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Automatic Theorem Proving in Active Logics

Abstract

Classical logic is useful for reasoning and knowledge representation in AI
systems. But this theoretical formalism can show some limits when used
with real-world agents. Indeed, it can be incompatible with computational
constraints, real-time requirements and contradiction handling.

There are many approaches trying to overcome those limitations. One
of them are active logics, studied for the last 20 years.

The purpose of this work is to set up an automatic theorem prover
suitable for that kind of logics, with its different approaches. This paper
first presents the active logics and some of its approaches, then describes
the syntax and the methodology of the theorem prover.
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Chapter 1

Introduction

1.1 Problem

Classical logic is a powerful methodology for reasoning and knowledge rep-
resentation in AI systems. But it is not well-suited for real-world agents.
Some important characteristics need to be taken into account when trying
to formalize the reasoning of those real agents.

First, classical logic formalism does not make the distinction between
the explicit beliefs of the agent and its implicit beliefs. That is, it does not
consider the passage of time. All the conclusions following from a belief set
- the implicit beliefs - are considered to be instantly known by the agent.
This is called logical omniscience. But the real-world agents are resource-
bounded, and at every point of time, an agent only knows a finite subset of
the consequences - the explicit beliefs.

Secondly, classical logic can not handle inconsistency. It is explosive: ev-
erything follows from a contradiction. This is called the swamping problem.
An agent reasoning in real world needs to be paraconsistent (or inconsistency-
tolerant), ie it should be able to deal with contradictions rather than infer
anything from them.

1.2 A new kind of logics

There are some attempts to constrain the inference process in order to guar-
antee polynomial-time computability and handle the resource limitations of
real-world agents. We can quote for example the attempts to limit the ex-
pressive power of the first-order logical calculus, or the polynomial approx-
imations of the reasoning process. However, those methods do not provide
tight bounds on the reasoning process.

Another approach consists in retaining control over the inference process.
Active logics appeared in this context. It is defined as follows (see [JEDPb]):
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Definition 1.2.1. An active logic consists of a formal language (typically
first-order) and inference rules, such that the application of a rule depends
not only on what formulae have (or have not) been proven so far but also on
what formulae are in the ”current” belief set. Not every previously proven
formula need to be current; in general the current beliefs are only a subset
of all formulae proven so far: each is believed when first proven but some
may subsequently have been rejected.

A number of new kinds of logics were developed to solve the limitations
of classical logic. But active logics are the only one able to reason in time,
and not only about time. In other words the agent can reason about the
reasoning process itself.

The reasoning of an agent is viewed as a discrete-time ongoing process
rather than as a fixed set of conclusions. That means that the conclusions
are drawn step-by-step. In addition, the reasoner is able to take into ac-
count that time is passing while it is reasoning, and it can keep history
of its reasoning. It can then make use of such information in subsequent
deductions.

Another advantage of active logics is the contradictions handling. As a
matter of fact active logics contain some meta-reasoning abilities - the agent
is able to reason about its own knowledge. Contradictions handling is a part
of this meta-reasoning. Note that meta-reasoning about some inconsistent
knowledge still remains consistent.

Those two characteristics make the active logics formalism non-monotonic1.

Definition 1.2.2. A logical formalism is non-monotonic if adding a new
belief to the knowledge base does not mean that this base will grow for sure,
belief retraction being allowed.

1.3 Some active logics approaches

The first incarnation of active logics was step logic. It was an attempt to
formalize parts of a certain memory model - this memory model will be
described in section 2.1. Jennifer Elgot-Drapkin proposed eight different
step-logics (see [ED88]), with increasing complexity, depending on how they
do or do not include some important mechanisms.

The problem of step logics, as we will see it, is that they are an oversim-
plification of the memory model, leading to computational issues.

In order to avoid this issue, Mikael Asker set up a new kind of active
logic (see [Ask03]), based on Gabbay’s Labelled Deductive Systems (LDS).
Using this new formalism, the memory model can be entirely modelled.

1For instance if the agent knows at time t that the time is t, this belief has to be
removed at time t+1.
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The purpose of this thesis is to develop a theorem prover able to imple-
ment those different active logics.

1.4 Structure of this report

This report is structured as follows:

• Chaper 1: contains this introduction.

• Chaper 2: an introduction to step logics and the formalization of a
memory model using LDS with active logics.

• Chaper 3: the description of the automatic theorem prover implement-
ing LDS.

• Chaper 4: conclusions and future work.

• Appendix A: the documentation about the code of the theorem prover.

• Appendixes B and C: the results after the application of the prover on
simple problems.
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Chapter 2

Backgrounds

This chapter is an overview of Mikael Asker’s thesis (see [Ask03]). We will
first take a look at the memory model inspiring active logics. Then we will
describe the step logic and LDS approachs.

2.1 A memory model inspired from cognitive psy-
chology

During the 1980s, a model of the memory based on cognitive psychology
was studied in the University of Maryland (see [JDP]). Cognitive psychol-
ogy claims that one can infer some representations, structures and mental
processes from the study of human behavior.

The model basically consisted of three parts coming from cognitive psy-
chology:

• LTM, the long term memory, which contains beliefs that can be re-
trieved when it is necessary.

• STM, the short term memory, which acts as the current focus of at-
tention.

• ITM, the intermediate term memory, which contains all facts that
have been pushed out of the STM. The content of the ITM provides
the history of the reasoner’s reasoning process. ITM provides support
for goal-directed behavior.

Classical logic is not suitable to formalize this memory model. Active
logics started as an attempt to do it.

For practical reasons, two new parts have been added to the original
model:

• QTM, the quick term memory, which is a technical device for buffering
the next cycle’s STM content.
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• RTM, the relevant term memory, which is the repository for default
reasoning and relevance. It contains all the beliefs of STM and the be-
liefs that have been pushed out of the STM but may still be important
for default resolution.

Figure 2.1 shows how the parts are connected to each other.
The model is demonstrated to work on some examples of simple default

reasoning.
Note that there is an interesting observation about the size of the STM.

Experimentation has shown that a size of roughly eight is the smallest that
leads to effective task-oriented behavior over several domains, and that larger
sizes offer no advantage. This is in surprising agreement with psychological
data on human short-term memory which has been measured to hold seven
plus or minus two ”chuncks” of data at any one time. It might be pure
coincidence, but it may also indicate some important similarity between the
memory model and the human short-term memory mechanism.

2.2 Step logic

Step logic was the first form of active logics. In fact, the term step logic is
older than the term active logic. It was an attempt to formalize parts of
the memory model described in previous section, by modelling the on-going
process of reasoning.

There are 8 different step logics, with increasing complexity, depending
on how they do or do not include the three following mechanisms:

• self-knowledge: capability of the agent to introspect what it does or
does not know

• time: capability of the agent to allow the on-going process of deduction
to be part of its reasoning

• retraction: non-monotonic reasoning

The different step logics and their respective included mechanisms are
organized as follows (S = self-knowledge, T = time, R = retraction):

SL0: none SL4: S, R
SL1: S SL5: S, T
SL2: T SL6: R, T
SL3: R SL7: S, T, R

This is SL7 that we are interested by in this thesis.
Intuitively, an agent is an inference mechanism that may receive new hy-

pothesizes under the form of observations. A well-formed formula observed
or inferred by the agent is called a belief. In order to present more precisely
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Figure 2.1: The memory model
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step logic, some definitions are given, in which Swff is the set of well-formed
formulae of a first-order or propositional language.

Definition 2.2.1. An observation function over a language L is a function
OBS : N → P(Swff), where P(Swff) is the powerset of Swff, which is the set
of all well-formed formulae over the language L, and where for each i ∈ N,
the set OBS(i) is finite. If α ∈ OBS(i), then α is called an i-observation.

Definition 2.2.2. A history is a finite tuple of pairs belief set/observation
set, which are both finite subsets of Swff. H denotes the set of all histories.

Definition 2.2.3. An inference function is a function INF : H → P(Swff)1,
where for each h ∈ H, the set INF(h) is finite.

Intuitively, a history represents the temporal sequence up to a certain
point in time. The inference function extends the temporal sequence of belief
sets by one more step beyond the history.

Now we can define the step logic theories:

Definition 2.2.4. An SLn-theory over a language L is a triplet < L,OBS, INF >,
where L is a first-order language, OBS is an observation function over L
and INF is an inference function over L. L is implicitly defined by OBS
and INF, so we can use the notation SLn(OBS, INF). At each step all the
immediate consequences of the rules of inference applied to the history are
drawn.

For the following sections, it is also important to define what is an i-
theorem:

Definition 2.2.5. Let the set of 0-theorems, denoted thm0, be INF(<<
∅,OBS(0) >>). For i > 0, let the set of i-theorems, denoted thmi, be
INF(<< thm0,OBS(1) >,< thm1,OBS(2) >, ..., < thmi−1,OBS(i) >>)1.
We write SLn(OBS, INF) `i α to mean that α is an i-theorem of SLn(OBS, INF).

2.2.1 Inference rules

Here the inference function INFB, defined in [JEDPa], is detailed.
The first two rules are the axioms. They express the awareness of time

and the sets of observations returned by the observation function.

(A1) i : Now(i) for all i ∈ Z+ Clock

(A2) i : α for all α ∈ OBS(i), i ∈ Z+ Observations

1In practice, and in the other active logics in general, the inference function is only
applied on the current belief set, and not on all the history.
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A1 calls for a special predicate, Now(i), meaning that the time of the
current step is i.

Then come two versions of Modus Ponens.

(I1)
i : α, α → β

i + 1 : β
Modus
Ponens

(I2)
i : P1a, ..., Pna, (∀x)[(P1x ∧ ... ∧ Pnx) → Qx]

i + 1 : Qa
Extended
Modus
Ponens

The next rule, Negative Introspection, allows one to infer lack of knowl-
edge about a particular formula that it is aware of at time i.

(I3) i + 1 : ¬K(i, α) Negative Introspection1

The K(i, α) predicate means that the agent knows the formula α at the
time step i (α is an i-theorem). The rule I3 uses meta-reasoning (this is the
self-knowledge mechanism that is not included in each step logic). In any
other inference rule of the inference function INFb, the K predicate has no
special status and is used just like any other predicate.

The next rule concerns the direct contradiction detection. This is a
retraction mechanism used to avoid the swamping problem, which is inherent
to standard logics.

(I4)
i : α,¬α

i + 1 : Contra(i, α,¬α)
Contradiction Detection

Once again, the rule uses meta-reasoning. But here we can consider
that the predicate Contra has a special status in the system regarding the
last inference rule of INFb. This is the inheritance rule. It propagates
the knowledge from one time step to the next. It handles the detected
contradictions through the Contra predicate and prevents the clock axioms
from being inherited. We can see this rule as the non-monotonic part of the
step logic.

(I5)
i : α

i + 1 : α
Inheritance2

1where α is not an i-theorem, but is a closed sub-formula at step i.
2where nothing of the form Contra(i− 1, α, β) nor Contra(i− 1, β, α) is an i-theorem,

and where α is not of the form Now(β).
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2.3 The memory model as an LDS

Step logics are an oversimplification of the memory model, abandoning no-
tably the focus of attention concept. So the set of beliefs grows rapidly and
this growing never stops. This can lead to some computational issues. Those
issues are of two kinds: it concerns a lack of memory and the impossibility
for the agent to apply each inference rule to all the belief set during the
fixed interval of time.

In order to avoid this issue, Mikael Asker set up a new kind of active
logic (see [Ask03]), based on Gabbay’s Labelled Deductive Systems (LDS).
Using this new formalism, the memory model can be entirely modelled so
that the belief set never exceeds a limited size.

In this section we will describe what are the Labelled Deductive Systems.
Then we will show how we can use this tool to extend step logics in order
to formalize completely the memory model.

2.3.1 Introduction to LDS

Traditionally a logic was perceived as a consequence relation on a set of
formulae. Problems arising in some application areas have emphasized the
need for consequence relations between structures of formulae. This ap-
proach called for an improved general framework in which many of the new
logics arising from Artificial Intelligence applications can be presented and
investigated. As a result of this, Gabbay presented the Labelled Deductive
Systems (LSD) as such a unifying framework (see [Gab96]).

The first step in understanding LDS is to understand the intuitive mes-
sage, which is very simple. Traditional logics manipulate formulae. An LDS
manipulates declarative units, pairs label:formula. Although it sounds very
simple, this formalism is considered to be a big step. As an analogy, the
difference it makes is compared to the difference between using one hand
only and allowing for the coordinated use of two hands.

The labels should be viewed as more information about the formulae
that is not encoded inside the formulae.

LDS is a methodology, not a single system. Gabbay recommends usage
of LDS only if it is convenient for the application. It should be used to
simplify, not to complicate.

Definition 2.3.1. An LDS proof system is a triplet (A,L,R) where:

• A is an algebra of labels. It can be described by a labelling language,
which can contain some operations, for example the addition or the
maximum function.

• L is a logical language (connectives and well-formed formulae).

13



• R is a discipline of labelling formulae of the logic (with labels from
the algebra A), together with a notion of a database and a family of
deduction rules and with agreed ways of propagating the labels via the
application of the deduction rules.

[Gab96] contains many examples of formulating major logics in LDS.
But there were no attempt to apply it to active logics until Mikael Asker
did it.

We could express the SL7-theory as an LDS without much effort. The
labelling algebra would be reduced to one single element: the time step i

corresponding to the i-theorem in question. So we would obtain: LSL7

df
=

(N,L,RSL7), where L is a first-order language and RSL7 is built around the
LDS version of the inference rules (I1)-(I5) and the axioms (A1) and (A2).
For instance, the Modus Ponens rule would become:

i : α, i : α → β

i + 1 : β

We can see here, through the expression of step logics into LDS formalism,
the concretization of the unifying formalism that Gabbay had in mind.

Note that all those new kinds of logics have not convinced the traditional
logic community. Actually, they have not even accepted non-monotinic rea-
soning as logic yet. They believe that all this excitement is temporary
generated by computer science, and that it will disappear sooner or later.

2.3.2 An extension of SL7

Step logics are an oversimplification of the memory model. In particular,
in the memory model the short term memory (STM) simulates the focus
of attention of human reasoning. The limited size of the STM limits the
number of inferences per step and allows to avoid the explosion of beliefs
during the reasoning process. In step logics this limitation is omitted so that
the number of formulae in each step may increase rapidly.

Our next step is to extend the SL7 with LDS to include all aspects of
the memory model. The following definitions describe the LDS system set
up by Mikael Asker as part of his Master’s Thesis (see [Ask03]).

In order to encompass all the complexity of the memory model, the label
policy (the algebra of labels) here needs to be more complex as well. Namely,

Slabels
df
= {LTM,QTM,STM, ITM} × Swff × {C, U} × N× N× N

where the interpretation of a tuple in Slabels is the following. If

(location, trigger, certainty, time, position, time-left-in-rtm) ∈ Slabels

is a label, then:

14



• location encodes the memory bank location of the formula (LTM,
QTM, STM or ITM).

• trigger is used for encoding the triggering formula for LTM items (in
particular, ε or 0 is used to denote the empty triggering formula). The
triggering formula is used for belief retrieval.

• certainty encodes the degree of certainty of a formula (certain or un-
certain). It is used in case of defeasible reasoning.

• position denotes the formula’s position in STM or ITM.

• time-left-in-rtm denotes the time the formula should remain in RTM.
The RTM has no position value. A labelled formula is present in
RTM and available for resolving contradictions when its time-left-in-
rtm field is non-zero. R ∈ N is a constant used to limit the time a
formula remains in RTM after it has left STM. The inference rules
enter a formula into RTM by setting time-left-in-rtm to R when the
formula enters STM. time-left-in-rtm remains at R until the formula
leaves STM. When the formula has left STM and moved to ITM, time-
left-in-rtm is decremented by one at each time step until it reaches
zero, after which the formula should be pushed out of the RTM.

The set of axioms, Saxioms, is determined by the following rules:

(A1) (STM, ε, C, i, i, 0) : Now(i) for all i ∈ Z+ Clock

(A2) (QTM, ε, C, i, 0, 0) : α for all α ∈ OBS(i), i ∈ Z+ Obs

(A3) (LTM, α, c, 0, 0, 0) : β for all formula tuples
(α, c, β) present in LTM at
time 0

LTM

The rules of inference describe not only which formulae may be derived
from others but also the memory banks for the source and result formulae.

The first rule describes retrieval from LTM into QTM:

(SR)
(STM, ε, c1, i, p, R) : α, (LTM, β, c2, i, 0, 0) : γ, αRcsfβ

(QTM, ε, c2, i, 0, 0) : γ
Semantic
Re-
trieval

where α Rcsf β means ’α is a closed sub-formula of β’. The trigger formulae
in the LTM labels together withRcsf limit the flow of information from LTM
to QTM. This flow limitation is important, especially in this implementation
where there is little selection when the information passes from QTM to
STM.

Modus Ponens inferences are performed from STM to QTM:
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(MP)
(STM, ε, c1, i, p1, R) : α, (STM, ε, c2, i, p2, R) : α → β

(QTM, ε,min(c1, c2), i, 0, 0) : β
Modus
Ponens

(EMP)

(STM, ε, c1, i, p1, R) : P1a
...
(STM, ε, cn, i, pn, R) : Pna
(STM, ε, cn+1, i, pn+1, R) : (∀x)[(P1x ∧ ... ∧ Pnx) → Qx]

(QTM, ε,min(c1, ..., cn+1), i, 0, 0) : Qa
Extended
Modus
Ponens

where function min is defined over the set {U,C} of certainty levels, with
the natural ordering U < C. Of course in the implementation of the theorem
prover, we will define the certainty levels with numbers, so that we will not
have to define a special minimum function only for the certainty levels. The
idea behind the certainty levels is that the status of a consequence should
not be stronger than any of its premises.

The next rule allows the reasoner to introspect its lack of knowledge:

(NI)
α ∈ fcsf(SSTM(i)), α /∈ fformulae(SSTM(i))

(QTM, ε, C, i, 0, 0) : ¬K(i, α)
Negative Intro-
spection

For this rule, we need to define some new concepts:

• Stheorems is the set of all conclusions that can be drawn in the submitted
SLn-theory. We begin with the set of axioms then we look for all the
conclusions that can be derived from it using the inference rules:

Stheorems
df
= { (l, t, c, j, p, r) : α ∈ Sdu|Saxioms ` (l, t, c, j, p, r) : α }

with Sdu
df
= Slabels × Swff

where Swff is the set of all well-formed formulae of SL7.

• SSTM and its relatives are defined as follows:

SQTM(i)
df
= { (l, t, c, j, p, r) : α ∈ Stheorems|(j = i) ∧ (l = QTM)}

SSTM(i)
df
= { (l, t, c, j, p, r) : α ∈ Stheorems|(j = i) ∧ (l = STM)}

Snew-STM(i)
df
= { (l, t, c, j, p, r) : α ∈ SSTM(i)|p = i}

SRTM(i)
df
= { (l, t, c, j, p, r) : α ∈ Stheorems|(j = i) ∧ ((l = STM) ∨ ((l = ITM) ∧ (r > 0)))}
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• fformulae(S) extracts all the unlabelled formulae from the pairs label :
formula of the set S:

Sformulae(S)
df
= {α ∈ Swff|(∃label ∈ Slabels)( label : α ∈ S)}

• fcsf(S) extracts all the closed sub-formulae contained in the unlabelled
formulae of S:

Scsf(S)
df
= {α ∈ Swff|(∃ label : β ∈ S)(α Rcsf β)}

The memory model as it was described in [JDP] uses and the loses pred-
icate (depending on the level of certainty) instead of the Contra predicate
used in step logics. Mikael Asker included both methods in his approach:

(CD1)

(STM, ε, c, i, p1, R) : α
(STM, ε, c, i, p2, R) : ¬α

(QTM, ε, C, i, 0, 0) : Contra(i, α,¬α)
Contradiction
Detection,
same certainty

(CD2A)

(STM, ε, c1, i, p1, R) : α
(STM, ε, c2, i, p2, R) : ¬α
c1 < c2

(QTM, ε, C, i, 0, 0) : loses(α)
Contradiction
Detection,
different cer-
tainties

(CD2B)

(STM, ε, c1, i, p1, R) : α
(STM, ε, c2, i, p2, R) : ¬α
c1 > c2

(QTM, ε, C, i, 0, 0) : loses(¬α)
Contradiction
Detection,
different cer-
tainties

The next group of rules handles inheritance, i.e. governs the time a
particular formula stays in a memory bank or is moved to another one. The
first inheritance rule says that eveything in LTM stays in LTM forever:

(IL)
(LTM, α, c, i, 0, 0) : β

(LTM, α, c, i + 1, 0, 0) : β
Inheritance in LTM

The following rule concerns inheritance from QTM to STM. Remember
that the conclusions of all the new inferences go to QTM. Like we pointed
out when we described the memory model, QTM is a technical device for
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buffering the next cycle’s STM content. In this way we can retain control
over the inheritance, like avoiding multiple copies of the same formula in
STM or avoiding rework on formulae that have already been contradicted:

(IQS)

(QTM, ε, c, i, 0, 0) : α
α /∈ fformulae(SSTM(i))
loses(α) /∈ fformulae(SRTM(i))
(STM, ε, c, i + 1, i + 1, R) : α

Inheritance QTM → STM

For the last inheritance rules the concept of focus of attention needs
to be concretely developed. The STM is implemented as a FIFO queue of
sets of declarative units rather than as a FIFO queue of declarative units.
Each declarative unit from STM is part of one of these sets according to
the value of its position argument. One problem with this ”lazy” STM
implementation is that limiting the number of non-empty sets in the STM
does not necessarily limit the number of formulae in the STM at the same
time. The flow from QTM to STM must be controlled to keep the amount
of computation in realistic levels.

The constant S represents the size of STM. We can not just estimate
that the declarative units that can stay in the STM are the ones in which
the position argument has a value situated in max(0, i + 1 − S)..i. That
would have had the effect that formulae would ”time out” from STM into
ITM even when no new formulae would have entered into STM. That is not
the FIFO behavior described in [JDP]. In order to get a real FIFO behavior
we let STM contain all the declarative units in which the position value is
situated in fmin-STM-pos(i)..i, where fmin-STM-pos(i) is calculated considering
that S is actually the number of non-empty sets in the FIFO queue. The
function fmin-STM-pos(i) is defined in terms of another function:

fmin-STM-pos(i)
df
= fSTM-pos(i, i, S)

where

fSTM-pos(i, p, s)
df
=





p if p = 0
p + 1 if s = 0
fSTM-pos(i, p− 1, s− 1) if (∃ (l, α, c, i′, p′, r) : β ∈ SSTM(i))(p′ = p)
fSTM-pos(i, p− 1, s) otherwise

fSTM-pos : N3 → N is a recursive function calculating the position of the sth

non-empty subset counting backwards from position p at time i.
This brings us to the inheritance from STM into STM and from STM

into ITM. When new formulae are entered into STM from QTM, some old
formulae must be pushed out of STM into ITM, to get a FIFO behavior and
to limit the STM size. This is done by the (IS) and (ISI) rules:
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(IS)

(STM, ε, c, i, p, R) : α
(p > fmin-STM-pos(i)) ∨ (Snew-STM(i + 1) = ∅)
Contra(i− 1, α, β) /∈ fformulae(SSTM(i))
Contra(i− 1, β, α) /∈ fformulae(SSTM(i))
α 6= Now(i)
(α 6= ¬K(i− 1, β)) ∨ (¬K(i, β) /∈ SQTM(i))
(α 6= Contra(i− 1, β, γ)) ∨ (Contra(i, β, γ) /∈ SQTM(i))

(STM, ε, c, i + 1, p, R) : α
Inheritance in
STM

(ISI)

(STM, ε, c, i, p, R) : α
(p = fmin-STM-pos(i)) ∧ (Snew-STM(i + 1) 6= ∅)
Contra(i− 1, α, β) /∈ fformulae(SSTM(i))
Contra(i− 1, β, α) /∈ fformulae(SSTM(i))
(α 6= ¬K(i− 1, β)) ∨ (¬K(i, β) /∈ SQTM(i))
(α 6= Contra(i− 1, β, γ)) ∨ (Contra(i, β, γ) /∈ SQTM(i))

(ITM, ε, c, i + 1, p, R) : α
Inheritance
STM → ITM

(II)
(ITM, ε, c, i, p, r) : α

ITM, ε, c, i + 1, p,max(0, r − 1)) : α
Inheritance in ITM

We can now define the LDS which is intended to be a formalization of
the memory model:

Lmm
df
= (Slabels,L,Rmm)

where Rmm is built around (SR), (MP), (EMP), (NI), (CD1), (CD2A),
(CD2B), (IL), (IQS), (IS), (ISI) and (II).
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Chapter 3

The automatic theorem
prover

The source code is entirely contained in the file ”ActiveLogics.pl”. The
documentation of the code is written in Appendix A. All the arguments
are introduced to the prover via the file ”arguments.txt”. The source code
and the different sets of arguments corresponding to the tests described in
Appendixes B and C are available on the following web page:
http://ai.cs.lth.se/education.shtml.

3.1 Introduction

The best way to study how powerful is a methodology is to implement it.
Lmm has only been tested on simple cases in which the focus of attention
is never even full. We would like to see how the ”engine” could manage
realistically large problems.

The purpose of this work is not only to implement SL7 and Lmm as they
were described in the previous chapter, but allow the user to customize his
own LDS system. He should be able to change the following settings:

• the number of arguments into the label policy

• the properties of the arguments in the label policy (words, symbols,
numbers, first-order logical formulae, simple mathematical operations,
...)

• the inference rules

Such an implementation involves a very delicate complexity to manage.
A lot of elements can be sources of errors. We will see that in the next
sections.
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Prolog is a well-suited programming language for LDS formalism and
logics in general, as it easily manipulates lists. Logical programming, as
functional programming, are the best choices for this kind of implementa-
tion. Making it in a classical language like C or Java would have unneces-
sarily grown the amount of work.

3.2 Structure of the arguments

3.2.1 Inference rules

There is a little difference between the modus operandi of step logics, like
defined in 2.2, and the one of active logics in general. Indeed, the prover
does not take into account all the history of beliefs to apply the inference
function on it. It only takes the results of the last application of all the
inference rules. So does the prover implemented in this word. We can see
that this constraint is well-suited for the inference function INFb of step
logics, because they infer all the beliefs of time i + 1 form beliefs of time i.

In revenge, two sets of inference rules are needed to suit the LDS ap-
proach of the memory model. This is due to the fact that the inference
function of this approach is not applied to the belief set in one single step,
but in fact uses an intermediate step. Indeed, some of the inference rules
start from beliefs at the time step i to bring conclusions concerning the next
time step i + 1. The other inference rules bring conclusions concerning the
same time step i than their premises. So the first kind of rules are applied to
the belief set at the first time and the conclusions form therefore an interme-
diate belief set, then the second kind of rules are applied to this intermediate
set. The new belief set consists of the regroupment of those last conclusions
and the intermediate belief set. The procedure is represented in Figure 3.1.
The structures of the inference sets are the following:

Rules1 = [Rule_1,
...,
Rule_m]

Rules2 = [Rule_m+1,
...,
Rule_n]

This separation of the beliefs is not needed in step logics. Rules2 is left
empty.

3.2.2 Axioms

The axioms are defined as the initial beliefs. The structure of the set of
axioms is the following:
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Figure 3.1: The two steps of inference

Axioms = [Axiom_1,
...,
Axiom_p]

3.2.3 Observations

The set of observations has the same structure than the set of axioms. So
we have:

Obs = [Observation_1,
...,
Observation_q]

3.3 Syntax of the rules and beliefs

The key word of this topic is clearly: LISTS. We use lists to represent the
labelled structures, as well as the formulae themselves.

3.3.1 Syntax of the beliefs

We added a little change to the initial formalism of pair label : formula .
Since the arguments of a label can be formulae, we replaced the pair above
by the simple expression label, or rather belief. So the syntax of a labelled
belief would have the form [Arg_1,Arg_2,...,Arg_n].

So if we apply this formalism to Lmm, we will obtain the structure:

[location,trigger,certainty,time,position,time-left-in-rtm,formula,rule]

The last element is just an indicator of which rule has been used to
obtain the belief.

For the software, every element of the belief is considered as a formula.
The structure of a formula is based on nested lists. An argument of the
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label that is not a formula is seen by the software as a formula with only
one element. Each element of those nested lists representing a formula can
be:

• a word or a symbol. Warning! If you attend to put in a belief a word
beginning with a capital letter, you will need to put this word between
quotes (’...’) or the program will see it as one of its variables.

• a predicate written under the form pred(Name,Arguments) where
Name is the name of the predicate and Arguments is the list of all
the arguments of the predicate.

• a universal variable with the syntax any(Name)1.

• a subformulae with the same structure.

For example the formula (∀x)[(bird(x) ∧ ¬ostrich(x)) → flight(x)] could be
inserted into the prover under the form:

[’->’,[and,pred(bird,[any(x)]),[not,pred(ostrich,[any(x)])]],
pred(flight,[any(x)])]

or under the form2:

[[pred(bird,[any(x)]),and,[not,pred(ostrich,[any(x)])]],
’->’,pred(flight,[any(x)])]

3.3.2 Syntax of the inference rules

Basically, the structure of an inference rule is quite simple. It has the form
rule(Premises,Conclusion) where Premises is a list of premises having
a belief pattern or being special rules. The conclusion always has a pattern
of belief.

Note that this is an inference device, not an axiom device: each infer-
ence rule needs at least one premise. Fortunately it is easy to translate an
axiom rule into an inference rule, like the Clock axiom that just becomes
the upgrading of the Now predicate.

It is obvious that the lists representing patterns of beliefs in the inference
rules must have the same size than the beliefs in the belief set.

Because of the fact that the premises and the conclusion of a rule are
not beliefs but patterns of beliefs, we need to introduce a new element:
the variables. They are expressed like this: var(Name) where Name is the
arbitrary name of the variable.

1The formulae do not have any prefixes. They are all considered to be the scopes of
formulae in prenex form, and the universal variables are marked by the use of any.

2For assuring compatibility with some special functions of the prover, the first form is
required.
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The prover is able to perform some very simple mathematical operations:
addition, substraction, maximum and minimum. The syntax for those oper-
ations is rigid and allows only one typing: [operation,Arg_1,...,Arg_n].
The operations can be nested. Remember that if any variable or non-
numerical value remains in the nested lists of operations, the result will
not be calculated.

The Extended Modus Ponens rule with its undefined number of premises
calls for another improvement in the belief patterns. The special element
all(in,Name1,SubFormula1) in a belief refers to a list of formulae where
each one is equal to SubFormula1 in which the free(Name2) elements have
been replaced by some new variables. In response, each belief containing
the element all(out,Name1,SubFormula2) actually refers to a set of be-
liefs where each occurrence of all(out,Name1,SubFormula2) have been
replaced by a formula equal to SubFormula2 in which each occurrence of
free(Name2) is replaced by the corresponding variable. This tool is hard
to understand like this but it will be easier in the next section where the
prover’s mechanisms are explained in more details.

Now that we have defined the premises under the form of beliefs, we can
talk about the special premises. Indeed, there are some inference rules that
need some premises that are more complex than just patterns of beliefs. This
is the case for most of the inheritance rules. The way to write those premises
is still using lists, but they do not have the same length than the beliefs and
their first element has always the proper syntax spec(SpecialFunction),
in which SpecialFunction is replaced by the name of the special function,
so that the syntax analyzer will not get confused.

The most important special premise is probably the one allowing access
to the observation function. About the observations, their syntax is the same
than the syntax of the beliefs. They manage the labelled structures with
formulae, predicates, words and symbols, and the mathematical operations.
The only difference is that their labelling policy can be different from the
one of the beliefs. For example in the memory model, the labelling policy
is simply [i, formula] where i is the time step in which formula is observed.
The call to this special premise is made this way:

[spec(obs),ObservationPattern]

where ObservationPattern has the same label policy than the observations
and in which the variables have been introduced under the form var(Name)
just like in the belief patterns.

The expression α ∈ fcsf(S) is not implemented in the prover as a veri-
fication function, but as a census function returning all the shortest closed
sub-formulae of the set S, ie the positive and negative predicates. It does
not return all the sub-formulae for computational matters. The syntax in
the inference rules is the following:
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[spec(f_csf),Pattern,Alpha]

where Alpha will be replaced by a variable that can be used in the fol-
lowing premises and where Pattern is a belief pattern used to constrain
the set of beliefs from which the sub-formulae are taken. For example
α ∈ fcsf(SSTM(3)) could be translated by:

[spec(f_csf),
[stm,0,var(c),3,var(p),var(r),var(formula),var(rule)],
var(alpha)]

Note that this tool works as a verifier too: if we replace Apha by any predicate
value, the program will check if it is a sub-formula of the set.

The four next functions are conditional functions. They can be used
with negation.

The first one implements α ∈ fformulae(S) or α /∈ fformulae(S), respec-
tively:

[spec(f_forms),Pattern]
[spec(not,f_forms),Pattern]

where Pattern is a pattern of belief entailing at the same time all the con-
straints of the verification. For example

Contra(5, α,¬α) ∈ fformulae(SSTM(6))

could be translated by:

[spec(f_forms),
[stm,0,var(c),6,var(p),var(r),
pred(contra,[5,var(alpha),[not,var(alpha)]]),
var(rule)]]

This device has no interest in its positive form because it could be replaced
simply by its Pattern argument. The conditional test would be equivalent.
But used with prefix not, it brings a new functionality.

The other conditional functions are very simple:

α = β [spec(=),Alpha,Beta]
α 6= β [spec(not,=),Alpha,Beta]
x < y [spec(<),X,Y]
x ≥ y [spec(not,<),X,Y]
α Rcsf β [spec(r_csf),Alpha,Beta]
α 6 Rcsf β [spec(not,r_csf),Alpha,Beta]

The special function f_min_stm_pos implementing the recursive func-
tion fmin-STM-pos(i) is the only one that is totally devoted to Lmm LDS. The
prover has not the ambition to be able to implement any given inference rule
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without adding some functions into the programming code. The possibilities
of special axioms are too wide to envisage covering them all. For the syntax
of f_min_stm_pos, it is written this way:

[spec(f_lin_stm_pos),I,S,var(Name)]

where I is the current time step, S is the number of non-empty sets in STM
(= the size of STM) and var(Name) is the variable in which the result will
be written.

The special operator ∨ (OR) and the set delimiter Snew-STM(i) have
not been implemented, because they can be avoided in this case. We can
rewrite the rules without using ∨, by just splitting one rule in two or more
complementary rules. Concerning the second one, its implementation in the
rules (IS) and (ISI) is very delicate, namely Snew-STM(i + 1) based on the
beliefs at time i, because it calls for a window on future conclusions. We can
easily get rid of it without important consequences because it only affects
the size of STM of one single unit. We could just add one unit to the size
of STM and say, about the computational time we lose at time i because of
this unit, that we recover it from not implementing Snew-STM(i + 1).

In Section 3.5, one can see how Lmm is translated into the prover’s for-
malism.

3.4 Functioning of the prover

In this section we will describe in details how the prover works, ie how it
creates a new set of beliefs on the basis of an existing set of beliefs and
a set of inference rules. It is easy to understand that each inference rule
of the set is applied to the existing set of beliefs, drawing all the possible
conclusions, then those conclusions are added to the conclusions drawn by
the other inference rules to form the new set of beliefs. So we will focus on
how the prover manages one single inference rule applied on the existing set
of beliefs.

First we will see how the prover makes the link between the premises of
an inference rule that have the pattern of beliefs and the beliefs themselves,
by some kind of correlation analysis. In this topic will will also see the man-
agement of some particular patterns of beliefs. After that we will describe
how the special premises that we talked about in the previous section are
implemented. Some complexity issues will be addressed as well as how we
tried to solve them.

3.4.1 Syntax analyzer

The most important part of the inference engine concerns processing of
formulae and beliefs in general. Although some special premises are used a
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lot, the only premises that are used for sure are the ones that are patterns of
beliefs and with which the prover has to find correlations with elements of
the belief set. The most important rules are often based only on patterns of
beliefs, like the unavoidable Modus Ponens rule. In the ideal case that kind
of rules would be the only ones needed, but the attempts to formalize the
human reasoning calls for more complicated rules. Anyway the conclusion
of any rule has the pattern of a belief because new beliefs are what we want
at the end.

The fundamental way of processing is that the prover analyzes the premises
one by one, in their initial order from top to bottom, and uses the corre-
lation between the analyzed premise and a belief to ”upgrade” all the fol-
lowing premises and the conclusion. Each upgrading of the premises adds
constraints on them so it tightens the number of beliefs that could be corre-
lated with those premises, and by the same it transforms little by little the
conclusion into a real belief. If no correlation is found for some upgraded (or
not upgraded) premise, the prover considers that the set of conclusions from
this upgraded premise is empty. But the operation is repeated for each belief
that can be correlated with the upstream premise so the prover stopping on
an uncorrelated upgraded belief does not mean that the rule will not have
any valid conclusion.

Now let us have a look on the way the correlations are found. Variables
play a very important role in this part. And there are not only variables
in the premises but also in some beliefs. Indeed, before applying an infer-
ence rule to a belief set, the program transforms all the universal variables
(any(Name1)) of the belief set into prover-processed variables (var(Name2)),
the same than in the inference rules. The program ensures that none of the
names (that are actually numbers) of the transformed variables are already
used in the inference rule. The newly-created variables have different names
in each belief, even if they had the same name when they were universal vari-
ables, because they refer to independent formulae. In the same vein, after
the analysis of all the premises, if some found conclusions still have variables,
those variables will be transformed in turn into universal variables.

When the prover is looking for a correlation between a premise and a
belief, that happens in two steps: possible correlation finding and confir-
mation of the correlation. Of course the correlation finding can be given
up after the first step. This first step analyzes the separated correlations
for each element of the labelled structure. So the belief and the premise
must have the same number of elements to envisage a correlation. Two cor-
responding elements, one from the belief and the other from the premise,
are designated for a potential correlation if they fulfill one of the following
conditions (remember that the prover considers every element as a formula):

• They are exactly the same.

• At least one of them is a variable. In this case the prover will keep
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track of the element that is not a variable (actually it could also be a
variable) as the value of the variable.

• They are both formulae in which all the corresponding sub-formulae
fulfill one of these conditions.

• One of them is a simple operation of nested additions and substractions
and containing at least one variable. To keep track of a value for
this variable, the prover will reverse the operation between the two
elements.

The tests are made in the same order than this listing above.
The treatment in the case of the fourth condition is a source of complex-

ity and potential errors, because the min and max operations can not be
reversed. Anyway there is almost no reason to use such operators outside
the conclusion. It is the responsibility of the user to make sure that all the
variables amongst the arguments of a min or max operation, which can itself
be used as an argument in an addition or a substraction, will be replaced
by numbers before the analysis of the premise they belong to.

Since the tests are made independently for each element separately, the
prover needs to apply a second step checking that there is no conflict between
the possible different values given to a same variable. For that the prover has
got a list regrouping all the identified variables and their respective values.
Some variables, identified or not, are part of the ”values” of other identified
variables, for example we could have the value of var(alpha) being:

[’->’,pred(intrusion,[var(room)]),pred(call,[police])]

We can keep the basis of this example to explain how the confirmation step
works. Of course if the variable var(alpha) is defined more than once
with each time the same value, the prover will validate this variable and
just keep one occurrence of its definition. But in the other case, the fact
that the different definitions are not exactly the same does not mean that
the correlation can not be validate. they can still be compatible. Another
definition of var(alpha) could be:

[’->’,pred(intrusion,[livingroom]),pred(call,[police])]

So the variable var(alpha) would be constrained to the definition just above
and we would have a new value for the already or not yet identified variable
var(room) that would be livingroom. If var(room) was already identified,
its new definition will have to be compatible will the existing ones. There is
unfortunately a part of this step we can not really retain control on: when
a variable is part of its own definition. In such a case the prover simply
deletes the definition. Most of the time this is the right thing to do, because
the deleted definition was something like:
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[+,1,[-,var(x),1]]

Such a definition is impossible to solve for the prover on its current state
(at least in the way it solves that kind of operations), because all the nested
arguments are not numbers. Sometimes deleting the definition can also lead
to errors. The nested operators clearly constitute the major source of un-
certainties and errors. It has to be used very carefully when designing a
system, the simpler the better. One of the purposes of future work con-
cerning this theorem prover could be a device able to simplify the nested
operations even if some of the arguments are unreplaced variables, in order
to increase the robustness of the analyzer. But for now there is a simple for-
malism that the user should adopt to limit the source of errors: always keep
the same structure form incrementing or decrementing a variable, ie avoid
writing [+,var(x),1] and [+,1,var(x)] in the same system. This is due
to the fact that during the possible correlation finding step the third test is
applied before the fourth, therefore it is possible to avoid useless reversing
of operations.

The upgrading of the next premises will be processed using this ’clean’
set of variable values. The principle is simple, each occurrence of a variable
present in the set is replaced by its definition. And each min, max, addition,
substraction operation is solved when possible.

Now that we have described the basic mechanisms of the inference engine,
we should illustrate them by an example. The Modus Ponens rule of the
step logic approach lends itself to this example judiciously:

rule([[var(i),var(alpha)],
[var(i),[’->’,var(alpha),var(beta)]]],

[[+,var(i),1],var(beta)])

We imagine a belief set containing the two following beliefs:

[5,pred(intrusion,[livingroom])]
[5,[’->’,pred(intrusion,[any(room)]),pred(call,[police])]]

First of all, the beliefs are translated in order to transform universal vari-
ables into prover-processed variables. The names (actually the numbers) of
the new variables only depend on the ones that are already present in the
inference rule and in the other beliefs:

[5,pred(intrusion,[livingroom])]
[5,[’->’,pred(intrusion,[var(1)]),pred(call,[police])]]

Both of those beliefs are compatible with the first premise, but the second
belief would lead to an upgrading of the second premise that would proba-
bly be incompatible with all the belief set. In revenge, if we correlate the
first belief with the first premise and upgrade the other premises and the
conclusion, the rule will become:
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rule([[5,[’->’,pred(intrusion,[livingroom]),var(beta)]]],
[6,var(beta)])

Then the second belief is still compatible with the premise, leading to the
conclusion:

[6,pred(call,[police])]

A last point to be addressed in this topic is the management of an unde-
fined number of premises, ie the all(...) term. When the prover detects
the presence of an all(...) predicate in a premise, its behavior becomes
different:

• If the premise contains at least one predicate all(out,...,...) with-
out containing a predicate all(in,...,...), then the premise is sim-
ply moved to the end of the premises set. The reason is that all
the all(out,Name,...) predicates depend on the all(in,Name,...)
predicate. If it was not the case this mechanism would be computa-
tionally unacceptable. It would be like planning an itinerary without
knowing the destination and then see if the itinerary matches the des-
tination.

• If the premise contains at least one predicate all(in,Name,SubForm),
the prover will first try to match some very tolerant correlation be-
tween the premise and the belief. Actually it only checks the correla-
tion between the sub-formula pattern SubForm and the corresponding
ensemble of sub-formulae (if they exist) in the belief. Then it will
remodel the inference rule, including the analyzed premise, according
to the number of those corresponding sub-formulae. Each predicate
all(in,Name,SubForm2) contained in a premise or in the conclusion
will be replaced by a list of Sub-formulae based on the pattern Sub-
Form2 in which the free(...) elements will be replaced by new vari-
ables in accordance with the replacements of the free(...) elements
in the other beliefs. This is why the prover requires that the syntax
of the formulae was prefixed1 (see 3.3.1), like in HP calculators, so
that the prover does not have to separate the different arguments of
an operation by the shared operator (like ∧ or ∨). The premises con-
taining the predicate all(out,Name,SubForm3) will be replaced by a
group of same premises in which this all predicate will be replaced by
a sub-formula based on the pattern SubForm3 where the free(...)
elements are replaced by variables with the same accordance than be-
fore.

As an example we analyze the Extended Modus Ponens rule of the step
logics approach:

1Except for that, the logic used by the user can be quite flexible and is implicitly
defined by the inference rules, the axioms and the observations.
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rule([[var(i),all(out,emp,free(form))]],
[var(i),[’->’,[and|all(in,emp,free(form))],var(q)]],

[[+,var(i),1],var(q)])

where the formalism [El|Ls] means that the element El is implanted as the
first element of the list Ls. First the prover detects all(out,emp,free(form))
in the first premise without detecting any all(in,...,...) so it will move
the premise to the end of the set of premises:

rule([[var(i),[’->’,[and|all(in,emp,free(form))],var(impl)]],
[var(i),all(out,emp,free(form))]],

[[+,var(i),1],var(impl)])

In this case the prover detects in the first premise the presence of the pred-
icate all(in,emp,free(form)). Thus for each belief that could be corre-
lated with the premise, the inference rule will be remodeled. For example if
we consider a belief set, after translating the universal variables into prover-
processed variables, containing the following belief:

[5,[’->’,[and,pred(bird,[var(12)]),[not,pred(ostrich,[var(12)])]],
pred(flight,[var(12)])]]

Then the only correlation that the prover will check is the one between
[all(in,emp,free(form))] and:

[pred(bird,[var(12)]),[not,pred(ostrich,[var(12)])]]

This correlation is verified and the only information that the prover will
withdraw from it is the number of elements substituting the all predicate,
2 in this case. After that the rule will be rewritten like this:

rule([[var(i),[’->’,[and,var(17),var(18)],var(impl)]],
[var(i),var(17)]],
[var(i),var(18)]],

[[+,var(i),1],var(impl)])

Then this remodeled rule can be applied to the belief set like any other
inference rule. We recognize that this tool is not very efficient, since because
of its very tolerant analysis for correlation it can remodel the rule in the
same way a big amount of times. Of course the identical conclusions will be
cleaned to keep only one of them at the end, but the algorithm could surely
be computationally improved.

Moreover, we can see here a source of complexity in the programming
activity. The mathematical operations (addition, maximum, ...) and the
all(...) function are both special tools expressed inside the belief pat-
terns. It would have been convenient to store them in a same part of the
programming code in order to maintain a certain organization in it. But
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this is unfeasible because the first one just replaces some nested lists inside
the beliefs without any external help while the second one concerns relations
between a group of beliefs. For the first one the dedicated function of the
prover just needs to have in argument the part of the belief where the op-
eration appears. But for the second one it needs to have all the concerned
premises of the inference rule.

3.4.2 Special devices

In a lot of inference rules the LDS approach of the memory model uses
some different premises than the simple patterns of beliefs. Therefore new
devices have to be implemented. Each one of them has a unique purpose
and there is no general procedure to implement them. This is the need
for that kind of special devices that makes the prover not totally flexible.
However, those implementations are often easy for a programmer who has a
sufficient knowledge of the code. In this subsection we will talk about how
those devices are implemented by the prover. See 3.3.2 for the syntax of
these special premises.

The observation device spec(obs) simply takes all the tools initially
destined to the classical premises, like described in the previous subsection,
and applies them to the pattern of observation that it has in argument. In
this case of course the correlations are searched in the set of observations
instead of the set of beliefs.

The conditional test α ∈ fformulae(S) (spec(f_forms)) uses the correla-
tion device applied to its argument but does not upgrade the next premises
after this correlation research. The operation just returns Yes or No. For
the negation use of the device (spec(not,f_forms)), the result is simply
reversed.

The three other conditional tests (α = β, α < β, α Rcsf β) are too
obvious to be explained.

The function α ∈ fcsf(S) (spec(f_csf)) is implemented like this: the
prover first applies the correlation device on each belief of the belief set in
order to filter the beliefs that match the Pattern argument in the special
premise (see in 3.3.2). Then it identifies all the positive and negative pred-
icates of the filtered beliefs. Finally it upgrades, for each result, all the
occurrences of the argument var(alpha) that are in the next premises.

Finally, the implementation of the very specific function fmin-STM-pos(i)
has a recursive use of same device than the one used by (spec(f_forms)).
Keeping in memory values for S-temp and P that are initially the value
of S and the current time respectively, the following premise is recursively
simulated:

[spec(f_forms),[stm,0,var(i),P,var(r),var(form),var(rule)]]
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If the test is verified, S-temp becomes S-temp− 1, if not the value of S-temp
stays the same. Then the simulated premise becomes:

[spec(f_forms),[stm,0,var(i),[-,P,1],var(r),var(form),var(rule)]]

The recursion stops when P = 0, in which case all the occurrences of the
argument var(Name) (see 3.3.2) in the next premises are replaced by 0, or
when S-temp = 0, in which case those occurrences are replaced by P + 1.

3.5 Application of the prover to LDS

In this section we will see how the inference rules and the axioms of Lmm

LDS can be translated as the arguments of the prover. Those arguments
are contained in the file ’arguments.txt ’. Sometimes this translating part re-
quires a little bit of ”tinkering”. For example, since the prover continuously
replaces the belief set instead of growing a ’static’ belief set, like explained
in 3.2.1, the inference rules are separated in two different sets of rules. The
reason for that is that the conclusions of some rules are at the same time
step than the premises and the conclusions of the other rules are at the next
time step. Since the beliefs of a set at any given time step i have all the
same time indicator i, then to obtain the belief set at time i + 1 we have
to apply first the rules leading to conclusions with i + 1 as time indicator
then apply to those new conclusions the other set of rules and finally put
all the conclusions together. This is not needed with SL7 LDS since all the
inference rules take premises at time i to infer conclusions at time i + 1.
In the following translations of the rules we will not make the distinction
between the two kinds of inference rules.

For the prover, the axiom set is considered as the initial set of beliefs.
So according to the purpose of translating the Clock axiom into an inference
rule, the belief

[stm,0,1,0,0,0,pred(now,[0]),axiom]

is required into the set of axioms, assuming that the initial time is 0. We
can now define the Clock (A1) ’inference rule’:

rule([[stm,0,1,var(i),var(i),0,pred(now,[var(i)]),var(rule)]],
[stm,0,1,[+,var(i),1],[+,var(i),1],0,pred(now, [[+,var(i),1]]),clock])

The second axiom, Obs (A2), is translated into an inference rule as well:

rule([[stm,0,1,var(i),var(i),0,pred(now,[var(i)]),var(rule)],
[spec(obs),[var(i),var(form)]]],

[qtm,0,1,var(i),0,0,var(form),obs])

The last axiom, LTM (A3), only concerns the first set of beliefs. So each
formula specified by this axiom must be in the axiom set under the form:
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[ltm,Alpha,Certainty,0,0,0,Beta,axiom]

Then comes the original inference rules. The first one is Semantic
Retrieval (SR):

rule([[stm,0,var(c1),var(i),var(p),var(r),var(alpha),var(rule1)],
[ltm,var(beta),var(c2),var(i),0,0,var(gamma),var(rule2)],
[spec(r_csf),[var(alpha),var(beta)]]],

[qtm,0,var(c2),var(i),0,0,var(gamma),sr])

Modus Ponens (MP):

rule([[stm,0,var(c1),var(i),var(p1),var(r1),var(alpha),var(rule1)],
[stm,0,var(c2),var(i),var(p2),var(r2),

[’->’,var(alpha),var(beta)],var(rule2)]],
[qtm,0,[min,var(c1),var(c2)],var(i),0,0,var(beta),mp])

Extended Modus Ponens (EMP):

rule([[stm,0,var(c),var(i),var(p),var(r),
[’->’,[and|all(in,emp,free(form))],var(impl)],var(rule)],

[stm,0,all(out,emp,free(c)),var(i),all(out,emp,free(p)),
all(out,emp,free(r)),all(out,emp,free(form)),
all(out,emp,free(rule))]],

[qtm,0,[min,var(c)|all(in,emp,free(c))],var(i),0,0,var(impl),emp])

The use of the special function all could seem not very easy. The symbol
’|’ replaces the symbol ’,’ to stipulate that the elements that are in the same
list than ’|’ and precede it will be integrated in the list just after ’|’. So if
we consider for example that all(in,emp,free(c)) will be replaced by the
list [var(1),var(2),var(3)], then [min,var(c)|all(in,emp,free(c))]
will be replaced by the list [min,var(c),var(1),var(2),var(3)] instead
of [min,var(c),[var(1),var(2),var(3)]].

Negative Introspection (NI):

rule([[spec(f_csf),[stm,0,var(c1),var(i1),var(i2),var(r1),
var(form1),var(rule1)],var(form2)],

[spec(not,f_forms),[stm,0,var(c2),var(i3),var(i4),var(r2),
var(form2),var(rule2)]],

[stm,0,1,var(i),var(i),0,pred(now, [var(i)]),var(rule3)]],
[qtm,0,1,var(i),0,0,[not,pred(k,[var(i),var(form2)])],ni])

The third premise has been added to know which time step must be at-
tributed to the conclusion. Indeed, the f_form condition is just a verifier
function and the f_csf function just returns a positive or negative predi-
cate. So they do not keep track of some particular time argument.

Contradiction Detection (CD1), (CD2A) and (CD2B):
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rule([[stm,0,var(c),var(i),var(p1),var(r1),var(alpha),var(rule1)],
[stm,0,var(c),var(i),var(p2),var(r2),[not,var(alpha)],var(rule2)]],

[qtm,0,1,var(i),0,0,
pred(contra,[var(i),var(alpha),[not,var(alpha)]]),cd1])

rule([[stm,0,0,var(i),var(p1),var(r1),var(alpha),var(rule1)],
[stm,0,1,var(i),var(p2),var(r2),[not,var(alpha)],var(rule2)]],

[qtm,0,1,var(i),0,0,pred(loses,[var(alpha)]),cd2a])

rule([[stm,0,1,var(i),var(p1),var(r1),var(alpha),var(rule1)],
[stm,0,0,var(i),var(p2),var(r2),[not,var(alpha)],var(rule2)]],

[qtm,0,1,var(i),0,0,pred(loses,[[not,var(alpha)]]),cd2b])

Because of the fact that there are only two different certainty levels, the
c1 < c2 and c1 > c2 premises were not necessary. It was easier to di-
rectly give the explicit values of the certainty levels of the rules (CD2A) and
(CD2B).

Inheritance in LTM (IL):

rule([[ltm,var(alpha),var(c),var(i),0,0,var(beta),var(rule)]],
[ltm,var(alpha),var(c),[+,var(i),1],0,0,var(beta),il])

For the next rule, Inheritance QTM → STM (IQS), the implementa-
tion takes into account that RTM is implicitly defined through STM and
ITM. We need two complementary rules to specify that a certain formula is
not already in RTM:

rule([[qtm,0,var(c1),var(i),0,0,var(alpha),var(rule1)],
[spec(not,f_forms),[stm,0,var(c2),var(i),var(p2),var(r2),

var(alpha),var(rule2)]],
[spec(not,f_forms),[stm,0,var(c3),var(i),var(p3),var(r3),

pred(loses,[var(alpha)]),var(rule3)]],
[spec(not,f_forms),[itm,0,var(c4),var(i),var(p4),var(r4),

pred(loses,[var(alpha)]),var(rule4)]]],
[stm,0,var(c1),[+,var(i),1],[+,var(i),1],20,var(alpha),iqs])

rule([[qtm,0,var(c1),var(i),0,0,var(alpha),var(rule1)],
[spec(not,f_forms),[stm,0,var(c2),var(i),var(p2),var(r2),

var(alpha),var(rule2)]],
[spec(not,f_forms),[stm,0,var(c3),var(i),var(p3),var(r3),

pred(loses,[var(alpha)]),var(rule3)]],
[spec(f_forms),[itm,0,var(c4),var(i),var(p4),0,

pred(loses,[var(alpha)]),var(rule4)]]],
[stm,0,var(c1),[+,var(i),1],[+,var(i),1],20,var(alpha),iqs])

35



In other words, if we look at the fourth premise in each rule, it means
that the formula loses(α) is not in ITM, or is in ITM but the value of the
argument R is 0.

The two next rules of inheritance, that are very similar, are the less ob-
vious to implement because we get rid of the set delimiter Snew-STM(i + 1),
like we said in Section 3.3.2, and we need to implement three complementary
rules each time to substitute the ∨ operator.

Inheritance in STM (IS):

rule([[stm,0,var(c1),var(i),var(p1),var(r1),var(alpha),var(rule1)],
[spec(f_min_stm_pos),var(i),20,var(pos)],
[spec(<),[-,var(pos),1],var(p1)],
[spec(not,f_forms),[stm,0,var(c2),var(i),var(p2),var(r2),

pred(contra,[[-,var(i),1],var(alpha),var(beta1)]),
var(rule2)]],

[spec(not,f_forms),[stm,0,var(c3),var(i),var(p3),var(r3),
pred(contra,[[-,var(i),1],var(beta2),var(alpha)]),
var(rule3)]],

[spec(not,f_forms),[stm,0,var(c4),var(i),var(p4),var(r4),
pred(loses,[var(alpha)]),var(rule4)]],

[spec(not,=),[var(alpha),pred(now,[var(i)])]],
[spec(not,=),[var(alpha),[not,pred(k,[[-,var(i),1],var(beta3)])]]],
[spec(not,=),[var(alpha),

pred(contra,[[-,var(i),1],var(beta4),var(beta5)])]]],
[stm,0,var(c1),[+,var(i),1],var(p1),var(r1),var(alpha),is])

rule([[stm,0,var(c1),var(i),var(p),var(r),
[not,pred(k,[[-,var(i),1],var(alpha)])],var(rule1)],

[spec(f_min_stm_pos),var(i),20,var(pos)],
[spec(<),[-,var(pos),1],var(p)],
[spec(not,f_forms),[qtm,0,var(c2),var(i),0,0,

[not,pred(k,[var(i),var(alpha)])],
var(rule2)]]],

[stm,0,var(c1),[+,var(i),1],var(p),var(r),
[not,pred(k,[[-,var(i),1],var(alpha)])],is])

rule([[stm,0,var(c1),var(i),var(p),var(r),
pred(contra,[[-,var(i),1],var(alpha),var(beta)]),var(rule1)],

[spec(f_min_stm_pos),var(i),20,var(pos)],
[spec(<),[-,var(pos),1],var(p)],
[spec(not,f_forms),[qtm,0,var(c2),var(i),0,0,

pred(contra,[var(i),var(alpha),var(beta)]),
var(rule2)]]],
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[stm,0,var(c1),[+,var(i),1],var(p),var(r),
pred(contra,[[-,var(i),1],var(alpha),var(beta)]),is])

Inheritance STM → ITM (ISI): This rule is the same than (IS) where,
in each one of the three complementary rules, [spec(<),[-,var(pos),1],var(Name)]
is replaced by [spec(not,<),[-,var(pos),1],var(Name)] and stm in the
conclusion is replaced by itm.

Inheritance in ITM (II):

rule([[itm,0,var(c),var(i),var(p),var(r),var(alpha),var(rule)]],
[itm,0,var(c),[+,var(i),1],var(p),[max,0,[-,var(r),1]],var(alpha),ii])

This implementation has been tested on Mikael Asker’s example. We
obtained the expected results, see Appendix C.
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Chapter 4

Conclusion

4.1 Active logics and LDS

Active logics seem like a good choice in terms of efficient reasoning. The
reasoning is situated in time, which solves the omniscience problem and
allows the agent to reason about the reasoning process itself. Active logics
also allow non-monotonic reasoning and contradiction handling. Everything
seems to indicate that active logics are a good basis to formalize the memory
model based on cognitive psychology defined in [JDP]. The first attempt
to do it were the step logics, which are an oversimplification of the memory
model. In particular, the focus of attention was not taken into account,
leading to computational issues for large problems.

The purpose of Mikael Asker’s thesis was to extend this formalization
using Gabbay’s Labelled Deductive Systems (LDS). The inference rules used
in step logics were kept and extended with labels to respect the different
parts of the memory and how the information travels between them.

The LDS approach seems to formalize well the memory model but has
only been tested on one simple problem in which the use of focus of attention
is not needed. It would be interesting to test the approach on realistically
large problems, to see if the concept of focus of attention really works like
expected. The memory model LDS has already been implemented once,
by Sonia Fabre in Common Lisp (see [Fab04]). But this prover was non-
extensible, the inference function could not be modified.

4.2 The automatic theorem prover

The purpose of this work was to implement a theorem prover able to im-
plement not only the memory model LDS, but any kind of LDS, allowing a
control over the inference function as flexible as possible. The result is quite
satisfactory, and a wide range of different inference rules can be encoded.
But still there are some limitations due to the fact that some inference rules

38



need special functions. Sometimes a little reprogramming of the prover is
inevitable. The user also needs to be careful when designing a system in
which complex use of the operations ”(min,max,+,-)” is made. For now,
the prover has only been tested, with success, on the Three-wise-men Prob-
lem (via step logics) and on the Tweety Problem (via LDS). The descriptions
of these problems as well as the results obtained are presented in Appendixes
B and C, respectively.

We are aware that the biggest weakness of our prover resides in its lack
of efficiency when it comes to larger problems1, so the notion of focus of
attention is very important.

4.3 Future work

Concerning the software itself, the prover is not perfect and some of its parts
can be improved:

• The biggest source of errors is clearly the nested operations. All the
nested arguments must be numbers and not unknown variables in order
to expect the prover to resolve it. A good improvement could be to
implement a device able to simplify those operations when some of the
arguments are still variables. Another way to increase the robustness
would be to improve the correlation device so that it could find the
correlation between two equivalent nested operations but where the
arguments are placed differently.

• The mechanism looking for correlation between beliefs and premises
containing the element all(in,...,...) are too tolerant. So this
part of the prover is inefficient. We still do not see how to decrease
this excessive tolerance without increasing the risk of errors.

• When the value of a specific element of a premise does not matter, we
designate it with a variable unused anywhere else. We should introduce
a new symbol especially for those non-important elements, for clarity
and for avoiding useless upgrading attempts in the inference rules.

We did not try to determine how powerful the prover is:

• It could be useful to test it on some famous problems, like we did with
the Three-wise-men Problem, to see if it leads to the right conclusions.

• This prover should be compared with the others present in the market
on some famous probles, in order to compare their flexibility as well
as their robustness.

1Note that we first made a non-flexible prover for Lmm LDS, and it was much faster
than this one.
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Finally, if the prover is determined to work well on larger problems, we
could use it to serve different formalisms like the memory model LDS2, as
it was its initial purpose.

2Considering the lack of efficiency of our prover, the implementation of the focus of
attention is primary for modelling the realistically-large problems.
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Appendix A

Documentation of the code

All the program holds in one single file, written in Prolog: ”ActiveLogics.pl”.
All the concepts of beliefs, inference rules, premises, special functions...

used in the following specifications respect the descriptions given in 3.2 and
3.3.

apply all rules(+Rules,+Beliefs,+Obs,−Concls) is true if Rules is a
set of inference rules, Beliefs is a set of beliefs, Obs is the set of ob-
servations that can be used by the inference rules if necessary, and
Concls is the set of all the conclusions (without doubles) that can be
drawn by the application of all the inference rules present in Rules to
the belief set Beliefs.

all groups(+Beliefs1,+Beliefs2,+Obs,+N,+Rule,−Group) is true if:

• Rule is an inference rule.

• Obs is the set of observation that can be used by the inference
rule Rule if necessary.

• N is the highest number used as a name of variable (var(N)) in
Rule and in the belief sets Beliefs1 and Beliefs2.

• Group is the set of all the different good substitutions of beliefs
that can be done to the premises of Rule, with each time the
inferred conclusion. So the elements of Group are under the form:
rule([Belief1,Belief2,...],InferredConcl). The beliefs substituting
the first premise of Rule come from Beliefs1, and all the beliefs
substituting the other premises come from Beliefs2.

correlation(+X,+Y,−Ls) is true if the two formulae X and Y are poten-
tially correlated1 and if the list Ls regroups all the values attributed to
the variables following this correlation (under the form corr(var(Name),Value)).

multi correl(+Xs,+Ys,−Ls) is true if all the respective elements of the
lists of formulae Xs and Ys are potentially correlated1 and if the list
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Ls regroups all the values attributed to the variables of those formulae
following those correlations (under the form corr(var(Name),Value)).

replace(+X,+Vars,−Y) is true if Vars is a list of distinct variables with
associated values, under the form corr(var(Name),Value), and if Y is a
formula equivalent to the formula X in which all the occurrences of any
variable present in Vars is replaced by its associated value and where
the simple mathematical operations (addition, substraction, minimum
and maximum) are solved when possible (ie when all their arguments
can be reduced to numbers).

multi replace(+Xs,+Vars,−Ys) is true if Vars is a list of distinct vari-
ables with associated values, under the form corr(var(Name),Value),
and if Ys is a list of formulae equivalent to the list of formulae Xs in
which all the occurrences of any variable present in Vars is replaced
by its associated value and where the simple mathematical operations
(addition, substraction, minimum and maximum) are solved when pos-
sible (ie when all their arguments can be reduced to numbers).

rule replace(+Rule1,+Vars,−Rule2) is true if Vars is a list of distinct
variables with associated values, under the form corr(var(Name),Value),
and if Rule2 is an inference rule equivalent to the inference rule Rule1
in which all the occurrences of any variable present in Vars is replaced
by its associated value and where the simple mathematical operations
(addition, substraction, minimum and maximum) are solved when pos-
sible (ie when all their arguments can be reduced to numbers).

map prem(+Prem,+Rules1,−Rules2) is true if Rules2 is a list of infer-
ence rules corresponding to the list of inference rules Rules1 in which
the element Prem has been added as the first premise of each rule.

addition(+Xs,−N) is true if Xs is a list of numbers and if N is a number
corresponding to the addition of all the elements of Xs.

1Two formulae are designated for a potential correlation if they fulfill one of the fol-
lowing conditions:

• They are exactly the same.

• At least one of them is a variable. In this case the prover will keep track of the other
formula (actually it could also be a variable) as the value of the variable.

• They are both formulae in which all the corresponding sub-formulae fulfill one of
these conditions.

• One of them is a simple operation of nested additions and substractions and con-
taining at least one variable. To keep track of a value for this variable, the prover
will reverse the operation between the two elements.
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substraction(+Xs,−N) is true if Xs is a list of numbers and if N is a
number corresponding to the substraction from the first element of Xs
of all the other elements of Xs.

minimum(+Xs,−N) is true if Xs is a list of numbers and if N is a number
corresponding to the minimum of all the elements of Xs.

maximum(+Xs,−N) is true if Xs is a list of numbers and if N is a number
corresponding to the maximum of all the elements of Xs.

not numbers(+Xs) is true if the list Xs contains at least one element
which is not a number.

var max(+X,−N) is true if X is a formula and if N is the highest number
corresponding to the name of a variable in X. If there is no element
var(Name) in X for which Name is a number, then N = 0.

multi var max(+Xs,−N) is true if Xs is a list of formulae and if N is the
highest number corresponding to the name of a variable in Xs. If there
is no element var(Name) in Xs for which Name is a number, then N
= 0.

rule var max(+Rule,−N) is true if Rule is an inference rule and if N is
the highest number corresponding to the name of a variable in Rule.
If there is no element var(Name) in Rule for which Name is a number,
then N = 0.

uni vars(+X,−Ls) is true if X is a formula in prenex form and if Ls is a
list containing all the universal variables (in the form any(Name)) of
X.

multi uni vars(+Xs,−Ls) is true if Xs is a list of formulae in prenex form
and if Ls is a list containing all the universal variables (in the form
any(Name)) of Xs.

del doubles(+Xs,−Ys) is true if the list Ys corresponds to the list Xs in
which all the repetitions have been removed.

repl one uni(+X,+any(Name1),+var(Name2),−Y) is true if the for-
mula Y corresponds to the formula X in which all the occurrences of
any(Name1) have been replaced by var(Name2).

multi repl one uni(+Xs,+any(Name1),+var(Name2),−Ys) is true if
the list of formulae Ys corresponds to the list of formulae Xs in which
all the occurrences of any(Name1) have been replaced by var(Name2).
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multi repl all uni(+Xs,+UniVars,+N,−Ys) is true if UniVars is a list
of universal variables (in the form any(Name)) and if the list of for-
mulae Ys corresponds to the list of formulae Xs after the application
of this treatment:

• All the occurrences of the first element of UniVars is replaced by
var(N+1).

• All the occurrences of the second element of UniVars is replaced
by var(N+2).

• All the occurrences of the third element of UniVars is replaced
by var(N+3).

• ... And so on until UniVars is empty.

uni belief set(+Beliefs1,+Rule,−Beliefs2,−N2) is true if:

• Rule is an inference rule.

• N1 is the highest number corresponding to the name of a variable
in Rule.

• The set of beliefs Beliefs2 corresponds to the set of beliefs Be-
liefs1 where all the universal variables (in the form any(Name))
have been replaced by new variables var(Number) with Number
= N1+1, N1+2, ..., N2 so that two independent universal vari-
ables will be replaced by distinct variables.

var in formula(+X,−Ls) is true if Ls is a list regrouping all the variables
(in the form var(Name)) present in the formula X.

var in belief(+Xs,−Ls) is true if Ls is a list regrouping all the variables
(in the form var(Name)) present in the list of formulae Xs.

rename vars(+N1,+Vars,−Corrs,−N2) is true if Vars is a list of vari-
ables, N1 and N2 are numbers and the list Corrs corresponds to the
list Vars after the application of this treatment:

• The first element var(Name1) is replaced by corr(var(Name1),var(N1+1)).

• The second element var(Name2) is replaced by corr(var(Name2),var(N1+2)).

• ...

• The last element var(NameLast) is replaced by corr(var(NameLast),var(N2)).

upgrade vars(+N1,+Belief,+Beliefs1,−Beliefs2,−N2) is true if the set
of beliefs Beliefs2 corresponds to the set of beliefs Beliefs1 in which all
the variables (in the form var(Name)) present in the belief Belief have
been replaced by new variables var(Number) with Number = N1+1,
N1+2, ..., N2 so that two independent variables will be replaced by
distinct variables.
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is in(+X,+Belief) is true if at least one occurrence of the element X is
present in the belief Belief.

invert op(+X,+Xs,+Ys,−Zs) is true if:

• Xs ans Ys are mathematical operations using only nested addi-
tions and substractions.

• X is an element of Xs.

• Following the hypothesis that Xs = Ys, then X = Zs.

belief flex corr(+Name,+Xs,+Ys,−L) is true if:

• Xs is a belief containing somewhere in at least one of its formulae
the element all(in,Name,X), where X is a formula.

• Ys is a belief containing a list of elements Ls respectively at the
exact same position than (one of) the element(s) all(in,Name,X)
in Xs.

• Each element of the list Ls can be correlated with the formula X.

• L is the length of the list Ls.

flex vars(+Name,+N1,+L,+Corrs1,+Belief,−N2,−Corrs2) is true if:

• Corrs1 is a list of elements that are each in the form
corr(free(Y),[var(Z+1),var(Z+2),...,var(Z+L)]).

• Corrs2 is a list corresponding to Corrs1 where a new element
is added for each element free(...) not already present in the
elements of Corrs2 and contained in the formula X of any element
all( ,Name,X) itself contained in the belief Belief.

• All those added elements have together the following form:
corr(free(Y1),[var(N1+1)...var(N1+L)]),
corr(free(Y2),[var(N1+L+1)...var(N1+2L)]),
...
corr(free(Ylast),[var(N2-L+1)...var(N2)]).

repl flex(+Corrs,+X,−Y) is true if Corrs is a list of distinct free elements
with associated variables, under the form corr(free(Name1),var(Name2)),
and if Y is a formula equivalent to the formula X in which all the occur-
rences of any free element present in Corrs is replaced by its associated
variable.

repl flex in(+all(S,Name, ),+L,+Corrs,+Form1,−Form2) is true if:

• S = in.

• Corrs is a list of elements that are each in the form
corr(free(Y),[var(Z+1),var(Z+2),...,var(Z+L)]).
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• Form2 is a formula corresponding to the formula Form1 in which
all the occurrences of all(in,Name,Form3) are replaced by a list
of L elements where each ith element is equivalent to the formula
Form3 in which all the free(...) elements have been replaced by
the ith variable of the corresponding element in Corrs.

or if:

• S = out.

• Corrs is a list of elements that are each in the form corr(free(Y),var(Z)).

• Form2 is a formula corresponding to the formula Form1 in which
all the occurrences of all(out,Name,Form3) are replaced by the
formula Form3 in which all the free(...) elements have been re-
placed by the variable of the corresponding element in Corrs.

repl flex out(+all( ,Name, ),+L,+Corrs,+Prem,−Prems) is true if:

• Corrs is a list of elements that are each in the form
corr(free(Y),[var(Z+1),var(Z+2),...,var(Z+L)]).

• Prems is a list of L premises, each ith premise corresponds to the
premise Prem in which all the occurrences of all(out,Name,Form)
have been replaced by the formula Form where all the free(...) ele-
ments have been replaced by the ith variable of the corresponding
element in Corrs.

repl all flex(+all(in,Name, ),+N1,+L,+Corrs,+Rule1,−Rule2,−N2)
is true if Rule2 is an inference rule corresponding to the inference rule
Rule1 in which:

• Corrs is a list of elements that each have the form
corr(free(Y),[var(Z+1),var(Z+2),...,var(Z+L)]).

• The list Corrs1 is equivalent to Corrs completed by all the ele-
ments corresponding to the free(...) elements that are in Rule1
but not censed in Corrs. L new variables are attached to each
added free(...) element. The new variables have the form var(N1+1),
var(N1+2), ..., var(N2+L) such that distinct free(...) elements
have distinct corresponding variables.

• All the occurrences of all(in,Name,Form1) in the premises and
the conclusion are replaced by a list of L elements where each
ith element is equivalent to the formula Form1 in which all the
free(...) elements have been replaced by the ith variable of the
corresponding element in Corrs2.

• All the premises having some occurrences of all(out,Name,Form2)
are replaced by a list of L premises where each ith premise keeps
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the initial form, except for the all(out,Name,Form2) element that
is replaced by the formula Form2 in which all the free(...) ele-
ments have been replaced by the ith variable of the corresponding
element in Corrs2.

clean vars(+Corrs1,−Corrs2) is true if Corrs1 is a list of elements that
each have the form corr(var(X),Formula), in which all the variables
explicitly or implicitly defined1 more than once have compatible defi-
nitions2, and Corrs2 is a list corresponding to Corrs1 after a ”cleaning”
step, which means:

• All the implicit definitions become explicit.

• All the definitions containing a variable that is defined somewhere
else have this variable replaced by its definition.

• All the formulae defining a same variable are combined to form
one only definition, since they are compatible by hypothesis.

• All the formulae defining a variable and containing this same
variable are simply deleted.

var reduce(+X,+Y,−Z,−Corrs) is true if:

• X and Y are compatible1 formulae.

• The list Corrs contains all the implicit2 definitions following the
fact that X and Y are compatible.

• Z is equivalent to the combination of X and Y, compatible with
both of them, so that the subformulae are privileged compared
to the variables.

condition(+Cond,+Beliefs,+Args) is true if:

• Cond = ’r csf’, Args = [Alpha,Beta] with Alpha and Beta being
formulae, and Alpha Rcsf Beta.

• Cond = ’=’, Args = [Alpha,Beta] with Alpha and Beta being
formulae, and Alpha = Beta.

• Cond = ’<’, Args = [Alpha,Beta] with Alpha and Beta being
formulae, and Alpha < Beta.

1An explicit definition is a formula Formula explicitly associated to a variable var(X)
by the element corr(var(X),Formula). An implicit definition appears when, considering
that we have two compatible formulae defining a same variable, there is a variable in one
of them corresponding to a subformula in the other. Then the second one defines the first
one.

2Two formulae are compatible if they are exactly the same except that a subformula
of one of them can be replaced in the other by a variable (under the form var(...)) and
vice versa.
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• Cond = ’f forms’, Beliefs is a set of beliefs and Args is a premise
that can be correlated with at least one of the beliefs of Beliefs.

belief filter(+Beliefs1,+Belief,−Beliefs2) is true if Beliefs1 is a list of
beliefs, Belief is a belief and Beliefs2 is the list of all the beliefs of
Beliefs1 than can be correlated with Belief.

all csf(+Beliefs,−Ls) is true if Beliefs is a list of beliefs and Ls is the list of
all the positive and negative predicates (pred(...,...) or [not,pred(...,...)])
that are in Beliefs and that are not ’k’, ’contra’ or ’loses’ predicates.

uni vars back(+X,−Vars) is true if Vars is a list containing all the vari-
ables (under the form var(...)) present in the formula X.

multi uni vars back(+Xs,−Vars) is true if Vars is a list containing all
the variables (under the form var(...)) present in the list of formulae
Xs.

any2var(+N,+Vars,−Corrs) is true if:

• N is an integer.

• Vars is a list of L variables [var(X1), var(X2), ..., var(XL)].

• Corrs is a list associating universal variables to each variable
present in Vars: [corr(var(X1),any(N+1)), corr(var(X2),any(N+2)),
..., corr(var(XL),any(N+L))].

repl concl(+Concl1,−Concl2) is true if the belief Concl2 corresponds to
the belief Concl1 in which all the variable (under the form var(...))
have been replaced by universal variables (under the form any(...)).
Two occurrences of the same variable are replaced by the same univer-
sal variable. Two different variables are replaced by different universal
variables. For the rest, the name of the universal variables is randomly
chosen.

repl all concl(+Rules,−Concls) is true if Rules is a set of inference rules
and if Concls is the set of all the conclusions of those inference rules,
after replacing all the variables (under the form var(...)) by univer-
sal variables (under the form any(...)). Two occurrences of the same
variable in the same conclusion are replaced by the same universal
variable. Two different variables in the same conclusion are replaced
by different universal variables. For the rest, the name of the universal
variables is randomly chosen.
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Appendix B

Step logic: The Wise-men
problem(s)

B.1 Statement of the problem

This problem comes from Jennifer Elgot-Drapkin’s PhD thesis, see [ED88]
for more details.

A king wishes to know whether his three advisors are as wise as they
claim to be. Three chairs are lined up, all facing the same direction, with
one behind the other. The wise men are instructed to sit down. The wise
man in the back (wise man #3) can see the backs of the other two men.
The man in the middle (wise man #2) can only see the one wise man in
front of him (wise man #1); and the wise man in front (wise man #1) can
see neither wise man #3 nor wise man #2. The king informs the wise men
that he has three cards, all of which are either black or white, at least one
of which is white. He places one card, face up, behind each of the three wise
men, explaining that each wise man must determine the color of his own
card. Each wise man must announce the color of his own card as soon as he
knows what it is. The room is silent, then, after several minutes, wise man
#1 says ”My card is white!”.

We assume in this puzzle that the wise men do not lie, that they all have
the same reasoning capabilities, and that they can all think at the same
speed.

B.2 The Two-wise-men Problem

B.2.1 Statement of the problem

In this puzzle the king has just two wise men and two cards, at least one of
which is white. The reasoning involved in this version of the puzzle is much
simpler than in the three-wise-men version. Wise man #2 can see the color
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of wise man #1’s card. If it were black, then wise man #2 would know,
since there is at least one white card, that his card was white. Wise man
#1 knows this. Wise man #2 says nothing. Therefore, wise man #1’s card
must not be black, but rather white.

The problem is modelled from wise man #1’s point of view. The infer-
ence function used to model this problem is defined in Figure B.1 below, in
which:

• Kj(i, x) is intended to mean ”wise man j knows x at step i.”

• U(i, x) expresses the fact that an utterance of x is made at step i.

• s(i) is the successor function (where sk(0) is used as an abbreviation
for s(s(...(s(︸ ︷︷ ︸

k

0))...)))).

Figure B.1: INFW2 for the Two-wise-men Problem

The observation function, defined in Figure B.2, contains all the axioms
that wise man #1 needs to solve the problem. Wi and Bi expresses the facts
that i’s card is white, and i’s card is black, respectively.

The solution is given in Figures B.3 and B.4. Only the relevant beliefs
for the next steps appear on each step of these figures.

For more explanations about the observation function and the different
steps of the solution, see [ED88].

B.2.2 Implementation

We used our prover to model this problem with its step logic approach. We
just made some imperceptible changes compared to the description given
above:
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• According to the nature of the ”observations” in the observation func-
tion, we chose to put them in the set of axioms instead. Indeed, those
formulae appears more like initial knowledge than new observations.

• We dropped the concept of successor function, by considering s(0) = 1
and s(i) = i + 1.

Figure B.2: OBSW2 for the Two-wise-men Problem

We can show now how the arguments of the prover must look to model
this problem:

Rules1 = [
rule([[var(i),var(form)],

[spec(obs),[var(i),var(alpha)]]],
[[+,var(i),1],var(alpha)]),

rule([[var(i),var(alpha)],
[var(i),[’->’,var(alpha),var(beta)]]],

[[+,var(i),1],var(beta)]),
rule([[var(i),[’->’,[and|all(in,emp,free(p))],var(q)]],

[var(i),all(out,emp,free(p))]],
[[+,var(i),1],var(q)]),

rule([[var(i),[not,var(beta)]],
[var(i),[’->’,var(alpha),var(beta)]]],

[[+,var(i),1],[not,var(alpha)]]),
rule([[var(i),var(formula)],

[spec(not,f_forms),[var(i),pred(u,[[-,var(i),1],pred(w,[2])])]],
[spec(’<’),[1,var(i)]]],

[[+,var(i),1],[not,pred(k,[1,var(i),
pred(u,[[-,var(i),1],pred(w,[2])])])]]),

rule([[var(i),var(alpha)]],
[[+,var(i),1],var(alpha)])

],

Rules2 = [],

Axioms = [
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[1,[’->’,pred(k,[2,any(i),[’->’,any(x),any(y)]]),
[’->’,pred(k,[2,any(i),any(x)]),

pred(k,[2,[+,any(i),1],any(y)])]]],
[1,pred(k,[2,1,[’->’,pred(b,[1]),pred(w,[2])]])],
[1,[’->’,pred(b,[1]),pred(k,[2,1,pred(b,[1])])]],
[1,[’->’,[not,pred(b,[1])],pred(w,[1])]],
[1,[’->’,[not,pred(u,[[+,any(i),1],pred(w,[2])])],

[not,pred(k,[2,any(i),pred(w,[2])])]]],
[1,[’->’,[not,pred(k,[1,[+,any(i),1],pred(u,[any(i),pred(w,[2])])])],

[not,pred(u,[any(i),pred(w,[2])])]]]
],

Obs = [].

The prover works as expected, and solves this simple problem in less
than 2 seconds.

B.3 The Three-wise-men Problem

B.3.1 Statement of the problem

Now that the Two-wise-men Problem has been modelled, the mechanics of
that problem can be brought to bear on the three-wise-men version.

We can postulate that the following reasoning took place. Each wise
man knows there is at least one white card. If the cards of wise man #2
and wise man #1 were black, then wise man #3 would have been able to
announce immediately that his card was white. They all realize this. Since
wise man #3 kept silent, either wise man #2’s card is white, or wise man
#1’s is. At this point wise man #2 would be able to determine, if wise man
#1’s were black, that his card was white. They all realize this. Since wise
man #2 also remains silent, wise man #1 knows his card must be white.

The set of observations (that we will still use as the set of axioms in the
implementation) is defined in Figure B.5.

INFW3 is the same as INFW2 augmented with the additional rules in
Figure B.6 (where Rule 8 replaces Rule 5).

For more explanations about the observation function and the different
steps of the solution, see [ED88].

B.3.2 Implementation

For the prover, a universal variable means something like ”valid for every
existing value of the variable”. So if the formula (∀x̄)(Px̄ → Qx̄) is present in
the belief set, that notably means for the prover that the formula (P ā → Qā
is present in the belief set. Then Rule 7 is covered by Rule 4. Furthermore,
Rule 9 is completely useless for the prover.
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Figure B.3: Solution to the Two-wise-men Problem - Part 1

Figure B.4: Solution to the Two-wise-men Problem - Part 2
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Figure B.5: OBSW3 for the Three-wise-men Problem

Figure B.6: Completion of INFW2 to form INFW3 for the Three-wise-men
Problem
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So we just add the next rule in order to extend Rule 5 to Rule 8:

rule([[var(i),var(formula)],
[spec(not,f_forms),[var(i),pred(u,[[-,var(i),1],pred(w,[3])])]],
[spec(’<’),[1,var(i)]]],

[[+,var(i),1],[not,pred(k,[1,var(i),pred(u,[[-,var(i),1],pred(w,[3])])])]])

This time we will skip the writing of OBSW3 in the prover’s arguments
because it is pointless for the reader.

Sadly, when we run the prover, it gets ”Out of global stack” after the
9th step of deduction, even if it worked well until this step. This is due to
the inheritance rule (Rule 6), which is a way too permissive.

We verified manually that the the prover would solve the problem in step
17 as expected without this computational limitation.

Even if the prover could have been more efficient (which is hard if we want
to keep the flexibility), there would still be some computational limitations.
Hence the focus of attention appears as a potential solution deserving to be
investigated.
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Appendix C

Lmm LDS: The Tweety
Problem

This small example expresses well the on-going process of reasoning and the contradiction handling.
The observation function is the following:

Obs = [[0,pred(bird,[tweety])],
[4,pred(ostrich,[tweety])]

]

The agent observes that Tweety is a bird before observing that it is an ostrich.
Here follow the axioms of the agent, ie the knowledge present in its long term memory and the

awareness of the time:

Axioms = [[ltm,pred(bird,[any(y)]),0,0,0,0,
[’->’,[and,pred(bird, [any(x)]),

pred(now, [any(i)]),
[not,pred(k,[[-,any(i),1],[not,pred(flies,[any(x)])]])]],

pred(flies, [any(x)])],
axiom],

[ltm, pred(ostrich,[any(y)]),1,0,0,0,[’->’,pred(ostrich,[any(x)]),
[not,pred(flies,[any(x)])]],

axiom],
[stm,0,1,0,0,0,pred(now,[0]),axiom]
]

So this means that every bird is supposed to be able to fly except if we know that the bird in
question is an ostrich. Applying the inference rules described in the previous chapters, we obtain
the consecutive sets of beliefs:

[ltm, pred(bird, [any(y)]), 0, 0, 0, 0,
[(->), [and, pred(bird,[any(x)]),

pred(now, [any(i)]),
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[not, pred(k, [[-, any(i), 1], [not, pred(flies, [any(x)])]])]],
pred(flies,[any(x)])],

axiom]
[ltm, pred(ostrich, [any(y)]), 1, 0, 0, 0, [ (->), pred(ostrich, [any(x)]),

[not, pred(flies, [any(x)])]],
axiom]

[stm, 0, 1, 0, 0, 0, pred(now, [0]), axiom]
[qtm, 0, 1, 0, 0, 0, pred(bird, [tweety]), obs]

Note: The agent observes here that Tweety is a bird.

---------------------------------------------------------------------------------

[stm, 0, 1, 1, 1, 0, pred(now, [1]), clock]
[ltm, pred(bird, [any(1)]), 0, 1, 0, 0,

[ (->), [and, pred(bird, [any(3)]),
pred(now, [any(2)]),
[not, pred(k, [[-, any(2), 1], [not, pred(flies, [any(3)])]])]],

pred(flies, [any(3)])],
il]

[ltm, pred(ostrich, [any(1)]), 1, 1, 0, 0, [ (->), pred(ostrich, [any(2)]),
[not, pred(flies, [any(2)])]],

il]
[stm, 0, 1, 1, 1, 20, pred(bird, [tweety]), iqs]
[qtm, 0, 0, 1, 0, 0,

[ (->), [and, pred(bird, [any(2)]),
pred(now, [any(1)]),
[not, pred(k, [[-, any(1), 1], [not, pred(flies, [any(2)])]])]],

pred(flies, [any(2)])],
sr]

---------------------------------------------------------------------------------

[stm, 0, 1, 2, 2, 0, pred(now, [2]), clock]
[ltm, pred(bird, [any(1)]), 0, 2, 0, 0,

[ (->), [and, pred(bird, [any(3)]),
pred(now, [any(2)]),
[not, pred(k, [[-, any(2), 1], [not, pred(flies, [any(3)])]])]],

pred(flies, [any(3)])],
il]

[ltm, pred(ostrich, [any(1)]), 1, 2, 0, 0, [ (->), pred(ostrich, [any(2)]),
[not, pred(flies, [any(2)])]],

il]
[stm, 0, 0, 2, 2, 20,
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[ (->), [and, pred(bird, [any(2)]),
pred(now, [any(1)]),
[not, pred(k, [[-, any(1), 1], [not, pred(flies, [any(2)])]])]],

pred(flies, [any(2)])],
iqs]

[stm, 0, 1, 2, 1, 20, pred(bird, [tweety]), is]
[qtm, 0, 0, 2, 0, 0,

[ (->), [and, pred(bird, [any(2)]),
pred(now, [any(1)]),
[not, pred(k, [[-, any(1), 1], [not, pred(flies, [any(2)])]])]],

pred(flies, [any(2)])],
sr]

[qtm, 0, 1, 2, 0, 0, [not, pred(k, [2, [not, pred(flies, [any(1)])]])], ni]
[qtm, 0, 1, 2, 0, 0, [not, pred(k, [2, pred(flies, [any(1)])])], ni]

---------------------------------------------------------------------------------

[stm, 0, 1, 3, 3, 0, pred(now, [3]), clock]
[ltm, pred(bird, [any(1)]), 0, 3, 0, 0,

[ (->), [and, pred(bird, [any(3)]),
pred(now, [any(2)]),
[not, pred(k, [[-, any(2), 1], [not, pred(flies, [any(3)])]])]],

pred(flies, [any(3)])],
il]

[ltm, pred(ostrich, [any(1)]), 1, 3, 0, 0, [ (->), pred(ostrich, [any(2)]),
[not, pred(flies, [any(2)])]],

il]
[stm, 0, 1, 3, 3, 20, [not, pred(k, [2, [not, pred(flies, [any(1)])]])], iqs]
[stm, 0, 1, 3, 3, 20, [not, pred(k, [2, pred(flies, [any(1)])])], iqs]
[stm, 0, 0, 3, 2, 20,

[ (->), [and, pred(bird, [any(2)]),
pred(now, [any(1)]),
[not, pred(k, [[-, any(1), 1], [not, pred(flies, [any(2)])]])]],

pred(flies, [any(2)])],
is]

[stm, 0, 1, 3, 1, 20, pred(bird, [tweety]), is]
[qtm, 0, 0, 3, 0, 0,

[ (->), [and, pred(bird, [any(2)]),
pred(now, [any(1)]),
[not, pred(k, [[-, any(1), 1], [not, pred(flies, [any(2)])]])]],

pred(flies, [any(2)])],
sr]

[qtm, 0, 0, 3, 0, 0, pred(flies, [tweety]), emp]
[qtm, 0, 1, 3, 0, 0, [not, pred(k, [3, [not, pred(flies, [any(1)])]])], ni]
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[qtm, 0, 1, 3, 0, 0, [not, pred(k, [3, pred(flies, [any(1)])])], ni]

---------------------------------------------------------------------------------

[stm, 0, 1, 4, 4, 0, pred(now, [4]), clock]
[ltm, pred(bird, [any(1)]), 0, 4, 0, 0,

[ (->), [and, pred(bird, [any(3)]),
pred(now, [any(2)]),
[not, pred(k, [[-, any(2), 1], [not, pred(flies, [any(3)])]])]],

pred(flies, [any(3)])],
il]

[ltm, pred(ostrich, [any(1)]), 1, 4, 0, 0, [ (->), pred(ostrich, [any(2)]),
[not, pred(flies, [any(2)])]],

il]
[stm, 0, 0, 4, 4, 20, pred(flies, [tweety]), iqs]
[stm, 0, 1, 4, 4, 20, [not, pred(k, [3, [not, pred(flies, [any(1)])]])], iqs]
[stm, 0, 1, 4, 4, 20, [not, pred(k, [3, pred(flies, [any(1)])])], iqs]
[stm, 0, 0, 4, 2, 20,

[ (->), [and, pred(bird, [any(2)]),
pred(now, [any(1)]),
[not, pred(k, [[-, any(1), 1], [not, pred(flies, [any(2)])]])]],

pred(flies, [any(2)])],
is]

[stm, 0, 1, 4, 1, 20, pred(bird, [tweety]), is]
[qtm, 0, 1, 4, 0, 0, pred(ostrich, [tweety]), obs]
[qtm, 0, 0, 4, 0, 0,

[ (->), [and, pred(bird, [any(2)]),
pred(now, [any(1)]),
[not, pred(k, [[-, any(1), 1], [not, pred(flies, [any(2)])]])]],

pred(flies, [any(2)])],
sr]

[qtm, 0, 0, 4, 0, 0, pred(flies, [tweety]), emp]
[qtm, 0, 1, 4, 0, 0, [not, pred(k, [4, [not, pred(flies, [any(1)])]])], ni]

Note: The agent infers that tweety can fly. At the same time, he observes that Tweety is an ostrich.

---------------------------------------------------------------------------------

[stm, 0, 1, 5, 5, 0, pred(now, [5]), clock]
[ltm, pred(bird, [any(1)]), 0, 5, 0, 0,

[ (->), [and, pred(bird, [any(3)]),
pred(now, [any(2)]),
[not, pred(k, [[-, any(2), 1], [not, pred(flies, [any(3)])]])]],

pred(flies, [any(3)])],
il]
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[ltm, pred(ostrich, [any(1)]), 1, 5, 0, 0, [ (->), pred(ostrich, [any(2)]),
[not, pred(flies, [any(2)])]],

il]
[stm, 0, 1, 5, 5, 20, pred(ostrich, [tweety]), iqs]
[stm, 0, 1, 5, 5, 20, [not, pred(k, [4, [not, pred(flies, [any(1)])]])], iqs]
[stm, 0, 0, 5, 4, 20, pred(flies, [tweety]), is]
[stm, 0, 0, 5, 2, 20,

[ (->), [and, pred(bird, [any(2)]),
pred(now, [any(1)]),
[not, pred(k, [[-, any(1), 1], [not, pred(flies, [any(2)])]])]],

pred(flies, [any(2)])],
is]

[stm, 0, 1, 5, 1, 20, pred(bird, [tweety]), is]
[stm, 0, 1, 5, 4, 20, [not, pred(k, [3, pred(flies, [any(1)])])], is]
[qtm, 0, 1, 5, 0, 0, [ (->), pred(ostrich, [any(1)]), [not, pred(flies, [any(1)])]], sr]
[qtm, 0, 0, 5, 0, 0,

[ (->), [and, pred(bird, [any(2)]),
pred(now, [any(1)]),
[not, pred(k, [[-, any(1), 1], [not, pred(flies, [any(2)])]])]],

pred(flies, [any(2)])],
sr]

[qtm, 0, 0, 5, 0, 0, pred(flies, [tweety]), emp]
[qtm, 0, 1, 5, 0, 0, [not, pred(k, [5, [not, pred(flies, [any(1)])]])], ni]

---------------------------------------------------------------------------------

[stm, 0, 1, 6, 6, 0, pred(now, [6]), clock]
[ltm, pred(bird, [any(1)]), 0, 6, 0, 0,

[ (->), [and, pred(bird, [any(3)]),
pred(now, [any(2)]),
[not, pred(k, [[-, any(2), 1], [not, pred(flies, [any(3)])]])]],

pred(flies, [any(3)])],
il]

[ltm, pred(ostrich, [any(1)]), 1, 6, 0, 0, [ (->), pred(ostrich, [any(2)]),
[not, pred(flies, [any(2)])]],

il]
[stm, 0, 1, 6, 6, 20, [ (->), pred(ostrich, [any(1)]), [not, pred(flies, [any(1)])]], iqs]
[stm, 0, 1, 6, 6, 20, [not, pred(k, [5, [not, pred(flies, [any(1)])]])], iqs]
[stm, 0, 1, 6, 5, 20, pred(ostrich, [tweety]), is]
[stm, 0, 0, 6, 4, 20, pred(flies, [tweety]), is]
[stm, 0, 0, 6, 2, 20,

[ (->), [and, pred(bird, [any(2)]),
pred(now, [any(1)]),
[not, pred(k, [[-, any(1), 1], [not, pred(flies, [any(2)])]])]],
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pred(flies, [any(2)])],
is]

[stm, 0, 1, 6, 1, 20, pred(bird, [tweety]), is]
[stm, 0, 1, 6, 4, 20, [not, pred(k, [3, pred(flies, [any(1)])])], is]
[qtm, 0, 1, 6, 0, 0, [ (->), pred(ostrich, [any(1)]), [not, pred(flies, [any(1)])]], sr]
[qtm, 0, 0, 6, 0, 0,

[ (->), [and, pred(bird, [any(2)]),
pred(now, [any(1)]),
[not, pred(k, [[-, any(1), 1], [not, pred(flies, [any(2)])]])]],

pred(flies, [any(2)])],
sr]

[qtm, 0, 1, 6, 0, 0, [not, pred(flies, [tweety])], mp]
[qtm, 0, 0, 6, 0, 0, pred(flies, [tweety]), emp]
[qtm, 0, 1, 6, 0, 0, [not, pred(k, [6, [not, pred(flies, [any(1)])]])], ni]

---------------------------------------------------------------------------------

[stm, 0, 1, 7, 7, 0, pred(now, [7]), clock]
[ltm, pred(bird, [any(1)]), 0, 7, 0, 0,

[ (->), [and, pred(bird, [any(3)]),
pred(now, [any(2)]),
[not, pred(k, [[-, any(2), 1], [not, pred(flies, [any(3)])]])]],

pred(flies, [any(3)])],
il]

[ltm, pred(ostrich, [any(1)]), 1, 7, 0, 0, [ (->), pred(ostrich, [any(2)]),
[not, pred(flies, [any(2)])]],

il]
[stm, 0, 1, 7, 7, 20, [not, pred(flies, [tweety])], iqs]
[stm, 0, 1, 7, 7, 20, [not, pred(k, [6, [not, pred(flies, [any(1)])]])], iqs]
[stm, 0, 1, 7, 6, 20, [ (->), pred(ostrich, [any(1)]), [not, pred(flies, [any(1)])]], is]
[stm, 0, 1, 7, 5, 20, pred(ostrich, [tweety]), is]
[stm, 0, 0, 7, 4, 20, pred(flies, [tweety]), is]
[stm, 0, 0, 7, 2, 20,

[ (->), [and, pred(bird, [any(2)]),
pred(now, [any(1)]),
[not, pred(k, [[-, any(1), 1], [not, pred(flies, [any(2)])]])]],

pred(flies, [any(2)])],
is]

[stm, 0, 1, 7, 1, 20, pred(bird, [tweety]), is]
[stm, 0, 1, 7, 4, 20, [not, pred(k, [3, pred(flies, [any(1)])])], is]
[qtm, 0, 1, 7, 0, 0, [ (->), pred(ostrich, [any(1)]), [not, pred(flies, [any(1)])]], sr]
[qtm, 0, 0, 7, 0, 0,

[ (->), [and, pred(bird, [any(2)]),
pred(now, [any(1)]),
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[not, pred(k, [[-, any(1), 1], [not, pred(flies, [any(2)])]])]],
pred(flies, [any(2)])],

sr]
[qtm, 0, 1, 7, 0, 0, [not, pred(flies, [tweety])], mp]
[qtm, 0, 0, 7, 0, 0, pred(flies, [tweety]), emp]
[qtm, 0, 1, 7, 0, 0, pred(loses, [pred(flies, [tweety])]), cd2a]

Note: The agent deduces that Tweety can not fly (because Tweety is an ostrich). The belief that
Tweety can not fly having a bigger degree of certainty that the belief that Tweety can fly, this
second belief is lost (predicate ”loses”).

---------------------------------------------------------------------------------

[stm, 0, 1, 8, 8, 0, pred(now, [8]), clock]
[ltm, pred(bird, [any(1)]), 0, 8, 0, 0,

[ (->), [and, pred(bird, [any(3)]),
pred(now, [any(2)]),
[not, pred(k, [[-, any(2), 1], [not, pred(flies, [any(3)])]])]],

pred(flies, [any(3)])],
il]

[ltm, pred(ostrich, [any(1)]), 1, 8, 0, 0, [ (->), pred(ostrich, [any(2)]),
[not, pred(flies, [any(2)])]],

il]
[stm, 0, 1, 8, 8, 20, pred(loses, [pred(flies, [tweety])]), iqs]
[stm, 0, 1, 8, 7, 20, [not, pred(flies, [tweety])], is]
[stm, 0, 1, 8, 6, 20, [ (->), pred(ostrich, [any(1)]), [not, pred(flies, [any(1)])]], is]
[stm, 0, 1, 8, 5, 20, pred(ostrich, [tweety]), is]
[stm, 0, 0, 8, 4, 20, pred(flies, [tweety]), is]
[stm, 0, 0, 8, 2, 20,

[ (->), [and, pred(bird, [any(2)]),
pred(now, [any(1)]),
[not, pred(k, [[-, any(1), 1], [not, pred(flies, [any(2)])]])]],

pred(flies, [any(2)])],
is]

[stm, 0, 1, 8, 1, 20, pred(bird, [tweety]), is]
[stm, 0, 1, 8, 4, 20, [not, pred(k, [3, pred(flies, [any(1)])])], is]
[stm, 0, 1, 8, 7, 20, [not, pred(k, [6, [not, pred(flies, [any(1)])]])], is]
[qtm, 0, 1, 8, 0, 0, [ (->), pred(ostrich, [any(1)]), [not, pred(flies, [any(1)])]], sr]
[qtm, 0, 0, 8, 0, 0,

[ (->), [and, pred(bird, [any(2)]),
pred(now, [any(1)]),
[not, pred(k, [[-, any(1), 1], [not, pred(flies, [any(2)])]])]],

pred(flies, [any(2)])],
sr]

[qtm, 0, 1, 8, 0, 0, [not, pred(flies, [tweety])], mp]
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[qtm, 0, 1, 8, 0, 0, pred(loses, [pred(flies, [tweety])]), cd2a]

---------------------------------------------------------------------------------

[stm, 0, 1, 9, 9, 0, pred(now, [9]), clock]
[ltm, pred(bird, [any(1)]), 0, 9, 0, 0,

[ (->), [and, pred(bird, [any(3)]),
pred(now, [any(2)]),
[not, pred(k, [[-, any(2), 1], [not, pred(flies, [any(3)])]])]],

pred(flies, [any(3)])],
il]

[ltm, pred(ostrich, [any(1)]), 1, 9, 0, 0, [ (->), pred(ostrich, [any(2)]),
[not, pred(flies, [any(2)])]],

il]
[stm, 0, 1, 9, 8, 20, pred(loses, [pred(flies, [tweety])]), is]
[stm, 0, 1, 9, 7, 20, [not, pred(flies, [tweety])], is]
[stm, 0, 1, 9, 6, 20, [ (->), pred(ostrich, [any(1)]), [not, pred(flies, [any(1)])]], is]
[stm, 0, 1, 9, 5, 20, pred(ostrich, [tweety]), is]
[stm, 0, 0, 9, 2, 20,

[ (->), [and, pred(bird, [any(2)]),
pred(now, [any(1)]),
[not, pred(k, [[-, any(1), 1], [not, pred(flies, [any(2)])]])]],

pred(flies, [any(2)])],
is]

[stm, 0, 1, 9, 1, 20, pred(bird, [tweety]), is]
[stm, 0, 1, 9, 4, 20, [not, pred(k, [3, pred(flies, [any(1)])])], is]
[stm, 0, 1, 9, 7, 20, [not, pred(k, [6, [not, pred(flies, [any(1)])]])], is]
[qtm, 0, 1, 9, 0, 0, [ (->), pred(ostrich, [any(1)]), [not, pred(flies, [any(1)])]], sr]
[qtm, 0, 0, 9, 0, 0,

[ (->), [and, pred(bird, [any(2)]),
pred(now, [any(1)]),
[not, pred(k, [[-, any(1), 1], [not, pred(flies, [any(2)])]])]],

pred(flies, [any(2)])],
sr]

[qtm, 0, 1, 9, 0, 0, [not, pred(flies, [tweety])], mp]
[qtm, 0, 1, 9, 0, 0, [not, pred(k, [9, pred(flies, [any(1)])])], ni]

Note: The ”loses” predicate prevents the next deductions of the belief that Tweety can fly.
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