identify objects or facts about the object or its environment.

6.1.3 Image Processing Techniques

As previously mentioned, image processing incorporates several techniques for
altering an image. One of the most common technique is the convolution mask,

24

which can be applied to many different types of problems, e.g., edge detection
and various filtering. A convolution mask is aN ∗ N matrix containing different
patterns of numbers depending on the wanted effect on the image. The mask
alters the image by shifting itself over the image and multiplying its value with
the corresponding pixel values of the image. A convolution mask can be applied
to an image according to equation (6.4), whereI is the original image,M is the
convolution matrix andI ′ is the new image created from the old one.

I ′y,x =

∑n
i=0

∑n
j=0 Mi, j ∗ Iy+i,x+ j

S′
(6.4)

S′ =

{
S, S ≥ 1
1, S = 0

(6.5)

S =
∣∣∣∣ n∑

i=0

n∑
j=0

Mi, j

∣∣∣∣ (6.6)

Another widely used technique is segmentation, which divides the image into
different colours by using intensity thresholds [20]. For example, an image with
a number of shades of yellow should have two thresholds defining an interval.
All pixel intensities belonging to that interval will then be classified as yellow.
This method is useful when dealing with environments that have predetermined
colours. A soda can would be ideal to recognise using segmentation since they
often have a colour that separates them from the rest of the environment.

Thresholding is in itself a technique for filtering information in gray-scale
images. It is often combined with a histogram [21] of the image in order to decide
upon a threshold. A histogram is a table describing the frequency of pixels at
every intensity. A histogram for the image presented in Figure 6.1 can be seen
in Figure 6.3. Histograms are not bound to image processing as they can also be
used during the analysis of images. After thresholding an image it often ends up
as a binary image, i.e., only featuring two colours, black and white. There are
many binary operations, e.g., dilation, erosion, skeletonization, thickening, etc.,
available and the explanation of them are beyond the scope of this thesis.

6.2 Technical Preparations

The first thing that had to be done was to enable all the hardware to work with
Linux, since all of the previous thesis work was done using Windows. Among
other hardware, the Sony MemoryStick Reader/Writer and the Airport from Apple
had to be configured. Also the OPEN-R SDK needed to be installed in order
to develop applications for AIBO. Moreover the AIBO robots that were at hand

25

also needed a BIOS update. More detailed information about the OPEN-R SDK
installation and hardware configuration can be found in Appendix B.

6.3 Using a Grey-scale Image

Using only the Y component of the YCbCr image retrieved from AIBO relies on
the assumption that the white and black colours are greatly separated in luminance
or, more common, intensity1. The intensity for white is rather high while the
intensity for black is low. By using only the intensity of the image both CPU-
cycles and effort can be saved. Mainly since, whether or not the white colour
absorb surrounding colours, the intensity for white will still remain high. Thus
it will also introduce robustness in this approach. However, there are problems
arising from this idea as well. As shown in Figure 6.1, a shadow on a green carpet
may have a very low intensity, almost as low as the black colour itself. To avoid
this problem, at least to some extent, a histogram combined with thresholding can
be used. As it will be discussed later, finding a good threshold for this purpose is
crucial.

Figure 6.1: The image formed using only the Y-component.

The algorithm used with the gray-scale image is divided into an image pro-
cessing part and an image analysis part. The first part describes convolution masks
and in particular the Roberts Cross operator. It also explains the use of histograms
combined with thresholding in this algorithm. In the second part the concept of
blobs is discussed, and also the means for classifying them as a ball or not.

1Luminance is not the equivalent of intensity but this thesis makes no difference between them.

26

6.3.1 Defining and Using the Roberts Cross

One of the first ideas using the gray-scale image was straightforward and simple.
The algorithm proposed used only a histogram of the image and then applied two
thresholds,I low and Ihigh. These thresholds were meant to filter out all pixels lo-
cated in the interval created by these values, i.e., only pixels with high/low enough
intensity should be saved. The filtering function used can be found in the equa-
tion below whereI ′ is the new thresholded image andI is the original gray-scale
image.

I ′y,x =

{
0, Iy,x ∈ [I low, Ihigh];
1, Iy,x < [I low, Ihigh];

,∀y ∈ [0,143],∀x ∈ [0,175]

Due to the fact that black seemed to be distributed very well over the image
a lot of noise appeared when only using thresholding. The conclusion was that
something else had to be added either before or after the thresholding to remove
some noise. Instead of using all the gray-scales of the image, a subset consisting
of only the transitions between white and black, i.e., strong gradients in the im-
age could be used. In other words, a convolution mask suitable for this problem
needed to be discovered.

The Sobel operator was found to be superior in finding the desired features of
the ball. However, this operator slowed down the image processing beyond the
the real-time demands specified by Team Sweden. Instead of Sobel a smaller and
faster operator was tested, namely the Roberts Cross operatorsRx andRy.

Rx =

∣∣∣∣∣∣ +1 0
0 −1

∣∣∣∣∣∣ ,Ry =

∣∣∣∣∣∣ 0 +1
−1 0

∣∣∣∣∣∣
What the Roberts Cross operators do is calculating the vertical and horizontal

gradient. These gradients can be combined using equation (6.7) or, more typically,
equation (6.8), which is much faster to compute.

Gxy =

√
G2

x +G2
y (6.7)

Gxy = |Gx| + |Gy| (6.8)

Applying operators in the manner presented in equation (6.4) is, to say the
least, computationally expensive, even with small operators such as this. Instead
a Pseudo operatorPxy of the Roberts Cross can be derived.

Pxy =

∣∣∣∣∣∣ P1 P2
P3 P4

∣∣∣∣∣∣
27

The combined gradient can be calculated by equation (6.9). More specifically
the mathematical function provided in equation (6.10) will be used to find all the
edges in the gray-scale image.

Gxy = |P1− P4| + |P2− P3| (6.9)

I ′y,x = |Iy,x − Iy+1,x+1| + |Iy,x+1 − Iy+1,x|,∀y ∈ [0,142],∀x ∈ [0,174] (6.10)

Thus, using equation (6.10), instead of using equation (6.4) forRx andRy and then
combining them byRxy = |Rx| + |Ry|, saves a lot of processing time.

6.3.2 Analysing the Histogram

By first applying thePxy operator to the image in Figure 6.1 we get a gray-scaled
image featuring only edges. The results from the operator can be found in Figure
6.2. Hopefully the black patches should give us one circle each. The next step is
to look at the histogram of the new image and decide a good threshold for it. The
reason for the thresholding is because a binary image is always easier to handle
and analyse than a gray-scaled one. Since the ball is very small we typically
want intensities with few pixels present. But not too few since they are probably
nothing more than noise. As seen in Figure 6.3 the histogram has quite a lot of
low intensity pixels and we get a slope towards the brighter pixels. Somewhere
along this slope is the wanted threshold.

Figure 6.2: The image after applying the Roberts Cross operators.

Since images will undoubtedly differ greatly in intensity values there is no
possibility of just deciding upon a fixed threshold value. In fact, consecutive im-
ages of the same configuration with the same lighting conditions can have very

28

Figure 6.3: A histogram of a typical image of the field and the ball.

different intensity values. Hence there is a need for a thresholding function that
can decide which value in the histogram to choose. It must take into account
that too high a threshold discards too much information, meanwhile a much lower
value may present us with a lot of noise which will be difficult to filter out. There
is always a reasonable threshold to apply, and that threshold can be found where
the slope on Figure 6.3 flattens, since that is when most of the darker intensities,
that are typical noise, are left behind. So basically the function should scan the
histogram and measure the slope at every iteration. When the slope is less than or
equal tokmax= 0.02 it sets the threshold at the current intensity. The value ofkmax

was derived by manually setting the best threshold in 100 sample images and then
calculating the meankmax value. This seems to be the place where enough noise is
lost but still the vital parts of the ball is left intact. The result of the thresholding
was still not very good due to the many local slopes in the histogram. In order
to get rid of these local slopes, and get the histogram shown in Figure 6.4, the
following averaging function is applied:

h(x) =
∑x+4

n=x h(n)
5

, ∀x ∈ [0,251]

29

Figure 6.4: A smoothened histogram of a typical image of the field and the ball.

6.3.3 The Creation of Blobs

At this point we should have a binary image, like the one found in Figure 6.5, with
at least three white circles originating from the black patches on the ball. The next
step is to identify all possible blobs in the image. This is accomplished by using
the algorithm defined below.

1. Scan the binary image line by line until an on-pixel2 is found. If this pixel
does not belong to an already classified blob them move to the next step.
Otherwise keep scanning.

2. Search down, left and right 11 steps for another on-pixel. If such a pixel is
found in all the mentioned directions the algorithm goes into the next step.
If not, return to step one.

3. Initiate a flood-fill algorithm [24] on the pixel located between the upper
and the lower on-pixel. If the flood-fill does not grow above the maximum
allowed blob size, the area filled by the flood-fill algorithm is classified as a
blob and put in a blob list. Otherwise go to step one.

2The on-pixel belongs to one of the edges detected by the Roberts Cross operator.

30

Figure 6.5: The image after applying a threshold.

When all of the image has been scanned a blob filtering algorithm is initiated.
It searches through the blob space and checks that all blobs are within a certain
range of size, i.e., not too big and not too small. By using Gnuplot for plotting all
the blobs, and a wide variety of images, the conclusion that blobs should have a
radius of at least 1.5 pixels and at most 8 pixels was made.

6.3.4 Recognising the Ball

The fundamental idea is to take advantage of the fact that there are always three
or more black patches/blobs visible on the ball from every angle3. Also the centre
of these three blobs should form an isosceles triangle, which gives us a possibility
to further check that the blobs are really part of the ball and not some isolated
shadow somewhere. This means that the algorithm has to scan through the blob
space creating a list of every possible 3-tuple. When deciding whether a tuple is
part of a ball or not we have to calculate the angles in the triangle that is made
up from three candidate blobs A, B and C, and check that they are 60◦ ± θ where
θ = 10◦ is the angle of tolerance. The angles are calculated by using the vectors
between every endpoint in the triangle. An example of the calculation is given
in equation (6.11), where thex andy values are taken from the centre of each
blob, i.e., blob A has its centre at (x1, y1) etc. If a tuple passes this angle test it
is classified as a ball, and the resulting image looks similar to the one shown in
Figure 6.6.

cosα =
u · v
|u| ∗ |v|

(6.11)

3This condition does not hold when the ball is very close to the camera.

31

Figure 6.6: The fully analysed image.

u = ~AB= B− A = (x2 − x1, y2 − y1) (6.12)

v = ~AC = C − A = (x3 − x1, y3 − y1) (6.13)

6.4 Using a Colour Image

This section deals with the ball recognition using all three components in the
YCbCr colour space. All of the preprocessing of the image is done by the Pam in
the Team Sweden code, which means that this approach only had to investigate an
already created blob space, and see what could be concluded from it.

The processing, i.e., the segmentation, part is rather straightforward and sim-
ple. It uses the colour segmentation provided by AIBO and OPEN-R. Due to the
hardware limitations it can only segment on 8 different colours, so called chan-
nels. Also it can only segment on the medium(88x72) image resolution provided
by OPEN-R. One major advantage though is that it can run in real time at a frame
rate of 25 Hz. This frame rate decreases severely during the region growing that
Team Sweden uses in order to get clearer perception of the objects. Due to the fact
that all objects are classified by the shape, size, colour and position of their 2D
projection, i.e., the blob in the image, it is extremely important to get as many pix-
els as possible correctly classified. This way the bounding box of the blob might
actually be a good representation of the object at hand. Moreover, Team Sweden
uses also a blob merging algorithm in order to compensate for poor colour tables,
lighting fluctuations, etc., which of course also decreases the frame rate.

During the definition of the problem with recognising the black and white ball
the conclusion was made that a ball is represented by white and black blobs. To
be more specific, a ball consists of one white blob and one or more enclosed black

32

blobs. However, since colour tables for white and black are hard to create, it is
very difficult to get good blobs from the region growing. This means that it is
quite a challenge, if not intractable, to get all of the pixels belonging to the ball
correctly classified. In addition, the camera that AIBO uses will not be able to
see more than 10, or even fewer, white pixels when the ball is further than two
meters away. Needless to say the black blobs will not show at all. In the worst,
and probably the most frequent, case the pixels seen at such a distance will be
neither white nor black. Instead they will be grayish due to blending. This leaves
us with two basic problems:

1. Recognising the ball at close range, i.e., between zero and one meter, using
both the white and the black blobs.

2. Recognising the ball at a greater distance using only the white blobs.

As the field is a bit larger than 14m2, the robot could move around quite a
while before it found the ball using only the close range solution. On the other
hand, only using the second approach introduces more problems, e.g., telling the
difference between the ball and the border when the ball is really close to the
camera so that it occupies 75% or more of the image. Obviously both of these
problems must be solved and incorporated in some sort of heuristics.

6.4.1 Long Range Algorithm

When searching for a ball that is far away there are not many features available
to depend upon. In fact the only things that can be used is the colour and the
shape of the blob. So the question is: How can these attributes be used in order
to detect the ball? Well, the colour is obvious since a blob can only consist of
one. In other words if a white blob is found it is a potential ball and has to be
investigated. However, white blobs will be present in almost every image the
camera takes since both the field lines and the borders are white. Thus the colour
does not really narrow down the search that much.

Looking at the shape of the white blob will reveal more. In order to use the
shape as an attribute, some sort of circle detection algorithm would have to be
used, e.g., the Hough Transform. One of the major problems when dealing with
AIBO is the low computational power which means that expensive algorithms,
such as the Hough Transform hardly can be used. A trigonometric approach for
identifying circles would also be computationally very demanding. Instead of de-
termining the actual shape of the blob the bounding box of the blob might do just
fine. The fact that a circle will always create a quadratic bounding box can be used
to filter out many of the white blobs originating from the field lines or the borders.

33

Sadly the segmentation rarely classifies all of the white pixels belonging to the
ball correctly. This happens due to many factors but primarily because the carpet
in the field makes the ball look green in the lower part. Thus the correspondence
between the width and the height of the white blob is 1 :x rather than 1 : 1. This
means that the algorithm should not be looking for a quadratic white blob but a
rectangular one havingheight = x ∗ width. By plotting a considerable number
of white blobs originating from the ball the value forx could be experimentally
determined to 0.8. Having this value actually completes this method. However
x was determined through mean value which implies that more rectangles than
the ones having exactlyheight= x ∗ width should be classified as a ball. Thus a
match function is needed to determine how well the bounding box at hand matches
the desired rectangle condition. This presented a new value to tweak. How well
should the rectangles match? It turned out that a match of 80% was enough to get
many of the white blobs correctly classified. This ratio was decided by looking at
the number of false positives divided by the true positives, and a match condition
of 80% simply gave the lowest quotient, i.e., about 1-2 true positives per false
positive.

There is a need for one more condition still, namely the size. If the ball is
supposed to be far away the blob can hardly take up a large part of the image.
Thus, the last condition required here is that the blob is small enough. There will
not be a specified value for this condition since it was extremely dependant on the
lighting. In other words no good and general value could be found. Instead it was
tweaked specifically on site for Lund, Örebro and Padova.

To summarise, the following is done, for every blob in the blob space, in order
to detect a distant ball:

1. Check that the blob is white.

2. Check that there is at least an 80% match to the rectangle condition.

3. Check that the blob is small enough.

This is about all that can be done in the long range ball detection, since there are
so few features available. Using this approach the robot could recognise the ball
about 50% of the time.

6.4.2 Close Range Algorithm

When the ball is close, or at least not too far away, there are a number of features
available for classification. The ones used in this approach are:

1. Colour and size of the blob.

34

2. Quadratic ratio for the blob.

3. Quantity and colour of contained blobs.

4. Size ratio between the blob and the contained ones.

The first two items in the list were explained in section 6.4.1 and will be left
out in this description. The next feature is rather obvious since a ball located close
to the camera can have one to five visible black blobs, no more and no less. What
size ratio is feasible to use for the black and white blobs? To answer that question,
the diameter of the entire balldball along with the diameter of one of the black
patchesdpatch, is needed. The ratiodratio = dpatch/dball was found to be 0.25. In
the segmented images, however, the ratio between the blobs were closer to 0.20
due to the already mentioned problems with white and black colours. Just like the
quadratic condition it is advisable to allow fluctuations in the size ratio as well.
Hence a match of 80% is enough to pass the size ratio condition which means that
ratios between 0.16 and 0.24 are accepted.

With all this information at hand, it might appear as if locating the ball was
an easy task. To answer it negatively, a plot is presented in Figure 6.7. The
plot describes the fluctuations in the match value of the quadratic ratio and the
black/white ratio. All of these 46 consecutive images are captured during the
exactly same conditions, which means that the ball and the robot were fixed in one
position and in that position all 46 images were taken. The lighting conditions
were also the same. In other words this plot describes the performance of the
camera located in AIBO. The results are rather intimidating.

6.5 Results and Implementation

Examining the plot in Figure 6.7 reveals that the quadratic match fluctuates be-
tween 63% and 85%. It also seems to be somewhat periodic. This effect creates
interlacing on the images captured by AIBO and it originates from the frequency
of the spotlights at RoboCup 2003. Sometimes the interlacing effect was substan-
tial enough to produce black horizontal lines through the image, which in many
cases passed through the ball. Naturally if such a line divides the white blob, orig-
inating from the ball, it will create two white blobs. Each of them not passing
the quadratic condition. This condition is present in both the long range approach
and the close range approach. Thus both of them suffer in performance from this
interlacing.

The phenomenon with the black and white match, can be explained by this
effect as well. There is a difference though, the black and white match is generally
lower than the quadratic. The reason is simple, a black line crossing the whole

35

Figure 6.7: Fluctuations in the match ratio of the black/white condition and the
quadratic condition.

image, through the ball, will yield a big black blob. That black blob will be often
be larger, using area, than 25% of the white blob thus creating a poor match with
the black and white ratio condition. A 3D plot, shown in Figure 6.8, of the same
data series as the previous plot reveals the disperse nature of the matchings.

The implementation as such was prototyped in Python [5] and later ported to
C++. The code for the gray-scale approach is listed in Appendix C, and the imple-
mentation using a colour image is listed in Appendix D. It should be mentioned
that this code has been working in cooperation with the Team Sweden code and
cannot be used as is. At least not without some major modifications.

36

Figure 6.8: Fluctuations in the match ratio of the black/white condition and the
quadratic condition.

37

38

Chapter 7

Conclusions and Future
Improvements

In this thesis two approaches for solving the same problem have been presented.
Each of them has its own strengths and weaknesses. This section will try to sort
out the pros and cons for the gray-scale versus the colour approach.

7.1 Gray-scale Approach

This was an attempt to throw away quite a lot of information from the beginning,
in order to get results fast. It failed in a very important aspect though. The al-
gorithm developed is not capable of recognising the ball at all distances since it
relies on the assumption that at least three black patches are always visible. As
previously discussed, this is often not the case. In fact, this algorithm would only
recognise the ball at a semi-close distance which means that the robot would loose
track of the ball as soon as it came close enough. In other words, touching the ball,
let alone kicking it into a net, would be an act of pure luck using this approach.
Looking at the bright side, the algorithm is quite fast despite the use of convolu-
tion masks. It is also rather insensitive to lighting fluctuations since it triggers on
transitions between high and low intensities in the image. Also the tiresome work
of creating colour tables is not necessary for obvious reasons.

7.2 Colour Approach

Using the coloured image presented a lot more features to use when searching for,
and identifying the ball. All of these features in turn provided ball recognition
abilities at any distance up to three meters which means that the robot is actually

39

capable of deliberately touching and kicking the ball. There are a few downsides
to this solution though. First it demands really good colour tables, i.e., 60 pictures
or more of every object in the field need to be manually tuned using a rather
crude tool. Second, even with very good colour tables this approach is still highly
sensitive to different lighting conditions. For example, if one out of four spotlights
goes out, a whole new colour table would need to be created. In fact, these tables
had to be reproduced for every new site that the robot is supposed to function in.
In other words, there are several colour tables for Lund, Ronneby, Murcia and
Örebro.

7.3 Challenge 1

Because of the previously discussed limitations of the gray-scale approach, our
solution for Challenge 1 used the colour approach. Due to an administrative mis-
understanding a version which did not use the long distance ball detection was
used. Hence it took a while for the robot to detect the ball and touch it. After
detecting the ball only the time for one attempt to kick the ball was left. The kick
was a complete failure due to bad distance calibration and also because the ball
was actually at the border which makes the white segmentation useless. After this
attempt to kick the ball the three minutes available for the challenge were over.
This was a rather difficult challenge judging from the overall, results since no team
managed to score and 2/3 of the teams did not even touch the ball. The efforts
presented in this thesis led to a 7:th place out of 26 competitors.

7.4 Suggested Improvements

When it comes to the proposed way of solving the problem with the gray-scale
image, there are in my opinion very few things to improve since the basic assump-
tion, that there are always three or more black patches visible, is fundamentally
wrong. Maybe it could be used as a separate part in a more extensive algorithm.
However, it can not alone be made to detect the ball at an arbitrary distance.

The colour approach can be improved in many ways, e.g., by changing the
colour representation from YCbCr to another, better separated colour space [15],
or using scan-lines [16]. Also the colour tables could be tweaked “on-line” instead
of manually tweaking images on a nearby computer. Moreover the algorithm
performs rather poor when the ball is close to the border since it uses a rough way
of estimating the actual ball size by looking at the size and position of the black
blobs at hand. One way of improving this might be to take the distance between
these black blobs into account, thus improving the ball detection rate.

40

Bibliography

[1] Web site of RoboCup:
http://www.robocup.org
(Verified 15th August 2003)

[2] Web site of Sony Legged Robot League:
http://www.openr.org/robocup/index.html
(Verified 15th August 2003)

[3] Web site of AIBO:
http://http://www.aibo-europe.com
(Verified 15th August 2003)

[4] Web site of the Thinking Cap architecture:
http://www.aass.oru.se/ asaffio/Software/TC/
(Verified 15th August 2003)

[5] Web site of the Python programming language:
http://www.python.org
(Verified 15th August 2003)

[6] OPEN-R SDK: Model Information for ERS-210, Sony Computer Science
Laboratory Inc., 2002.

[7] A. Saffiotti, A. Björklund, S. Johansson, Z. Wasik: Team Sweden, A. Birk,
S. Coradeschi, S. Tadokoro (Eds) RoboCup 2001, Springer Verlag, 2002.

[8] Z. Wasik, A. Saffiotti: Robust Colour Segmentation for the RoboCup Do-
main, Pattern Recognition, Proc. of the Int. Conf. on Pattern Recognition
(ICPR), volume 2, pages 651-654, 2002.

[9] A. Saffiotti, K. LeBlanc: Active Perceptual Anchoring of Robot Behaviour
in a Dynamic Environment, Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), volume 4, pages 3796-3802, 2000.

41

[10] A. Saffiotti, Z. Wasik: Using Hierarchical Fuzzy Behaviours in the RoboCup
Domain, C. Zhou, D. Maravall and D. Ruan (EDS), Autonomous Robotic
Systems, pages 235-262, Springer, DE, 2003.

[11] S. Johansson, A. Saffiotti: Using the Electric Field Approach in the RoboCup
Domain, A. Birk, S. Coradeschi, S. Tadokoro (EDS), Robot Soccer World
Cup V, pages 399-404, Springer-Verlag, DE, 2002.

[12] B. Hengst, B. Ibbotson, P. Pham, C. Sammut: Omnidirection - a Locomo-
tion for Quadruped Robots, A. Birk, S. Coradeschi, S. Tadokoro (EDS),
RoboCup 2001, Springer Verlag, 2002.

[13] R. Adams, L. Bischof: Seeded Region Growing, Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, volume 16, issue 6, pages 641-
647, 1994.

[14] Yasuhiko Yokote: The Apertos Reflective Operating System: The Concept
and Its Implementation, Sony Computer Science Laboratory Inc., 1992.

[15] Gerd Mayer, Hans Utz, Gerhard K. Kraetzschmar: Playing Robot Soccer
under Natural Light: A Case Study, RoboCup Symposium, 2003.

[16] M. Jüngel, J. Hoffmann, M. Lötzsch: A Real-Time Auto-Adjusting Vision
System for Robotic Soccer, Pre-proceedings of RoboCup Symposium, 2003.

[17] K. K. Pingle: Visual perception by computer, In A. Grasselli, editor, Auto-
matic Interpretation and Classification of Images, pages 277-284, Academic
Press, New York, 1969.

[18] L. G. Roberts: Machine Perception of Three-dimensional Solids, In J. T. Tip-
pet et al., editor, Optical and Electro-Optical Information Processing, pages
159-197, MIT Press, Cambridge, 1965.

[19] J Canny: A Computational Approach to Edge Detection, IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 8:679-698, 1986.

[20] R. Gonzalez and R. Woods Digital Image Processing, Ch 7, Addison-Wesley
Publishing Company, 1992.

[21] R. R. Murphy: Introduction to AI Robotics, pages 220-231, MIT Press,
2000.

[22] J. Bruce, T. Balch, M. Veloso: Fast and Cheap Colour Image Segmentation
for Interactive Robots, Intelligent Robots and Systems (IROS 2000), 2000.

42

[23] S. Russel, P. Norvig: Artificial Intelligence, Ch 2.4, Prentice-Hall, 1995.

[24] A. Glassner: Fill ’er up! [Graphics filling algorithms], Computer Graphics
and Applications, IEEE, Volume: 21 Issue: 1, pages 78-85, 2001.

43

44

Appendix A

Terminology

Autonomous agent: A hardware/software agent whose behaviour is determined
by its own experience.

Histogram: A plot describing frequency of pixels within every intensity of the
gray-scale image.

YCbCr: A colour space model also known as YUV where Y is the luminance,
U(Cb) is the shift from red and V(Cr) is the shift from blue.

A.1 Abbreviations

RISC: Reduced Instruction Set Computer; one whose design is based on the
rapid execution of a sequence of simple instructions rather than on the pro-
vision of a large variety of complex instructions.

MIPS: A microprocessor vendor.

SDK: Software Development Kit.

PCM: Pulse Code Modulation; a general digital audio processing with volume
samples generated in continuous time periods.

CMOS: Complementary Metal Oxide Semiconductor; a type of memory that
runs on very little power.

FAT-16: File Allocation Table; a file-system created by Microsoft using 16 bit
disk addresses.

45

46

Appendix B

Installation and Configuration of
OPEN-R SDK

B.1 Background

The reason for this project was mainly to replace the Windows 2000 and Cygwin
environment with Red Hat Linux 8 as a platform when developing software using
the OPEN-R SDK1. According to former thesis writers the Windows/Cygwin en-
vironment has been, to say the least, frustrating to work with. Some of them even
compiled their code in Linux and later started Windows 2000 in order to transfer
their compiled objects to the memory stick2. The goal in short terms was to be
able to fully utilise the OPEN-R SDK from Linux. Please note that this document
is in no way trying to create a substitute for the installation instructions from the
official OPEN-R SDK documentation.

B.2 Solution

Several steps were required to fulfil the goal defined above and each of these steps
will be described in detail. In order to retrieve the files needed to install the OPEN-
R SDK a registration form located at its web page3 must be filled out. From the
download section on the page the files listed in table B.1 will be needed. Please
note that the version numbers may of course change as this document grows old.

1Sony’s OPEN-R Software Development Kit
2We are referring to the AIBO Programming Memory Stick
3www.aibo.com/openr

47

binutils-2.13.tar.gz Binary utilities for developing software.

newlib-1.10.0.tar.gz A stripped libc really.

gcc-3.2.tar.gzThe compiler needed for obvious purposes.

build-devtools-3.2-r1.sh Installation script.

OPEN_R_SDK-1.1.3-r2.tar.gzStandard configuration for memory stick.

OPEN_R_SDK-sample-1.1.3-r3.tar.gzSample programs.

Table B.1: List of files needed for installation.

B.2.1 Installing the Development Tools

Root access is demanded in order to install the development tools since the install
script needs to access the local machine’s/usr/local directory. The software
can be installed in other directories though but it is not recommended. Hence root
access is assumed throughout this document.

For this installation part the top four files listed in table B.1 are needed. It does
not matter where these files are stored, i.e., a home directory will do just fine. By
executing the steps described below the development tools are installed.

• Change directory to where the four files mentioned above are stored.

• Typesu and press enter and provide the root password and press enter again.

• Execute the script that builds the development tools by typing:
./build-devtools-3.2-r1.sh and press enter.

Within a few minutes the basic development tools should have been installed.

B.2.2 Installing the OPEN-R SDK

This section describes the installation procedure of the basic configuration pos-
sibilities for the memory stick. These should be unpacked in the/usr/local
directory. It contains the real-time OS Aperios made specifically for AIBO by
Sony and some default libraries used by OPEN-R. Once again the steps needed
are described below. described below. Note that root access is still needed.

• Typecd /usr/local.

48

• Typetar -zxvf /exampledir/OPEN_R_SDK-1.1.3-r2.tar.gz where
exampledir is the directory where the files listed in Table B.1 are stored.

Now this part of the installation is done and there is no need for further root
access so typeexit and press enter.

B.2.3 Installing the Sample Programs

This installation is merely an unpacking of a compressed directory. Typetar
-zxvf OPEN_R_SDK-sample-1.1.3-r3.tar.gz in the directory containing the
downloaded files from table B.1. A directory sample will be created and in that
directory many sample programs can be found.

B.2.4 Mounting the MSAC-US1 Device

This consists basically of one command but some effort is put into understand-
ing the command as well as using it in this section. Thefstab file along with
the mount command will be used, i.e., aman mount command is a good place
to begin. There were a few problems arising at the first mount attempt and the
problem was that the mount command could not auto detect the file-system on the
memory stick. After a few minutes it was discovered that the windows file system
FAT was the correct one. In order to mount any device under Linux there are two
major questions.

1. What entry under the/dev catalogue is the device connected to?

2. Where shall the device be mounted?

The answer to the first question is/dev/sda1 due to the fact that the Linux
kernel emulates many USB devices as a SCSI device. The sda1 stands for special
device 1. The next question is a matter of preference but in this report we use
the/mnt/msac directory to serve as a mounting point for the memory stick. At
this point the device can be mounted by a super user by executing the following
command:

mount -t vfat -rw /dev/sda1 /mnt/msac

In order to let users mount this device a line infstab4 needs to be added. The
line looks like this:

4fstab tells the kernel which devices and file systems that can be mounted and by who.

49

/dev/sda1/mnt/msac vfat noauto,user,rw 0 0

The details of this will not be explain in this document. For the interested there
is a man page for mount to read. This means that any user on Clarke.ludat.lth.se
can typemount /mnt/msac. The/mnt/msac directory then serves as the root
directory for the memory stick, which means that files can be removed from and
copied to it.

B.3 Results

Everything is working in the current Linux distribution installed on Clarke.ludat.lth.se.
The distribution at hand here is Red Hat 8.0. It has been my experience that this is
not one of Red Hat’s more successful releases but there were no major problems
encountered during the installation and configuration of the OPEN-R SDK. In
other words compilation and transferring of source code to a memory stick using
the MSAC-US1 from Sony can be done on Clarke.

50

Appendix C

C++ Code for the Gray-scale
Approach

RecognizeBall.cc

#include <stdio.h>
#include <math.h>
#include "Table.h"
#include "Constants.h"
#include "RecognizeBall.h"

/////// PRIVATE ///////

/* UTILITIES */

int
RecognizeBall::Fac(int n)
{

int result = 1;
while(n > 0){

result = result * n;
n = n - 1;

}
return result;

}

int
RecognizeBall::Combination(int n, int k)

51

{
int delta = k - 1;
int prod = 1;
while(delta >= 0){

prod = prod * (n-delta);
delta--;

}
return prod / Fac(k);
//return Fac(n)/(Fac(k)*Fac(n-k));

}

void
RecognizeBall::KillBloblist(bloblist_t *bloblist)
{

int cntr = 0;
while(bloblist != NULL){

bloblist_t *tmp = bloblist->next;
if(bloblist->blob != NULL){

delete bloblist->blob;
}
delete bloblist;
bloblist = tmp;
cntr++;

}
}

int
RecognizeBall::IsElement(int element, int array[], int *arraylen)
{

int len = *arraylen;
for(int i=0; i<len; i++)

if(array[i] == element)
return 1;

return 0;
}

int
RecognizeBall::CountBlobs(bloblist_t *bloblist)
{

bloblist_t *tmp = bloblist;
int cntr = 0;

52

while(tmp != NULL){
cntr++;
tmp = tmp->next;

}
return cntr;

}

/* ANALYSIS SECTION */

int
RecognizeBall::CheckPixel(int x, int y)
{

return !(x<0 || y<0 || x>=SOBEL_IMAGE_WIDTH ||
y>=SOBEL_IMAGE_HEIGHT ||
sImage[YX_TO_INDEX[y][x]]==ON_PIXEL ||
sImage[YX_TO_INDEX[y][x]]==BLOB_PIXEL);

}

AdHocList*
RecognizeBall::MakeBlob(int offset)
{

AdHocList *blob = new AdHocList();
AdHocList *head = new AdHocList();
const int *coord = INDEX_TO_YX[offset];

if(CheckPixel(coord[X_INDEX],coord[Y_INDEX])){
head->Push(offset);
blob->Push(offset);
sImage[offset] = BLOB_PIXEL;

}

while(head->Size() > 0){
offset = head->Pop();

if(blob->Size() > MAX_BLOB_SIZE){ //Rollback action
while(blob->Size() > 0)

sImage[blob->Pop()] = OFF_PIXEL;
while(head->Size() > 0)

sImage[head->Pop()] = OFF_PIXEL;
delete head;

53

delete blob;
return NULL;

}
coord = INDEX_TO_YX[offset];
int y = coord[Y_INDEX];
int x = coord[X_INDEX];
int index = -1;

if(CheckPixel(x-1,y)){
index = offset - 1;
head->Push(index);
sImage[index] = BLOB_PIXEL;
blob->Push(index);

}
if(CheckPixel(x,y-1)){

index = offset - SOBEL_IMAGE_WIDTH;
head->Push(index);
sImage[index] = BLOB_PIXEL;
blob->Push(index);

}
if(CheckPixel(x+1,y)){

index = offset + 1;
head->Push(index);
sImage[index] = BLOB_PIXEL;
blob->Push(index);

}
if(CheckPixel(x,y+1)){

index = offset + SOBEL_IMAGE_WIDTH;
head->Push(index);
sImage[index] = BLOB_PIXEL;
blob->Push(index);

}
}
delete head;
if(blob->Size() < MIN_BLOB_SIZE){

while(blob->Size() > 0)
sImage[blob->Pop()] = OFF_PIXEL;

delete blob;
blob = NULL;

}
return blob;

54

}

int
RecognizeBall::CheckPerimeter(int offset)
{

int left = 0;
int right = 0;
const int *coord = INDEX_TO_YX[offset];
int y = coord[Y_INDEX];
int x = coord[X_INDEX];
for(int i=0; i<MAX_DISTANCE_TO_PIXEL; i++){

if(x+i < SOBEL_IMAGE_WIDTH && sImage[offset+i] == ON_PIXEL)
right = 1;

if(x-i >= 0 && sImage[offset-i] == ON_PIXEL)
left = 1;

}
return right && left;

}

int
RecognizeBall::FindPotentialBlob(int offset)
{

int blackStart = -1;
int blackStop = -1;
int half = -1;
for(int i=1; i<MAX_DISTANCE_TO_PIXEL; i++){

int index = offset+i*SOBEL_IMAGE_WIDTH;
if(index >= SOBEL_IMAGE_SIZE)

return -1;
byte pixel = sImage[index];
if(blackStart < 0 && pixel == OFF_PIXEL){

blackStart = index;
}
else if(blackStart >= 0 && blackStop < 0 && pixel == ON_PIXEL){

blackStop = index - SOBEL_IMAGE_WIDTH;
half = blackStart +

(((blackStop - blackStart) / 175) / 2) * 175;
if(CheckPerimeter(half)){

return half;
}

55

}
}
return -1;

}

int
RecognizeBall::FindNextOnPixel(int offset)
{

for(int i=offset; i<SOBEL_IMAGE_SIZE; i++)
if(sImage[i] == ON_PIXEL)

return i;
return -1; //no more on pixels in the image

}

bloblist_t*
RecognizeBall::FindAllBlobs()
{

bloblist_t *bloblist = new bloblist_t(NULL, NULL);
bloblist_t *currblob = bloblist;
int onPixel = FindNextOnPixel(0);
while(onPixel >= 0){

int regionGrowingOffset = FindPotentialBlob(onPixel);
if(regionGrowingOffset > -1){

AdHocList *tmpBlob = MakeBlob(regionGrowingOffset);
if(tmpBlob != NULL){

currblob->next =
new bloblist_t(tmpBlob, NULL);

currblob = currblob->next;
}

}
onPixel = FindNextOnPixel(onPixel+1);

}
currblob = bloblist->next;
delete bloblist;

return currblob;
}

AdHocList*
RecognizeBall::CalcBlobCenter(bloblist_t *bloblist)
{

56

bloblist_t *curr = bloblist;
AdHocList *blobcenter = new AdHocList();
const int *yx;

while(curr != NULL){
AdHocList *blob = curr->blob;
yx = INDEX_TO_YX[blob->Max()];
int yMin = yx[Y_INDEX];
yx = INDEX_TO_YX[blob->Min()];
int yMax = yx[Y_INDEX];
int ycenter = yMin + (yMax - yMin)/2;
int xMin = 1000;
int xMax = -1000;
for(int i=0; i<blob->Size(); i++){

yx = INDEX_TO_YX[blob->Get(i)];
int x = yx[X_INDEX];

if(x > xMax)
xMax = x;

if(x < xMin)
xMin = x;

}
int xcenter = xMin + (xMax - xMin)/2;
blobcenter->Push(YX_TO_INDEX[ycenter][xcenter]);
curr = curr->next;

}
return blobcenter;

}

float
RecognizeBall::CalcDistanceToBall(int dist)
{

return dist * SCALE_TO_REAL_WORLD;
}

point_t
RecognizeBall::CalcCenterOfBall(point_t p1, point_t p2, point_t p3)
{

int Minx = MIN(p1.x, p2.x);
Minx = (Minx < p3.x) ? Minx : p3.x;
int Maxx = MAX(p1.x, p2.x);

57

Maxx = (Maxx > p3.x) ? Maxx : p3.x;
int Miny = MIN(p1.y, p2.y);
Miny = (Miny < p3.y) ? Miny : p3.y;
int Maxy = MAX(p1.y, p2.y);
Maxy = (Maxy > p3.y) ? Maxy : p3.y;
int cx = Minx + (Maxx-Minx)/2;
int cy = Miny + (Maxy-Miny)/2;
point_t p;
p.x=cx;
p.y=cy;

return p;
}

float
RecognizeBall::CalcAngle(vector_t u, vector_t v)
{

float dotprod = u.x * v.x + u.y * v.y;
float ulen = sqrt((double)(u.x*u.x + u.y*u.y));
float vlen = sqrt((double)(v.x*v.x + v.y*v.y));
return dotprod/(ulen*vlen);

}

vector_t
RecognizeBall::CalcVector(point_t p1, point_t p2)
{

vector_t vector(p2.x-p1.x, p2.y-p1.y);
return vector;

}

int
RecognizeBall::CheckAngles(point_t p1, point_t p2, point_t p3)
{

vector_t u = CalcVector(p1,p2);
vector_t v = CalcVector(p1,p3);
float angle1 = CalcAngle(u,v);
u = CalcVector(p2,p1);
v = CalcVector(p2,p3);
float angle2 = CalcAngle(u,v);
u = CalcVector(p3,p1);
v = CalcVector(p3,p2);

58

float angle3 = CalcAngle(u,v);

//# The reason for the inverted comparisment is
//# Due to the fact that cos(70) < cos(50)
if(angle1 < MAX_ANGLE || angle1 > MIN_ANGLE)

return 0;
if(angle2 < MAX_ANGLE || angle2 > MIN_ANGLE)

return 0;
if(angle3 < MAX_ANGLE || angle3 > MIN_ANGLE)

return 0;
return 1;

}

float
RecognizeBall::CalcDistance(point_t p1, point_t p2)
{

return (float)sqrt(pow((double)(p1.x-p2.x),(double)2) +
pow((double)(p1.y-p2.y),(double)2));

}

int
RecognizeBall::CheckDistances(point_t p1, point_t p2, point_t p3, float *avg)
{

float dist1 = CalcDistance(p1,p2);
float dist2 = CalcDistance(p1,p3);
float dist3 = CalcDistance(p2,p3);
*avg = (dist1+dist2+dist3) / 3.0;
if(dist1 > *avg + DISTANCE_TOLERANCE || dist1 < *avg - DISTANCE_TOLERANCE)

return 0;
if(dist2 > *avg + DISTANCE_TOLERANCE || dist2 < *avg - DISTANCE_TOLERANCE)

return 0;
if(dist3 > *avg + DISTANCE_TOLERANCE || dist3 < *avg - DISTANCE_TOLERANCE)

return 0;
return 1;

}

void
RecognizeBall::MakeTriangles(int array[], int arraylen, triangle_t result[])
{

int nbrOfCombs = Combination(arraylen,3);
int i = 0;

59

int j = 1;
int k = 2;
for(int cntr=0; cntr<nbrOfCombs; cntr++){

const int *yx1 = INDEX_TO_YX[array[i]];
const int *yx2 = INDEX_TO_YX[array[j]];
const int *yx3 = INDEX_TO_YX[array[k]];
point_t p1(yx1[X_INDEX], yx1[Y_INDEX]);
point_t p2(yx2[X_INDEX], yx2[Y_INDEX]);
point_t p3(yx3[X_INDEX], yx3[Y_INDEX]);
triangle_t triangle(p1, p2, p3);
result[cntr] = triangle;
k += 1;
if(k >= arraylen){

j += 1;
k = j + 1;
if(j + 1 >= arraylen){

i += 1;
j = i + 1;
k = j + 1;
if(i + 2 >= arraylen){

return;
}

}
}

}
}

int
RecognizeBall::AnalyzeImage(AdHocList *blobcenter, ball_t *ball)
{

int numblobs = blobcenter->Size();
int *blobarray = new int[numblobs];
blobcenter->ToArray(blobarray);
int numcombs = Combination(numblobs,3);
triangle_t *triangles = new triangle_t[numcombs];
MakeTriangles(blobarray,numblobs,triangles);
delete [] blobarray;

for(int i=0; i<numcombs; i++){
triangle_t triangle = triangles[i];
float avg = 0;

60

if(CheckDistances(triangle.p1, triangle.p2, triangle.p3, &avg)){
if(CheckAngles(triangle.p1, triangle.p2, triangle.p3)){

point_t p = CalcCenterOfBall(triangle.p1,
triangle.p2,triangle.p3);

ball->x = p.x;
ball->y = p.y;
ball->size = avg;// * SCALE_TO_REAL_WORLD;
delete triangles;
return 1;

}
}

}
delete triangles;
return 0;

}

/* IMAGE PROCESSING */

byte*
RecognizeBall::ApplyThreshold(int threshold)
{

for(int i=0; i<SOBEL_IMAGE_SIZE; i++)
if(sImage[i] > threshold)

sImage[i] = ON_PIXEL; //white
else

sImage[i] = OFF_PIXEL; //black
return sImage;

}

int
RecognizeBall::CalculateThreshold()
{

int MaxVal = 0;
int MaxInd = 0;
for(int i=0; i<NUMBER_OF_GREYS; i++)

if(MaxVal < histogram[i]){
MaxVal = histogram[i];
MaxInd = i;

}

61

int startPoint = MaxInd;
int endPoint = MaxInd + INTERVAL;
while(endPoint < NUMBER_OF_GREYS){

int deltaX = INTERVAL; //endPoint - startPoint
int deltaY = histogram[endPoint] - histogram[startPoint];
float k = 0;
if(deltaX == 0)

k=deltaY;
else

k = (float)deltaY / (float)deltaX; //the slope
if(k >= K_MIN)

return startPoint;
else{

startPoint += INTERVAL;
endPoint += INTERVAL;

}
}
return -1; //We are not happy here

}

int*
RecognizeBall::SmoothenHistogram()
{

for(int i=0; i<NUMBER_OF_GREYS - SMOOTH_INTERVAL; i++)
for(int j=0; j<SMOOTH_INTERVAL-1; j++){

histogram[i]+=histogram[i+j+1];
//This division is not really needed since
//the slope will be the same anyway
histogram[i] = histogram[i] / SMOOTH_INTERVAL;

}
return histogram;

}

int*
RecognizeBall::MakeHistogram()
{

for(int i=0; i<SOBEL_IMAGE_SIZE; i++)
histogram[sImage[i]]++;

return histogram;
}

62

void
RecognizeBall::ClearHistogram()
{

for(int i=0; i<NUMBER_OF_GREYS; i++)
histogram[i] = 0;

}

byte*
RecognizeBall::ApplySobelMask()
{

int cntr = 0;
int offset = 0;
for(int i=0; i<SOBEL_IMAGE_SIZE; i++){

if(cntr == ORIG_IMAGE_WIDTH-1){
offset += 1;
cntr = 0;

}
int row1 = i + offset;
int row2 = i + ORIG_IMAGE_WIDTH + offset;
double vertical = yImage[row1] - yImage[row2+1];
double horizontal = yImage[row1+1] - yImage[row2];
int result = (int)(sqrt(pow(vertical,(double)2) +

pow(horizontal,(double)2)));
sImage[i] = (byte)result;
cntr += 1;

}
}

void
RecognizeBall::ProcessImage()
{

ApplySobelMask();
ClearHistogram();
MakeHistogram();
SmoothenHistogram();
int threshold = CalculateThreshold();
ApplyThreshold(threshold);

}

/////// PUBLIC ///////

63

int*
RecognizeBall::DetectBall()
{

ProcessImage();
bloblist_t *bloblist = FindAllBlobs();
int nbrOfBlobs = CountBlobs(bloblist);
if(nbrOfBlobs < 3){

printf("Found %d blobs ==> Could not detect ball!!\n",
nbrOfBlobs);

KillBloblist(bloblist);
return NULL;

}
AdHocList *blobcenterlist = CalcBlobCenter(bloblist);
FilterWhitePixels(); //DEBUG
MarkBlobCenter(blobcenterlist);// DEBUG
ball_t *ball = new ball_t(-1,-1,-1);
if(AnalyzeImage(blobcenterlist, ball)){

printf("detected ball at x=%d, y=%d with a size of %f\n"
,ball->x, ball->y, ball->size);

sImage[YX_TO_INDEX[ball->y][ball->x]] = ON_PIXEL;
}else{

printf("Could not detect ball!!\n");
}
delete ball;
delete blobcenterlist;
KillBloblist(bloblist);
return NULL;

}

byte*
RecognizeBall::PaddedSobelImage(byte psImage[])
{

for(int i=0; i<SOBEL_IMAGE_HEIGHT; i++){
for(int j=0; j<SOBEL_IMAGE_WIDTH; j++){

int index = i*SOBEL_IMAGE_WIDTH+j;
psImage[index+i] = sImage[index];

}
psImage[i*ORIG_IMAGE_WIDTH+SOBEL_IMAGE_WIDTH] = OFF_PIXEL;

}
for(int i=0; i<ORIG_IMAGE_WIDTH; i++)

64

psImage[(ORIG_IMAGE_HEIGHT - 1) * ORIG_IMAGE_WIDTH + i] = OFF_PIXEL;
return psImage;

}

byte*
RecognizeBall::SobelImage()
{ return this->sImage; }

byte*
RecognizeBall::YImage()
{ return this->yImage; }

void
RecognizeBall::YImage(byte *yImage)
{ this->yImage = yImage; }

RecognizeBall::RecognizeBall(byte *yImage)
{

this->yImage = yImage;
this->sImage = new byte[SOBEL_IMAGE_SIZE];
this->histogram = new int[256];

}

RecognizeBall::~RecognizeBall()
{

delete [] histogram;
delete [] sImage;

}

RecognizeBall.h

#ifndef RecognizeBall_H
#define RecognizeBall_H

#include "AdHocList.h"

#define byte unsigned char

65

//Structs
struct bloblist_t
{

AdHocList *blob;
bloblist_t *next;

bloblist_t()
{

blob = NULL;
next = NULL;

}
bloblist_t(AdHocList *bl, bloblist_t *ne)
{

blob = bl;
next = ne;

}
};

struct vector_t
{

int x;
int y;

vector_t(int newx, int newy)
{

x = newx;
y = newy;

}

};

struct point_t
{

int x;
int y;

point_t(){}
point_t(int newx, int newy)
{

x = newx;
y = newy;

66

}
};

struct triangle_t
{

point_t p1;
point_t p2;
point_t p3;

triangle_t(){}
triangle_t(point_t newp1, point_t newp2, point_t newp3)
{

p1 = newp1;
p2 = newp2;
p3 = newp3;

}
};

struct ball_t
{

int x;
int y;
float size;

ball_t(int newx, int newy, float newsize)
{

x = newx;
y = newy;
size = newsize;

}
};

class RecognizeBall
{

private:
//Attributes
byte *yImage; //original y image
byte *sImage; //y image with sobel filter applied
int *histogram; //histogram of sImage

// DEBUGGING

67

void FlushIt(); //For poor wireless console
int PrintBloblist(bloblist_t *bloblist);
void PrintHistogram();
void MarkBlobCenter(AdHocList *blobcenterlist);
void FilterWhitePixels();

//utilities
int IsElement(int element, int array[], int *arraylen);
void KillBloblist(bloblist_t *bloblist);
int Fac(int n);
int Combination(int n, int k);
int CountBlobs(bloblist_t *bloblist);

//Image processing
byte* ApplyThreshold(int threshold);
int CalculateThreshold();
int* SmoothenHistogram();
int* MakeHistogram();
void ClearHistogram();
byte* ApplySobelMask();
void ProcessImage();

//Image analysis
float CalcDistanceToBall(int dist);
point_t CalcCenterOfBall(point_t p1, point_t p2, point_t p3);
vector_t CalcVector(point_t p1, point_t p2);
float CalcAngle(vector_t u, vector_t v);
int CheckAngles(point_t p1, point_t p2, point_t p3);
float CalcDistance(point_t p1, point_t p2);
int CheckDistances(point_t p1, point_t p2, point_t p3,

float *avg);
void MakeTriangles(int array[], int arraylen,

triangle_t triangles[]);
int AnalyzeImage(AdHocList *blobcenter, ball_t *ball);
AdHocList* CalcBlobCenter(bloblist_t *bloblist);
int CheckPixel(int x, int y);
AdHocList* MakeBlob(int offset);
int CheckPerimeter(int offset);
int FindPotentialBlob(int offset);
int FindNextOnPixel(int offset);
bloblist_t* FindAllBlobs();

68

public:
RecognizeBall(byte *yImage);
~RecognizeBall();
int* DetectBall();
byte* SobelImage();
byte* PaddedSobelImage(byte psImage[]);
byte* YImage();
void YImage(byte *yImage);

};

#endif

AdHocList.h

#ifndef ADHOCLIST_H
#define ADHOCLIST_H
class AdHocList
{

private:
struct node_t
{

int data;
node_t *next;

};

node_t *first;
node_t *last;
int size;

public:
AdHocList();
~AdHocList();
void Push(int data);
int Pop();
int IsEmpty();
void Print();
int Size();
void Append(AdHocList *data);
int Get(int index);

69

int IsElement(int elem);
int Max();
int Min();
int* ToArray(int array[]);

};
#endif

AdHocList.cc

#include <stdio.h>
#include "AdHocList.h"

AdHocList::AdHocList(void)
{

first = NULL;
last = NULL;
size = 0;

}

AdHocList::~AdHocList(void)
{

while(first != NULL){
node_t *tmp = first->next;
delete first;
first = tmp;

}
}

void
AdHocList::Push(int data)
{

node_t *newNode = new node_t;
newNode->data = data;
newNode->next = NULL;
if(IsEmpty()){

first = newNode;
last = newNode;

}
else{

last->next = newNode;

70

last = newNode;
}
size++;

}

int
AdHocList::Pop()
{

if(IsEmpty()){
printf("Error: AdHocList:: Tried to pop an empty list!");
return -10000;

}
int data = first->data;

if(first == last){
delete first;
first = NULL;
last = NULL;

}
else{

node_t *tmp = first->next;
delete first;
first = tmp;

}
size--;
return data;

}

int
AdHocList::IsEmpty()
{

if(first == NULL)
return 1;

return 0;
}

void
AdHocList::Print()
{

node_t *tmp = first;
printf("\nPRINTING LIST\n");

71

while(tmp != NULL){
printf("%d ", tmp->data);
tmp = tmp->next;

}
printf("\n\n");

}

int
AdHocList::Size()
{

return size;
}

void
AdHocList::Append(AdHocList *data)
{

for(int i=0; i<data->Size(); i++)
Push(data->Get(i));

}

int
AdHocList::Get(int index)
{

if(index >= size){
printf("\nError: AdHocList:: Tried to Get index that don’t exist\n");
return -10000;

}
node_t *tmp = first;
for(int i=0; i<index; i++)

tmp = tmp->next;
return tmp->data;

}

int
AdHocList::IsElement(int elem)
{

node_t *tmp = first;
while(tmp != NULL)

if(tmp->data == elem)
return 1;

else

72

tmp = tmp->next;
return 0;

}

int
AdHocList::Max()
{

node_t *tmp = first;
int Maxval = -1000000;

while(tmp != NULL){
if(tmp->data > Maxval)

Maxval = tmp->data;
tmp = tmp->next;

}

return Maxval;
}

int
AdHocList::Min()
{

node_t *tmp = first;
int Minval = 1000000;

while(tmp != NULL){
if(tmp->data < Minval)

Minval = tmp->data;
tmp = tmp->next;

}

return Minval;
}

int*
AdHocList::ToArray(int array[])
{

int cntr=0;
node_t *tmp = first;
while(tmp != NULL){

array[cntr]=tmp->data;

73

tmp = tmp->next;
cntr++;

}
return array;

}

Constants.cc

#ifndef Constants_H
#define Constants_H

#include <math.h>

//Useful Defines
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#define MIN(a,b) (((a) < (b)) ? (a) : (b))

//Image
#define ORIG_IMAGE_WIDTH 176
#define ORIG_IMAGE_HEIGHT 144
#define SOBEL_IMAGE_WIDTH 175
#define SOBEL_IMAGE_HEIGHT 143
const int ORIG_IMAGE_SIZE = ORIG_IMAGE_WIDTH * ORIG_IMAGE_HEIGHT;
const int SOBEL_IMAGE_SIZE = SOBEL_IMAGE_WIDTH * SOBEL_IMAGE_HEIGHT;
#define Y_INDEX 0
#define X_INDEX 1

//Histogram
#define NUMBER_OF_GREYS 256
#define K_MIN -0.2
#define K_MAX 0.02 //not currently used
#define INTERVAL 5 //5
#define SMOOTH_INTERVAL 5 //6

//Blob information
#define MAX_DISTANCE_TO_PIXEL 30 //30 is the lower limit
#define ON_PIXEL 255
#define OFF_PIXEL 0
#define BLOB_PIXEL 128

74

#define MAX_BLOB_RADIUS 20 //20 is the lower limit
#define MIN_BLOB_SIZE 6
const int MAX_BLOB_SIZE = (int)(pow((double)MAX_BLOB_RADIUS,(double)2)*M_PI);
#define MAX_NUMBER_OF_BLOBS 20

//Ball recognition
#define DISTANCE_TOLERANCE 3
#define ANGLE_TOLERANCE 10
#define OPTIMAL_ANGLE 60
const float MIN_ANGLE = cos((double)(OPTIMAL_ANGLE - ANGLE_TOLERANCE)*(M_PI/180.0));
const float MAX_ANGLE = cos((double)(OPTIMAL_ANGLE + ANGLE_TOLERANCE)*(M_PI/180.0));
#define SCALE_TO_REAL_WORLD 10/100.0 // Needs testing

#endif

75

Appendix D

C++ Code for the Colour Approach

RecognizeCh1Ball.cc

#include "RecognizeCh1Ball.h"

//PRIVATE

/** This fixes the problem when the white ball color merges
* with the white border
* */
int

RecognizeCh1Ball::BallAtBorderFix(BallBlob *ball)
{

Blob black;
int xmax = -10000;
int ymax = -10000;
int xmin = 10000;
int ymin = 10000;
int maxsizex = -10000;
int maxsizey = -10000;
int maxnpixel = -10000;

if(ball->numBlacks < MIN_BLACK_BLOBS)
return 0;

for(int i=0; i<ball->numBlacks; i++){
black = ball->black[i];
xmax = (black.xmax > xmax) ? black.xmax : xmax;
ymax = (black.ymax > ymax) ? black.ymax : ymax;

76

xmin = (black.xmin < xmin) ? black.xmin : xmin;
ymin = (black.ymin < ymin) ? black.ymin : ymin;
maxsizex = (black.sizex > maxsizex) ?

black.sizex : maxsizex;
maxsizey = (black.sizey > maxsizey) ?

black.sizey : maxsizey;
maxnpixel = (black.npixel > maxnpixel) ?

black.npixel : maxnpixel;
}

ball->white.sizex = (int)(maxsizex / OPTIMAL_BW_RATIO);
ball->white.sizey = (int)(maxsizey / OPTIMAL_BW_RATIO);
ball->white.x = xmin + (int)((xmax - xmin) / 2.0);
ball->white.y = ymin + (int)((ymax - ymin) / 2.0);
ball->white.xmax = ball->white.x + (int)(ball->white.sizex / 2.0);
ball->white.ymax = ball->white.y + (int)(ball->white.sizey / 2.0);
ball->white.xmin = ball->white.x - (int)(ball->white.sizex / 2.0);
ball->white.ymin = ball->white.y - (int)(ball->white.sizey / 2.0);
ball->white.npixel = (int)(maxnpixel / OPTIMAL_BW_RATIO);

return 1;
}

/** Check how much the black/white ratio condition holds true */
int

RecognizeCh1Ball::CheckBwRatioCondition(BallBlob *ball,
double *result)

{
double wsizex = (double)ball->white.sizex;
double wsizey = (double)ball->white.sizey;
double wdiameter = hypot(wsizex, wsizey);
double ratio = 0.0;

for(int i=0; i<ball->numBlacks; i++){
double bsizex = (double)ball->black[i].sizex;
double bsizey = (double)ball->black[i].sizey;
double bdiameter = hypot(bsizex, bsizey);
double tmp = bdiameter / wdiameter;
if(tmp > ratio)

ratio = tmp;
}

77

double min = MIN(ratio, OPTIMAL_BW_RATIO);
double max = MAX(ratio, OPTIMAL_BW_RATIO);
*result = (min == max) ? min : (min / max);
if(*result >= BW_ACCEPTANCE_RATIO)

return 1;
return 0;

}

/** Check how much the square condition holds true */
int

RecognizeCh1Ball::CheckSquareCondition(Blob *white,
double *result)

{
double min = (double)MIN(white->sizey, white->sizex);
double max = (double)MAX(white->sizey, white->sizex);
double squareRatio = min / max;
min = MIN(squareRatio, OPTIMAL_SQUARE_RATIO);
max = MAX(squareRatio, OPTIMAL_SQUARE_RATIO);
*result = (min == max) ? min : (min / max);
if(*result >= SQUARE_ACCEPTANCE_RATIO)

return 1;
return 0;

}

/** Check if the ball is far away */
int

RecognizeCh1Ball::CheckSizeCondition(Blob *white)
{

if(white->sizex > FAR_BALL_THRESHOLD)
return 0;

if(white->sizey > FAR_BALL_THRESHOLD)
return 0;

return 1;
}

/** Check if the black blob is a true subset of the white blob */
byte

RecognizeCh1Ball::PartOf(Blob *blackBlob, Blob *whiteBlob)
{

return (blackBlob->x < whiteBlob->xmax) &&
(blackBlob->x > whiteBlob->xmin) &&

78

(blackBlob->y < whiteBlob->ymax) &&
(blackBlob->y > whiteBlob->ymin) &&
(blackBlob->sizex < whiteBlob->sizex) &&
(blackBlob->sizey < whiteBlob->sizey);

}

/** Build a ball blob from the white and black blobs */
void

RecognizeCh1Ball::BuildBallBlob(BlobTable *table,
Blob *white, BallBlob *ball)

{
int *numBlacks = &(ball->numBlacks);
*numBlacks = 0;
ball->white = *white;
for(int j=0; j<table->numBlobs[ORANGE]; j++){

Blob *black = &(table->blobs[ORANGE][j]);
if(PartOf(black, white)){

ball->black[*numBlacks] = *black;
*numBlacks = *numBlacks + 1;

}
}

}

// PUBLIC
int

RecognizeCh1Ball::DetectCh1Ball(BlobTable *table, Blob *white)
{

BallBlob ball;
double squareRatio = 0.0;
double bwRatio = 0.0;

#if USE_FAR_BALL_DETECTION
if(CheckSizeCondition(white))

if(CheckSquareCondition(white, &squareRatio)){
printf("Far ball: square: %f bw: %f\n",

squareRatio);
return 1;

}
#endif

BuildBallBlob(table, white, &ball);
if(CheckSquareCondition(white, &squareRatio) &&

79

CheckBwRatioCondition(&ball, &bwRatio)){
printf("Close ball: blackblobs: %d square: %f bw: %f\n",

ball.numBlacks, squareRatio, bwRatio);
return 1;

}
#if USE_BALL_AT_BORDER_FIX

if(BallAtBorderFix(&ball)){
if(CheckSquareCondition(white, &squareRatio) &&

CheckBwRatioCondition(&ball, &bwRatio)){
return 1;

}
}

#endif
return 0;

}

RecognizeCh1Ball::RecognizeCh1Ball()
{

}

RecognizeCh1Ball::~RecognizeCh1Ball()
{

}

RecognizeCh1Ball.h

#ifndef __RecognizeCh1Ball_H_
#define __RecognizeCh1Ball_H_

#include "../Common.h"
#include "Parameters.h"
#include "Pam.h"

#define USE_BALL_AT_BORDER_FIX 0
#define USE_FAR_BALL_DETECTION 0
const double BW_ACCEPTANCE_RATIO = 0.8;

80

const double SQUARE_ACCEPTANCE_RATIO = 0.8;
const int MAX_BLACK_BLOBS = 10;
const int MIN_BLACK_BLOBS = 1;
const double OPTIMAL_SQUARE_RATIO = 1.0;
const double OPTIMAL_BW_RATIO = 0.25;
const int FAR_BALL_THRESHOLD = 7;

class RecognizeCh1Ball
{

private:
typedef struct ballblob_t
{

Blob white;
Blob black[MAX_BLACK_BLOBS];
int numBlacks;

}BallBlob;
int BallAtBorderFix(BallBlob *ball);
int CheckBwRatioCondition(BallBlob *ball, double *result);
int CheckSquareCondition(Blob *white, double *result);
int CheckSizeCondition(Blob *white);
byte PartOf(Blob *blackBlob, Blob *whiteBlob);
void BuildBallBlob(BlobTable *table, Blob *white, BallBlob *ball);

public:
RecognizeCh1Ball();
~RecognizeCh1Ball();
int DetectCh1Ball(BlobTable *table, Blob *blob);

};

#endif

81

	Introduction
	Problem Definition

	RoboCup: The Robot World Cup Soccer Games
	Sony Legged Robot League
	Challenges
	Team Sweden

	The AIBO Robot
	Overview of AIBO
	Hardware and Peripherals
	The Aperios Operating System
	The OPEN-R Software Development Kit

	Team Sweden Software Architecture
	Manipulation and Walking
	Perception
	Behaviours
	Localisation
	Image Processing and Object Recognition

	The Problem
	Overview of Challenge 1
	Properties of a Ball
	Perceiving the Ball
	Related Work

	Solving the Ball Recognition Problem
	Computer Vision and Image Analysis
	The YCbCr Colour Space
	Image Analysis
	Image Processing Techniques

	Technical Preparations
	Using a Grey-scale Image
	Defining and Using the Roberts Cross
	Analysing the Histogram
	The Creation of Blobs
	Recognising the Ball

	Using a Colour Image
	Long Range Algorithm
	Close Range Algorithm

	Results and Implementation

	Conclusions and Future Improvements
	Gray-scale Approach
	Colour Approach
	Challenge 1
	Suggested Improvements

	Terminology
	Abbreviations

	Installation and Configuration of OPEN-R SDK
	Background
	Solution
	Installing the Development Tools
	Installing the OPEN-R SDK
	Installing the Sample Programs
	Mounting the MSAC-US1 Device

	Results

	C++ Code for the Gray-scale Approach
	C++ Code for the Colour Approach

