

Genetic Programming of Multi-agent System in the
RoboCup Domain

by

Jonatan Aronsson

A thesis presented to the Lund Institute of
Technology for the degree of

Master of Science in Engineering Physics

Lund, Sweden, 2003

Supervisors

Jacek Malec
Department of Computer Science,

Lund University

Robert Gorbet
Department of Electrical and Computer

Engineering, University of Waterloo

i

Abstract

Simulated robotic soccer is a frequently used as a test method for
contemporary artificial intelligence research. It provides a real-time
environment with complex dynamics and sensor information that is both noisy
and limited. Team coordination between the robots is essential for success.

Genetic programming enables machines to learn skills and it is developed
from the principle of survival of the fittest. A population of computer programs
is generated and each program is tested against a fitness function. The best
programs according to the fitness function are cloned, mutated, and recombined
to create a new generation of programs. This process continues until the evolved
programs satisfy a user defined criterion.

In this study, genetic programming is used to teach software robots to play
soccer. The robots quickly learn to chase and kick the ball towards the goal.
With time, a number of players in each team develop defensive abilities and
recognize that team coordination is necessary for further development.

The fitness evaluation was extremely demanding and therefore, several
compromises were made to limit the duration of the ‘evolution’. Each run was
reduced to two weeks and this compromise consequently resulted in weaker
robots.

To develop better performing players, additional work should be carried out
for the fitness evaluation, the set of terminals and functions should be extended,
and more computational resources are necessary.

iii

Acknowledgements

This study is a six month long master’s graduation project which was
performed during an exchange to the University of Waterloo and at my home
university, the Lund Institute of Technology.

I would like to thank my supervisors, Jacek Malec for his guidance and
advice, and Robert Gorbet for his supervision and care.

I would like to express thanks to Singh Sanjay, UNIX expert at the
University of Waterloo, Fredrik Heintz, the developer of RoboSoc, and Tom
Howard, the co-developer of the RoboCup Soccer Server, for their help and
support with various software problems under Sun Solaris.

Thanks to Alissa Boroditsky for reading and pointing out errors in my draft
of the thesis.

Also, a final thank you should be expressed to my parents, grandparents,
and brother who have always been there for me during my exchange.

v

Table of Contents

1 Introduction ... 1

2 Background .. 3

2.1 RoboCup.. 3
2.1.1 Simulated League .. 3

2.2 Multi-agent Systems.. 5
2.3 Genetic Algorithms ... 6

2.3.1 An example.. 7
2.4 Genetic Programming.. 7

2.4.1 Introduction ... 8
2.4.2 Preparatory Steps... 9
2.4.3 Execution Steps ... 11
2.4.4 Genetic Operators .. 11
2.4.5 Premature Convergence... 12

2.5 Related Work... 12

3 Implementation .. 17

3.1 Agent Architecture .. 17
3.2 Genetic Representation.. 18

3.2.1 Implementation.. 18
3.2.2 Motivation ... 20

3.3 Fitness.. 21

4 Experiments ... 23

4.1 Experiment 1 ... 23
4.1.1 Approach ... 23
4.1.2 Result ... 24
4.1.3 Conclusion... 26

4.2 Experiment 2 ... 27
4.2.1 Approach ... 27
4.2.2 Result ... 28
4.2.3 Conclusion... 32

5 Discussion ... 33

6 Future Work... 35

Bibliography ... 37

TABLE OF CONTENTS

 vi

A Predicates and Actions... 39

A.1 Predicates... 39
A.2 Actions... 41

A.2.1 Move Actions .. 41
A.2.2 Kick Actions.. 42

B Evolved Algorithms.. 43

B.1 Experiment 1 ... 43
B.2 Experiment 2 ... 46

1

Chapter 1

Introduction

Genetic programming is a method to automatically generate programs and
algorithms through simulated evolution. These programs are constructed from a
pre-defined set of functions and terminals. A simulation starts by creating an
initial population of random programs. Like biological evolution, the process
continues for generations by letting the best “genes” from every generation
survive. These genes (parts of programs) are mutated and crossed in every
evolving step. Genetic programming has proven to be useful in a wide range of
applications, including multi-agent systems.

Multi-agent system is the sub field of artificial intelligence, which studies
systems involving multiple agents and their coordination. An agent can be
viewed as anything that is able to perceive information about the environment
and perform actions upon it.

RoboCup is an annual competition between soccer playing robots for the
purposes of research and education. It is designed to be an environment for the
development of agents and it is an uncertain and dynamically changing domain.
One of the many leagues in RoboCup is the simulated league in which the real
world is simulated by a very complex system. This relieves researches from
handling with hardware related problems, as well as today’s limitations in
robotics.

This study was initiated by the University of Waterloo’s future plans to
enter the RoboCup Simulation League. Therefore, the initial stage is focused on
creating an environment for the development of simulated RoboCup players.
The goal of this study, which was shaped during the initial stage, is to
investigate how genetic programming can be used to teach robots to play soccer.
A secondary goal is to explore their ability to incorporate team coordination.

This thesis is written for a wide range of readers and the required
background is equivalent to the education of an upper year engineering and/or
computer science student. This thesis is organized as follows:

CHAPTER 1. INTRODUCTION

 2

 Chapter 2 introduces the most essential background. It includes an
introduction to RoboCup, multi-agent systems, genetic algorithms,
genetic programming, and a survey of related work previously made in
this domain.

Chapter 3 describes the approach and implementation of the experiments.

 Chapter 4 presents the results of the most important performed
experiments.

 Chapter 5 summarizes and discusses the results.

 Chapter 6 presents suggestions for future work.

3

Chapter 2

Background

2.1 RoboCup

RoboCup is a competition held between artificial intelligence researchers,
which allow new ideas and developments to be tested against one another on an
even basis. There are several separate leagues in the RoboCup competition - the
robot leagues and the simulator league. Competitions in the robot leagues are
played with real-world robots, moving a ball around a small soccer field. The
simulation league allows software robots to compete within a computer
simulated soccer environment. This relieves the researchers from handling robot
problems such as object recognition, communications, hardware issues and
today’s limitations of robotics. The ultimate goal of RoboCup soccer as Noda
states is “by the mid-21st century, a team of autonomous humanoid robots shall
beat the human World Cup champion team under the official regulations of
FIFA1” [Noda et al., 1999]. This thesis deals only with the simulator league and
all future references to RoboCup therefore refer to this simulated version.

2.1.1 Simulated League

A match is carried out in a client/server style with a server that provides a
virtual field and simulates all movements of a ball and players. Each client (or
player) in the simulation is its own process with communication between
players limited to messages passed only through the server. Communication
between the server and each client is done via UDP/IP sockets. A brief
description of the RoboCup server follows while a full description can be found
in [SS Manual, 2002].

1 Fédération Internationale de Football Association (FIFA) defines the rules of soccer.

CHAPTER 2. BACKGROUND

 4

Command string Description

(turn 90) This command will turn the player’s body 90 degrees
relative to the current body direction.

(kick 70 30) This command will kick the ball with a power of 70
in a direction of 30 degrees relative to the current
body direction (if the player is close enough to the
ball).

(score) This command requests the server to send score
information.

Table 1: Examples of player control commands. A full list of
commands available to players can be found in [SS Manual, 2002,
section 6.1].

Server message string Description

(see 400 ((b) 15
50))

The see message contains information about
objects that can be seen from the player’s
view. This message informs the player that
at cycle 400, the ball is 15 meters away in a
relative direction of 50 degrees.

(hear 3000 referee
half_time)

The hear message returns the messages that
can be heard through the field. This message
informs the player that the referee
announced half time at cycle 3000.

(sense_body 500
(view_mode high
narrow) (stamina
3000 2))

The sense_body message returns the states of
the player as well as information to keep
track of lost or delayed messages.

Table 2: Examples of server messages. A full list of available server
messages can be found in [SS Manual, 2002, section 6.1].

The communication between players and the server is made with messages
represented as strings. The messages sent by players inform the server of actions
they wish to execute. The messages from the server inform players of the
position of the ball, other players, lines, flags and goals which a player sees on
the field. These soccer games are typically two halves each made up of 5
minutes and a half-time break. After a game has begun the server sends updated
percept information to each player. This occurs once every cycle or once every

CHAPTER 2. BACKGROUND

 5

one and a half cycles. However, players are expected to send actions to the
server once every cycle. A cycle is typically 100 milliseconds.

2.2 Multi-agent Systems

What are agents? There is not a general accepted definition of an agent but
an adaptation from [Russel and Norvig, 1995] is:

Anything that can be viewed as perceiving its environment through sensors
and acting upon that environment through effectors.

Figure 1 illustrates agents in their environment. The agent is autonomous if
it is capable of interacting independently with the environment and without
interference by humans or other systems [Woolridge, 2002]. In most domains,
agents do not have complete control over their environment and therefore, they
cannot predict the outcome of an action. Each time an action is performed it
could have a totally different effect on the environment. Also, an action may fail
to have its supposed effect. Russell and Norvig suggest the following
classification of an environment’s properties:

• Accessible vs. inaccessible

In an accessible environment agents can receive complete, accurate and
up-to-date information about the environment’s state. Most
environments of reasonable complexity are inaccessible.

• Deterministic vs. non-deterministic

If the environment is deterministic every action has one single
guaranteed effect. A chess board would be a deterministic environment
and the real world would be non-deterministic.

• Episodic vs. non-episodic

In an episodic environment, an agent’s experience is divided into
episodes, where the quality of an action does not depend on previous
episodes.

• Static vs. dynamic

A static environment is only changed by the agent’s actions, whereas a
dynamic environment is affected by other processes beyond the agent’s
control.

• Discrete vs. continuous
An environment is discrete if there are a limited number of clearly
defined actions and precepts.

CHAPTER 2. BACKGROUND

 6

RoboCup’s environment is inaccessible, non-deterministic, non-episodic,
dynamic and continuous. Therefore, it is categorized as the most complex class
of environments.

Multi-agent systems (MAS) focus on systems in which many autonomous
agents interact with each other. The agents can share a common goal and be
cooperative or their interactions can be selfish.

Figure 1: General frameworks for a single-agent system and a multi-
agent system. Agents receive information about the environment
through their sensors and perform actions on the environment. If other
agents exist in a single-agent system, they are considered as a part of
the environment. In multi-agent systems agents may interact directly as
indicated by the arrows between the agents.

2.3 Genetic Algorithms

Genetic Algorithms were invented by John Holland and developed by his
students and colleagues in the 1970s [Holland, 1975]. The method is inspired by
the ‘survival of the fittest’ principle or Darwin’s theory of evolution. A solution
is represented as a genome, which in the basic case, is a string of binary values,
letters or numbers. The genetic algorithm creates a population of genomes. It
then applies crossover and mutation operators to those in the population, to
create the individuals in the next generation. Different criteria are used to select
the best individuals for the operators. Each individual is assigned a value, which
determines the fitness of an individual.

The genetic algorithm is simple and its basics involve nothing more than
merging and swapping strings. However, numerous modifications to the basic
algorithm can be made and there are several parameters to tweak. But in most
cases, modifications only result in minor improvements. Of more importance is

Environment

Agent

sensor
input

action
output

Environment

Agent Agent

 Single-agent System Multi-agent System

CHAPTER 2. BACKGROUND

 7

the objective function that determines an individual’s fitness. A good objective
function sets a value that is proportional to an individual’s real fitness.

2.3.1 An example

A genome should contain the solution it represents. The most common
encoding is binary strings. The genomes would appear as follows:

 1 1 0 0 1 0 1 1 1 0 1 0 1 0 1 1

 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1

Each bit could possibly represent some characteristics in the solution or the
whole string could represent a binary number. There are several ways of
encoding and the choice is primarily arbitrary and depends on the problem.

The most important parts of the algorithm are the crossover and mutation
operators along with the objective function. The design of the two operators is
problem specific but a simple crossover operator is illustrated here:

 Genome 1: 1 1 0 0 1 0 1 1 1 0 1 0 1 0 1 1

 Genome 2: 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1

 Offspring 1: 1 1 0 0 1 0 1 1 0 1 0 0 1 1 0 1

 Offspring 2: 1 0 1 0 0 0 1 1 1 0 1 0 1 0 1 1

The space illustrates the crossover point and is picked randomly. The
crossover operator simply crosses two genomes to create two offspring and copy
them into the next generation.

To prevent the solutions from getting stuck at a local optimum, some
genomes in each generation are normally mutated. A mutation operator
randomly changes some characteristics in a solution. In this example the
mutation operator picks a few bits on random basis and inverts them:

 Genome: 1 1 0 0 1 0 1 1 1 0 1 0 1 0 1 1

 Mutated genome: 0 1 0 1 1 0 1 1 1 0 0 0 1 0 0 1

2.4 Genetic Programming

Genetic Programming is an extension of the genetic algorithm in which the
genomes are computer programs. The idea of combining genetic algorithms and
computer programs originated in the 1970s but it was John Koza [1992] who
successfully applied genetic algorithms to the programming language LISP.
Koza has showed in his books that this method can be applied to a wide range of
problems [Koza, 1992, 1994 and 1999]. Examples of solutions to these
problems include the automated synthesis of analog electrical circuits, the
automatic discovery of detectors for letter recognition, the obstacle-avoiding

CHAPTER 2. BACKGROUND

 8

robot, the minesweeper problem and multi-agent programming. Even though
genetic programming seems to be a general method, there are types of problems
for which it has not yet demonstrated success.

2.4.1 Introduction

Genetic programming is a method that gives computers the capability to
automatically learn problem-solving abilities without explicitly being
programmed. It uses the genetic algorithm to evolve programs. The evolved
programs are made up of functions and terminals, which are combined into a
tree-like hierarchal structure. Functions form the internal nodes and terminals
form the leaf nodes. When a program is executed, the tree is traversed by
evaluating the root node first, which in turn evaluates its arguments and so forth.
This continues on until the leaf nodes are traversed.

Genomes are evolved in every generation. Between generations, each
genome is assigned a fitness value, which determines its probability to become a
part of following generations. The fitness value should reflect the performance
of a genome. Therefore, the best performing programs will be more likely
represented in following generations. This is the fundamental concept
underlying genetic algorithms and is an imitation of Darwin’s theories on
biological evolution. Figure 2 illustrates the flow sequence of the genetic
algorithm.

2.4.2 Preparatory Steps

Before genetic programming can be applied to a problem a few preparatory
steps must be taken. These steps include:

• Defining the set of terminals and functions.

• Determining the fitness measure.

• Specifying control parameters for the run.

• Defining the termination criterion.

Terminals and Functions

The terminals correspond to the inputs of a program. These inputs can be
constants, random values, variables, instructions, etc. The functions may be
logical expressions, mathematical functions, operations or problem specific
functions and operators.

A genome or program is made up of terminals and functions that express a
trial solution. These two sets must be defined so that a program is capable of
expressing the solution. Successfully designing the sets of functions and
terminals may not be trivial.

CHAPTER 2. BACKGROUND

 9

Figure 2: The flow sequence of the genetic algorithm. The flowchart
illustrates the standard implementation of the genetic algorithm. An
equivalent illustration for genetic programming would be identical as
only the design of the genomes and operators differ. Gen refers to the
current generation number M is the population size and i is the current
genome index in the generation. The genetic operators are selected with
the different probabilities PR, PC and PM, whose sum is one.

CHAPTER 2. BACKGROUND

 10

Fitness Assignment

The fitness assignment is what drives the population towards the solution.
Its purpose is to reward genomes depending on how close they are to the
solution. An optimal solution should receive a high reward and reasonably good
solutions should also be rewarded.

A genome’s fitness value is based on how well it performs a certain task.
This value can be based on the error in relation to a known optimal solution or a
desired goal. The value may also be acquired by letting the genomes in a
population compete against each other. This is often referred to as a competitive
fitness assignment.

An error driven fitness measurement works fine for problems with a known
desired solution. This is often the case for simple problems. However, in more
complex domains, the desired goal is often too weakly defined for an error
driven measurement. A more common alternative is that a measurement for
comparing genomes against each other is available. Such a measurement will
assign a genome’s fitness in comparison to the rest of the population. One
strategy for the use of a competitive fitness assignment is to hold a tournament
where every genome plays against all other genomes. This strategy requires

2
)1(−MM fitness evaluations for a population of size M, which in most cases are

too expensive. Several alternative strategies have been investigated to overcome
this problem.

Angeline and Pollack examined a strategy that they called ‘tournament
fitness assignment’ on the game of Tic Tac Toe [Angeline and Pollack, 1993].
Genomes in a population are paired up randomly to make a match and the
winner will advance to the next round. If a match ends in a draw, one of the two
genomes is selected at random to continue to the next round. This persists until
there is only one winner. The genomes are then ranked based on the round they
were eliminated in the tournament. This method has an advantage because it
only requires M-1 fitness evaluations. Angeline and Pollack compared their
method with other strategies and found that ‘tournament fitness assignment’ was
significantly better for the game of Tic Tac Toe.

Craig Reynolds explores another tournament design, where each genome
plays a small number of fixed matches [Reynolds, 1994]. He applied this
strategy to the game of Tag and each genome in the population played seven
games against different genomes. The fitness was then set to the average of the
seven values. If each genome played N other genomes, the number of fitness
evaluations is

2
MN .

Control Parameters

There are several parameters that control a run. The primary parameter is
the population size, but there are a number of quantitative and qualitative

CHAPTER 2. BACKGROUND

 11

control parameters that must be specified. Koza [1995] described 19 secondary
parameters. These include probabilities for selecting the different genetic
operators during a run (shown in Figure 2) as well as the initial and the
maximum permitted program size.

Termination Criterion

The usual termination criterion to stop the run is when the best solution
passes a fitness test. The maximum number of generations to be run is normally
specified along with the fitness test.

2.4.3 Execution Steps

When the preparatory steps are completed the run may begin. The
execution steps define the actual run and are illustrated in Figure 2. The basic
algorithm can be summarized in three steps:

• Randomly create an initial population.

• Iteratively execute the following sub-step until the termination criterion
is satisfied.

 • Assign each genome a fitness value.

• Create the next generation by repeatedly selecting the following
genetic operators based on the operator’s probability.

• Reproduction

• Crossover

• Mutation

• The run is stopped and a solution may be presented.

2.4.4 Genetic Operators

There are mainly three operators as previously mentioned.

Reproduction Operator

A genome is selected based on its fitness and copied into the next
generation.

Crossover Operator

Crossover operates on two parental genomes that are selected based on
fitness. Swapping sub-trees between the parental genomes creates two offspring.
The operator is demonstrated in Figure 3.

CHAPTER 2. BACKGROUND

 12

Mutation Operator

A genome is selected based on its fitness. A copy of the selected genome is
mutated and inserted into the next generation. Koza tried to claim in his two first
books [1992 and 1994] that genetic programming does not perform a random
search, thus mutation is not necessary. A wide range of problems is solved
without the use of mutation. However, the use of mutation in genetic
programming is increasing and is used particularly for small population sizes.
There are several ways of mutating a genome. The method used in this study is
called sub-tree mutation and is demonstrated in Figure 4.

2.4.5 Premature Convergence

Premature convergence occurs when the fitness of a population converges
to a sub-optimal solution. One indicator that a population converges is a
decreasing diversity in a population. This is a common problem in genetic
programming but according to Koza, it should be viewed as a part of the nature
of genetic algorithms.

Koza believes that the best way to prevent premature convergence is to
restart the whole run when it occurs. This may be optimal for problems with a
cheap computational fitness evaluation but not for problems with complex
fitness measures such as RoboCup. For example, in the RoboCup domain a run
is computationally very expensive and a re-run might therefore not be the best
solution. Alternative methods are to increase the population size or the mutation
rate thereby improving the diversity of a population.

2.5 Related Work

Several attempts to apply genetic programming to the RoboCup domain
have been made since the first international RoboCup competition, 1997.

Luke et al. [1997] developed a few RoboCup teams with the use of genetic
programming. They entered the first international RoboCup competition with
two of these teams and qualified to the third round. One team was
‘homogenous’ and the other was ‘pseudo-homogenous’. The homogenous team
consisted of players with identical programs and the other team was made up of
squads. Each squad was composed of three to four identical programs. A
program consisted two sub-programs, a kick-tree and a move-tree. The kick-tree
was executed when the ball was kickable whereas move-tree was executed
otherwise.

CHAPTER 2. BACKGROUND

 13

Figure 3a: Crossover operator - two parental programs. Crossover
points are selected randomly over all nodes and are highlighted in the
figure.

Figure 3b: Crossover operator - two sub-trees and two remainders.
The sub-trees are selected with the crossover points as root nodes.

Figure 3c: Crossover operator - two offspring. The sub-trees are
swapped and inserted back into the remainders.

CHAPTER 2. BACKGROUND

 14

Figure 4a: Sub-tree mutation - initial program. A mutation point is
selected randomly among all nodes (highlighted in the figure).

Figure 4b: Sub-tree mutation. The sub-tree with the mutation point as
root node is deleted and a new random tree is created. The random tree
is then inserted into the tree as showed in the figure.

Figure 4c: Sub-tree mutation - mutated tree.

CHAPTER 2. BACKGROUND

 15

Luke’s players learned to run after the ball and kick it towards the
opponent’s goal. They also learned some basic defensive abilities. It was the less
complex homogenous team that performed the best. However, the researchers
believed that the pseudo-homogenous team would outperform the homogenous
team if it was given additional time to ‘practice’.

The fitness function was only based on the number of goals scored by the
team. To prevent premature convergence on the relatively small population size
(128 genomes), a high mutation rate of 30 % was used.

Andre and Teller [1999] explored a fitness measurement, which was
founded on human coaching principles in soccer. They developed a fitness
function based on the observed hierarchal behaviour of human soccer players.
This fitness function rewarded players by taking into consideration their
position, distance to ball, number of goals scored and number of kicks.

Gustafson and Hsu [2001] explored an alternative to the basic genetic
programming method, which applied layered learning techniques. In layered
learning, several runs are performed in a sequence. Consequently, the initial
population for one run is the final population from the previous run. This design
facilitates the use of different control parameters and fitness functions for each
run.

This method was applied to keep-away soccer, which is a sub-problem in
the RoboCup domain and required multi-agent cooperation. The presented
results showed that layered learning in genetic programming outperformed the
standard method.

Ciesielski, Mawhinney and Wilson [2003] presented three different
approaches to create RoboCup players using genetic programming. In the first
experiment, the only actions available to the programs were those provided by
the soccer server. The second experiment employed higher-level actions such as
‘kicking the ball towards the goal’ or ‘passing to the closest team-mate’. These
two experiments used a tournament fitness assignment [Angeline and Pollack,
1993] while the third experiment was a slight modification of the first.

The teams created by the first and third approaches performed poorly. The
players from the second experiment were able to follow the ball and kick it
around. Ciesielski et al. concluded that the use of genetic programming enabled
teams to perform well. However, a significant amount of work is still needed for
the development of higher-level functions and the fitness measure.

Two previous students, Niklas Persson [2001] and Christian Rahm [2001],
did their master’s graduation projects at the Lund University in the RoboCup
domain.

Persson implemented a RoboCup team and explored the design of decision
trees for different player roles (attacker, midfielder, and defender). He

CHAPTER 2. BACKGROUND

 16

concluded that the design of the players’ low-level behaviour is essential for
success.

Rahm explored the use of neural networks to improve RoboCup players’
kicking behaviour. The completed experiments demonstrated that his learning
approach was not successful for this problem. Rahm also discussed the problem
of synchronisation between the players and the soccer server.

17

Chapter 3

Implementation

3.1 Agent Architecture

A RoboCup agent receives a large amount of unformatted data from the
soccer server every cycle. The agent must first convert and interpret the server
messages into a suitable data representation that fits its world model. In this
project, the RoboCup Client Parser [RCC Manual, 2003] and the RoboSoc
framework [RS Manual, 2002] are used to parse and update the agent’s world
model. The RoboCup Client Parser handles the interactions with the Soccer
Server and parses the server messages to C++ objects. The RoboSoc framework
processes these objects and updates the world model. Strategies define how the
world model is updated based on new information and past world models. The
information from the world model is extracted by Views in the RoboSoc
framework. The Views present the information in an accessible way to the
decision-making procedures. An overview of the architecture is presented in
Figure 5.

The controller (Figure 5) directs the decision-making. Depending on the
current state of the game and the agent, it can either use the evolved algorithm
or a pre-defined behaviour to decide an action. Predicates are used by the
evolved algorithm to test the current state of the world.

The evolved algorithm is executed by the controller when play_on [SS
Manual 2002, section 4.7] is the play mode. The decision making for other play
modes is pre-defined in the controller. The standard behaviour for kick offs,
kick ins, free kicks and corner kicks is that the player closest to the ball goes
towards it and passes it to a free team-mate. If no team-mate is free, the player
passes the closest team-mate.

If the agent is a goalkeeper, the evolved algorithm does not affect its
behaviour.

CHAPTER 3. IMPLEMENTATION

 18

Figure 5: The agent’s architecture. Coloured boxes indicate where
modifications were made to the RoboSoc framework [RS Manual,
2002, page 6].

3.2 Genetic Representation

3.2.1 Implementation

An evolved algorithm is constructed as a decision tree with predicates as
terminals and actions as functions. A list of all predicates and actions is
presented in Appendix A. The algorithm is as follows:

Soccer Server

The RoboCup Client Parser

Interface

World Model

Strategies Views

Predicates

Actions

Evolved Algorithm

 RoboSoc Framework (with modifications)

Controller

CHAPTER 3. IMPLEMENTATION

 19

If the ball’s position is unknown
 Turn to look for ball
 Else if the player can kick the ball
 If the player has a good chance to score
 Shoot to score
 Else
 Call the player’s Kick Tree
 Else if a team-mate passes the ball to the player
 Intercept ball
 Else
 Call the player’s Move Tree

The only parts of the algorithm that actually are evolved through genetic
programming are the Move Tree and the Kick Tree. These trees will output an
action each time they are executed. The move tree is executed when the position
of the ball is known but the ball is too far away for a kick. The other tree is only
executed if the ball is kickable.

The evolved decision trees are built of nodes and each node is either a
predicate or an action as presented in Figure 6. A predicate tests if the world is
in a certain state and returns either true or false. An action sends a command to
the soccer server.

The population consists of several individuals and each individual has one
kick tree and one move tree. The initial trees are created randomly under a
number of restrains. For example, the initial height is pre-defined to an interval.

If a genetic operator is applied to an individual, the same kind of operator is
applied to both its trees. A crossover is not allowed between a move tree and a
kick tree. For example, if a crossover operator is applied to two individuals, the
two move trees and the two kick trees are crossed separately. If the crossover
results in a larger tree than maximally permitted tree size, the sub-tree added by
the operator is shrunk to one node. This one node is randomly picked among the
sub-tree’s leaf nodes.

The mutation operator will first pick a random node in the decision tree. All
nodes have an equal probability of being picked. The sub-tree with the picked
node as a root node is deleted and replaced by a new tree. This new tree is
constructed in the same way as the initial individuals. An upper limit for the
tree’s size is established so that the whole tree will not exceed the maximum
size allowed. The reproduction operator merely copies an individual to the next
generation without restrictions.

CHAPTER 3. IMPLEMENTATION

 20

Figure 6: The structure of a decision tree. A leaf node is always an
action and all other nodes are predicates.

3.2.2 Motivation

The approach utilized in the evolution of the two different trees (a move
tree and a kick tree) has previously been tested by Luke et al. [1997]. Another
obvious approach is the use of only one tree and allowing the agent to learn
when it can and cannot kick the ball. With the two trees approach, a player will
always try to kick the ball whenever it has the opportunity. This may not be the
best alternative for all situations. For example, some situations may be enhanced
if the agent turned around to look for open team-mates before kicking the ball.
However, this would result in a more complex problem because the agent needs
to learn when the ball is kickable. The RoboCup environment is already very
complex and therefore, it may be beneficial to limit the search space of
algorithms. The second approach has been applied by David Andre and Astro
Teller [1999] and by Vic Ciesielski, Dylan Mawhinney, and Peter Wilson
[2003]. My motivation for using the first approach is to limit the search space
without drastically weakening the quality of possible solutions.

Those players that believe they have a good chance to score, will attempt to
score. This behaviour overrides the evolved algorithm only if a player has an
obvious chance of scoring. An expected result is that the agents will concentrate
more on team coordination and positioning than on kicking the ball towards the
goal.

The number of possible predicates limits the agents’ input. The design of
the set of predicates is not obvious. If a small set is used, the implementation of
each predicate will be important and a gap between the predicates and desired
solutions must not be present. A large set would minimize this problem even
though it is still important that an algorithm is capable of expressing the desired
solution. However, a large set results in a large search space.

P

P P

A A AP

A A

true false

P

A

 Predicate

Action

CHAPTER 3. IMPLEMENTATION

 21

3.3 Fitness

Each player is assigned a value based on its performance during a game. If
a player plays several games the value is the average of all assigned values. The
performance is calculated as weighted sum of the assessments in Table 3.

After the fitness assignment the genomes are ranked based on their fitness.
The genomes are then assigned a probability value, which correspond to the
probability to be picked by an operator. Figure 7 illustrates how the probability
depends on order of fitness.

Assessment Value

Won 1 if the player’s team won the game and 0
otherwise.

Team score The number of goals made by the team.

Opponent score The number of goals made by the opponent
team.

Score The number of goals made by the player.

Attempts The number of shoots on goal made by the
player.

Kicks The number of times the player kicked the
ball.

Passes The number of passes made by the player.

Active 1 if the player kicked the ball during a game
and 0 otherwise.

Ball Close 2 if the average distance to ball is less than
15, otherwise 1 if this distance is less than 20
or 0 if this distance is greater than 20.

Average y The player’s average y position during a
game.

Time free The time the player was free during a game,
measured in the percentage of total time. A
player is free when no other player is closer
than a distance of 10.

CHAPTER 3. IMPLEMENTATION

 22

Time offensive The time the player spent on the opposite half
of the field, measured in the percentage of
total time.

Table 3: Fitness assessments.

Figure 7: Selection probability depending on rank. M is the population
size and one is the highest ranking. Quota is a parameter that modifies
the quadratic probability function.

23

Chapter 4

Experiments

Several experiments have been performed throughout this research. Two
selected experiments are presented in this chapter. These experiments are
representative of what has been done and provide support for later conclusions.

All experiments were performed under Linux RedHat 9 on a Toshiba laptop
with a Celeron 1.33 GHz processor. This configuration was not sufficient for the
use of a full size team for the fitness evaluation. Therefore, a team of 9
members, including a goalkeeper was used instead of the 11 players.

4.1 Experiment 1

This experiment may be perceived to be a first investigation into the kind of
behaviour that the evolved soccer robots can develop. In this investigation each
player in a team is based on a separate algorithm. Players with different
algorithms must cooperate in order to achieve team coordination.

4.1.1 Approach

Each player in the population is regarded to be an individual player.
Matches are carried out between teams that are made up of players randomly
picked from the population so that each player plays a fixed number of games.
The fitness is then calculated in this manner (refer to Table 3 for more details):

 200 * Won
 200 * Team Score – Opponent Score
 250 * Score
 200 * Attempts
 30 * Kicks
 100 * Passes
 + 200 * Active

CHAPTER 4. EXPERIMENTS

 24

Parameters used in this experiment are presented below:

Parameter Value

Population size 128

Number of generations 52

Probability for crossover 60 %

Probability for reproduction 20 %

Probability for mutation 20 %

Number of games per player 4

Quota (Figure 7) 8

4.1.2 Result

Most players from the early generations are drifting around the field with
what appears to be unsystematic movements. The players that run after and kick
the ball increase in number rapidly until most players are chasing the ball (after
approximately fifteen generations). Typically, most players will run after the
ball and kick it towards the goal or eventually pass to a team-mate. This strategy
is often referred to as “kiddie-soccer”. The average fitness reaches a maximum
after approximately twenty generations and fluctuates around this value within
the remaining generations. This is demonstrated in Figure 8. The game statistics
are presented in Figure 9. A screenshot from a match between an early team and
a ‘developed’ team is shown in Figure 10.

By manually observing games, players are perceived to improve slightly in
the later generation. Particularly, a number of players develop defensive abilities
that reduce the efficiency of the early strategy. In later generations, more players
use the dribble skill rather than just kicking the ball towards the goal. Kicking
the ball towards the goal was early a very successful tactic to quickly position
the ball close to the goal. However, a defensive player would intercept a ball
without difficulty, which headed in the direction of the goal. The dribble skill
allows a player to dispense the ball around opponent players and thereby avoid
the defence. However, the dribble skill also results in a slower advancement, as
the ball is not going in a straight line. Figure 11 illustrates how two defensive
players are positioned to defend their home goal.

CHAPTER 4. EXPERIMENTS

 25

Figure 8: Average fitness in experiment one.

Figure 9: Game statistics from experiment one. The values are the
average per player and match.

CHAPTER 4. EXPERIMENTS

 26

Figure 10: A screenshot from a match between an early team (on the
right) and a team from generation 32.

Figure 11: A screenshot from a match between two later teams. The
arrows indicate two players that are using the BlockGoal action to
defend the home goal, while other players are chasing the ball.

4.1.3 Conclusion

The software robots clearly improve their playing techniques throughout the
generations. Initially, most players are wandering around the field illogically.
The players rapidly develop a strategy that basically, is to run after the ball and
kick it towards the goal. This strategy is very efficient against opponents that do

CHAPTER 4. EXPERIMENTS

 27

not have a defence besides the goalkeeper. Finally, the population learns
defensive abilities and dribble skills.

 The average fitness for the populations converges after approximately
fifteen generations. However, the fitness is measured amongst players within the
same generation and not in comparison to earlier teams. This is most likely the
reason why the development of defence did not appear on the fitness scale
(Figure 8).

4.2 Experiment 2

In previously performed work, a homogenous team configuration has been
used. Luke et al. [1997] claimed that the evolution of a team with separate
algorithms is a more complex problem than evolution of a homogenous team.
This is because all players use the same algorithm. Luke also explored a pseudo-
homogenous approach, where the players are put into different squads. This
experiment investigates the pseudo-homogenous team configuration.

4.2.1 Approach

Instead of allowing each player to have its own algorithm, a team is built of
three squads (each consisting of identical players). In order to increase the team
coordination, each squad is given a separate role. The assigned roles are:
attacker, midfielder, and defender. A team consists of 3 attackers, 3 midfielders,
and 2 defenders.

The squads are co-evolved so that each squad is evolved from a separate
population with a separate fitness function. The following are the formulas for
the fitness functions:

Attacker

 500 * Score
 400 * Attempts
 50 * Kicks
 100 * Passes
 200 * Active
 150 * Ball Close
 3 * Time Free
 + 6 * Time Offensive

CHAPTER 4. EXPERIMENTS

 28

Midfielder

 100 * Won
 200 * Team Score – Opponent Score
 100 * Score
 100 * Attempts
 50 * Kicks
 300 * Passes
 200 * Active
 6 * Time Free
 + 2 * Time Offensive

Defender

 200 * Won
 200 * Team Score – Opponent Score
 50 * Kicks
 100 * Passes
 200 * Active
 + 5 * Time Free

Control parameters used in this experiment are presented below:

Parameter Value

Population size 3 * 32

Number of generations 55

Probability for crossover 60 %

Probability for reproduction 20 %

Probability for mutation 20 %

Number of separate games per player 2

Quota (Figure 7) 8

4.2.2 Result

The early random teams acted uncoordinated and approximately one third
of the initial players chased the ball like the initial teams from experiment one.
After five to ten generations, the populations reached sub-optima that they
essentially sustained for the remaining generations. This is demonstrated in
Figure 12. These optima refer to kiddie-soccer players but they did not kick the
ball towards the goal in the same amount as players from the first experiment.

CHAPTER 4. EXPERIMENTS

 29

An improved scoring strategy for the fitness function was then established – the
players surrounded the ball and passed it around. This strategy generated many
kicks and passes, which is also apparent in Figure 13 and 14. The number of
performed passes per game is approximately two times the number completed in
the first experiment.

However, the players were occasionally spread out and were able make
long passes. This situation permitted a faster game because the ball quickly
travelled all over the field. After a few long passes, one player usually failed to
intercept the ball and cause all players to chase the ball. The players had
problems intercepting passes especially the long passes because the ball had a
higher speed.

The average distance between players and the ball decreased rapidly during
the very first generation and then maintained a reasonably constant level when
most players developed the kiddie-soccer strategy. For the defenders, this
average distance was significantly larger. This is due to the fact that their initial
positions were the furthest away from the ball’s initial position. Figure 15
illustrates how the average distances are dependent on the generation number.

It appears that the different squads did not develop separate behaviours. The
attackers did not attempt to score more frequently than the midfielders. For
example, in generation 50 – 55, the attackers made 39 % of all scored goals, the
midfielders 47 %, and the defenders 13 %.

Nearly all of the top ranked individuals from the populations of attackers
and defenders executed the PassBeckham action when introduced with a
chance to kick the ball and the DashToBall action otherwise. The midfielders
showed greater variability and the winning algorithms changed frequently
throughout the generations.

In order to compare players with those in the previous experiment, thirty-
two matches between the two populations were carried out. The teams were
selected randomly for each match. The teams from the previous population won
eighteen games, the pseudo-homogenous teams from this experiment won nine,
and five matches ended in a draw.

CHAPTER 4. EXPERIMENTS

 30

Figure 12: Average fitness for experiment two.

Figure 13: Average number of kicks performed during a match.

CHAPTER 4. EXPERIMENTS

 31

Figure 14: Average number of passes performed during a match.

Figure 15: Average distance between the player and the ball.

CHAPTER 4. EXPERIMENTS

 32

Figure 16: Screenshot of a typically situation in experiment two. All
players are chasing the ball.

4.2.3 Conclusion

The populations converged after five to ten generations, which is twice as
fast as in the previous experiment. This rapid convergence is referred to
premature convergence and a lower complexity compared to the previous
experiment (three separate algorithms compared to eight separate algorithms).
However, the players did not seem to improve more after the ten generations.

Premature convergence clearly occurred amongst the populations of
attackers and defenders. The high rate of identical genomes strongly reduced the
efficiency of the genetic operators and the population was trapped in what
appeared to be a troublesome suboptimum. The obvious approach to deal with
this suboptimum is to restart the population at generation 0 or drastically
increase the mutation rate. Preliminary testing showed that premature
convergence occurs even if the population is restarted. This is likely due to the
very small population size consisting of thirty-two individuals.

The resulting players from the first experiment did better than the players
from this experiment. It can be concluded that this is due to the lack of defensive
abilities in the second teams.

33

Chapter 5

Discussion

The goals of this study were to use genetic programming to teach software
robots play simulated soccer, and secondarily to investigate the development of
multi-agent strategies.

The two experiments only differ in the team set-up. In the first experiment,
each team consisted of eight randomly picked players (excluding the
goalkeeper) from a population of one hundred and twenty-eight individuals. The
teams in the second experiment were made up of eight players consisting of
three different genomes and they are evolved in separate populations of thirty-
two individuals each.

Initially, the players from both experiments learned to chase and kick the
ball towards the goal or pass it to a team-mate. The players in the second
experiment converged and did not develop further. However, the players from
the first experiment continued to develop slowly and recognized that team
coordination was essential for further development.

The following are a number of reflections and possible explanations about
why the robots did not develop further.

• Premature convergence

The population size was very small for a problem of this complexity. In
order to prevent premature convergence and increase diversity amongst
the evolved players, a larger population size should have been used.
Koza [1994] suggests a population size of 4000 for a typical problem.

• Limited search space

The sets of predicates and actions provide a limited search space. A
significantly improved solution may not be possible to express with the
current sets.

CHAPTER 5. DICUSSION

 34

• Functions

Ultimately, it is the action functions that control the software robot. The
players’ performances were directly related to the quality of the
functions. The players generated in this study had for example, troubles
with the interception of passes.

• Credit assignment

The fitness function may not correspond to the actual desired behaviour.
The primary difficulty was to determine which individuals to credit for
the whole team’s success.

• Overfitness

Each algorithm is only tested for a limited number of situations or in this
case, number of matches. The fitness assignment used in the experiment
is inaccurate. If a larger number of evaluations were used, it would
minimize the fitness deviation and give a more accurate measurement.

• Computational resources

The fitness evaluation is computationally expensive. The presented
experiments were completed in roughly one month (computer time).
Numerous compromises were made in this study to reduce the evaluation
time and this eventually resulted in weaker players.

This study demonstrates that software robots are able to learn to play the
game of simulated soccer despite its very complex dynamics. The strategies that
the robots developed are most likely to be inferior to human coded algorithms,
but are significantly better than the initial random strategies.

35

Chapter 6

Future Work

The approach used in this study is just one of several possible approaches.
This chapter lists some suggestions and ideas about future investigations into
this subject.

• The population size used in these experiments is simply too small.
Various methods for accelerating the fitness evaluation should be
investigated.

• The decision tree approach with fixed predicates and actions certainly
limits the search space over possible solutions. To modify this, allow the
predicates and actions to be dependent on some parameters that are
initially set in a random manner. The genetic operators could then alter
these parameters. Another modification is to allow some actions and
predicates to evolve separately. Koza [1994] introduces this as
automatically defined functions.

• More information about the game could be available to the players by
expanding the set of predicates or introducing game states. A game state
can be based on past information and contain data such as coach
messages, previous playing styles, when the opponents attacked last
time, etc.

• Introduce an online coach that broadcasts values to some predicates.
These values concern the whole team and are difficult for an individual
player to calculate with its limited perceptions. Examples of such
predicates could be: “Is any team attacking?” or “Do they have good
defence?”.

• Instead of using a fixed fitness function for all generations, one that
changes as the players improve could be used. For developing basic
skills, a simple fitness function may be sufficient or even better than a
complex one. In order to teach the robots advanced behaviours, it may be
necessary to customize the fitness function to a particular skill. One
approach could be the development of a system similar to the way
humans learn to play soccer with the help of trainers. This system could

CHAPTER 6. FUTURE WORK

 36

analyse the players throughout the generations and output statistics and
data to a human operator regulating the fitness function.

37

Bibliography

[Andre and Teller, 1999] David Andre and Astro Teller, Evolving team Darwin
United, RoboCup II: Proceedings of the second annual conference,
Springer-Verlag, 1999

[Angeline and Pollack, 1993] Peter J. Angeline and Jordan B. Pollack,
Competitive Environments Evolve Better Solutions for Complex
Tasks, In Proceedings of the Fifth International Conference on
Genetic Algorithms, pp. 264–270, Morgan Kaufmann Publishers,
1993

[Ciesielski et al., 2003] Vic Ciesielski, Dylan Mawhinney, and Peter Wilson,
Genetic Programming for Robot Soccer, 2003

[Gustafson and Hsu, 2001] Steven M. Gustafson and William H. Hsu, Layered
Learning in Genetic Programming for a Co-operative Robot Soccer
Problem, In Proceedings of the Euro GP 2001, pp. 291-301, Springer-
Verlag, 2001

[Holland, 1975] John H. Holland, Adaptation in Natural & Artificial Systems,
University of Michigan Press, 1975

[Koza, 1992] John R. Koza, Genetic Programming: On the Programming of
Computers by Natural Selection, MIT Press, Cambridge MA, 1992

[Koza, 1994] John R. Koza, Genetic Programming II: Automatic Discovery of
Reusable Programs, MIT Press, Cambridge MA, 1994

[Koza, 1999] John R. Koza, Forrest H. Bennett III, David Andre, Martin A.
Keane, Genetic Programming III: Darwinian Invention and Problem
Solving, Morgan Kaufmann Publishers, 1999

[Luke et al., 1997] Sean Luke, Charles Hohn, Jonathan Farris, Gray Jackson and
James Hendler, Co-evolving Soccer Softbot Team Coordination with
Genetic Programming, RoboCup I: Proceedings of the first annual
conference, Springer-Verlag, 1997

[Montana, 1995] D.J. Montana, Strongly Typed Genetic Programming, In
Evolutionary Computation, The MIT Press, Cambridge MA, 1995

[Noda et al., 1999] Minoru Asada, Hiroaki Kitano, Itsuki Noda, and Manuela
Veleso. RoboCup: Today and tomorrow - what we have learned,
Artificial Intelligence, 110:193-214, 1999

[Persson, 2001] Niklas Persson, Samarbetande autonoma agenter i RoboCup-
miljö, Master’s Thesis, Lund University, 2001

BIBLOGRAPHY

 38

[Rahm, 2001] Christian Rahm, Att skapa mjukvaruagenter för RoboCup,
Master’s Thesis, Lund University, 2001

[RCC Manual, 2003] Tom Howard, The RoboCup Client Parser Reference
Manual 1.2.2, 2003

[Reynolds, 1994] Craig Reynolds, Competition, Coevolution and the game of
tag, In Proceedings of the Fourth International Workshop on the
Synthesis and Simulation of Living Systems, pp. 59-69, MIT Press,
1994.

[RS Manual, 2002] Fredrik Heintz and David Rosèn, The RoboSoc Manual 2.8
Version 0.1, 2002, http://www.ida.liu.se/~frehe/ RoboCup/RoboSoc/

[Russell and Norvig, 1995] Stuart Russell and Peter Norvig, Artificial
Intelligence: A modern Approach, Prentice-Hall, 1995

[SS Manual, 2002] Mao Chen, Ehsan Foroughi, Fredrik Heintz, ZhanXiang
Huangy, Spiros Kapetanakis, Kostas Kostiadis, Johan Kummeneje,
Itsuki Noda, Oliver Obst, Pat Riley, Timo Ste_ens, Yi Wangy and
Xiang Yin, Soccer Server Manual Version 7, 2002

[Stone, 1998] Peter Stone, Layered Learning in Multi-Agent System, PhD thesis,
Carnegie Mellon University, 1998

[Woolridge, 2002] Michael Woolridge, An Introduction to Multi-agent Systems,
Wiley, 2002

39

Appendix A

Predicates and Actions

A.1 Predicates

IAmClosestToTheBall is true if and only if:

• The position of the ball relative to the agent is known.

• The agent is closest to the ball amongst the players it can see.

IAmClosestToTheBallOnOurTeam is true if and only if:

• The position of the ball relative to the agent is known.

• The agent is closest to the ball amongst the agent’s team-mates that it
can see.

WeAreClosestToBall is true if and only if:

• The position of the ball relative to the agent is known.

• The agent or a team-mate that the agent can see is the closest to the ball
amongst the players it can see and distance to the ball is less than 10.

BallIsClose is true if and only if:

• The position of the ball relative to the agent is known.

• The distance between the agent and the ball is equal to or less than 5.

BallIsFarAway is true if and only if:

• The position of the ball relative to the agent is known.

• The distance between the agent and the ball is greater than 35.

BallIsNearGoal is true if and only if:

• The position of the ball is known.

• The distance between the ball and centre of the opponent’s goal is less
than 32.

APPENDIX A. PREDICATES AND ACTIONS

 40

BallIsNearOurGoal is true if and only if:

• The position of the ball is known.

• The distance between the ball and the centre of home goal is less than
32.

OpponentIsClose is true if and only if:

• The agent can see at least one opponent.

• An opponent in the agent’s field of vision is closer than a distance of 5.

IAmAlone is true if and only if no player in the agent’s field of vision is closer
than a distance of 15.

WeAreWinning is true if and only if the agent’s team is leading with at least 2
points.

IAmNearGoal is true if and only if:

• The agent’s position is known.

• The distance between the agent and the centre of opponent’s goal is less
than 25.

IAmNearOurGoal is true if and only if:

• The agent’s position is known.

• The distance between the agent and the centre of home goal is less than
25.

WeAreAttacking is true if and only if:

• The agent’s position is known.

• The agent is located on the fifth of the field furthest away from home.

Or

• The positions of at least two team-mates (including the agent) are
known.

• At least two team-mates (including the agent) are located on the 30 % of
the field furthest away from home.

OpponentsAreAttacking is true if and only if:

• The positions of at least two opponents are known.

• At least two opponents are located on the 30 % of the field which is
closest to home.

APPENDIX A. PREDICATES AND ACTIONS

 41

TeammatesAreFree is true if and only if:

• The agent cannot see any opponents.

Or

• The position of at least one team-mate is known.

• A team-mate is further than a distance of 10 away from all opponents
visible to the agent.

WeAreSpreadOut is true if and only if:

• There is only one team-mate visible to agent.

• The team-mate is at least a distance of 15 away from the agent.

Or

• More than one team-mate is in the agent’s field of view.

• V({x})+V({y}) > 200, where V is the variance function. {x} and {y} are
the coordinates for visible team-mates, including the agent.

A.2 Actions

A.2.1 Move Actions

Move Actions are only executed in the move tree.

DashToBall

If the agent’s body direction is not facing the ball (±8º), the agent will turn
towards the ball otherwise a dash command will be executed.

DashToGoal

A target point is set as one of the corners of the penalty area at the opponent’s
goal (e.g. if the agent is playing on the left side team, the target point will be
either (32, 20) or (32, -20)). If the agent’s body direction is not facing the point
(±5º), the agent will turn towards the ball otherwise a dash command will be
executed.

BlockGoal

A virtual vector is set between the ball and the centre of the home goal. A target
point is then set to be on this vector. If the agent is close to the ball (<7), the
target point will set to the ball’s position instead. If the agent’s body direction is
not facing the point (±8º), the agent will turn towards the ball otherwise a dash
command will be executed.

APPENDIX A. PREDICATES AND ACTIONS

 42

InterceptBall

This action is included in RoboSoc and will determine an intersection point
between the agent and the ball. The agent will then execute a dash or turn
command to get to this point in the same time or before the ball does.

SpreadTeam

A list with normalized vectors will be constructed for each team-mate that the
agent sees. A vector is determined as an average of all of these vectors. The
agent will then move in the opposite direction from this vector.

A.2.2 Kick Actions

Kick actions are only executed in the kick tree ensuring that the ball will be
kickable. If the action is a pass, the agent will execute a say command to inform
the targeted player.

PassPlayer1

If the agent sees one or more team-mates, it will pass the one closest to the
agent. If no team-mate is in the agent’s field of vision, no command will be
executed.

PassPlayer2

If the agent sees more than one team-mate, it will pass the second closest team-
mate. If only one team-mate is in the agent’s field of view, the agent will pass it.
If no team-mate is in the agent’s field of vision, no command will be executed.

PassPlayerFarAway

If the agent sees one or more team-mates, it will pass the ball to the one closest
to the opponent’s goal. If no team-mate is in the agent’s field of vision, no
command will be executed.

PassBeckham

This action is included in RoboSoc and enables the agent to pass to the team-
mate that is most suitable for a pass (according to a number of criterions). If no
suitable team-mate is found, no command will be executed.

DribbleToGoal

This action is included in RoboSoc and the agent will dribble the ball towards
the opponent’s goal while avoiding its opponents.

KickGoal

The agent will kick the ball towards the centre of the opponent’s goal.

43

Appendix B

Evolved Algorithms

This appendix presents a few examples of evolved algorithms from the
experiments presented in chapter 4. Throughout the experiments, more than
10000 different algorithms were evolved and evaluated. The following examples
are intended to give the reader an idea of the algorithms’ composition. A
number of statistical data follows each example.

B.1 Experiment 1

The top ranked algorithm from generation 3

Kick Tree Move Tree
IF WeAreSpreadOut
 IF WeAreAttacking
 IF IAmNearGoal
 IF OpponentsAreAttacking
 DribbleToGoal
 ELSE
 IF TeammatesAreFree
 PassPlayerFarAway
 ELSE
 PassPlayer2
 ELSE
 KickGoal
 ELSE
 PassPlayer1
ELSE
 PassBeckham

IF WeAreWining
 IF IAmAlone
 IF IAmNearOurGoal
 SpreadTeam
 ELSE
 IF IAmNearGoal
 InterceptBall
 ELSE
 DashToBall
 ELSE
 BlockGoal
ELSE
 DashToBall

 Match average Population match average
Number of kicks 24 20
Number of passes 22 9
Distance to ball 17 22
Made goals 0 0.3

APPENDIX B. EVOLVED ALGORITHMS

 44

The top ranked algorithm from generation 20

Kick Tree Move Tree
IF IAmNearGoal
 PassPlayer2
ELSE
 PassBeckham

IF WeAreWining
 IF OpponentIsClose
 DashToBall
 ELSE
 IF IAmNearGoal
 IF BallIsClose
 InterceptBall
 ELSE
 BlockGoal
 ELSE
 SpreadTeam
ELSE
 DashToBall

 Match average Population match average
Number of kicks 59 28
Number of passes 32 14
Distance to ball 14 20
Made goals 0.5 0.3

The top ranked algorithm from generation 51

Kick Tree Move Tree
IF OpponentIsClose
 PassBeckham
ELSE
 IF IAmNearGoal
 IF WeAreAttacking
 PassPlayer2
 ELSE
 IF TeammatesAreFree
 PassBeckham
 ELSE
 PassPlayer2
 ELSE
 IF WeAreAttacking
 PassBeckham
 ELSE
 PassPlayer1

IF WeAreWining
 IF BallIsNearOurGoal
 IF OpponentsAreAttacking
 DashToGoal
 ELSE
 DashToBall
 ELSE
 DashToBall
ELSE
 DashToBall

 Match average Population match average
Number of kicks 83 22
Number of passes 28 9
Distance to ball 18 20
Made goals 0.5 0.3

APPENDIX B. EVOLVED ALGORITHMS

 45

The second ranked algorithm from generation 51

Kick Tree Move Tree
IF IAmNearGoal
 IF WeAreAttacking
 KickGoal
 ELSE
 IF TeammatesAreFree
 IF OpponentsAreAttacking
 DribbleToGoal
 ELSE
 PassBeckham
 ELSE
 PassPlayerFarAway
ELSE
 PassBeckham

IF WeAreWining
 DashToBall
ELSE
 IF OpponentsAreAttacking
 IF IAmNearOurGoal
 BlockGoal
 ELSE
 SpreadTeam
 ELSE
 DashToBall

 Match average Population match average
Number of kicks 56 22
Number of passes 30 9
Distance to ball 14 20
Made goals 1.5 0.3

The 64th ranked algorithm from generation 51

Kick Tree Move Tree
IF OpponentsAreAttacking
 IF IAmNearGoal
 PassPlayer2
 ELSE
 PassPlayerFarAway
ELSE
 PassBeckham

IF WeAreWining
 IF BallIsFarAway
 DashToBall
 ELSE
 IF OpponentIsClose
 IF OpponentsAreAttacking
 IF IAmClosestToBallOnOurTeam
 BlockGoal
 ELSE
 DashToGoal
 ELSE
 InterceptBall
 ELSE
 InterceptBall
ELSE
 IF BallIsNearOurGoal
 BlockGoal
 ELSE
 DashToBall

APPENDIX B. EVOLVED ALGORITHMS

 46

 Match average Population match average
Number of kicks 46 22
Number of passes 7 9
Distance to ball 18 20
Made goals 0 0.3

B.2 Experiment 2

The top ranked attacker algorithm from generation 5

Kick Tree Move Tree
PassBeckham IF BallIsNearOurGoal

 BlockGoal
ELSE
 DashToBall

 Match average Population match average
Number of kicks 211 37
Number of passes 149 21
Distance to ball 5 16
Made goals 0.3 0.3

The top ranked midfielder algorithm from generation 5

Kick Tree Move Tree
IF OpponentsAreAttacking
 KickGoal
ELSE
 PassBeckham

IF OpponentsAreAttacking
 IF OpponentIsClose
 InterceptBall
 ELSE
 DashToBall
ELSE
 DashBall

 Match average Population match average
Number of kicks 122 46
Number of passes 88 23
Distance to ball 7 15
Made goals 0 0.4

APPENDIX B. EVOLVED ALGORITHMS

 47

The top ranked defender algorithm from generation 5

Kick Tree Move Tree
IF WeAreSpreadOut
 PassPlayer1
ELSE
 IF WeAreAttacking
 PassPlayer2
 ELSE
 PassPlayerFarAway

IF BallIsFarAway
 InterceptBall
ELSE
 IF OpponentsAreAttacking
 DashToBall
 ELSE
 DashToGoal

 Match average Population match average
Number of kicks 43 18
Number of passes 48 9
Distance to ball 26 32
Made goals 0 0.2

The top ranked attacker algorithm from generation 55

Kick Tree Move Tree
PassBeckham DashToBall

 Match average Population match average
Number of kicks 103 25
Number of passes 52 11
Distance to ball 15 17
Made goals 0 0.3

The top ranked midfielder algorithm from generation 55

Kick Tree Move Tree
IF OpponentsAreAttacking
 IF IAmAlone
 PassPlayer1
 ELSE
 PassBeckham
ELSE
 IF WeAreSpreadOut
 PassBeckham
 ELSE
 IF IAmAlone
 PassPlayer1
 ELSE
 PassBeckham

IF BallIsNearOurGoal
 IF IAmAlone
 IF OpponentsAreAttacking
 DashToBall
 ELSE
 BlockGoal
 ELSE
 DashToBall
ELSE
 DashToBall

APPENDIX B. EVOLVED ALGORITHMS

 48

 Match average Population match average
Number of kicks 98 32
Number of passes 75 16
Distance to ball 26 16
Made goals 0 0.2

The top ranked defender algorithm from generation 55

Kick Tree Move Tree
PassBeckham DashToBall

 Match average Population match average
Number of kicks 40 21
Number of passes 18 8
Distance to ball 21 27
Made goals 1 0.2

