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Introduction
In the last few years, manufacturing systems have become increasingly more

complex. Little changes in production processes typically require an auto-

matic full redesign of the system or an intervention of an expert operator,

for the reconfiguration of the involved devices. The SIARAS project, which

stands for Skill-based Inspection and Assembly for Reconfigurable Automa-

tion Systems, proposes a new type of approach for the reconfiguration of

modern production lines.

Currently, the project is in its first stages of research at the Department

of Computer Science, Faculty of Technology (LTH), in Lund, Sweden. Its

main objective is the development of a reconfigurable automation system for

variant-rich, low-volume manufacturing and highly automated production

lines. To this end, it introduces the new concept of skill-based manufac-

turing, which requires that a system contains knowledge about its devices,

and their skills and properties. The system, called the skill-server, will al-

low reconfiguration and reparameterization of the process, in order to have

a production line which is both cost-efficient and flexible at the same time.

The object of study for this thesis is the design of a knowledge rep-

resentation system, from which the skill-server would draw the necessary

information.

In order to thoroughly represent connections among devices and skills,
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something as complex as an ontology is needed. An ontology provides formal

relationships between the terms of a controlled vocabulary.

Among the many formal ontology languages, OWL offers good develop-

ment support and guarantees. OWL, an acronym for Web Ontology Lan-

guage, is a markup language of the RDF/XML category, easily parsed by

computers. The OWL family provides three increasingly expressive sub-

languages designed for use in different cases and necessities: OWL-Lite,

OWL-DL, and OWL-Full. OWL-DL seems to be the best compromise, since

it exceeds the expressive constraints of OWL-Lite, and possesses computa-

tional decidability which is unavailable with OWL-Full. OWL-DL is called so

due to its correspondence with description logics. The structure of a descrip-

tion logic knowledge base, together with its associated reasoning services, are

viewed as the core of contemporary knowledge representation systems.
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Introduzione
Negli ultimi anni, i sistemi di produzione industriale sono diventati sem-

pre più complessi. Piccoli cambiamenti nei processi produttivi richiedono

tipicamente una completa riprogettazione del sistema in modo automatico

o l’intervento di un operatore esperto, per la riconfigurazione dei dispositivi

coinvolti. Il progetto SIARAS (Skill-based Inspection and Assembly for Re-

configurable Automation Systems) propone un nuovo tipo di approccio per

la riconfigurazione delle moderne linee di produzione.

Attualmente, il progetto è nella prima fase di ricerca al Dipartimento di

Computer Science, Faculty of Technology (LTH), a Lund, Svezia. Il suo prin-

cipale obiettivo è lo sviluppo di un sistema di automazione riconfigurabile per

linee di montaggio ad alta varianza, a basso volume di produzione e ad alta

automazione. A questo proposito, introduce il nuovo concetto di produzione

basata sulle abilità, il quale richiede che un sistema abbia conoscenza dei suoi

dispositivi, le loro abilità e le loro proprietà. Il sistema, chiamato skill-server,

permetterà la riconfigurazione e la riparametrizzazione del processo, al fine

di avere una linea produttiva che sia economicamente efficiente e flessibile

allo stesso tempo.

L’oggetto di studi per questa tesi è la progettazione di un sistema di

rappresentazione della conoscenza, dal quale lo skill-server possa trarre le

informazioni necessarie.
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Al fine di rappresentare in dettaglio le connessioni tra dispositivi e abilità,

qualcosa di complesso come un’ontologia è necessario. Un’ontologia fornisce

le relazioni formali tra i termini di un vocabolario controllato.

Tra i molti linguaggi formali per rappresentare ontologia, OWL offre

un buon supporto allo sviluppo e garanzie. OWL, un acronimo per Web

Ontology Language, è un linguaggio di markup della categoria RDF/XML,

facilmente interpretabile da parser. La famiglia di OWL fornisce tre sotto-

linguaggi sempre più espressivi, progettati per usare in differenti casi e ne-

cessità: OWL-Lite, OWL-DL e OWL-Full. OWL-DL sembra essere il miglior

compromesso, dato che supera le limitazioni espressive di OWL-Lite e possiede

decidibilità computazionale, che non è disponibile con OWL-Full. OWL-DL

è cos̀ı chiamato per la sua corrispondenza con le logiche descrittive. La strut-

tura di una base di conoscenza in logica descrittiva, insieme con i servizi di

ragionamento associati, sono visti come la base dei moderni sistemi di rap-

presentazione della conoscenza.
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Chapter

1
Knowledge representation

Knowledge representation is a branch of artificial intelligence that strives to

represent a high-level description of the world, in such a way that this infor-

mation is available and usable by reasoning applications, in order to be able

to discover implicit consequences from an explicitly represented knowledge.

This chapter will give a brief summary of the development of knowledge

representation approaches, from semantic networks to ontologies.
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History

1.1 History

The research in the field of knowledge representation has frequently been

focusing on formalizing systems which are able to determine, starting from a

knowledge codified in a hierarchical way, implicit inconspicuous consequences

and to discover relations among the described entities. Several knowledge

representation methods were already developed in the 1970s [1], and it is

possible to identify two main categories of approaches:

- Declarative or propositional (logic-based), mainly established on pred-

icate calculus and inference procedures.

- Procedural (non-logic-based), based on cognitive considerations derived

from human execution of tasks.

The procedural method expresses the know-how, which is the knowledge

of how to perform some task. This kind of approach is usually developed

for specific duties, using ad hoc procedures and data structures, like seman-

tic networks and frames. Although differences exist between them, both

have a common basis in their features. In fact, they can both be considered

network-based structures. The resulting model is mostly domain dependent

and is inclined to be more specific than in propositional knowledge, although

it could be used in different domains. There is an advantage of using proce-

dural knowledge when it is not computationally feasible to try all logically

possible ways of managing knowledge. Because the origins are human cen-

tered, the results can be more interesting from a practical viewpoint than

the logical system. The semantic nets were introduced at the end of the

1960s, as a representational base for words of the English language, and the

objective was to characterize structures of knowledge and reasoning in artifi-

cial systems. Similarly, frame-based systems were meant to obtain decisions

from the network structure as a whole, not from the individual components.
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Although these systems seem feasible, they were not satisfactory from a theo-

retical viewpoint for at least two reasons: the vagueness and the inconsistence

of some constructions and the lack of a semantic level, independent from a

particular implementation. A hierarchical structure of the network was in-

troduced to improve representation and reasoning abilities, and the easiest

way to implement such structure was to have a link that represented the is-a

relation. As pointed out by Brachman [2], the is-a relationship made se-

mantic networks an efficient storage scheme, since it defined a hierarchy over

the concepts and allowed the inheritance of properties. When one concept

is more specific than another, it inherits properties from that which is the

most general. One important step in an accurate formalization of semantic

networks was moving representative meaning from a semantic level to an

epistemological level. Brachman succeeded to determine a set of primitives,

independent from application or domain. These considerations lead Brach-

man and his colleagues to create the KL-ONE system [3]. This knowledge

representation system did not only focus on description formation, but it in-

troduced an assertion language, and predicate logic proved to be inadequate

for this task. In fact, if predicate logic is used without some restrictions,

then the information loses its structure and the expressive power is too high

to allow efficient computational procedures. To face this problem, a new

family of logics was introduced: description logics, which can be seen as sub-

languages of first order predicate logic. These logics are used in knowledge

representation systems to provide both a language for defining a knowledge

base and inference rules to reason over it.
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1.2 Knowledge base

The realization of knowledge-based systems requires a precise characteriza-

tion of a knowledge base; this concerns characterizing the type of knowledge

to be specified to the system. A knowledge base is a type of database for

knowledge management. It is not a static collection of information, but a

dynamic resource.

Inside a knowledge base it is possible to notice a clear distinction between

general knowledge about the domain of interest (intensional knowledge), and

specific knowledge for a particular problem (extensional knowledge). The

need to distinguish general knowledge from specific knowledge causes for that

description logic knowledge base to be divided into two types of components,

TBox and ABox.

TBox The TBox (terminological box) contains intensional knowledge mani-

fested in a taxonomy. TBox statements are made of declarations that

describe attributes and properties of concepts. The natural structure

associated with TBoxes is a semantic network, and that structure has

nothing to do with any implementation. Intensional knowledge is often

expected not to change, and therefore TBox statements are more static

inside a knowledge base and are stored in a data model.

ABox The ABox (assertional box) contains extensional knowledge, that is

specific to the individuals of the domain of discourse. Assertional

knowledge is often thought to be dependent on one set of conditions,

hence ABox statements are more dynamic and are usually stored as

instance data.

The main reason for this division is that detachment can be useful when

describing and formulating decision procedures for description logics. A rea-

soner may process the TBoxes and ABoxes separately, because some inference

problems are connected to only one of them, independently of the other. In
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this way it is easier to reason only about a specific part of the knowledge base.

A knowledge base structure can be specified through an ontology, which with

the individuals of its classes establishes a knowledge base.

Figure 1.1. Architecture of a knowledge representation system based on de-
scription logics.

1.2.1 TBox

The intensional part of a knowledge base, structured upon description logics,

is formed by a series of definitions of concepts beginning from descriptions. In

turn, they are constructed from other concepts and constructors. Naturally

there are some rules regarding the definitions. In particular:

- A concept is defined univocally once and only once.

- A concept cannot be defined by reference to itself.

- A concept cannot be defined through operation of a concept that it

subsumes, because this still may have not been defined in the knowledge

base.
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The last two points can be reassumed imposing that, in general terms,

that cyclic or self-referencing definitions are not allowed. Not only are these

tasks vital in order to maintain the integrity of the semantics of the knowledge

base, but they are also fundamental for the very existence of the procedures

of inference and subsumption. Such procedures, in fact, are based on the ex-

pansion of the descriptions of the terms of the taxonomy in unique formulas,

constituted by the union of several constructors. However, in a description

there is a non-primitive concept, but its structured description, becomes in

such a way replaced by its description, expanding the original description.

In spite of this procedure, it can give rise to exponential descriptions [4],

but there are no such practical descriptions to change the complexity of the

reasoning. It is possible to manage the complexity of inference considering

all expanded descriptions. Constructing the knowledge base in this way, the

terminology comes to assume a hierarchical aspect, implicitly structured as a

classification system. Every concept is placed exactly between the concepts

that subsume it directly and those that it subsumes.

1.2.2 ABox

The ABox contains assertions that specify the individuals that are in the

interest domain. The assertions can be of two fundamental types: conceptual

assertions and assertions of role. Generally, the assertions in the knowledge

base are specified in distinguished way, before the individuals of the domain

are declared, and then all the respective relationships are indicated. The

conceptual assertions define the belonging of an individual to one category (or

concept) previously specified in a TBox. The typical procedures of inference

of an ABox also involve the TBox by necessity. In fact, it is possible to see

if an individual is an instance of a concept, and which concepts subsume it

or which relations it has with other individuals.
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1.3 Ontology

In philosophy, the word ontology means study of being, hence the study about

the nature of existence. In artificial intelligence, the term has another mean-

ing and a good definition is given by Tom Gruber in [5]. An ontology is an

explicit specification of a conceptualization. A conceptualization is an elabo-

ration of a concept that tries to give a simplified view of the world that has

to be represented. Under this point of view, an ontology is a formal descrip-

tion of the objects and relationships among them, that belong to a specific

domain.

The object-oriented nature of ontologies makes them limited in repre-

senting knowledge outside the domain for which they are conceived. For

this reason they can also be called domain-specific ontologies. This is not a

limitation, as long as the ontology is used for specific tasks. The research

is trying to define high-level ontologies, that may describe general concepts

defined independently from the domain of application and may be used in

different application domains.

Ontology knowledge can be specified using four components: concepts,

relationships, properties, and individuals.

- Concepts (class, object, category): an abstract set, or collection of

objects. It can contain individuals or other classes.

- Attribute (property): asserts general facts about the elements of a class.

Each attribute has at least a name and a value, and is used to store

information that is specific to the object it is attached to.

- Relationship (role): an interaction between concepts or individuals. A

relationship can be considered as an attribute whose value is another

object in the ontology.

- Individuals (instances): are the members of the sets defined by concept;

all these terms are used to represent elements in the domain. An ontol-
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ogy needs not include any individuals, but one of the general purposes

of an ontology is to provide a means of classifying individuals, even if

those individuals are not explicitly part of the ontology.

The issue of the definition of an ontology language arises considering

ontology-related applications. An ontology language is a formal language

used to encode the ontology. During last years of research, a lot of potential

representation languages for ontology definition were defined, from natural

language for highly informal ontologies to more formal languages for strict

formal ontologies.

Not only do the representational constructs in a language have to be

considered, but the reasoning that the language has to support, also has to

be taken care of.

The research in description logics on a formal, logic-based semantic and

an accurate analysis of the reasoning problems, makes this class of knowledge

representation formalisms a starting point for defining ontology languages.

The reasoning services required to support the building, integration, and

development of high-quality ontologies are provided by description-logic sys-

tems.
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Chapter

2
Description logics

Description logics are based on the concept language, a formal language that

describes classes and relationships between elements of the classes. Knowl-

edge bases are developed using description logics and are composed by formal

expressions. These expressions can be divided into two separate categories:

intensional (TBox) and extensional (ABox).

Both the TBox and ABox can be involved in an inferential process. Each

type of query to the knowledge base activates an inferential process that

produces answers deduced from the content of the knowledge base as log-

ical consequences. For the characterization of a knowledge base, both the

formal definition of the language and the definition of reasoning services are

necessary.
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2.1 Syntax and semantics

Description logic systems describe structured classes of objects through con-

cept languages. The syntax and semantics, that are derived from such an

approach, are defined in [1] and then retrieved by [6] and [7]. The base of

concept languages are concepts and roles : a concept is a class of common el-

ements, and a role is a binary relation between objects or attributes attached

to objects.

Description logics are a family of different logics, distinguished by the

set of constructors that they provide. Any type of language is named ac-

cording to a convention introduced by Schmidt-Schauss and Smolka in [8].

Each constructor is associated with a different capital letter and the name

of a language is composed by the prefix AL, which is the acronym for at-

tributive language. This is then followed by the letters corresponding to the

constructors used in the language, for example: ALC or ALCHOIF .

This type of name assignment makes a detailed classification of concept

languages, due to the fact that the computational properties of the reasoning

change enormously with the presence or absence of a particular constructor.

Hence, it is necessary to accurately indicate the constructors which are used

in a description logic.

The semantics of description logics are usually given in a Tarski-style

form. Hence, the interpretations I = (∆I , ·I) are considered, where the non-

empty set ∆I is any set of objects called domain of the interpretation, and ·I

is a function called interpretation function. This function is a mapping from

non-logical symbols of description logics to elements and relations over ∆I .

It assigns a set AI ⊆ ∆I to every atomic concept A and a binary relation

RI ⊆ ∆I ×∆I to every role R. Therefore, given an interpretation I and its

interpretation functions for atomic concepts, and roles, it is possible to find

the interpretation of any concept [9]. The interpretation of a concept is also

called its extension, and I is sometimes called an extension function. The

only restriction on the interpretations is the unique name assumption, which

DESCRIPTION LOGICS 10



Syntax and semantics

imposes that different individual names have to be mapped into distinct

elements of the domain.

A representation of description logic syntax and semantics is given in

Tables 2.1 and 2.2.

Elementary descriptions are atomic concepts and atomic roles. Instead,

complex descriptions are built inductively starting from these atomic con-

cepts and roles, using concept constructors and role constructors. Concept

constructors take atomic descriptions and transform them into more complex

concept descriptions. Table 2.1 shows the syntax and semantics of common

concept constructors.

The simplest language denoted by the prefix AL is close to the expres-

siveness of frame-based representation systems. It enables the specification

of hierarchies of concepts through the conjunction of two concepts (u). Such

a binary operator is the intersection of the two elements. The hierarchical

structure comes from the fact that the conjunction A u B is more specific

than both A and B, because it denotes a smaller set of elements.

Another category of constructors in AL enables the specification of at-

tributes with the unqualified existential (∃R.>) and qualified universal (∀R.C)

quantifiers. These allow the creation of expressions to build new concepts

in terms of the roles. In particular, expression ∃R.> denotes the set of ele-

ments related to some other element by the role R, while ∀R.C denotes the

set of elements which are related by the role R exclusively to elements of the

concept C.

Note that, in AL, negation can only be applied to atomic concepts, and

only the top concept is allowed in the scope of an existential quantification

over a role. In addition, the concept language AL provides the symbols >
for the full domain and ⊥ the empty-set, respectively.

More expressive languages are obtained by adding further constructors

to AL.

The union of concepts, indicated by the letter U , is written as CtD, and
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Table 2.1. Syntax and semantics of concept expression constructors.

Description Syntax Semantics

concept name A AI ⊆ ∆I

top > ∆I

bottom ⊥ ∅
intersection C uD CI ∩DI

union (U) C tD CI ∪DI

universal quantification ∀R.C {x|∀y(x, y) ∈ RI ⇒ y ∈ CI}
existential quantification (E) ∃R.C {x|∃y(x, y) ∈ RI ∧ y ∈ CI}
general negation (C) ¬C ∆I \ CI

(unqualified) number ≤ nR {x|]{y|(x, y) ∈ RI} ≤ n}
restriction (N ) ≥ nR {x|]{y|(x, y) ∈ RI} ≥ n}
functionality (F) ≤ 1R {x|]{y|(x, y) ∈ RI} ≤ 1}
qualified number ≤ nR.C {x|]{y|(x, y) ∈ RI ∧ y ∈ CI} ≤ n}
restriction (Q) ≥ nR.C {x|]{y|(x, y) ∈ RI ∧ y ∈ CI} ≥ n}
one-of (O) I II ⊆ ∆I with ]II = 1
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interpreted as:

(C tD)I = CI ∪DI

The negation of arbitrary concepts is indicated by the letter C (for com-

plement) and it is written as ¬C, and interpreted as:

(¬C)I = ∆I \ CI

Full existential quantification is indicated by the letter E and it is written

as ∃R.C, and interpreted as:

(∃R.C)I = {x|∃y(x, y) ∈ RI ∧ y ∈ CI}

Note that ∃R.C differs from ∃R.>. In the latter case, arbitrary concepts

can happen in the range of the existential quantifier, while the first case

identifies a class of all elements that have at least a relation R with an

element of the class C.

Number restrictions can vary with respect to the type of restrictions. A

normal number restriction is indicated by the letter N and it can be written

as ≥ nR (at-least restriction) and ≤ nR (at-most restriction), where n is a

non-negative integer. They are interpreted, respectively, as:

(≥ nR)I = {x|]{y|(x, y) ∈ RI} ≥ n}
(≤ nR)I = {x|]{y|(x, y) ∈ RI} ≤ n}

where ] denotes the cardinality of a set.

A special case is, if n = 1, the number restriction is called functionality

and it is indicated by the letter F .

If the number restriction is qualified for a concept C, the restriction is

indicated by the letter Q and and it can be written as ≥ nR.C and ≤ nR.C.

They are interpreted respectively as:
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(≥ nR.C)I = {x|]{y|(x, y) ∈ RI ∧ y ∈ CI} ≥ n}
(≤ nR.C)I = {x|]{y|(x, y) ∈ RI ∧ y ∈ CI} ≤ n}

Through the concept constructor one-of, denoted by O, it is possible

to enumerate the individuals belonging to the concept. Sometimes, it is

convenient to allow individual names or nominals not only in the ABox, but

also in the description language. The one-of constructor can be written

{a1, ..., an}, where a1, ..., an are individual names. Such a set concept is

interpreted as:

{a1, ..., an}I = {a1
I , ..., an

I}

Role constructors take atomic concept descriptions and transform them

into more complex role descriptions. Table 2.2 shows the syntax and seman-

tics of common role constructors.

Table 2.2. Syntax and semantics of role expression constructors.

Description Syntax Semantics

role name P P I ⊆ ∆I ×∆I

role intersection R uQ RI ∩QI

role union R tQ RI ∪QI

role composition R ◦Q {(a, c)|∃b.(a, b) ∈ RI ∧ (b, c) ∈ QI

inverse role (I) R−1 {(y, x)|(x, y) ∈ RI }

Some constructs can be expressed in first-order predicate logic, such as

composition, union, and intersection.

Contrarily, other role constructors require a more detailed description.

If a role can satisfy the transitive property, in this case, AL extended with

transitive roles is denoted by ALR+ .
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In description logic languages, it is possible to set constraints using a

bidirectional relation using inverse roles, denoted by I. Without the inverse

operator for roles, binary relations can only be used asymmetrically. Hence,

the inverse operator is important because it overtakes that asymmetry.

A set of axioms of the form R ⊆ S where both R and S are atomic is

called role hierarchy. Such a hierarchy obviously imposes restrictions on the

interpretation of roles. The fact that the knowledge base can contain a role

hierarchy is indicated by appending H to the name of the description logic.

2.2 Description logic languages

From the semantic point of view, not all possible languages are distinct. The

semantics enforces the equivalences C t D = ¬(¬C u ¬D) and ∃R.C =

¬∀R.¬C. Hence, union U and full existential E quantification can be ex-

pressed using negation C. Contrarily, the use of union and full existential

quantification makes it possible to express negation of concepts. Therefore,

union and full existential quantification are present in each language that

contains negation. It follows, that all AL-languages can be written using

the letter C instead of the letters UE in language names. For instance, it is

possible to write ALC instead of ALUE .

The smallest propositionally closed description logic is ALC (Attributive

Language with Complements):

ALC ::= ⊥|A|¬C|C ∨D|C ∧D|∃R.C|∀R.C

The addition of a new constructor to the description logic language entails

the addition of a letter to the description logic name, making it possible

to create a lot of combinations. Several additions are independent of one
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another, such as O, I, and H. These can be added to any type of description

logic, but their simultaneous use increases the computational complexity, in

case of satisfiability problems on the knowledge base.

The number restrictions of concept constructors, which are F , N , and

Q, are more expressive. Only one of them can be used to characterize the

description logic. The letter F means functionality, but it is sometimes em-

ployed to express the presence of feature (dis)agreement constructor, rather

than functionality. The letter N generalizes F -supporting logics with num-

ber restrictions, and Q qualifies the number restrictions with the concepts.

Some short references have been introduced to extend the AL family

language, in order to avoid very long names for expressive description logics.

The description logic ALC extended with transitive role ALCR+ is abbre-

viated with S.

In turn, SH extended with complex role inclusions, expressed in the form

of R ◦ S ⊆ R or R ◦ S ⊆ S, is abbreviated with R.

The use of role constructors increases the variety of description logics

even further. This does not directly affect the name of the logic, but some-

times it is possible that the role constructors are indicated after the name,

e.g. ALC(¬,∩,∪). Also, in this case the increase of language expressiveness

with new role constructors increases the computational complexity. In some

cases, allowing more complex roles inside number restrictions can easily cause

undecidability.

2.3 Reasoning with description logics

As formerly stated, a description logic knowledge base is a pair KB =<

TBox, ABox >. Once the knowledge base KB is defined, TBox and ABox

are also defined. Inside the knowledge base, it is possible to define the concept
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of logical implication, hence, a statement α is logically implied (or entailed)

by the knowledge base KB if and only if it is true in every model of KB.

This is written as KB |= α.

Starting from simple logic implications, it is possible to reason with de-

scription logic knowledge bases. The reasoning is the essential process that

allows description logic systems to extract implicit data from the knowledge

base.

The reasoning services can be different from each other, depending on

the purpose of the description logic system and their implemented reasoning

techniques. Reasoning services can be classified as simple services, which

concerns whether or not a statement has a truth value, or more complex

services.

Reasoning services range from checking concept satisfiability or verifying

the subsumption between two concepts, to more complex services such as

searching all the individuals that are in a given class, even if those individuals

are not explicitly in that class.

Some reasoning tasks that only consider a TBox are:

- Knowledge base satisfiability: a knowledge base KB is satisfiable

(KB |= > 6≡ ⊥) if there is at least one non-empty model for KB.

- Concept satisfiability: a class C 6≡ ⊥ is satisfiable with respect to

KB (KB |= C), if a model of KB exists, and where the interpretation

of the concept C is not empty (CI 6= ∅).

- Subsumption: a class D subsumes a class C with respect to KB

(KB |= C v D), if each interpretation of C is in that of D (CI ⊆ DI)

for all models of KB.

- Equivalence: two classes C and D are equivalent with respect to KB ,

if CI = DI for all models of KB. It is possible to write KB |= C ≡ D.
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- Disjointness: two classes C and D are disjoint with respect to KB,

if CI ∩DI = ∅ for all models of KB.

Description logics can offer both intersection and full complement, since

all inferences have reference to satisfiability. Therefore, algorithms for check-

ing satisfiability are sufficient to obtain decision procedures for any of the

five discussed inferences.

The formerly mentioned inferences are usually used during the design

phase of the TBox in order to determine if all classes are satisfiable and that

expected subsumptions are verified. After the design of the TBox, all classes

are generally satisfiable.

The ABox represents a particular state of a domain, introducing individ-

ual names and their properties. ABoxes are composed of statements of the

form: C(a) or R(a, b). The class assertions C(a) means that the interpre-

tation of individual a is in the interpretation of the concept C (aI ∈ CI).

The property assertions (roles) R(a, b) means that the pair composed by

the interpretations of individuals a and b is in the interpretation of role R

(aI , bI) ∈ RI).

As formerly stated for the TBox, an interpretation I is a model for an

ABox if it satisfies each element of the ABox.

Reasoning tasks usually considered for ABoxes are the following:

- Consistency: an ABox A is consistent with respect to a TBox T , if an

interpretation exists that is a model of both A and T . A is consistent,

if it is consistent with respect to the empty TBox.

- Instance checking: an assertion C(a) is entailed by KB (KB |=
C(a)) if in every model of KB the interpretation that satisfies KB

also satisfies C(a).

- Retrieval problem: given KB and a concept C, this task finds all

individuals a such that KB |= C(a). The dual problem is to find all

named classes C for an individual a for which KB |= C(a).
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- Role fillers: given a role R and an individual a in KB, role fillers

retrieve all individuals x which are related with a by R ({x|KB |=
R(a, x)}). Similarly, it is possible to retrieve the set of all named roles

R between two individuals a and b, asking if the pair (a, b) is a filler of

R.

ABox consistency can be reduced to concept satisfiability, if a language

has the O constructor. Otherwise, checking the instance is usually harder

than concept satisfiability.

The retrieval problem gathers all individuals in the knowledge base that

are instances of a given concept in every model of the knowledge base, which

can be viewed as a query answering service.

One of the most common tasks is the classification. It consists of repre-

senting the class taxonomy inferred by the knowledge base. The taxonomy

is a graph, whose nodes are the class names, and whose edges are the sub-

sumption relations between the classes.

2.4 Complexity of reasoning with description logics

In description logics, the complexity of reasoning refers to the computational

complexity of the knowledge base satisfiability problem, but it can be also

considered for consistency problems.

The complexity depends mostly on the type of constructors provided by

the description logic language. Hence, the complexity is directly connected

to the expressiveness of a language.

The modularity of the description logic language facilitates the addition of

new constructors. This makes it possible to use specific language constructors

for different applications, depending on the required level of expressiveness.
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Nowadays, the main purpose of the research on description logics is that of

extending the expressiveness of description logic languages, while maintaining

the decidability and soundness of the reasoning services. The undecidability

limits and the complexity of the reasoning are well-known, but there is a lot

work to do on the definition of practical algorithms, and on the analysis of

the interaction between the different constructors.

According to the computational complexity theory, a set of problems of

related complexity is described by a complexity class. Typically, a complex-

ity class is the set of the computational problems which require the certain

amount of resources to be solved. More formally, it is defined as the set of

problems which require an O(f(n)) amount of resource R to be solved by an

abstract machine M , where n is the size of the input.

It is possible to divide the description logic problems into three complexity

classes, whose definitions are based on [10]:

- PSpace-complete: PSpace is the complexity class whose problems

which require a polynomial amount of memory and unlimited time to

be solved by a deterministic Turing machine.

A decision problem is PSpace-complete if it is PSpace, and each prob-

lem PSpace is reducible to it in polynomial time. These problems are

suspected to be outside of P and NP, but that is not known. PSpace

can be correlated with P and NP through the following relationship:

P ⊆ NP ⊆ PSpace

- ExpTime-complete: the complexity class ExpTime is the set of all

decision problems which require a O(2p(n)) time to be solved by a de-

terministic Turing machine, where p(n) is a polynomial function of n.

A decision problem is ExpTime-complete if it is ExpTime, and each

problem in ExpTime is reducible to it in polynomial time. The fol-

lowing relationships are known:
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P ⊆ NP ⊆ PSpace ⊆ ExpTime

P ( ExpTime

It is possible to express ExpTime as the space class APSpace, this

class of problems requires a polynomial space to be solved by an alter-

nating Turing machine. Due to alternating Turing machine character-

istics, it is possible to see that PSpace ⊆ ExpTime.

- NExpTime-complete: the complexity class NExpTime is the class of

decision problems which require a O(2p(n)) time and unlimited space

to be solved by a non-deterministic Turing machine, where p(n) is a

polynomial function of n. The following relationship is valid:

ExpTime ⊆ NExpTime

It is also known that if P = NP , then ExpTime = NExpTime.

As previously stated, these decision problems can be solved by some al-

gorithms, therefore they are also decidable problems.

The computational complexity depends both on the type of problem and

on the type of description logic language [11]. Figure 2.1 [11] shows how the

complexity of a concept satisfiability problem with general TBox changes

when languages change. A general TBox is a finite set of concept inclusions,

C ⊆ D for arbitrary concepts C and D. The base language used in Figure 2.1

is ALC, but it is still the same domain division for more complex languages,

such as ALCH, S, or SH.

The division of complexity space in ExpTime and NExpTime is present

also in other cases. The check of ABox consistency with general TBox has

the same complexity. Hence, for languages with operators O and I, and a

number restriction (F , N , or Q) and for a general TBox, the best known
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Figure 2.1. Complexity of concept satisfiability problem with general TBox.

algorithms require exponential time and also exponential space, unless the

equality PSpace = ExpTime is true.

The assumption that the TBox is empty further simplifies the develop-

ment of reasoning procedures. In case the TBox is empty and using SH as

base language, the previous complexity schema is still applicable, both for

ABox consistency and concept satisfiability problems. While in case of empty

TBox and more simple base languages, such as ALC or S, the complexity

division is shown in Figure 2.2 [11].

In this case, the complexity that before was ExpTime becomes PSpace,

except if O and I constructors are both present.

For several description logics, the definition of their computational com-

plexity is still an open problem. For some other languages, such as R or

RIQ, satisfiability and consistency problems are established only as decid-

able. The complexity of reasoning problems can be further increased by the

presence of a cyclic TBox. The operator µ, introduced in order to represent

cyclic TBox, is the least fixed-point operator. If it is applied to decidable
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Figure 2.2. Complexity of concept satisfiability problem with empty TBox.

languages, it can turn them into undecidability of the description logic, this

is the case of the µALCOIF language.

Because description logics are a knowledge representation formalisms, and

since a knowledge representation system usually has to always answer the

queries of a user in reasonable time, the reasoning procedures should always

terminate, both for positive and for negative answers. Since the guarantee of

an answer in finite time needs not imply that the answer is given in reasonable

time, investigating the computational complexity of a given description logic

is an important issue. On one side, expressive description logics have often

inference problems of high complexity, or in the worst cases they can be

undecidable. On the other side, less expressive description logics, that have

efficient reasoning procedures, cannot be expressive enough to represent the

important concepts of a given application [6]. This trade-off between the

expressiveness of description logics and the complexity of their reasoning

problems is one important issues for description logics research.
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Chapter

3
OWL Web Ontology Language

OWL (acronym for Web Ontology Language) is a markup language used to

represent a knowledge domain through ontologies. OWL is derived concep-

tually from the DAML+OIL Web Ontology Language, and it is a vocabulary

extension of Resource Description Framework (RDF). OWL specification is

supported by the World Wide Web Consortium (W3C), and the explanation

of OWL is based on their specifications [12]. OWL has three increasingly

expressive sublanguages designed for use in specific implementations, they

are: OWL-Lite, OWL-DL, and OWL-Full.
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3.1 OWL syntax

OWL is an ontology language built upon Resource Description Framework

(RDF), which is a specification for a metadata model, typically implemented

as an application of XML.

The RDF metadata model represents resources in the form of triples,

where each triple contains, conventionally written in the following order:

subject, predicate, object. The predicate is also known as the property of

the triple. These triples represent a labeled, directed pseudo-graph, therefore

an OWL ontology is an RDF graph.

Accordingly to any RDF graph, an OWL ontology graph can be written

in several different syntactic forms, as reported in [13]. However, the meaning

of an OWL ontology is exclusively determined by the RDF graph. Therefore,

it is possible to use other syntactic RDF/XML forms, as long as these result

in the same main set of RDF triples. Such other syntactic forms would then

provide exactly the same meaning as the syntactic form used in building the

ontology.

As OWL is a vocabulary extension of RDF Semantics, the meaning given

to an RDF graph by OWL includes the meaning given to the graph by RDF.

These types of ontologies are called OWL-Full, and they can thus include

arbitrary RDF content, which is treated in a manner consistent with that

of RDF. The OWL language also provides two less expressive sublanguages:

OWL-DL and OWL-Lite. They extend the RDF vocabulary, but also impose

restrictions on the use of this vocabulary. Hence, RDF documents are OWL-

Full, unless they are specifically developed to be OWL-DL or OWL-Lite.

A standard initial component of an ontology includes a set of XML names-

pace declarations enclosed in an opening rdf:RDF tag. These provide a means

to unambiguously interpret identifiers and make the rest of the ontology pre-

sentation much more readable.

Among namespace declarations, the following line is present:
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xmlns:owl ="http://www.w3.org/2002/07/owl#"

This is a conventional OWL declaration, used to introduce the OWL vo-

cabulary. Elements prefixed with owl: should be understood to be referring

to that namespace.

3.1.1 Classes

Classes provide an abstract set for grouping elements with similar charac-

teristics. Each OWL class is associated with a set of individuals, called

instances. In OWL-Lite and OWL-DL an individual cannot be a class at

the same time, because classes and individuals form disjoint domains. An

OWL class is syntactically represented as a named instance of owl:Class, a

subclass of rdfs:Class.

<owl:Class rdf:ID="MainSensorSkill"/>

The only exceptions are two predefined identifiers: the classes owl:Thing

and owl:Nothing. The latter is the empty set, while the former is the set of

all individuals. Consequently, every OWL class is a subclass of owl:Thing

and owl:Nothing is a subclass of every class.

Classes are described through a set of constructors (see Table 3.1).

The first three constructors in the table can be viewed as representing the

AND, OR and NOT operators for classes. The three operators get the stan-

dard set-operator names: intersection (intersectionOf), union (unionOf),

and complement (complementOf). owl:unionOf and owl:complementOf are

not part of OWL-Lite, while intersectionOf is limited in its use.

A class described with owl:oneOf is a list of individuals that are the

instances of the class, because it contains exactly the enumerated individ-

uals. The list of individuals can be represented with the RDF construct
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Table 3.1. Class constructors.

OWL syntax DL syntax FOL syntax

intersectionOf C1 u . . . u Cn C1(x) ∧ . . . ∧ Cn(x)

unionOf C1 t . . . t Cn C1(x) ∨ . . . ∨ Cn(x)

complementOf ¬C ¬C(x)

oneOf {x1} t . . . t {xn} x = x1 ∨ . . . ∨ x = xn

allValuesFrom ∀P.C ∀y.P (x, y) → C(y)

someValuesFrom ∃P.C ∃y.P (x, y) ∧ C(y)

hasValues ∃P.{yi} P (x, yi) ∧ C(yi)

maxCardinality ≤ nP ∃≤ny.P (x, y)

minCardinality ≥ nP ∃≥ny.P (x, y)

cardinality = nP ∃=ny.P (x, y)

rdf:parseType=Collection, which provides a convenient syntax for writing

down a set of list elements. owl:oneOf constructor is not part of OWL-Lite.

A class defined by an owl:allValuesFrom constraint is a class of all

individuals for which all values of the property under consideration are data

values within the specified data range. The owl:someValuesFrom constraint

entails that for each instance of the class that is being defined, there exists

at least one value of the property that fulfills the constraint. In OWL-Lite

the only type of class description allowed as object of owl:allValuesFrom

and owl:someValuesFrom is a class name.

With a owl:hasValue constraint, a class can be composed by individuals

for which the property concerned has at least one value semantically equal

to a predefined value. Also owl:hasValue is not included in OWL-Lite.

Any instance of a class may have an arbitrary number of values for a

particular property. To make a property mandatory, to allow only a specific

number of values for that property, or to impose that a property must not

occur, cardinality constraints can be used.
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The cardinality constraints link a restriction class to a data value belong-

ing to a non-negative value. A restriction containing an owl:maxCardinality

constraint describes a class of all individuals that have at most N semantically

distinct values for the property concerned, where N is the value of the cardi-

nality constraint. Similarly, a restriction containing an owl:minCardinality

constraint describes a class of all individuals that have at least N semanti-

cally distinct values for the property concerned. And a restriction containing

an owl:cardinality constraint describes a class of all individuals that have

exactly N semantically distinct values. OWL-Lite allows the use of all three

types of cardinality constraints, but only when used with the values 0 or 1.

OWL classes can also be described through class axioms, as they contain

additional components that state necessary and/or sufficient characteristics

of a class. OWL contains three constructs for combining class descriptions

into class axioms:

- rdfs:subClassOf allows one to say that a class is a subset of another

class.

- owl:equivalentClass allows one to say that a class has exactly the

same members as another class.

- owl:disjointWith allows one to say that a class has no members in

common with another class.

3.1.2 Properties

OWL distinguishes between two main categories of properties:

- Object properties link individuals to individuals.

- Datatype properties link individuals to data values.
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An object property is made using predefined class owl:ObjectProperty,

while a datatype property uses class owl:DatatypeProperty.

Both owl:ObjectProperty and owl:DatatypeProperty are subclasses

of the RDF class rdf:Property. Henceforth, object properties are indicated

as relationships, in order not to overload the term property. OWL supports

several constructs for property:

- RDF Schema constructs: rdfs:subPropertyOf, rdfs:domain

and rdfs:range;

- relations to other properties: owl:equivalentProperty

and owl:inverseOf;

- global cardinality constraints: owl:FunctionalProperty

and owl:InverseFunctionalProperty;

- logical property characteristics: owl:SymmetricProperty

and owl:TransitiveProperty.

rdfs:subPropertyOf defines that a property is a sub-property of some

other property. This states that all instances (pairs) contained in a sub-

property are also members of the property, from which the sub-property is

derived. Sub-property can be applied to both datatype properties and object

properties. In OWL-DL, the subject and object of a sub-property statement

must be both the same kind of property.

rdfs:domain asserts that the subjects of such property statements must

belong to the indicated class.

rdfs:range asserts that the values of the property must belong to the

indicated class description or to data values in the specified data range.

Multiple domain and range restriction are allowed and they are inter-

preted as a conjunction of all domains or intersection of all ranges. Multiple

alternative ranges or domains can be specified by using the owl:unionOf
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constructor among classes.

The owl:equivalentProperty construct can be used to state that two

properties have the same property extension. Equivalent properties have

the same values, but they can have different intensional meaning. As this

requires that properties are treated as individuals, that are only allowed in

OWL-Full.

Relationships have a direction, from domain to range. Therefore, it use-

ful to define relations in both directions. The owl:inverseOf construct can

be used to define such an inverse relation. Syntactically, owl:inverseOf is

a built-in OWL property with owl:ObjectProperty as its domain and range.

A functional property is a property that can have only one value for

each instance. Both relationships and datatype properties can be declared as

functional. Hence, OWL defines the built-in class owl:FunctionalProperty

as a special subclass of the RDF class rdf:Property.

Whereas a property can be declared to be inverse-functional, then the ob-

ject of a property statement uniquely determines the subject. Formally, an

inverse-functional property is specified by declaring the property to be an in-

stance of the built-in OWL class owl:InverseFunctionalProperty, which is

a subclass of the OWL class owl:ObjectProperty. In OWL-DL object prop-

erties and datatype properties are disjoint, so an inverse-functional property

cannot be defined for datatype properties.

Both owl:FunctionalProperty and owl:InverseFunctionalProperty

specify global cardinality constraints. This is different from the cardinality

constraints contained in property restrictions. The latter are class descrip-

tions and they are only implemented on the property when applied to that

class.
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When one defines a property as a transitive property, this means that if

a property has two pairs of instances: (x,y) and (y,z), then it is possible to

infer that the pair (x,z) is also an instance of that property.

Syntactically, a property is defined as being transitive by making it an in-

stance of the built-in OWL class owl:TransitiveProperty, which is defined

as a subclass of owl:ObjectProperty.

A symmetric property, instead, is a property that has as instances both

the pair (x,y) and the pair (y,x). Syntactically, a property is defined as sym-

metric by making it an instance of the built-in OWL class owl:SymmetricProperty,

a subclass of owl:ObjectProperty.

Obviusly, the domain and range of a symmetric property are the same.

3.1.3 Individuals

Individuals are defined with individual axioms, also called facts. These typi-

cally are statements indicating class membership of individuals and property

values of individuals.

Several languages have a unique names assumption, so different names

refer to different things. In many applications, such an assumption is not

possible. For example, the same device could be referred to in many different

ways. For this reason OWL does not make this assumption.

OWL provides three constructs for stating facts about the identity of

individuals:

- owl:sameAs is used to state that two identifiers refer to the same indi-

vidual.

- owl:differentFrom is used to state that two identifiers refer to differ-

ent individuals.

- owl:AllDifferent provides an idiom for stating that a list of individ-

uals are all different.
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The OWL owl:sameAs property links an individual to another individual.

Such an owl:sameAs statement indicates that two identifiers actually refer

to the same thing, the individuals have the same identity.

The OWL owl:differentFrom property links an individual to another

individual. An owl:differentFrom statement indicates that two identifier

references refer to two different individuals.

Because owl:differentFrom creates a high number of statements, OWL

also provides the special constructor owl:AllDifferent. owl:AllDifferent

is a special built-in OWL class, for which the property owl:distinctMembers

is defined, which links an instance of owl:AllDifferent to a list of individ-

uals. The intended meaning of such a statement is that individuals in the

list are all different from each other.

3.2 OWL expressiveness

OWL has several characteristics in common with description logics, but also

it has some differences. The first difference between description logics and

OWL is due to the syntax of OWL. OWL information is saved in RDF/XML

documents and parsed into RDF graphs composed of triples. Because RDF

graphs express a poor syntax, some description logic constructs in OWL

can be saved into many triples. However, because of the way RDF graphs

are structured, it is possible to create cyclic syntactic structures in OWL.

This is an advantage because these structures are not allowed in description

logics. The second difference between OWL and description logics is that

OWL contains characteristics that do not correspond to the description logic

framework. For example, OWL classes are objects in the knowledge domain

and can be instances of other concepts, including themselves. These two

differences make a semantic analysis of OWL different from the semantic
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analysis of description logics.

For this reason, there are defined subsets of OWL that are much more

related to description logics. The larger of these subsets, called OWL-DL,

restricts OWL in two ways. First, classes, properties, and individuals have to

be separated in the semantics for OWL-DL. Second, unusual syntactic con-

structs, such as descriptions with syntactic cycles inside, are not allowed in

OWL-DL. These two restrictions make OWL-DL much closer to a description

logic.

OWL-DL can be defined through two forms of semantic specification: a

direct model-theoretic semantics, and an RDF-compatible model-theoretic

semantics. The two have a strong connection, but the specification clearly

states that the direct model-theoretic semantics has the preference. The

semantics for OWL-DL is quite standard by description logic standards. The

OWL semantic domain is a set whose elements can be disjointly divided into

abstract objects and datatype values. Datatypes in OWL are derived from

a subset of the built-in XML Schema datatypes.

Despite that, Ian Horrock has shown in [14] how to translate OWL-DL

entailment into SHOIN (D) unsatisfiability. The first step of his proof is to

translate an entailment between OWL-DL ontologies into an entailment be-

tween knowledge bases in SHOIN+(D). Then SHOIN+(D) entailment is

transformed into unsatisfiability of SHOIN (D) knowledge bases. It should

be noted that concept existence axioms are eliminated in this last step, leav-

ing a SHOIN (D) knowledge base.

The whole translation from OWL-DL entailment to SHOIN (D) can be

performed in polynomial time and it results in a polynomial number of knowl-

edge base satisfiability problems, each of them is polynomial in the size of the

initial OWL-DL entailment. Thus OWL-DL entailment is in the same com-

plexity class as knowledge base satisfiability in SHOIN (D). Unfortunately,

SHOIN (D) is a difficult description logic. Most problems in SHOIN (D),

including knowledge base satisfiability, are in NExpTime. Sometimes it is
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also possible to make an inexact translation from SHOIN (D) to SHIN (D)

that turns nominals into atomic concept names.

OWL-Lite is a subset of OWL-DL, which allows an increased simplicity of

implementation. It is obtained by removing several constructors from OWL-

DL, and by limiting the use of some of the remaining constructors. This

also makes parsing and other syntactic manipulations easier. Due to the fact

that OWL-Lite does not have the one-of construct, then inference is easier

in OWL-Lite than in OWL-DL, making easier to design practical algorithms.

Similarly as happened with OWL-DL and SHOIN (D), OWL-Lite entail-

ment can be transformed into knowledge base unsatisfiability in SHIF(D).

The transformation can be computed in polynomial time and it results in only

linear size increase [14]. While the knowledge base satisfiability in SHIF(D)

is in ExpTime, this means that entailment in OWL-Lite can be computed

in exponential time.

Table 3.2. OWL expressiveness summary.

OWL language DL expressiveness

OWL-DL SHOIN (D)

OWL-Lite SHIF(D)

Ontology entailment in the OWL-DL and OWL-Lite ontology languages

can be reduced to knowledge base satisfiability in the SHOIN (D) and

SHIF(D) description logics, respectively, as it is summarized in Table 3.2.

Though some constructs in these languages go further than the standard

description logic constructs, this is still true [14]. These mappings show

that the complexity of ontology entailment in OWL-DL and OWL-Lite is

in NExpTime and ExpTime, respectively (the same as for knowledge base

satisfiability in SHOIN (D) and SHIF(D), respectively). The mapping of

OWL-Lite to SHIF(D) also means that already-known reasoning algorithms

for SHIF(D) can be used to determine ontology entailment in OWL-Lite.

The mapping from OWL-DL to SHOIN (D) can also be used to provide
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complete reasoning services for OWL-DL.

3.3 Reasoning in an OWL ontology

Given an ontology, it is essential to provide and receive tools, services, and

information. Through reasoning it is possible to answer queries to ontology

classes and instances, so as to find more general/specific classes or retrieve

individuals/tuples matching a given query.

The worst case complexity initially leads to the conjecture that expres-

sive description logics might be of limited practical applicability. However,

although the theoretical complexity results are discouraging, empirical anal-

ysis of real use cases have shown that the types of construct which lead to

worst case intractability rarely occur in practice [1]. Using actual reasoning

systems, it has been demonstrated [1] that, even with very expressive log-

ics, highly optimized implementations can provide acceptable performance

in realistic applications.

A description logic reasoner offers several inferencing services, such as

computing the inferred superclasses of a class, determining whether or not

a class is consistent (a class is inconsistent if it cannot have any instances),

deciding whether or not one class is subsumed by another and so on. Several

description logic reasoners are available, some of the popular ones are: Pellet,

FaCT++ and RacerPro. The nature of the project requires to use open

source software, therefore only Pellet and FaCT++ will be used.

3.3.1 Protégé

Protégé [15] is a development platform with a set of tools to construct domain

models and knowledge-based applications with ontologies. The central part
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of Protégé utilizes a set of knowledge-modeling structures and functions that

support the creation, visualization, and manipulation of ontologies in several

representation formats. Protégé can be modified to provide domain-friendly

support for inserting data and building knowledge models.

Protégé can be expanded through a plug-in architecture and a Java-based

Application Programming Interface (API) for assembling knowledge-based

applications and tools, all these functions compensate for the missing of an

integrated development environment. However, the Protégé platform sup-

ports two main ways of modeling ontologies: Protégé-Frames editor and

Protégé-OWL editor. The latter is an extension of Protégé that supports

the Web Ontology Language. The Protégé-OWL editor allows the user to:

- Load and save OWL and RDF ontologies.

- Edit and visualize classes, properties and rules.

- Define logical class characteristics as OWL expressions.

- Execute reasoners such as description logic classifiers.

- Edit OWL individuals for Semantic Web markup.

The Protégé-OWL plugin does not make any distinction between editing

OWL-Lite and OWL-DL ontologies. However, it offers the choice to con-

strain the ontology being edited to OWL-DL, or allow the expressiveness of

OWL-Full. In addiction to providing an API to manage and modify OWL

ontologies, Protégé-OWL uses also a reasoning API to access an external DL

Implementation Group (DIG) compliant reasoner. This enables inferences to

be made about classes and individuals in an ontology.

OWL-DL has its basis in description logics, which are decidable subsets

of first order logic. For a particular task, a logic is decidable if it is possible

to design an algorithm that will terminate in a finite number of steps. In a

description logic it is possible to define an algorithm that calculates whether
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or not one concept is a subclass of another concept, which is guaranteed to

terminate after a finite number of steps. It is possible to perform automated

reasoning over the ontology using a description logic reasoner, because an

OWL-DL ontology can be translated into a description logic representation.

3.3.2 DIG interface

The DIG Interface [16] is a standardized XML interface to description logics

systems developed by the DL Implementation Group (DIG). The interface

defines a simple protocol along with an XML Schema that describes a concept

language and accompanying operations.

The interface is not intended as a difficult specification of a reasoning

service. Rather, it provides a minimal set of operations (e.g. satisfiability

and subsumption checking and classification reasoning) that have been shown

to be useful in applications.

Protégé-OWL provides an API that can be used to interact with an exter-

nal DIG reasoner. Fortunately, the Protégé-OWL reasoning API abstracts

away from the DIG language/reasoner, meaning that it is not really neces-

sary to know the fine grained details of DIG, or that the reasoning services

are provided by an external DIG reasoner. A number of reasoners includ-

ing FaCT++, RACER, and Pellet provide support for DIG, through a http

connection. The advantage of DIG is that applications can communicate

with any DIG compliant reasoner, without needing to know specific reasoner

details or reasoner interaction protocols.

However, the current DIG specification has some problems. The expres-

siveness offered by DIG 1.1 is not sufficient to capture general OWL-DL

ontologies, in particular datatype support is lacking in DIG 1.1 and there is

a lack of complete correspondence between DIG’s concept of relations and

OWL properties. The problem in the DIG 1.1 version will be eventually

solved in the upcoming DIG 2.0, but meanwhile, the current DIG interface
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can still be used, but when it is clear where the deficiency is.

3.3.3 Reasoner

In a general architecture for problem solving, a reasoner is a program that

provides a reasoning algorithm. It can handle some form of logical inference

on a knowledge base, and as a result it gives information about consistency of

ontology and classification of taxonomy, unsatisfiable concepts, or it simply

answers queries.

Reasoners are used mainly to infer information that is not explicitly con-

tained within the ontology. There are also several standard reasoner services:

consistency, subsumption, equivalence, and instantiation checks.

A reasoner can be referred to as a classifier, in order to provide a autom-

atized classification of ontology elements.

3.3.3.1 Pellet

Pellet [17] is a Java based OWL-DL reasoner based on the tableaux algo-

rithms developed for expressive description logics. It supports the full ex-

pressiveness of OWL-DL including reasoning about nominals (enumerated

classes). Therefore, OWL constructs owl:oneOf and owl:hasValue can be

used freely. Currently, Pellet is the first and complete description logic rea-

soner that can handle those expressiveness. Pellet ensures soundness and

completeness by incorporating the recently developed decision procedure for

SHOIQ, that has expressiveness of OWL-DL plus qualified cardinality re-

strictions in description logic terminology.

Pellet has a number of features specific for OWL requirements:

- Ontology analysis and repair;

- Conjunctive ABox query;
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- Datatype Reasoning;

- Ontology Debugging .

Pellet has an interface to support OWL-API applications. There is also a

DIGServer, so that Pellet can be used with DIG applications, as an external

reasoner for Protégé.

3.3.3.2 FaCT++

FaCT++ [18] is the new generation of the FaCT (Fast Classification of Ter-

minologies) OWL-DL reasoner. FaCT++ has an optimized tableaux algo-

rithms implementation, which has now become the standard for description

logic systems. Unlike FaCT, that uses Common Lisp, FaCT++ is imple-

mented using C++ in order to create a more efficient software tool, and to

maximize portability. FaCT++ is a description logic classifier that can also

be used for modal logic satisfiability testing.

Its expressive logic is SHOIQ, so it is sufficiently expressive to be used as

a reasoner for the description logic. FaCT++ also supports reasoning with

arbitrary knowledge bases (i.e., those containing general concept inclusion

axioms). Also FaCT++ works through a DIG interface.

The FaCT system has been used to analyze the practicability of using the

algorithm for subsumption reasoning, and results show that in spite of the

logic intractability in the worst case, the algorithm can provide acceptable

performance in realistic applications.

3.3.3.3 Algernon

Algernon [19] is an inference engine that supports both forward and backward

chaining rules. It automatically activates forward chaining rules when new

data is stored in the knowledge base. It automatically activates backward

chaining rules when the knowledge base is queried. If a forward chaining rule
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contains a step that queries the knowledge base, Algernon will automatically

switch to backward chaining mode in order to satisfy the query using any

applicable backward chaining rules.

Algernon guarantees that rules will not be activated more than once for

each identical assertion or query. The first time a query is made, back-

ward chaining rules will be used to infer the answer. If later an identical

query is processed, the result will be looked up in the knowledge base rather

than wasting time re-executing rules to infer knowledge that is already in

the knowledge base. Algernon correctly handles special cases such as new

rules being added between queries, and some situations where frames are

deleted after a query is made. However, it does not have full support for

non-monotonic reasoning.

For efficiency, rules are assigned to classes or relations. They will only

execute when an instance of the corresponding class or relation is modified in

the knowledge base. A rule can contain commands that perform knowledge

base retrievals, assertions, class, instance and slot creation commands, and

other Algernon operators that print output, retrieve the current date, call

external Java or LISP [20] routines.

Rules can be stored in external files or in a knowledge base.

The main features of Algernon are:

- Supports interleaved forward and backward chaining.

- Direct manipulation of Protégé data. Requires no mapping to an ex-

ternal fact base.

- Contains operators that create and delete classes, instances and slots.

- Base language corresponds directly to knowledge base traversal.

Algernon is useful in any system that needs to process information stored

in a frame-based knowledge base. Algernon is implemented in Java and has

a full API that allows access to its functionality. It also has a Protégé tab
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plugin that allows all operations to be performed from within the Protégé

GUI. An Algernon server can also be activated to perform knowledge base

operations under the direction of a remote client.
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4
Ontology design

This chapter tries to explain how the ontology for the SIARAS project was

developed, by providing evidence and explaining how the choices were made.

There is more than one possible ontology to represent a specific knowledge

domain. Ontology structure is defined by semantic information that has to be

shared and by the type of reasoning that has to be used with this information.

The steps of development are described in the next paragraphs, beginning

from the analysis of the SIARAS requests, continuing into the construction

of a taxonomy, and ending with definition of attributes and instances.
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4.1 Focus on SIARAS requirements

Nowadays, according to SIARAS research plan [21], modern large-scale man-

ufacturing facilities are characterized by a high degree of automation, and

accomplished by extensive engineering but limited by cost and complexity.

That is, the actual production is executed by machines whereas the plan-

ning and the set-up of the production line is accomplished by humans. With

increasing product variants and shorter product cycles, the frequency of nec-

essary reconfigurations of a manufacturing system will further increase and

the dynamic reconfiguration of these complex production processes will be-

come a key technology.

This is the reason why the main objective of the SIARAS consortium is

research and development of new technologies and algorithms for the fast and

efficient setup of a manufacturing process with the restriction to reuse exist-

ing components of a production line. The selected approach is a skill-based

representation of manufacturing processes, where production units have em-

bedded knowledge about their skills and properties, in order to solve a given

manufacturing task or part of it.

Main concepts represented within the domain are:

Device : is a concrete tool intended to be used in a production line, such as

a sensor, a actuator or a robotic arm.

Skill : describes the functional ability of a device. It is an action/function

that a device can do to perform a simple operation. For example, a

gripper can grasp an object, thus a grasp-skill can perform a grasp-

operation within a production line, while it cannot perform complex

tasks made up of more operations.

Property : is an attribute that helps to characterize skills and devices. Device

properties can be cost or weight, while skill properties can be response
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time or accuracy. Some properties can be distinctive features of a type

of device/skill, such as number of fingers for a finger gripper.

Workpiece : is the precessed item, a physical description of an object.

Task : is the description of a production line or a single process, intended

to provide a product or a service. A simple task or operation can be

performed by a single skill, therefore a device performs an operation

through one of its skills. Decomposition of a task leads to a set of

operations. Each operation is performed by one skill, which in turn

belongs to a device.

Tasks and workpieces would not be represented in detail inside the on-

tology, because they do not belong to the knowledge domain. They are

specific for every production line. Workpieces require a dedicated descrip-

tion to highlight geometrical details, by using CAD or X3D formats. Tasks

can be represented as graph charts, individualizing requirements and time

constraints. Through the ontology it is possible, however, to represent the

structure of devices involved in production, and the structure of their skills.

Figure 4.1. Skill server architecture.
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In SIARAS project, the central part of a skill-based automation systems

is the skill server. In Figure 4.1 the building blocks of the current skill server

approximation, focused on the ontology side, are shown. The main loop is

the core of the skill server, and it is the part that actually performs (or at

least initiates) the reasoning.

It is presumed that the skill server has the complete information about

the current process implementation. In particular, the skill server has the

description of the available devices (with skills and properties) and the de-

scription of processes (with tasks and conditions). It also has the link from

the tasks to the skills and the temporal order in which the skills of the devices

are called. When the product, and consequently the model of the workpiece

are modified, an engineer modifies the process description accordingly. When

the process description is changed, almost always the process implementa-

tion has to be changed, too. The skill server assists and supports the user in

this situation, and the user has to confirm each choice that the skill server

suggests.

The goal of the skill server is to analyze and manage all the information

about the product line in order to provide a correct reconfiguration. Recon-

figuration of the production process always requires some modifications to it

and its implementation. Some modifications need to be done manually, while

others, as parameter optimizations, are better done automatically. All these

activities lead to requests for the skill server. A prerequisite for a successful

implementation is the collaboration of manufacturers, tool suppliers, and ap-

plication developers, so all of them must have a clear idea about knowledge

domain.

Moreover, due to its practical use and requirements from industrial part-

ners, the ontology has to be articulated with a description logic language.

In particular, OWL-DL is used because the reasoning algorithms have to be

decidable (all computations will finish in finite time).
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4.2 Use case: windshield fitting

Several companies which are part of SIARAS consortium presented some use

cases [22] to show which kind of problems have to be solved. In particular,

one of the use cases that they provided shows a simple task of windshield

assembly into a car frame. The windshield assembly represents a simple

sub-task of a main task, that could be a car assembly.

As preconditions, the skill server has a model of the current process, which

contains data on the windshield, the car body, and the working parameters

of the devices. The assembly consists of a robotic arm with a gripper as

its terminal point, that has to grasp a windshield and then move it until it

fits inside the car frame. The final movement should be aided by distance

sensors to perform measurements until the accuracy of the position error is

below a certain threshold. After the assembly, the robotic arm does a blind

movement to the base position, ready to start the task again.

The use case supposes that the user changes the process to fit a different

kind of window to the car body, such as changing the material property of

the window, making it distinctly heavier.

After the change, the skill server consults the device repository, deter-

mining whether or not the current gripper is still able to handle the new

window. If the current gripper and robotic arm are still capable of managing

the new windshield, the skill server provides a re-parametrization of devices.

If the robotic arm, to which the gripper is attached, is not sufficient to lift

and move the window, this should be adjusted. Using data from the cur-

rent gripper and the new weight requirements, the skill server selects a new

gripper from the device repository. Criteria such as robustness and accuracy

used in the selection of the original gripper is applied to select the new one.

The next step of skill server is to insert the new gripper into the process

and propagate the changes. Assuming the gripper has a different size, a new

trajectory is needed for it to trace in order to avoid colliding with the car

frame. Once the new trajectory is calculated, it is possible that the quality
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measurement sensors need re-calibration.

Since there could be some data missing, a full verification/validation has

not been possible, and the new process is shown to the user in order to fill

in the missing values and make any additional changes. After this is done,

the process is verified and the skill server has adapted the process to take

the new window into account.

Analyzing the requests of the task, a schematic formulation of assembly

is done using a sequential function chart, as shown in Figure 4.2, taken from

[23].

JGrafChart is the software currently used to construct the task descrip-

tions as sequential function charts. The software saves the chart description

in a straightforward XML-format which can be loaded into the skill server

through a module written for this specific purpose.

In order to preserve the formalism, the chart is connected to the ontology

through the optional naming of the steps in JGrafChart. Temporarily, this

choice is based on the assumption that step names do not have semantics

attached to them. The connection between the ontology and a sequential

function chart is created by giving each step in the chart a name correspond-

ing to a skill in the ontology. The chart also contains further information

about the skills and the performing devices. Optionally, a suffix consisting

of a hash (#) followed by a number is used to indicate which device is per-

forming the skill in the current scenario. Every step with the same suffix is

assumed to be performed by the same device.

As in Figure 4.2, the square blocks are skills needed to perform the task.

These skills are simple operations performed by devices, DetectObject, Move-

FromTo, CheckPosition, Grasp, and Release. The two MoveFromTo skills

are to be associated with the same device (presumably a robotic arm) and,

similarly, the Grasp and Release skills should be connected to the same de-

vice.

At the moment, the conditions of the transitions do not have any special
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Figure 4.2. Sequential function chart of a windshield assembly.
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meaning; they are simply expressions which, if they evaluate to be nonzero,

allow the simulation to pass in the next step. However, the skill server will

make more use of them by, for example, including a state description and/or

pre- and post-conditions of the operations in the guard. Conditions can also

be related to skill and device properties.

4.3 Taxonomy

The need to represent devices and skills results in the definition of a controlled

vocabulary of terms in a hierarchical structure. This can be done using a

taxonomy, generally defined as the science of classifying things. It is possible

to view a taxonomy as an ontology without attributes or properties, so it

is the start of building an ontology. One of the easiest ways to represent

information is in a hierarchical structure, however, a taxonomy may also

refer to other structures than hierarchies, such as network structures.

A hierarchical taxonomy is a tree structure, and at the top of this struc-

ture is a single classification, the root node, that applies to all objects. Nodes

below this root are more specific classifications that apply to subsets of the

total set of classified objects.

In the upper level of the ontology there are the four main concepts (or

classes): Device, Skill, Task and Workpiece. The figure 4.3 shows the four

classes, where the owl:Thing class is the superclass of every OWL class. Links

in the figure mean membership and in Protégé this relationship is called is-a.

Starting from this, Device and Skill classes can be developed as a tree-like

structures that clearly depicts how objects are related to each other. In such

a structure, each object is the child of a parent class. The used terminology

is provided by industrial partners, in regards to sensors [24][25], grippers [26]

and robots [27].
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Figure 4.3. Upper level of the ontology.

Figure 4.4 represents a partial expansion of the Device class. A more

detailed characterization of each device is shown as the device becomes closer

to the leaves of the tree.

Similarly, the Skill class can also be split into sub-classes and following

indications from SIARAS documents [24], the skills of devices can be parti-

tioned into three categories as shown in Figure 4.5.

The main skills are typically used during normal operation of the device

and they enable the device to perform certain tasks.

The additional skills are applied before normal operation starts and they

can change the settings of the device and the properties of its skills. Ad-

ditional skills are mainly used for setup, teaching, and training of a device,

in order to provide information about installation and parametrization of a

new device in a manufacturing line.

The diagnostic skills serve to supervise the operations and the physical

properties of the device and also its environment. The diagnostic skills can

be used during setup, concurrently with normal operation, or when an error

has occurred.

Only main skills describe abilities of a device to carry out a task while,

contrarily, the additional and diagnostic skills tend only to characterize de-

vices from the supplier’s point of view, as they are not influential for the
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Figure 4.4. Partial expansion of the Device class tree.

Figure 4.5. Partial expansion of the Skill class tree.
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skill server regarding task composition. Main skills are classified in relation

to device structure, using a hierarchical tree-like structure similar to that

of devices, so that sensor skills are separated from those of the gripper and

robot.

Task and Workpiece are simple classes in the ontology because they have

an external description. Their presence is needed to represent basic ideas of

the concepts.

By default, OWL classes are assumed to overlap. It is not possible to

assume that an element is not a member of a particular class simply because

it has not been asserted to be a member of that class. In order to separate

a group of classes it is needed to make them disjoint from one another. This

ensures that an individual, which has been asserted to be a member of one

of the classes in the group, cannot be a member of any other classes in that

group. Each device is disjoint from one another, and also from skills. That

is done defining the owl:disjointWith statement among each class and its

siblings. This means that it is not possible for an individual to be a member

of a combination of these classes, because it would not make sense for an

individual to be a gripper and a sensor.

The ontology schema might resemble at a representational level a database

schema, and instances might be interpreted as database tuples. However, the

fundamental difference is that the ontology is supposed to capture some as-

pects of real-world or domain semantics [28], and also represent ontological

commitment forming the basis of semantic normalization.

4.4 Relationships

Relationships, or Object Properties as they are indicated in OWL, link indi-

viduals to individuals, they tend to link classes among themselves in order
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to make it easier to create concept connections. Skill server has to be able

to answer several questions, such as:

- Which skills can perform this task?

- Which skills does this device have?

- Which devices can provide this skill?

- Which devices are needed to perform this task?

As shown in Figure 4.6, the center of reasoning is between Device class

and Skill class. In fact, a device is characterized by its skills. hasSkill and

isSkillOf relations join the two classes together through a bidirectional link.

They are inverse of one another, so they have inverted domain and range. The

owl:inverseOf construction can be used to define such an inverse connection

between relations (owl:ObjectProperty):

<owl:ObjectProperty rdf:about="#hasSkill">

<rdfs:range rdf:resource="#Skill"/>

<rdfs:domain rdf:resource="#Device"/>

<owl:inverseOf>

<owl:ObjectProperty rdf:about="#isSkillOf"/>

</owl:inverseOf>

</owl:ObjectProperty>

while the rdfs:range and rdfs:domain constructions, based on RDF syn-

tax, indicate where the two relations operate.

The canBePerformedBy link connects Task to Skill indicating which skills

can perform a specific task. Using both canBePerformedBy and isSkillOf

relation, it is therefore possible to go back from a task to all skills and devices

needed to perform it.
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The relations: hasMainSkill, hasAdditionalSkill and hasDiagnosticSkill,

are sub-relations of hasSkill, and have a different range, a subset of hasSkill

range. The three relations have their own inverse relations, that derive from

isSkillOf relation. Albeit hasAdditionalSkill and hasDiagnosticSkill partici-

pate only marginally in the fulfillment of the task, they provide new details

about choice of the devices.

Looking at the code below, the structure of hasMainSkill relation ap-

pears plain. Others sub-relations have similar code. Unlike hasSkill, it

has a smaller range and it is defined as a sub-relations of hasSkill, using

rdgs:subPropertyOf constructor.

<owl:ObjectProperty rdf:about="#hasMainSkill">

<rdfs:range rdf:resource="#MainSkill"/>

<rdfs:domain rdf:resource="#Device"/>

<rdfs:subPropertyOf>

<owl:ObjectProperty rdf:about="#hasSkill"/>

</rdfs:subPropertyOf>

<owl:inverseOf>

<owl:ObjectProperty rdf:about="#isMainSkillOf"/>

</owl:inverseOf>

</owl:ObjectProperty>

In particular, the hasAdditionalSkill relation notifies the skill server how

to configure the device, and then the skill server can reparametrize the device

or instruct an operator to do so. Meanwhile, through hasDiagnosticSkill

relation, the skill server obtains information about the correct functioning of

the device in the product line, regarding faults or failure detection.

All these properties are one-point to multi-point links, because a task can

require more than one skill to be performed. Some devices can have more
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Figure 4.6. Relationships among concepts at upper level.

than one skill, and the same skill can be owned by more than one device. As

an example, two movement sensors can be produced by different manufac-

turers. In this case two devices have different physical characteristics, but

they have same skill of determining movement. Similarly, a device can have

more than one skill, such as a smart camera having as many skills as have

been programmed, or a gripper that is natively definite as a device that can

grasp and release.

So, the ontology has enough information to know which devices can carry

out a task, but not how to use devices in the current scenario, as this is an

assignment of the skill server. A task is performed by an ordered n-tuple of

skills. This information is provided to the skill server using an external SFC

file. However, canBePerformedBy relation cannot identify the right sequence

or the skills of an tuple, it can only indicate a set of skills.

All subclasses that belong to Device and MainSkill inherit the same type

of relationships. This could create some ambiguous links, so it could happen

that a gripper could have a color detection skill. To avoid that, restrictions

are imposed on skills and devices.
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4.5 Restrictions

A restriction is a special kind of class description. It describes a class, mean-

ing that all individuals of that class have to satisfy the restriction. OWL

distinguishes two kinds of restrictions on relations between classes: value

constraints and cardinality constraints. The latter introduces a further level

of complexity in the logic. For this reason, they have not been used in the

ontology.

A restriction can be used to specify which relations are mandatory for a

set or subset of classes. In particular, for devices it is required that they have

at least one main skill and at least one property.

Device: hasMainSkill some MainSkill

Device: hasProperty some Property

A value constraint puts restrictions on the range or domain of the relation

when applied to a particular class description. This allows devices to be

defined with more precision, that is, a color sensor can only detect color, so

it has only that skill, and all this can be translated in logic:

ColorSensor: hasMainSkill only DetectColor

In OWL, the owl:allValuesFrom construct appears regarding ColorSensor :

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:about="#hasMainSkill"/>

</owl:onProperty>

<owl:allValuesFrom rdf:resource="#DetectColor"/>

</owl:Restriction>

If a device has more than one skill, it is sufficient to use or operator among

skills to specify which ones a device has. The same type of restrictions cannot

be applied to the skills, because the ontology can be enhanced inserting new
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devices that do not exist yet. These can have more skills that already belong

to previous devices. Each skill has its own isMainSkillOf relation, which

is constrained by owl:someValuesFrom restriction. The information, which

comes from this restriction, suggests that there is at least one type of device

with that skill.

The effects of restrictions in the device hierarchy allow the thorough spec-

ification of the skills for each device, relative to its proximity to the bottom

of the hierarchy. In Figure 4.7, it is possible to see how the skills become

more detailed in relation to the devices.

Figure 4.7. Effect of restrictions on grippers.

All of the classes in the ontology only have necessary conditions to de-

scribe them. Necessary conditions can be interpreted as: if something is a

member of this class then it is necessary to fulfill these conditions. A class

that only has necessary conditions is known as a primitive class, while a class

that has has at least one set of necessary and sufficient conditions is known

as a defined class.
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4.6 Properties

Both devices and skills are characterized by attributes and values. OWL

allows the definition of Datatype properties for each class, and this Datatype

properties can set attributes for a class by selecting admissible data-types

available in OWL (integer, float, string, etc.).

All properties, if not specifically indicated are inheritable. Device proper-

ties are inherited by all devices that belong to the Device class. Each group

of devices used in manufacturing has some particular properties, and so for

each branch, new attributes are added to improve the overview of devices.

In this way, a property like typeOfFinger is assigned only to FingerGrip-

per class, and not to other device classes. If FingerGripper has a further

classification, all its subclasses inherit its properties.

As with devices, skills also have their own properties. Sometimes it is hard

to define which properties are specific for devices and which are for skills.

Part of the assessment of these properties includes checking device data-

sheets, however, it is also possible to attribute a property both to devices

and skills. Inheritance can also be utilized to distribute properties for Skill

classes.

If a property can only have one value for each instance, such a property

can be declared as functional. For this purpose, OWL defines the built-in

class owl:FunctionalProperty. This construct increases the complexity of

reasoning problems, because it limits the cardinality of a property to be

at most one. With the introduction of functional properties, each descrip-

tion logic that originates from ALC becomes an issue of ALCF logic, whose

complexity of reasoning is at least PSpace-complete [29]. Several physical

properties, such as mass or maxAmbientTemperature, are unique for each de-

vice, but their uniqueness gives a lot of information at the cost of algorithmic

complexity.

In figure 4.8, it is shown a partial representation of datatype properties

for a Device, where properties marked by star (∗) are not functional.
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Figure 4.8. Relationships among property, skill and device classes.

In addition to the RDF datatypes, OWL-DL provides one additional con-

struct for defining a range of data values. In fact owl:oneOf allows specifica-

tion of a class via a direct enumeration of its members, which is useful to limit

values that a property can have. For instance, numberOfFingers property

can be an integer, with only values: 3,4,5. As described by Tobies in [30], the

presence of nominals together with inverse and functional properties makes

the logic become ALCOIF , of which complexity is NExpTime-complete.

Currently, the presence of nominals is only concerned with values that are

not directly involved in the main reasoning procedure.

4.7 Individuals

Individuals represent objects in the domain of interest, where they fill classes

with real data. Each individual has its own values on datatype properties and

it can have relations with other individuals through object properties. In this

application, individuals that belong to Device hierarchy, are devices used in

manufacturing. For example, a new gripper “modelABB” can be inserted
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into gripper class and all its property values are indicated. After that, its

specific skills (like Grasp and Release) are defined in Skill hierarchy. Also for

skills, it is possible to specify their values and connect them together through

hasSkill and isSkillOf. In the case that a new model of vacuum gripper

will be added, new skills can be created more specifically than for a generic

gripper (AdjustVacuumToGrip and AdjustVacuumToRelease). Similarly, the

ontology will not allow inappropriate skills to associate, such as CloseClaws

or OpenClaws.

Among the main functionalities offered by Protégé, there is the control of

consistency of the classes of the ontology. A class is said to be consistent if

individuals belonging to it can exist. If an ontology has inconsistent classes,

then some errors have been made in the design phase. In order to execute

the control of consistency of the ontology from Protégé, it is necessary to

use an external reasoner, possibly through DIG interface, that analyzes the

ontology and evidences possible inconsistent classes.

An important difference between OWL and Protégé is that OWL does

not use the unique name assumption. This means that different names could

actually refer to the same individual, just because two names are different

does not mean they refer to different individuals. In OWL, it must be explic-

itly stated that individuals are the same as each other. It is possible to define

the same device with several names and use the construct owl:sameAs, to

specify that all instances concern the same device. That has sometimes a

negative effect, because some external reasoners and DIG interface support

unique name assumption.

The OWL file allows the insertion of individuals together with the ontol-

ogy, inside XML structure. Another possible solution is to create a separate

file only with individuals, as this is the presupposition to create a database

or a device library.
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4.8 Properties as classes

During the development of the skill server prototype, the necessity of rea-

soning about properties emerged. The ontology has to provide answers to

another sequence of questions:

- Which properties does this device have?

- Which properties does this skill have?

- What is such property related to?

As states in [31], it is necessary to identify how reasoning can be per-

formed. Three different levels of reasoning were detected:

- Reasoning without domain knowledge is the lowest level. Reasoning

just consists of comparing numerical or text values of properties with

the conditions required in the task. For example: Is the sensor response

time smaller than 100ms? On this level, a specific domain knowledge

is not required. The skill server does not take in regard the whole task,

it just evaluates a condition between tasks.

- Reasoning with general domain knowledge. On an intermediate level,

reasoning manages with general concepts, not specific to a domain, such

as timing or geometric arrangements. Unlike in low level reasoning, the

reasoner needs general domain knowledge as rules, which dictate how

to order action in time or how to avoid collisions in space.

- Reasoning with specific domain knowledge. This high level reason-

ing deals with domain-specific knowledge. For example: the reasoner

knows about the physical dependencies between the properties such as

aperture, exposure time and working distance of a camera.

Evidently, the lowest level of reasoning without a domain knowledge is

the easiest one. The selection of skills/devices which fulfill a given set of
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numerical conditions is performed by the latter. The use of skill properties

establishes the connection between skills and conditions formulated in the

task representation made using JGrafChart. There is no need for a deeper

understanding of the skill properties, for example the resolution of a camera

is just a value and it is not related to a physical model of image capturing.

This lowest level of reasoning, without domain knowledge, could be used also

to chose parameters of skills/devices.

The necessity to reason about general domain knowledge requires a deeper

analysis of properties. Mechanisms are needed to register the skill properties

used by these reasoners in a structured way. Mainly, it is also necessary to

allow properties to be instantiated independently of skills and devices.

On the highest level of reasoning, physical models are needed to evaluate

the performance of skills/devices. In these cases, specific reasoning tools are

needed, and they can be plugged into the skill server as modules, called utility

functions.

Utility functions define conditions and effects of every operation in a

particular situation, performing reasoning that is domain or device specific.

They also need an explicit interface specifying applicability criteria, required

data, and obtainable results. Each partner in SIARAS consortium and device

manufacturer has to provide their product-dependent utility functions, in

order to increase domain-specific reasoning.

The ontology, shown up to now, considers properties only as attributes of

devices and skills. Properties are created when a new class is created, while

values of properties are declared when a new individual is instanced. The

values of properties represent a parametric description of an instanced device

or skill.

Representing properties also allows classes to register properties indepen-

dently of skills and devices. Therefore another class, called Property, is added

to the four main classes that are already existing. Inside this class there is

a list of subclasses that represent the vocabulary of attributes. A datatype
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property value is assigned to every property class, and the interpretation of

value is due to the skill server.

Because the properties can be associated with both skills and devices,

there is a bi-directional relation between properties and devices, and between

properties and skills, as shown in Figure 4.9.

Figure 4.9. Relationships among property, skill and device classes.

hasProperty relation has a domain composed by the union of Device and

Skill classes, as shown in the code below, where there is also defined the

inverse relation isPropertyOf. That is made necessary by the nature of prop-

erties where, in fact, they can be assigned indifferently to both devices and

skills together as well.

<owl:ObjectProperty rdf:about="#hasProperty">

<rdfs:range rdf:resource="#Property"/>

<owl:inverseOf>

<owl:ObjectProperty rdf:ID="isPropertyOf"/>

</owl:inverseOf>

<rdfs:domain>

<owl:Class>
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<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Skill"/>

<owl:Class rdf:about="#Device"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:ObjectProperty>

Through restrictions it is possible to specify which properties are manda-

tory for some devices or skills. Unlike datatype properties, it is not possible

to represent some concepts, such as functionality and enumeration. It is not

possible to define that a property has only one value, because assigning func-

tionality or setting the cardinality to hasProperty relation, only limits the

number of properties, but without specifying which properties have to have

only one instance. Skill server should directly manage the cardinality and

the values of the properties.

The names of property classes have the first capital letter, so the skill

server can distinguish them from datatype properties, and consequently it

can reason about both of them. Hence, the skill server can also use the

datatype property cardinality, to manage the property classes.

With this implementation, when a new device and its skills are instanced,

it is necessary to define parameters inside datatype values and also it is

necessary to instance properties as individuals of property class.
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5
Ontology usage

The developed ontology represents the knowledge base to which device man-

ufacturers will introduce their device descriptions and characteristics, that

can be received and processed by the skill server. Engineers continuously

develop new devices, hence the ontology has to guarantee expandability. It

has to be possible to add new definitions to the ontology and more knowledge

to its definition, without altering the set of well-defined properties that are

already guaranteed. When this information is inside the ontology, it needs to

be retrieved. That can be done directly with skill server or using any tools

able to query the ontology.
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5.1 Support for introducing new elements

Device manufacturers have two different ways to insert new elements into

the ontology. They can directly insert new devices into the current ontol-

ogy structure, or they can extend the structure in order to create a more

appropriate position to place new devices.

5.1.1 New devices

The assignment of introducing new elements is charged to the device pro-

ducers. They have to create instances for their devices and skills.

Actually, Protégé has a tab for inserting individuals. Using this tab, the

producer has to select the appropriate class to locate the device. Obviously,

the deeper the class is placed in the hierarchical tree, the more accurate the

classification. At this point the interface shows all properties available for

that type of device, giving a support for inserting values in accordance with

datatypes and enumerations, and limiting the freedom of the user to choose

values.

Then, besides the datatype properties, the user has to indicate the rela-

tions among the classes. Some relations are mandatory, such as hasMainSkill

and hasProperty, as shown in section 4.5. It is possible to indicate further

skills and properties, but their choice is limited automatically by restrictions

made on the range.

Using the Protégé individuals tab to insert a new device, the ontology

maintains its consistency. However, with current reasoners the classification

is not complete for individuals. To use individuals in class descriptions can

sometimes cause unexpected results by the reasoner. Unfortunately, at this

moment the user does not have any type of support to fill up fields in the

form, and there is no warning if the user leaves them empty. An interface

is needed that interacts with the user or an automatic text analyzer which
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reads information from product data-sheets, in order to create new instances.

5.1.2 New classes of devices

It is possible that device manufacturers consider that current structure is not

representative for their new product. If this is the case, then the structure

can be extended, but a central coordination is needed in order to avoid the

creation of inconsistent concepts or duplicates.

Each addition has to be done using a revision control system. Through

this system it is possible to manage multiple additions and revisions of the

information. Revision control systems are often used in engineering and

software development to manage in-progress development of digital data-like

application source code and other information that is worked on by a team

of people.

Each partner has to be in agreement with the changes, so that a member

can gain knowledge of new characteristics of the ontology, and update the

vocabulary of terms.

The skill server keeps track of all the updates made to the ontology. But

since the utility functions for new devices are not updated, the skill server

can only provide a low level reasoning on such devices, comparing numerical

values of properties with the conditions required in the tasks.

The simplest addition that can be done is a new device/skill property.

Before creating a new property, it does not have to be synonymous of another

one or represent the same meaning. Moreover, a property has to also be

consistent with the class, to which it is applied, and its subclasses. When a

new property is created, it becomes available for all pre-existing instances,

and producers can set missing values of such property.

The creation of a completely new type of devices, or the introduction of a

type of device not previously considered, is more problematic than inserting

a new property. An instance is not sufficient to represent the features that a
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new type of device can introduce. It is necessary to create a new class inside

the ontology.

In fact, the current ontology proposes only three main categories of de-

vices: sensors, grippers, and robot arms. It can be necessary to insert a new

family of products, such as actuators.

The addition of a widespread category of devices can be done by merging

another ontology to the current one. The merged ontology however, has

to have the ternary structure: device-skill-property. Anyhow, if skills and

properties are already present into the ontology, the merged ontology can be

composed only by device classes, which have to be associated to their skills

and properties through existing relationships.

The merging of two related ontologies is obtained by taking the union

of the terms and the axioms defining them, and using XML namespaces to

avoid name collisions. Then it is needed to add linking axioms that relate

the terms in one ontology to the terms in the other through the terms in the

merge.

A merged ontology is not only a link between two related ontologies but

also a new ontology for further merging with other ontologies in the ontology

community. Ontology merging often requires ontology experts’ intervention

and maintenance, although automated reasoning by an inference engine can

be conducted in the merged ontology.

When making a new class of devices, two eventualities are possible. If the

new class is disjoint from the others, it can be placed in the most appropriate

branch of the tree structure. The class inherits all the datatype properties

and relations from its parent class. Moreover, new properties or relations can

be attributed to such a class, in order to increase devices description.

Another eventuality is that the new device is not disjoint from the others.

Hence, it can fit into two or more classes, that are already defined in the

ontology as disjoint.

For example, it is possible to suppose that a new type of gripper is de-
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signed. A gripper that has a double gripping capability, it is able to grasp

using both magnetic force and fingers. This device can be defined as a grip-

per, but it is not possible to define it neither as a pure finger gripper or a

pure magnet gripper.

The new class of devices can be collocated into the ontology in three

different ways:

1. The devices are instanced in an upper level class.

2. A new class is defined and the devices are instanced in that.

3. The devices are instances as the union of two classes, using multiple

inheritance.

In the first case, the magnetic finger gripper is instanced as a generic

gripper. This does not require the addition of a class into the current ontol-

ogy, but it tries to fit elements in the current structure as instances without

modifying the structure. Specific skills, such as AdjustCurrentToGrip, Ad-

justCurrentToRelease, OpenFingers, and CloseFingers, can be assigned to the

gripper as shown in Figure 5.1. But other gripper skills are not prevented,

such as CloseClaws, or others. The category of magnetic finger gripper is

not defined through its skills, but only through the instanced skills. The new

device does not have reference to neither to MagnetGripper nor to Finger-

Gripper.

This type of approach does not allow for the assignment of physical

datatype properties, specific for a type of grippers, such as numberOfFin-

gers or typeOfMagnet. Only physical properties for generic grippers can be

assigned to the device. However, it is possible to specify a link to class proper-

ties NumberOfFingers or TypeOfMagnet, because there are not impediments

on the choice of such properties. Contrarily, datatype properties of specific

skills can still be specified.

ONTOLOGY USAGE 69



Support for introducing new elements

Figure 5.1. First case: instance in an upper class.

Figure 5.2. Second case: instance in a new class.
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The second case plans to create a new class, which is defined as a new

type of gripper MagnetFingerGripper, as shown in Figure 5.2.

This class has to be disjoint from its sibling classes, in particular: Mag-

netGripper and FingerGripper. A device instanced in such class is neither a

finger gripper nor a magnetic gripper, it is another category of device.

Through restrictions, it is possible to specify which skills the device can

have, and in this case it has AdjustCurrentToGrip, AdjustCurrentToRelease,

OpenFingers , and CloseFingers.

Other properties, already available for other devices, can also be assigned

to the new class, or completely new properties can be created. Unlike the

first case, the new devices have a better description of their characteristics

and a well defined range for their skills.

Once the new class is created, all producers can create instances in such

class or move instances from upper classes if they have used the first approach.

Moving instances from an upper class to a lower class is often not applicable,

because the lower classes have more restrictions on the range of relations. In

this case the lower class is purposely created to receive instances from the

upper class, which has sets of instances with the same characteristics. Hence,

these instances can be moved without creating inconsistences.

From the first two cases, obviously the second one appears preferable,

because it can provide a more detailed description of devices, whereas, in the

first case the device is instanced in a generic category, it is without a suitable

representation of its characteristics and properties.

On the other hand, the creation of too many classes might render the

ontology too widespread to correctly classify all devices. Since a class rep-

resents a category of devices, the worst case is to have only one device in

each class. Before creating a new class of devices there is an opportunity to

define it if the new device is already categorized with some more skills or it

is the first specimen of a category of products. Only in this second case, it

is necessary to create a new class.
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In the third approach, the ontology can have classes that have many su-

perclasses (multiple inheritance). It is nearly always a good idea to construct

the class hierarchy as a simple tree. Often a manually constructed hierarchy

has no more than one superclass, and this is also the case of the proposed

ontology. Computing and maintaining multiple inheritance can be a job for

the reasoner. This technique helps to keep the ontology in a maintainable

and modular state. This not only allows the reuse of the ontology by other

ontologies and applications, it also minimizes human errors that are inherent

in maintaining a multiple inheritance hierarchy.

Multiple inheritance in OWL is the same as the feature of object-oriented

programming languages in which a class can inherit behaviors and features

from more than one superclass. This contrasts with single inheritance, where

a class inherits from only one superclass.

Multiple inheritance can cause some problematic situations, so there are

both benefits and risks. If, on one side, it presents a better representation,

then on the other it increases complexity and ambiguity in some situations.

Before applying multiple inheritance, it is necessary to make the involved

classes disjoint. In order to make two classes disjoint, the owl:disjointFrom

constructors need to be removed from the two class descriptions. Sometimes

two classes are also disjoint from each other, because the restrictions on the

relations make them logically disjoint. This is the case of MagnetGripper

and FingerGripper classes.

Therefore, multiple inheritance is not always applicable, because it is

necessary that two or more classes are logically not disjoint.
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5.2 Use of the ontology as a device library

The OWL file allows the insertion of individuals together along with the

classes definition, inside XML structure. Another possible solution is to

create a separate file with only individuals. This is the presupposition to

create a database or a device library.

The library has a dynamic role, because the product suppliers have to

update it with new device specifics. The addition of new individuals is bound

by the structure and the restrictions of the ontology.

The use of the device library makes it possible for the skill server to read

and use the database to search for devices and skills. Each company can

create its own database, in which the skill server will do local searches. If a

device (or a skill) is not able to satisfy requests, it can search in a distributed

system of device libraries, provided by several companies.

5.2.1 Queries in device library

The representation of knowledge only, is not enough. User agents have to

have an access to the resources inside the ontology. This need to be able

to query the ontology has given rise to several tools, specializing in query-

ing (meta)data based on web standards, such as RDF. Most of the query

languages are based on the triple data model. They represent statements of

the form of triples, such as <subject, predicate, object>. Others can have

different encoding, such as a tree or graph data model, which makes them

able to perform more complex queries over the resource description graph.

Five classes of queries have been identified by [28], they are classified by

the provided functionality:

- Selection and extraction query: this type of query can recover infor-

mation represented in the data, where the choice can be based on the

content, structure or position within the whole set of data.
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- Reduction query: this type is the complementary to the previous type,

because it lets specify what has not to be returned as result, instead of

specifying what to return.

- Restructuring query: this query is able to change both the value of the

data and the structure.

- Aggregation query: aggregation of data is a simple form of generation

of new knowledge.

- Combination and inference query: using these queries it is possible

combine existing information that is not explicitly connected.

Among alternatives for the reasoner to be used in querying the ontology,

Algernon is one of possible choices to be considered. The Algernon tab allows

execution of queries and assertions within the Protégé, working in the same

memory space. It accepts file-based command line interrogations as well.

Algernon query syntax is based on a triple data model, as (predicate

subject object), where the question mark (?) introduces a variable and the

colon (:) introduces a command or a keyword. A triple is called clause, and a

path is a sequence of clauses. Algernon allows the user to retrieve or confirm

information in the system, store and delete information, and have control of

inference.

The following queries show how information can be gleaned from the

ontology, comparing numerical or text values of datatype properties. The

language used for tests is LISP [20]. The versatility of this language per-

mits an easy access to the resources, but the level of reasoning that can be

performed by skill server with this query is low. The skill server can search

for devices or skills, comparing numerical or text values of properties with

the parameters required in the task description. A high level of reasoning is

possible with external modules, called utility functions, that contain device

descriptions and algorithms specific for their skill.
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Some examples of questions which can be asked of the skill server regard-

ing devices, skills and their properties, and their translation in the Algernon

syntax are as follows:

- Which sensors have a main skill with response time of less than 100ms?

((:instance Sensor ?y)(hasMainSkill ?y ?mf)

(responseTime ?mf ?rtime)(:test (:lisp (< ?rtime 100))))

Or equivalent:

- Which sensor skills have a response time of less than 100ms?

((:instance MainSensorSkill ?y)(isSkillOf ?y ?d)

(responseTime ?y ?rtime)(:test (:lisp (< ?rtime 100))))

In output there are devices too, because there is isSkillOf relation, that

makes devices visible.

It is possible to make the search domain more specific:

- Which distance sensors have a main function with response time of less

than 100ms?

((:instance DistanceSensor ?y)(hasMainSkill ?y ?mf)

(responseTime ?mf ?rtime)(:test (:lisp (< ?rtime 100))))

- Which detecting color skills have a response time of less than 100ms?
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((:instance DetectColor ?y)(responseTime ?y ?rtime)

(:test (:lisp (< ?rtime 100))))

It is possible to also compare a string, not only a float:

- Which distance sensors have a diagnostic skill that has as its output

“malfunctioning”?

((:instance DistanceSensor ?y)

(hasDiagnosticSkill ?y ?df)(out ?df ?output)

(:test (:lisp (string= ?output "malfunctioning"))))

It is possible to check device and skill properties together, making a cross

check:

- Which sensor skills have a response time of less than 100ms and belong

to a device with a mass of less than 100g?

((:instance MainSensorSkill ?y)(isSkillOf ?y ?d)

(responseTime ?y ?rtime)(mass ?d ?m)

(:test (:lisp (and (< ?rtime 100)(< ?m 100)))))

Through the Algernon syntax, it is also possible to create longer paths of

clauses in order to research elements inside the ontology.
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5.2.2 Skill server interaction

The actual version of skill server is in the form of a prototype, where its

main loop is limited in its functionality. By now, there are no possibilities

to connect utility functions in order to provide a high level reasoning about

devices.

In the main loop, four main steps are performed:

- The ontology contained in the OWL file is loaded into the memory,

through the Protégé-OWL libraries.

- Through the DIG interface, the skill server establishes a connection

with an external reasoner, which computes relationships between skills

and devices.

- The sequential function chart is loaded into the memory, and parsed

to produce a graph of the model of the production line.

- In the final step, the skill server determines which devices can perform

the skills present in the task.

Actually, the skill server handles only the classes of devices and skills.

There is no access yet to the instanced devices in the ontology nor to the real

devices used in the production line.

Therefore as output, the skill server provides a list of devices that can be

used to perform the given task. The list currently displays for each operation

the involved device class and all its subclasses, as shown in Table 5.1.

The skill server can collect, in groups, all the operations that are per-

formed by the same device, albeit the device uses different skills. In the

table, operations S3 and S7 are carried out by two skills Grasp and Release.

These two skills belong to the Gripper and all its subclasses.

When the utility functions will be available, the list of devices will be

composed by instanced devices that are able to perform the given operation.
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Table 5.1. Detail of the skill server output.

. . .

Steps: u’S3’, u’S7’ w/ Skills: Grasp, Release

Devices:

VacuumGripper

JointFingerGripper

MagnetGripper

GeneralParallelGripper

LineParallelGripper

ParallelGripper

ElasticFingerGripper

PincerGripper

CircularParallelGripper

AngleGripper

Gripper

FingerGripper

. . .

Hence, the skill server might compare the characteristics of the device and

its skills with the parameters that are present in the task description.

For example, in case that a gripper has to grasp a workpiece, it is neces-

sary to verify that the workpiece is grippable by the gripper. In the windshield

fitting case, the skill server has to use the gripper utility functions to deter-

mine whether the gripper can handle the glass surface and lift up the work-

piece. In the positive case the skill server will search the best parametrization

for the gripper. Once a gripper is defined as a possible choice, the skill server

will verify whether all the other involved devices are compatible with the

new device. It will check if the robot arm is mechanically and electronically

compatible with the gripper, and it the sensors can detect gripper movements

with a given accuracy.
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5.3 Categorization of devices using inference

Each type of addition to the ontology has to follow a principle of categoriza-

tion. It is necessary that manual or automatic addition be as accurate as

possible. However, the reasoners can help by giving feedback to the user in

case of an error.

Among the main functions offered by a reasoner, there is the control of

consistency of the classes of the ontology. If an ontology has inconsistent

classes, that some error has been made in the the design phase, and that it

is an opportunity to correct it before distributing or using the ontology in

an operative skill server. In order to execute the control of consistency of a

ontology from Protégé, it is necessary to press the button Check consistency

on the Protégé toolbar. Having started a reasoner, the ontology can be sent

to the reasoner to automatically compute the classification hierarchy, and

also to check the logical consistency of the ontology. Protégé passes the

ontology to the reasoner that analyzes it and evidences eventual inconsistent

classes.

In Protégé the manually constructed class hierarchy is called the asserted

hierarchy. The class hierarchy that is automatically computed by the rea-

soner is called the inferred hierarchy.

For one example, a class Detector has been created in Gripper class,

therefore the restriction Detector: hasMainSkill only Detect has been as-

signed. Because grippers can only have Grasp and Release skills, and Detect

skill is disjoint from them, the Detector class is an empty set. Hence, Protégé

signals that the Detector class is inconsistent, marking it with a red circle in

the inferred hierarchy.
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Figure 5.3. Protégé interface: Check consistency results.

Figure 5.4. Protégé interface: Classify taxonomy results.
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As a second example, another function that can be useful in order to un-

derstand what a reasoner can do to help the categorization is the classification

of the ontology. Therefore, like the consistency control, the classification is

one function offered by the reasoner. It allows the user to obtain the in-

ferred hierarchy of the classes of the ontology which can vary from the one

declared by its creator. In order to execute the classification from Protégé, it

is necessary to press the button Classify taxonomy on the toolbar. Protégé

passes the ontology to the reasoner which analyzes it and generates the in-

ferred hierarchy that becomes visualized in addition to the one declared by

the creator.

Using the first example, MagnetFingerGripper class is located as the di-

rect subclass of Device class. When the inferred hierarchy has been com-

puted, an inferred hierarchy window will open next to the existing asserted

hierarchy window as shown in Figure 5.4.

Classifying the ontology after having inserted the defined class Mag-

netFingerGripper, the obtained result in the inferred hierarchy is that the

MagnetFingerGripper class is moved from Device to Gripper class. If a class

has been reclassified then the class name will appear in a blue color in the

inferred hierarchy. The user can update the structure of the ontology with

the inferred hierarchy, so as to preserve a more logically correct structure.

The last built-in function is reachable by pressing the button Compute

inferred types on the Protégé toolbar. This computation is only available

when individuals exist in the ontology. While the taxonomy classification

finds a better collocation for the class, the computation of inferred types

re-collocates the instances in new classes.

As a third example, a new device is instanced in the Device class. Such

device, MagnetFingerGripper, is denoted as having only gripper skills.

Making a computation of inferred types, the obtained result is visible in

the Figure 5.5. In the asserted hierarchy, each class is labeled with the values

in the form (n,m), where n is the number of asserted instances belonging to
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Figure 5.5. Protégé interface: Compute inferred types results.
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such class, and m is the number of inferred instances.

In the list of inferred instances of Gripper class there are two elements,

while the class has no asserted instances.

The first element is the instance that is in the subclass FingerGripper,

through the subsumption it is an inferred instance of all its super-classes.

The second element is MagnetFingerGripper, which has been re-collocated

by the reasoner in Gripper class.
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Chapter

6
Conclusion and future directions

6.1 Work evaluation

The developed ontology follows the SIARAS Consortium requirements. In

fact, it represents the manufacturing vocabulary from a skill point of view,

where the three elements: skills, devices, and properties, are separated. Hav-

ing connected the devices with their skills and properties, it is easy to identify

the tasks that can be achieved with available devices.

The ontology also provides a high level representation of properties. Prop-

erties have a double representation, where the first one is defined as a set of

instances of the built-in OWL class owl:DatatypeProperty. This renders

the ontology able to manage a high range of values regarding device and skill
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characteristics. Contrarily, a double representation increases the complexity

of reasoning algorithms.

Pellet developers offer an on-line tool, that provides various reasoning

services for OWL documents, such as OWL species, consistency checking,

satisfiability, and entailment tests.

Applying the test to the current ontology, the result is:

OWL Species: DL

DL Expressivity: ALCHOIF(D)

Consistent: Yes

Beginning from the base description logic ALC, the logic also has other

constructors: H (role hierarchy), O (nominals), I (inverse role), and F (func-

tionality).

The representation of properties as classes allows the skill server to have

a vocabulary of properties. However, it lacks high expressiveness in value

and range representation. Following SIARAS requirements, the actual skill

server version only supports this type of representation.

Performing the same test on the ontology without datatypes properties

produces the following results:

OWL Species: DL

DL Expressivity: ALCHI(D)

Consistent: Yes

As expected, the new expressiveness is ALCHI, because by removing

datatype properties, functionality and nominals have also been removed.

Device manufacturers have the assignment to populate the ontology with

instances and new classes, but it becomes clear that the ontology can never

be complete.
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However, the ternary-tree structure easily allows expansion, but each

change can make the ontology inconsistent. In order to prevent such a prob-

lem, it is important to know the computational complexity to verify the

ontology.

An inconsistent ontology is also quite easy for a reasoner to discover, if it

can process the whole ontology. In fact, in tableau reasoners, as Pellet and

FaCT++, unsatisfiability testing is reduced to a consistency test by assuming

that there is a member of the class to be tested, and doing a consistency check

on the resultant knowledge base.

However, unlike with simple unsatisfiable classes, it is very difficult for a

reasoner to do further work with an inconsistent ontology. Since any result

follows a contradiction, no other results from the reasoner are useful.

6.2 Future directions

The work done in this thesis could be extended with the categorization of

new devices, such as actuators, conveyor belts, and all devices that are in a

production line. These additions allow a wider representation of the manu-

facturing domain. Theoretically, the range is infinite, but limitations can be

imposed upon device and skill representation.

Instances are needed to create a database of devices. The instances can

be added to the ontology manually but, since the addition of new instances is

quite trivial, it can be assigned to an external tool. Here, the tool is able to

extract information from data-sheets and documents and insert new terms

in the ontology. The reasoners will have the assignment of verifying the

ontology consistency and, in case of negative feedback, the user intervention

is needed.

Now, the instances are memorized in the OWL file using XML references.
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The next step could be to move instances into a relational database manage-

ment system, in order for them to be more reachable by several skill servers,

and with the possibility of also creating a distributed database system.

The availability of properties as classes allows further development of re-

lationships among properties. In the future, it might be possible to represent

dependencies among the properties. For example, physical properties such

as aperture, exposure time and working distance of a camera sensor could

be represented through a relationship. Regardless, continued research of the

skill server development along with the SIARAS ontology is needed in order

to use the newly introduced functionalities.
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