Using Interactive Computer Games

for AI Research
Case Study on WarCraft III

Master Thesis in Computer Science and Engineering

Jonas Isberg, d97ji@efd.1th.se
Department of Computer Science
Lund Institute of Technology
Lund University
Supervisor: Jacek Malec

June 2004

Abstract

In search for research environments, artificial intelligence has lately taken an
interest in interactive computer games. The purpose of this master thesis is to
investigate how useful interactive computer games are as environments for Al
research. It will be a case study on Blizzard Entertainment’s WarCraft ITI.

The possibilities provided by the environment and the problems faced when
creating an Al for a real-time strategy game are studied by the implementation
of a primitive AI for WarCraft III.

The study shows that there are several kinds of advanced AI problems in-
volved in creating a dynamic and non-cheating, but yet challenging AI for War-
Craft III. It also shows that the WarCraft III environment provides possibilities
for solving these problems.

It is possible to study many kinds of AI problems using the WarCraft IIT
engine and creating an AI that plays the standard game-type requires solving
many of these problems. WarCraft IIT can therefore be considered worth testing
as an environment for AT research.

Contents

1 Introduction 3
1.1 Background 3
1.2 Defining the problem oo 3
1.3 Purpose L 4
1.4 WarCraft ITT 4
1.5 Method 4

2 Background 5
2.1 History of artificial intelligence 5
2.2 History of interactive computer games 6
2.3 Artificial intelligence and interactive computer games 6

2.3.1 Game genreso i e e e 7
232 Roles 7
2.4 Real-time strategy games and WarCraft IIT 8

3 Experiments with the game environment 9
3.1 Introduction to the World Editor 9
3.2 Introduction to the Jass scripting language 10

3.21 Jasssyntax 11
3.22 Scriptso 12
3.2.3 The native libraries 13
3.2.4 Limitations and solutions 14
3.2.5 Useful tools and resources 15
3.3 Creating simple agents using WarCraft III: The Wumpus world . 15
3.3.1 Overview of the Wumpus world 15
332 Design e 17
3.3.3 Implementation 18
3.4 Building an AI that plays WarCraft IIT 21
3.4.1 A standard game of WarCraft 21
3.4.2 The resource manager 21
3.4.3 The unit manager 23
3.4.4 The building manager 24
3.4.5 Traininganarmy 25
3.4.6 The civilization manager 27
3.4.7 The technology tree 28
3.4.8 The combat manager. 28
3.4.9 The research manager 30
3.5 Putting it all together 30

3.6 Building custom worlds Lo,
Analysis

Conclusions

A Vision and map-making

The Wumpus world
B.1 A complete agent ATl script
B.2 Themapscript

Fighting melee AI
Command parser

Dictionary

31

33

36

38
38
42

43

47

49

Chapter 1

Introduction

1.1 Background

In search for research environments, artificial intelligence has lately taken an
interest in interactive computer games. The environment types which have
traditionally been used - military simulations, home-made simulations and ro-
botics - all have their drawbacks: military simulation researchers need to spend
a lot of time learning military organization, home-made simulations take time
to construct and have been criticized as not being real problems, and when us-
ing robotics one has to solve the problem of inaccuracy of sensors and effectors
before dealing with cognitive problems. Interactive computer games are less
affected by these drawbacks: they take less time to learn than military simula-
tions, they provide an already constructed non-trivial environment, they don’t
have the problems associated with acting in the real world, but they are com-
plex problems where computers competes against humans, and the computers
are often supposed to act human-like.

The benefits of using interactive computer games are that they are cheap,
available, come in all kinds of complexities and often have the possibility to
create custom game worlds using bundled editors.

There has been some successful research using interactive computer games
of the action (or first person shooter) genre, including research on Quake by
Laird and his group[1], but there is still little information available on the use
and usefulness of interactive computer games in Al research.

1.2 Defining the problem

The rising interest of Al in interactive computer games, the amount of articles|2]
which suggests interactive computer games as promising research environments
and the lack of available information regarding the usefulness of specific games,
suggest that there is a need for case studies on individual games.

Which game (or games) would then be most beneficial to study? Due to
the lack of previous studies, it seems a good idea to select a game in which it is
possible to study as many kinds of problems as possible. My previous experience
of interactive computer games and a few small efforts of creating worlds and AT !

L AT is used throughout this report both as the name of the scientific discipline and as the

for some of them, have made me believe that Blizzard Entertainment’s real-time
strategy WarCraft III is a game worth deeper evaluation.

What is it then that makes WarCraft III look promising? WarCraft III is
the fourth game of Blizzard in the real-time strategy genre (after WarCraft,
WarCraft IT and StarCraft), which suggests that they should have been able to
create a robust game-engine. It has a world editor with the ability to create
custom game worlds and units; and it supports creating agent behavior using
both graphical and textual programming.

Thus, it seems useful to make a case study on WarCraft III, regarding its
usefulness as an environment for Al research.

1.3 Purpose

The purpose of this study is to investigate how useful WarCraft III is as an
environment for research in artificial intelligence.

The focus is put on investigating the possibilities to study multi-agent prob-
lems situated in a two-dimensional environment.

1.4 WarCraft I11

Blizzard Entertainment’s WarCraft III is a real-time strategy game. Strategic
and tactical decisions are of highest importance to increase a player’s chances for
victory. Victory is achieved in the end by crushing the army of the opponent. To
make victory achievable, an army must quickly be built, which requires a steady
income of resources in the form of gold and lumber. Resources are gathered by
workers who mine gold and chop wood.

1.5 Method

This thesis will combine presentation of what can be done using WarCraft III
(WC3) with showing how, and why, it can be done. This approach is taken
to make the findings of this study as useful as possible and make it as easy as
possible for researchers to further evaluate this environment. This means that
a part of this thesis will be in the form of a tutorial. This tutorial will show
how traditional agent problems can be modeled in WC3 and also will show what
problems are involved in creating an Al for a normal game of WC3, as well as
suggesting solutions to these problems. These solutions will not be complete,
but will show that it is possible to create more advanced solutions for these
problems.

name of a game module.

Chapter 2

Background

2.1 History of artificial intelligence

Artificial intelligence (AT), uses knowledge and ideas from a number of different
sciences. Philosophy has contributed with theories of reasoning and learning.
Mathematics with formal theories of logic, probability, decision making and
computation. Psychology with tools to investigate the mind. Linguistics with
theories of structure and meaning of language. Computer science with tools to
make AT a reality.

Artificial intelligence officially got its name 1956, but the first work con-
sidered AI was presented 13 years earlier in 1943 by Warren McCullough and
Walter Pitts[3]. Artificial intelligence was named on a Dartmouth workshop
where a reasoning program, the Logic Theorist, was presented by Allen Newell
and Herbert Simon[4][5].

The general distrust in the usefulness of computers gave early Al researchers
lots of opportunities to show seemingly amazing results. More noteworthy suc-
cesses includes the General Problem Solver, Allen Newell and Herbert Simon[6],
and the Geometry Theorem Solver, Herbert Gelernter. LISP was created 1958
by John McCarthy, the same year as he describes the Advice Taker in Programs
with Common Sense[8], considered as the first complete AI system, although
hypothetical.

The concept of microworlds were founded, a domain of limited problems
which appear to require intelligence to solve, of which the blocks world is the
most famous. Works on neural networks, based on McCullough and Pitts, was
done and Frank Rosenblatt proved the famous perceptron convergence theo-
rem[9].

When researchers tried their skills on harder problems, they came to realize
that their previous methods were not sufficient. Even if the problem was solvable
in theory, it might take forever to solve it practically.

Knowledge-based systems, or expert systems, came as an answer to the need
fore more domain knowledge to solve advanced problems. By coding a lot of
domain knowledge into the program, it got a better idea of which steps were
useful to try when solving a problem, making them spend less time on solutions
that obviously are dead-ends.

Expert systems were taken into commercial service in the 1980s. At this time

a Japanese project to build computers that run Prolog programs as machine code
was started, and the fear in the U.S. for getting behind Japan made researchers
have no trouble finding funding. The 1980s also saw a rise in the interest for
neural networks.

The interest in combining the different sub-fields of Al pursuing one of the
original goals of creating intelligent systems, have increased lately. Interactive
computer games have been found as interesting environments for AI research
by Laird and others.

2.2 History of interactive computer games

The history of computer games is intersected with the history of video games on
special purpose home entertainment systems and the history of arcade games.

The history of computer games started 1958 when Tennis for Two was cre-
ated. It was played on an analog computer, using an oscilloscope for display
and is developed by Willy Higinbotham to amuse the visitors of Brookhaven
National Laboratory. It was a huge success.

Most of the early computer games were text-based adventure games, with
Spacewar being a noteworthy exception. Spacewar was created by Steve Russel
on MIT with the purpose of demonstrating hardware abilities.

MUD (Multi-user Dungeon/Dimension) 1979 gave users the possibility to
adventure together using a text-only interface.

The text-only interface of the early games was later complemented with
rough graphics and with the increased support for graphics and the introduction
of ’cheap’ home computers, the more graphics-intensive arcade and video games
were ported to the computers.

The 1990s saw the rise of the real-time strategy games with Dune II setting
the standard, followed by games such as WarCraft, Command and Conquer,
Age of Empires, StarCraft and Empire Earth.

The 1990s also saw the rise of the action, or first person shooter, genre with
games as Wolfenstein 3D, Doom and Quake (all by iD Software).

The enormous success of the Sims has shown that modern people like playing
God and controlling other people’s life. Predecessors in the God games category
includes Black and White and the older Sim City.

2.3 Artificial intelligence and interactive computer
games

John Laird has suggested Interactive computer games as the killer application
for human-level AI[2]. This section will shortly explain why the computer game
developers and the AI researchers have so much to gain by cooperating.

Games have long been rated and sold on the number of polygons they are
able to produce, but the graphics in most games are now so good that improv-
ing it won’t add much to game-play. Developers have therefore started to get
interested in the possibilities to improve the Al of the computer opponents.

AT researchers on the other hand have started to show interest in computer
games, realizing that there exist a lot of ready-made environments which present
interesting and complex problems.

2.3.1 Game genres

Artificial intelligence has the potential to play an important role in several game
categories. Below is a description of such categories and how Al can contribute
to them.

Action games let the user control a character in a virtual environment, in
either first or third person view. Achieving the goal often involves lots
of violence on enemies. Games in this genre include Descent, Doom and
Quake, and Al is needed for computer controlled enemies and partners.

Role-playing games let the user choose between several kinds of characters,
such as thieves, warriors and magicians. Games of this genre includes
Ultima, Baldur’s Gate and Diablo. Some games also give the possibility
to play in an on-line persistent world with 1000s of other users. AI is
typically used for controlling enemies, partners and support characters
like merchants.

Adventure games focus more on puzzle solving than on violence. Early games
were text-based, but graphics was introduced when it became available.
Game of this genre includes Adventure, Zork and The Curse of Monkey
Island. AT is used to control characters that the user needs to interact
with to solve the puzzles and continue the adventure.

Strategy games let the user control lots of units, mostly military, to wage
war against any enemy. Games of this genre includes WarCraft, StarCraft
and Empire Earth. AT is normally used to control the detailed behavior
of human controlled units and as strategic opponents. AI could also play
an important role in controlling strategic partners and support characters,
but this is not yet common.

God games let the user take control of the creation of a city (Sim City), control
peoples lives (the Sims) or just play God (Black and White). The Al is
used to control the individual units in the game.

Team sports let the user be both the coach of a team and/or take control of
a single player at a time. For all somewhat big team sports, there are
most likely a computer game. Al is used for individual unit control, for
strategic opponents and sometimes even for commentators.

Individual sports let the user perform most of the existing individual sports.
Al is used as tactical enemies and sometimes as commentators.

The different genres are getting harder to separate from each other, but the
roles that the AT plays are still the same.

2.3.2 Roles

Tactical enemies need to make quick decisions in battle situations, no matter
whether they are military tanks or hockey players.

Partners are similar to tactical enemies, but where it is important for a tactical
enemy to operate autonomously, a partner should focus on frictionless
cooperation.

Support characters are usually very simple and the interface for communi-
cating with them primitive. There are many ways these could be further
developed and they have the potential to dramatically [improve] game-

play.

Story directors adapt the evolving story according to the action of the human
player. The intent is to make sure that the player does not miss any
interesting events; but that events happen when the player is around, or
happen where the player is located.

Strategic opponents have traditionally resorted to cheating, by having full
knowledge of the location and strength of the enemy and/or having more
and better units to command.

Units are often given high-level commands which the unit AI carries out. One
important issue is to know when to (temporarily) disobey a command.
When an enemy unit is spotted, it might be better to respond fire, if
being attacked, than to continue with the previous activity.

Commentators analyze and commentate the game situation as the game pro-
gresses.

2.4 Real-time strategy games and WarCraft III

A standard RTS game involves several players fighting each other to death using
armies. The players can be a part of a team or fight alone, and the players
can either be controlled by a human or by the computer. The part of the AI
that controls the computer-controlled player’s high-level actions are considered
a strategic opponent. The AI part that controls the detailed actions of every
single soldier, no matter if they belong to a computer or human controlled
player, are the unit AT.

Most RTS games include a few different game-types: melee, campaign and
custom. A melee game follows all the default rules and can be considered as
the standard game-type. Each player normally starts with a few workers and a
main building. The goal is to crush all enemies. A campaign can be more or
less modified from the melee game. It is normally more story based and often
contains quests which need to be fulfilled. It does also normally stretch over
several maps/levels/worlds. Those which do not fit into the previous categories
are considered as custom games. Their game-play can be vastly different from
each other. Some popular custom game types are tower defenses and arena
games.

Chapter 3

Experiments with the game
environment

This chapter presents how game worlds and AI agents can be created for War-
Craft III. It starts with looking at the tools available for creating game worlds
and AT agents, including both tools that come bundled with the game and other
tools created by users. Thereafter the Jass scripting language is introduced,
which is used for creating advanced functionality that is not directly supported
by the graphical tools. When all the concepts and tools have been introduced,
it is shown how agents can be implemented. It first presents how simple agents
which are run separated from the world and only communicate with it by a
formal percepts action interface, can be created. Thereafter the problem of cre-
ating an AT player for the a normal game of WarCraft is described. Finally it
is shown how other game types can be created using WarCraft III.

3.1 Introduction to the World Editor

Bundled with WarCraft III comes the World Editor (WE), a tool with which
maps can be created. The WE consists of several individual tools, including
tools to modify the terrain, create the (physical) laws of the world, import
custom made objects, customize objects, create campaigns that include several
maps, support for creating Al etc.

The Terrain Editor

The Terrain Editor is used for modifying the ground of environments
(maps). The ground can be set to different terrain types, like grass, plains
or dirt. The ground can also be set to different heights. This is also the
tool with which one can pre-place buildings, units and items in the world,
as well as define regions (for later use). The Terrain Editor is normally
used for creating the static parts of the world and sometimes for placing
units at their initial positions.

When the WE is started, it is actually the terrain editor that starts,
containing commands to access the other tools.

The Trigger Editor

The Trigger Editor is the tool for creating game dynamics (the laws of the
world). Triggers can be created graphically, built on the event- condition-
action concept. If an event that a trigger has registered on occurs, then
the triggers condition is checked. If the condition is true, then the action
is run. It is also possible to create triggers using textual programming in
the Jass language (see section about Jass). Most part of the static game
world which is set up using the terrain editor can also be done at game
startup using triggers.

The Sound Editor
The Sound Editor is used for all handling of sound.

The Object Editor

The Object Editor can be used to customize objects. Changing the prop-
erties of units, like strength, intelligence and speed, can be done here.

The Campaign Editor

The Campaign Editor is used for creating campaigns that stretch over
several maps.

The AI Editor

The AI Editor is a graphical tool that can be used to create a simple
AL The AI can then be exported to Jass and further modified textually.
Although the behavior of the AI created with the AI Editor is not very
flexible, it is a good way to prepare oneself for more advanced Al coding
in Jass.

The Object Manager

The Object Manager gives an overview of all objects in the currently
viewed map. It lists units, buildings, items, triggers etc.

The Import Manager

The Import Manager is the tool used for importing custom made objects
and files into a map. Things that can be imported this way include, custom
AT files, characters, etc. The most important use of the import editor while
creating an AT would be the ability to import AT scripts into maps. (Since
this is only available in the WarCraft III: The Frozen Throne Expansion,
one has to use third party tools, mpq readers, to get this functionality
when using WarCraft without the expansion.)

3.2 Introduction to the Jass scripting language
Jass is the language that the map files are actually saved in. Jass is very flexible

compared to the graphical tools included in the WE, but compared to other
programming languages it is rather simple.

10

3.2.1 Jass syntax

This section is a short introduction to the syntax of Jass. It focuses mainly on
things that are different in Jass compared to languages such as C, Java and Perl.
More details about the syntax of Jass can be found at http://jass.source.net.
Jass has the usual programming features like conditions, loops and functions.
All the action starts in the main function, although main is sometimes generated
by the tools.

main

Just like in a normal C program, all execution of Jass code is started in the
main function. The only time one, normally, has to write this oneself is in Al
scripts though (more on this later). Think of nothing as being equal to void.

function main takes nothing returns nothing
code
endfunction

set
Assignments in Jass are forced to use the set keyword.

set variable = value

loop

The support for loops are limited to the loop construct, which compared to while
and for loops is quite low-level, although flexible. It is possible to have as many
exit-conditions as needed.

loop
code
exitwhen conditioni
code
exitwhen condition2
code

endloop

if

If constructs follow the normal semantics. Observe the use of the elseif keyword,
when nesting ifs.

if condition then
code
endif

if condition then
code

else
code

endif

if conditionl then

11

code

elseif condition2
code

else
code

endif

call

All function calls that are not part of an expression must start with the call
keyword.

call someFunction(argl, arg2...)

function

Jass functions are defined the following way:

function takes integer a, string b returns nothing
code
endfunction

globals

All global variables needs to be placed in a globals block at the beginning of
the file. Inside the globals block, variables are declared the same way as local
variables are in functions. When creating map scripts (triggers), global variables
are created with a graphical interface.

globals
variable definitions
endglobals

local

function main takes nothing returns nothing
local integer number

local integer anotherNumber

local float decimalNumber = 3.14

local string someText

set number = 42

set anotherNumber = 6 * 9

set someText = "local variables are first in functions."
endfunction

3.2.2 Scripts

Map scripts are programs that are created using the World Editor, by either
graphical or textual programming. When starting a game, it is actually a map
script that is started. The map script then, sometimes, starts a number of AI
scripts, maximum one for each computer player maximum. There are some
things that can only be done in map scripts, and not in AI scripts. One such
thing is triggers, which are run when specific events happen during the game.

12

AT scripts are used for controlling individual computer players. One script
is run for each of the computer players (the same script can be used for several
players though). A minimal AT script (that does nothing Al-related) could look
like:

function main takes nothing returns nothing
call DisplayTextToPlayer(GetLocalPlayer(),0.0,0.0,"Hello, World!")
endfunction

3.2.3 The native libraries

There is a lot of native code in the game-engine which can be called using an in-
terface which is defined in the files: common.j, common.ai and Blizzard.j. These
files contain both functions implemented in Jass and declarations of functions
that are natively implemented.

common.j

Functions that are usable from both AT scripts and map scripts are declared in
common.j. There is an issue though with functions that returns strings. These
functions do not currently work properly when called from Al scripts. The same
goes for most functions that take code/functions as parameters. The functions
below are quite useful for debugging purposes.

constant native GetLocalPlayer takes nothing returns player
local Player p = GetLocalPlayer() // The user controlled player.

Can be used together with DisplayTextToPlayer (see below).

native DisplayTextToPlayer takes player toPlayer, real x, real y,
string message returns nothing}
call DisplayTextToPlayer(GetLocalPlayer(), 0.0, 0.0, "Hello local player!")

Displays a message to the specified player, the local user in this case.

native DisplayTimedTextToPlayer takes player toPlayer, real x, real
y, real duration, string message returns nothing
call DisplayTimedTextToPlayer(GetLocalPlayer(), 0.0, 0.0, 60, "60 secs!")

The same as DisplayTextToPlayer, but now we control how long the text
shall be shown.

common.ai

Functions that are only usable from Al scripts are declared in common.ai. Most
functions in this file are specifically aimed at creating an AI that plays game
similar to the standard melee game. But there are also a few which are flexible
enough to be useful on most kinds of maps. Below follows some functions usable
for gathering resources and constructing units and buildings.

native Sleep takes real seconds returns nothing
call Sleep(3.5) // Will make an AI script sleep 3.5 seconds.

The game engine will kill the AT script if it does to much work with no
sleeping.

13

native ClearHarvestAI takes nothing returns nothing
call ClearHarvestAI() // Orders the harvest AI to stop harvesting.

This is used with the two functions below to control how many workers
that harvest gold and lumber.

native HarvestGold takes integer town, integer peons returns nothing
call HarvestGold(0, 5)

The above call tells 5 workers to start harvesting gold in town 0, which is
the starting town. If this same call is made twice, without a ClearHarves-
tAI, 10 workers instead of 5 will harvest gold.

native HarvestWood takes integer town, integer peons returns nothing
call HarvestWood(0, 10)

Works exactly as HarvestGold, but for wood instead.

native SetProduce takes integer qty, integer id, integer town returns boolean
local boolean success = SetProduce(1, ’hpea’, 0)
call SetProduce(1, ’hpea’, 0) // Ignores the return value

Tries to produce one peasant at town 0 (the starting town).

native GetUnitCount takes integer unitid returns integer
set number(fPeasants = GetUnitCount(’hpea’)

Count the number of peasants the AI player has (executed in AT script).
This value includes those currently in training.

native GetUnitCountDone takes integer unitid returns integer
set numberOfPeasants = GetUnitCount(’hpea’)

Count the number of peasants the AI player has. This value does not
include those in training.

Blizzard.j

Blizzard.j contains files that are only usable in a map script. Many of these
functions wraps functions in common.j, with the purpose of making them more
compatible with the graphical programming interface. When converting triggers
done graphically to Jass, most functions in the code are from Blizzard.j. For a
programmer, the functions in common.j are often more intuitive though.

3.2.4 Limitations and solutions

Jass has a few built in limitations. These includes: not being able to pass arrays
as arguments or return values, no support for more advanced data types like
structs. One solution to these problems would be to use global arrays as memory
areas and use integers to index into these areas. Another way to avoid many
limitations are to use the game cache. This is an interface to store primitive
data types into some kind of natively implemented hash table, using strings as
keys.

14

3.2.5 TUseful tools and resources

There are not any official support from Blizzard for developing maps and AT for
WarCraft ITI. Communities and resources made by users are therefore important
sources of information.

Jass documentation The most complete jass documentation can be found at
http://jass.sourceforge.net/.

Jass and AI forum There are several community sites created for those in-
terested WarCraft III modding. A good place to start:
http://www.wc3campaigns.com/forumdisplay.php?f=65.

pjass Jass syntax checker, useful for checking AT scripts. Downloadable from
http://jass.sourceforge.net/.

AMATI Advanced Melee Al configurable AI that plays WarCraft III melee
games (see http://amai.wc3campaigns.com/).

ejass Jass Preprocessor. Useful for translating resource files into pure Jass
code. Included in AMAI download bundle.

3.3 Creating simple agents using WarCraft III:
The Wumpus world

As an introduction to the process of creating worlds and agents for the WarCraft
IT engine, the Wumpus world[10] has been implemented. It is shown how worlds
(maps) can be created with a combination of textual and graphical programming
and how triggers can be made to interact with AI scripts provided in external
files. The intent of this section is both to show that well known problems can
be implemented in WarCraft III as well as showing how it can be done.

3.3.1 Overview of the Wumpus world

The Wumpus world is divided in squares surrounded by walls. Each square
might contain one or several of the following: deadly pit, the Wumpus monster,
chest of gold, an adventurer searching for gold, stench from the Wumpus, breeze
from nearby pit. The interesting agent problem is the following: the adventurer
should search for the gold, pick it up, return to the entrance, located at (1,1),
and climb out with the gold. While doing this, he must avoid the Wumpus, who
kills anyone entering the same square as it (there is a stench on all four squares
that lie nearby the Wumpus) and avoid the pits (there is a breeze in the four
surrounding squares).

The agent possibly perceives the following of its surroundings: Stench from
nearby Wumpus, Breeze from nearby pit, Bump from walking into a wall, Glitter
from gold in the same square, Scream from a dying Wumpus. The agent can
in each turn do one of the following: turn 90 right, turn 90 left, walk forward,
grab gold, shoot arrow (he only has one), climb out (if he is at the entrance at
(1,1)).

Both the Wumpus and the gold start at a location unknown to the agent.
The agent starts at the entrance at (1,1). In each square there is a possibility

15

4
Stench Breeze
Sten
o O
’ i
v Stench Wumpus Stench Breeze
2
Stench Breeze
(11
Home
1
Agent
Adventurer Breeze
1 2 3 4

X

Figure 3.1: A 4x4 Wumpus world, with one adventurer, one Wumpus, two pits
and one chest of gold.

16

that there is a pit (the Wumpus is to big to fall into the pit though). The agent
dies if he enters a square with a pit or a live Wumpus. The Wumpus dies if the
agent manages to shoot it with his arrow.

3.3.2 Design

To minimize the trouble of switching the agent AI module, the agent is imple-
mented in a separate AI script file. The world feeds the agent with percepts
using the feature for sending AI commands from the map script to AT scripts.
This feature does not have any support for the agent in the AI script to send
back any information though. This is instead handled by the possibility to as-
sign an integer value to each unit. The agent AI assigns an integer value to
the unit representing the agent, which specifies which action it has chosen. The
world polls this value, updates the world state and sends new percepts to the
agent.

CommandAl(command, data)

WarCraft Map (Script) " Al scri pt
&, N
% >
&, (5\}0
% S/

WarCraft Unit

Figure 3.2: Design overview of Wumpus world.

The world, in this implementation, consists of 4x4 squares surrounded by a
wall, in the form of farms. Each square is the size of a farm (which in WarCraft
ITT world coordinates are 128x128). The farms are created programmatically
using the Trigger Editor. The location of the gold is represented by two global
integers created using the Variable Editor and is represented visually by an item
looking like a chest of gold. The location of the Wumpus is represented the same
way, but will visually be represented by a monster unit. The same goes for our
hero, the agent, but it will visually be a farmer. The pits are represented by a
4x4 map coded as a boolean array of 16 positions. The lack of visual pits forces
the visual representation of the pit to be a drake (the breeze coming from the
flapping of wings).

The agent Al is implemented in an Al script file. It tries to collect the gold,
return to entrance and climb out. The agent is controlled by player 2, which
can accessed with a call to Player(1) (In GUI the numbers are 1 based, but they
are 0 based in Jass).

This implementation encodes the percept sequence in the data field of the
CommandALI call. The percepts are coded as:

17

Stench = 1
Breeze = 2
Glitter = 4
Bump = 8
Scream = 16

After having retrieved and decoded the percepts the agent chooses one of the
actions, which are encoded as follows:

Walk = 1
Left = 2
Right = 3
Shoot = 4
Grab = 5
Climb = 6

Another way needs to be found to send the chosen action back (to the map/world
script), because the CommandAT only supports map to Al script communica-
tion. There are a few different ways to do this, one of them is to use the
possibility to store an integer associated with each unit, another is to use a
player’s amount of gold and lumber. This implementation uses the unit that
represent the agent, for communicating the chosen action back to the map script.
The map script then polls this value periodically and updates the world state
according to the chosen action. The integer associated with the unit can be
manipulated using calls to :

call SetUnitUserData(theUnit, thelInteger)
set thelnteger = GetUnitUserData(theUnit)

The question is then how to get hold of theUnit: the code below achieves
this (if the agent is represented by a night elf archer):

function getAgent takes nothing returns unit
local group grp = CreateGroup()
local unit u = null

call GroupEnumUnitsOfType(grp, "archer", null)
set u = First0fGroup(grp)
call DestroyGroup(grp)
return u
endfunction

3.3.3 Implementation
The Map Script

The map scrip uses two triggers, one for initializing the world at startup, and
another for periodically sending percepts and receiving actions from the agent.
The initializing trigger looks graphically ! like:

1When having been created using graphical programming.

18

Initialize
Events
Map initialization
Conditions
Actions
Custom script: call initialize()

Converting it to custom text using the Edit menu gives us the code:

function Trig_Initialize_Actions takes nothing returns nothing
call initialize()
endfunction

//
function InitTrig_Initialize takes nothing returns nothing

set gg_trg_Initialize = CreateTrigger()

call TriggerAddAction(gg_trg_Initialize,function Trig_Initialize_Actions)
endfunction

Since we only want the call to initialize() to be executed at startup, and
therefore only want the trigger Initialize to be executed once (at startup), the
code could have been written as follows:

function InitTrig_Initialize takes nothing returns nothing
call initialize()
endfunction

The second trigger is the one that runs periodically and are used to commu-
nicate with the AI script. This looks graphically like:

Communicate
Events
Time - Every 5.00 seconds of game time
Conditions
Actions
Custom script: call communicate()

Converting it to custom text yields:

function Trig_Communicate_Actions takes nothing returns nothing
call communicate()
endfunction

//
function InitTrig_Communicate takes nothing returns nothing

set gg_trg_Communicate = CreateTrigger()

call TriggerRegisterTimerEventPeriodic(gg_trg_Communicate, 5.00)

call TriggerAddAction(gg_trg_Communicate,function Trig_Communicate_Actions)

endfunction

The implementation of communicate() and initialize() is done in the
area for Custom Script Code, which is accessed by opening the Trigger Editor
and selecting the map name, on the top left, just below the button bar.

19

The above code requires the WarCraft III expansion (The Frozen Throne),
because the original WarCraft IIT does not support putting code in the custom
script area in the World Editor. See appendix B for a full implementation of the
map script (one that does not require the expansion). The benefit with having
the expansion is that it is easier to manage the code. Functions defined in one
trigger can not be used in another trigger, and functions used in several triggers
are therefore best placed in the custom script area.

The Al script

The AT script repeats reading percepts, choosing action and sending action, in
an eternal loop.

function main takes nothing returns nothing
local integer action
local integer percepts

loop
set percepts = readPercepts()
set action = chooseAction(percepts)
call sendAction(action)
endloop
endfunction

The percepts that are sent from the map script with a call to CommandAI
are read by readPercepts in the following way:

function readPercepts takes nothing returns integer
local integer cmd
local integer percepts

loop
exitwhen CommandsWaiting() > O
call Sleep(0.5)

endloop

set cmd = GetLastCommand() // Ignored for now...
set percepts = GetLastData()
call PopLastCommand ()

return percepts
endfunction

and the chosen action is sent back to the map script with this code:

function sendAction takes integer action returns boolean
local unit u = getAgent()

if u == null then
return false
else
call SetUnitUserData(u, action)
return true
endif
endfunction

20

The implementation of getAgent() in the above code has been described
earlier in this section. The only thing missing now is the implementation of
chooseAction(), which contains the implementation of the agent for the Wum-
pus world.

function chooseAction takes integer percepts returns integer
local integer action

call decodePercepts (percepts)

if isGlitter() then

set action = GRAB
elseif isBump() then

set action = TURN_LEFT
else

set action = WALK
endif

return action
endfunction

See appendix B for a complete implementation of a somewhat more advanced
agent.

3.4 Building an AI that plays WarCraft 111

This section will discuss how an Al agent that plays a normal game of WarCraft
can be built. The design is highly inspired by Bob Scott[11]. It will start with
a description of normal game of WarCraft III and the problems which both a
human and a computer player face. A discussion of how a computer player can
be split into different cooperating sections then follows, as well as individual
sections describing these parts more in detail and what problems they try to
solve. Finally it is discussed how these parts can be made to work together to
build a non-cheating AI player.

3.4.1 A standard game of WarCraft

In a normal (melee) game each player starts with one main building and a
few (5 for most races) workers and the goal is to destroy the buildings and
units of the opponents. To do this, one needs to quickly gather resources,
scout the map to see what the opponents are up to and finally build an army
with which one is able to beat the opponents. In short, one has to consider
the following activities: resource gathering, training of units, construction of
buildings, research of upgrades and abilities, scouting and combat, and finally
how all these things should be done in relation to each other in an overall
strategy.

3.4.2 The resource manager

The first task involved in creating an army is to quickly gather resources. Re-
sources are gathered by workers and are in the form of gold and wood (lumber).

21

Trees

Town Hall

O O O 0O

Workers

Figure 3.3: Human starting base at the start of a melee game.

The most basic task when gathering resources is to decide how many work-
ers should be given the task of gathering each of the resources. It would also
be good if the resource manager could estimate how quickly resources can be
gathered and detect when it needs more workers.

Trees

TownHall| O O

O =Worker

Figure 3.4: Human base with four workers mining gold and one worker chopping
wood.

Let us assume that the task of gathering resources is delegated to a resource
manager. What does this manager need to perceive of the world state and what
commands and questions would a more strategic part of the computer player
need to give the resource manager? A very simple, but still relatively useful,
resource managing agent could be built which takes no percepts, is updated

22

every few seconds and gives as output the order to put a handful of workers to
work in a mine, and the rest to chop wood. To illustrate what interaction with
the game-engine is needed to actually implement this behavior, it is implemented
in the following AI script.

function resourceManager takes nothing returns nothing
local integer goldPeasants = 4
local integer woodPeasants = GetUnitCountDone(’hpea’) - goldPeasants

call ClearHarvestAI() // Reset the built in harvest-manager and then

call HarvestGold(-1, goldPeasants) // assign miners

call HarvestWood(-1, woodPeasants) // and wood choppers.
endfunction

function main takes nothing returns nothing
call Sleep(1.0) // Sleep 1 second
call DisplayTextToPlayer(GetLocalPlayer(), 0.0, 0.0, "Script started")

loop // start eternal loop

call resourceManager()

call Sleep(1.0) // The engine requires us to sleep ones in a while.
endloop

call DisplayTextToPlayer(GetLocalPlayer(), 0.0, 0.0, "Script exiting")
endfunction

3.4.3 The unit manager

When the initial workers are sent off to gather resources, it is time to train more
workers to be able to increase the speed of the resource gathering even more.
Workers are trained at the main building, the building which every player start
with. This building can train one unit at a time, but can be given order to train
several units, one after another. Let us assume that resource gathering is the
only thing of interest right now, then it would seem reasonable to train as many
workers as possible and a first simple unit manager, responsible for the training
of units could be given the behavior of training as many workers as possible, as
quickly as possible. For each time the unit manager runs, it orders the main
building to start produce one worker (if the main building already is training a
worker, it will simple ignore the order).

function unitManager takes nothing returns nothing
call setProduce(1l, ’hpea’, -1) // Produce one peasant anywhere.
endfunction

This simple unit manager will help to increase the resource gathering a bit,
but is very limited. It doesn’t have any idea how to train something other than
worker (peasant), and it will try to do so even when there is no chance of success.
It would be a good idea if it knew which units it was able to produce and it
would also be good if it knew which units it would be a good idea to produce.
Before it can produce more than a handful of workers, farms need to be build
to produce food for the workers (as well as other units). There is also a need
for different buildings to be able to train other types of units.

23

3.4.4 The building manager

The building manager’s task is to construct all necessary buildings and to know
which buildings depend on other buildings already existing. The first problem
the building manager is faced with is to create farms so that more workers can
be built. Every farm provides food for 6 workers (and the main-building for 12).
After the simple unit manager has created 7 workers (in addition to the 5 from
the start), his attempts at building more workers will fail until either a worker
dies, or more farms are built. Two possible solutions to this problem would be
either that the unit manager tells the building manager that more farms are
needed or that the building manager realizes it by itself. The simpler solution
would be that the building manager just builds as many buildings as it thinks
is needed. This could be done the following way.

function buildingManager takes nothing returns nothing
local integer produced = 12 + 6 * GetUnitCount(’hhou’)
local integer used = 1 * GetUnitCount(’hpea’)
local integer foodSpace = produced - used

if foodSpace < 6 then
call DisplayTimedTextToPlayer(GetLocalPlayer(),0,0,"Building house")
call SetProduce(1,’hhou’,-1)
endif
endfunction

This simple solution together with the previous solutions for the resource and
unit managers would, if they where put together, produce a horde of workers,
of which a few would mine gold and the rest chop wood. The workers would
also obey the build orders from the building manager when needed (one worker
is needed to construct a building). Such a simple main function could look as
follows:

function main takes nothing returns nothing
loop
call resourceManager()
call unitManager()
call buildingManager ()
call Sleep(2.0) // Yield to other thread (or get killed by engine).
endloop
endfunction

These simple managers would together form a computer player that is rather
good on one thing only, collecting resources. It would be stupefied when the
nearby mine runs out of gold, the nearby trees are all chopped down, or an
enemy approaches. It is also obvious that these managers should be forced to
cooperate more actively with each other and that they need much more advanced
behavior. They are also not very similar to formal agents, because they don’t
take any percepts as input and do not produce any action, but they rather just
question and manipulates the world state on their own. But before considering
how these primitive managers can be extended, it would probably be a good
idea to consider what overall task are they really trying to solve. The overall
task could be to win the game by crushing the enemy, or it could be to be as
entertaining as possible to play against. But let us assume that its task is to
win against the opponent while as much as possible avoiding to cheat.

24

Trees

O TownHal| O O

Farm

O O — O =Worker
Worker building farm

Figure 3.5: Human base with workers gathering resources and one worker con-
structing a farm to make the training of more units possible.

3.4.5 Training an army

On of the more important sub-tasks of winning against the opponent is to pro-
duce an army which is powerful enough to beat the army of an opponent. The
tasks which are involved in creating this army are: resource gathering, unit
training and building construction, which have been briefly discussed, as well
as researching upgrades for different military units. To be able to gather the
resource needed to train a powerful enough army, there is often a need for ex-
pansion. There can only be a limited number of workers efficiently mining a
mine at the same time, and therefore it is advisable to expand to other mines
when the opportunity is available. This expansion needs support from military
units to secure the new area and to prevent monsters and opponents from at-
tacking the workers. It is not possible to first create a large army and then,
when complete, to start fighting the opponent. All available military units need
to protect workers and buildings as well as scout and aid expansion from the
minute they are completely trained. The code below implements an Al for a
computer player of the human race which created 12 workers and a horde of
foot soldiers. The soldier will not act unless they are provoked, though.

function resourceManager takes nothing returns nothing
local integer goldPeasants = 5
local integer peasantsDone = GetUnitCountDone (’hpea’)

if peasantsDone < 6 then
set goldPeasants = peasantsDone - 1
endif

call DisplayTextToPlayer(GetLocalPlayer(), 0.0, 0.0, "In manager")

call ClearHarvestAI()
call HarvestGold(0, goldPeasants)

25

Trees

O TownHal| O O

@)

O

Farm|Farm O
O)
O Barrack O Foot soldiers

O =Worker O
O = Foot soldier

Figure 3.6: A barrack is training foot soldiers.

call HarvestWood(O, GetUnitCountDone(’hpea’) - goldPeasants)
endfunction

function unitManager takes nothing returns nothing
if GetUnitCount(’hpea’) < 12 then
call SetProduce(1l, ’hpea’, -1) // Train one peasant anywhere possible
endif
call SetProduce(1, ’hfoo’, -1) // Train one foot soldier anywhere possible
endfunction

function buildingManager takes nothing returns nothing
local integer produced = 12 + 6 * GetUnitCount(’hhou’)
local integer used = 1 * GetUnitCount(’hpea’) + 2 * GetUnitCount (’hfoo’)
local integer foodSpace = produced - used
local integer barrack = GetUnitCount(’hbar’)

if foodSpace < 6 then
call DisplayTextToPlayer(GetLocalPlayer(),0.0,0.0,"Building house")
call SetProduce(1,’hhou’,-1)

endif

if barrack < 1 then
call SetProduce(l,’hbar’,-1)
endif
endfunction

function main takes nothing returns nothing

call Sleep(1.0) // Sleep 1 second
call DisplayTextToPlayer(GetLocalPlayer(), 0.0, 0.0, "Script started")

26

loop // start eternal loop
call resourceManager()
call unitManager()
call buildingManager ()

call Sleep(1.0) // Yield to other threads and processes.
endloop

call DisplayTextToPlayer(GetLocalPlayer(), 0.0, 0.0, "Script exiting")
endfunction

Involved in creating an effective army is also the need to have knowledge
about which units fight well together and which units are effective against the
units available to the enemy. To be able to reason about which buildings are
needed to create the wanted units, how much it will cost, and how long it will
take, very good knowledge about the technology tree is needed. The technology
tree decides which dependencies exist between different units and buildings. The
high-level reasoning would probably benefit from being separated out from the
more low-level tasks of constructing individual units and buildings. In this work
we put the strategical reasoning in the civilization manager.

3.4.6 The civilization manager

The civilization manager has the role of organizing all the other parts of the
computer player. It deals with the strategic reasoning and strategic decisions
and queries and gives orders to other parts of the system. The main function in
the previous code example can be seen as a very primitive civilization manager,
it just tells the other parts to do what they see fit. A handy feature during
development would be if the civilization manager could be controlled by the
user. As we have seen in the section “Creating Simple Agents with WarCraft
ITI", the only data that easily can be handed to an AI script is an integer.
This is not a huge problem though, because most things are actually coded
as integers, although integers can be written in four character representation
as well (Chpea’ is an integer). Which commands should then the civilization
manager accept? Considering the current functionality of the other managers
the following commands seems appropriate:

Harvest(gold, wood)
Train(N, unit)
Build(building)

There could be a question of what these commands really mean though. Is
the harvest command about how much gold and lumber the computer player
should have in total or how much more it should harvest, independent of the
total? Should we have N units in total or just produce N, not considering the
total at all? It is probably good to have both versions of these commands.

See appendix D for an implementation of a command parser that could be
extended for controlling a civilization manager or to communicate with any Al
script.

27

) Barracks Scout Tower Lumber Mill
Altar of Kings Farm

TownHall g Blacksmith

Arcane Vault
Arcane Tower

Guard Tower
- K g Workshoj i
Arcane Sanctum K P

g Cannon Tower v

- Gryphon Aviary

Depends on
—_—

P> Castle
Upgrades to

Figure 3.7: Overview of the technology tree for the human race. See
http://www.battle.net/war3/human/buildings.shtml for more details.

3.4.7 The technology tree

The technology tree contains all information about buildings, units, upgrades
and abilities, as well as how they relate to each other. There is unfortunately
no known way of getting all this information from the game during runtime.
Some of the information is available, but far from all. The needed information
has therefore to be coded into the source code of the computer opponent. This
might seem like terribly much work to do, but by using code-generating third
party tools and using files containing raw technology tree data provided by
others, it is quite manageable. The work of both the unit manager and the
building manager would be a lot easier if they could query some separate part
about dependencies and data, and not having to rely on having this information
hard-coded.

3.4.8 The combat manager

Now it is time to consider one of the hardest problems one is faced with when
creating a computer player for an RTS game, i.e., Commanding troops, outside
and inside a battle. Creating a fully operational and powerful non-cheating
combat manager is way out of scope of this study.? This study instead investi-
gates how the built-in AT controls its troops, and what alternatives there are to
the cheating it resides on regarding choosing attack targets.

These alternatives include the use of simulated computer vision, map-making
and path-finding. The normal way of the built-in AI includes asking the engine
for interesting attack targets, considering how dangerous they are and if the
opponent is protecting them. This way, the AI can, without having been in
contact with its enemy, know when the enemy is expanding, and directly initiate

2See AMAI[12] for an operational Al that tries to avoid cheating.

28

an attack on the expansion town. If the enemy has moved lots of troops to the
expansion, and has left the main base unprotected, the Al initiates an attack
on the main base instead. If the AI doesn’t find any suitable enemy base to
attack, it queries the engine for suitable creep camps to attack instead.

//
// Initiates an attack based on target priorities
//
function LaunchAttack takes nothing returns nothing
local unit target = null
local boolean setAlly = true

// Don’t launch any attack while town is threatened
if (TownThreatened()) then

call Sleep(2)

return
endif

// Target Priority \#1
if (target == null) then
set target = GetAllianceTarget()
1

if (target != null) then
set setAlly = false
endif
endif
[...]

// Target Priority \#3
if (target == null) then

set target = GetMegaTarget ()
endif

// Target Priority \#4
if (target == null) then
set target = GetEnemyExpansion()
endif
[...]
// Target Priority \#6
if (target == null) then
set target = GetCreepCamp(0, 9, false)
endif

[...]

// Attack the target and increment attack wave

if (target != null) then
call AttackTarget(target, setAlly)
call AttackWaveUpdate()

else
// If no target was found, sleep a bit before trying again
call Sleep(20)

endif

endfunction

Simulated computer vision could be used to improve the unit behavior.
Group leaders could use it to change the formation of the group, depending

29

on the presence of obstacles. It could also be used to decide on attack routes
and deciding where the enemy has its weak spots.

Map-making could be used to find location of strategical value, like choke
points, and to reason about satiable routes for attacks and retreats. High-level
path-finding could then be done in this map. See appendix A.

3.4.9 The research manager

The research manager is responsible for upgrading buildings and units. Some
buildings can be ordered to research upgrades, such as better weapons or ar-
mor for the military units. Although it is perfectly possible to play the game
without these upgrades, it is usually good to upgrade units that are used in
larger numbers. The research manager needs to consult the technology tree, to
know which upgrades are possible at the current time, and which upgrades that
have dependencies. Since these upgrades does not introduce any new kind of
problems, it will not be further discussed.

3.5 Putting it all together

When having sorted out the responsibilities of each of the managers, it is time
to consider how they should cooperate. In the code shown previously, they
have acted on their own, and only indirectly adapted to the actions of the
other managers. To make planning possible, one should make the managers
able to more directly communicate with each other, giving each other orders,
requests and queries. This is unfortunately beyond the scope of this thesis. A
thing to consider when deciding how the managers should cooperate is that the
economic managers (all except the combat manager) goal are to provide the
combat manager with troops to fight the enemy.

A listing of an AI that actually does some fighting is included in appendix C.
The combat manager is very primitive though. One soldier is selected as scout,
and wanders around the map. The rest of the soldiers follow the scout and
attack all enemies in sight. If one put together the mechanism for creating a
pathing map (see appendix A) and the mechanism for commanding troops, one
has the tools to make a much more advanced combat manager.

3.6 Building custom worlds

An RTS game is normally about resource gathering and army commanding.
The WarCraft World Editor can be used to create totally different maps for
the WarCraft III engine though. Maps can be created that are more similar to
adventure games or action games than real-time strategy games.

30

Chapter 4
Analysis

This project has primarily studied two worlds and how agents can be created
for these using the WarCraft III engine, namely the Wumpus world and the
standard, melee game world.

The Wumpus world is an example of a custom world, which took relatively
short time to create. The complexity is rather low, but it is a well-known
problem, described in [10]. The implemented agent is an example of a reactive
agent, which creates and makes primitive use of a map to mark where it is safe
to walk. The performance of the agent can be improved by introducing more
rules which makes better use of the agent-created map.

Even a simple world as the Wumpus world would allow non-trivial experi-
ments with map-making, exploration and localization, but the world would have
to be a lot bigger than the shown 4x4 world. Changing the size of the world
and the probability of pits in each square is luckily very easy, as the code that
generates the world take the size and the probability as parameters. It would
also be possible to generate the pits using other algorithms and changing the
shape of the world (by adding walls and making it non-rectangular). Other
changes that could be done to improve the complexity of the world is to make
it evolve over time, by e.g. letting the Wumpus move. The world can also be
extended to make multiple agents possible. The multiple agents can by made to
cooperate with each other. This means that Wumpus world implementation in
WarCraft ITI can be used to study exploration, map-making, planning (where
is uncharted territory) and multi-agent cooperation.

The standard (melee) maps that comes bundled with WarCraft III is possi-
ble to use for studying several kinds of multi-agent problems. Even a primitive
AT player as the one implemented in this study, illustrates several non-trivial
problems and possible ways to solve them. The problems are both of the eco-
nomic kind, gathering and spending resources to get an as good as possible army,
and navigational, controlling the army in battle and scouting the map to detect
strategic locations and to spy on the enemy. This means that there are non-
trivial problems, including planning, map-making, exploration and multi-agent
coordination, to solve.

Although WC3 can be used to study several interesting and complex prob-
lems, some limitations exists. Agents can be created both by using triggers, in
the event, condition, action format, and also by using separate AI script files
(both triggers and AT script files can take advantage of the relatively powerful

31

script language Jass). The triggers are not available in the AT script though,
which makes polling necessary. It is possible to create triggers that communi-
cate with the AI script, but the script still has to poll the communication. The
alternative is to avoid using Al script and only create triggers. This is possible
and usually done when creating special custom maps, but the normal way in
melee games, is that the computer players are controlled by AT scripts.

32

Chapter 5

Conclusions

It is possible to study many kinds of AI problems using the WarCraft III engine
and creating an Al that plays the standard game-type requires solving many of
these problems. It is also possible to create custom worlds to be able to study
even more problems. Problems that are possible to study using WarCraft II1
includes:

e Planning;

Multi-agent cooperation;

Map-making;

Exploration;

e Path-finding.
Possible future work (which deeper focuses on parts of this project):

e Library of group-behavior, suited for multi-robot experiments.

e 1000x1000 Wumpus world. Several communicating agents (and Wum-
puses?). Planning, map-making, exploration, etc.

e Symbolic reasoning about WC3 - an agent that would play better than a
human, but without cheating.

33

Bibliography

1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

John E. Laird, "Research in Human-level AI using Computer Games",
Communications of the ACM, January 2002.

John E. Laird and Michael van Lent, "Human-level AI’s Killer Applica-
tion: Interactive Computer Games", Proc. National Conf A.I., AAAT Press,
Menlo Park, Calif., 2000, pp.1171-1178.

Warren S. McCulloch and Walter Pitts, "A logical calculus of ideas imma-
nent in nervous activity", Bulletin of Mathematical Biophysics, 5:115-137,
1943.

Allen Newell and J. C. Shaw, "Programming the logic theory machine", In
proceedings of the 1957 Western Joint Computer Conference, pages 230-
240, IRE, 1957.

Allen Newell, J. C. Shaw and Herbert A. Simon, "Empirical explorations
with the logic theory machine", Proceedings of the Western Joint Computer
Conference, 15:218-239, 1957. Reprinted in [13].

Allen Newell and Herbert Simon, "GPS, a program that simulates human
thought", In Billing, H., editor, Lernende Automaten, pages 109-124, R.
Oldenburg, Munich, Germany, 1961. Reprinted in [13].

Herbert Gelernter, "Realization of a geometry-theorem proving machine",
In proceedings of an International Conference on Information Processing,
pages 273-282, Paris, UNESCO House, 1959.

John McCarthy, "Programs with common sence", In proceedings of the
Symposium on Mechanisation of Thought Processing, volume 1, pages 78-
84, London, Her Majesty’s Stationary Office, 1958.

Frank Rosenblatt, "On the convergence of reinforcement procedures in
simple neurons", Report VG-1196-G-4, Cornell Aeronautical Laboratory,
Ithaca, New York, 1960.

Stuart Russel and Peter Norvig, "Artificial Intelligence: A Modern Ap-
proach", 1995.

Bob Scott, "Arhitecting an RTS AI", AT Game Programming Wisdom,
2002.

"Advanced Melee AI", http://amai.wc3campaigns.com/.

34

[13] Edited by Edward A. Feigenbaum and Julian Feldman, "Computers and
Thought", 1963.

35

Appendix A

Vision and map-making

Vision and map-making are problems that can be studied using the WarCraft
IIT game-engine. There are a few limitations though. When trying to decide
which objects are inside a units view, there are several kinds of objects that
can’t be detected. Things that can be detected include units, buildings, items
and certain other things, destructables, including trees. Things that can’t be
detected include cliff-walls and certain structures and destructables can only be
detected from map scripts, not from AT scripts. To implement vision usable for
navigation therefore seems a bit troublesome if one doesn’t put some restriction
on how the world is created.

If one is only concerned with whether the terrain is walkable/pathable or
not, there is a solution to the problem though: scanning the map by instantly
moving around an invisible ghost unit. The code used by AMAI[12] is as follows.

function SheepScan takes nothing returns nothing
local real x = 0
local real y = path_bottom + path_dy / 2
local integer i = 0
local player neutralPlayer = Player (PLAYER_NEUTRAL_PASSIVE)
local unit u = CreateUnit(neutralPlayer, ’odoc’, 0, 0, 0)
local real ux = GetUnitX(u)
local real uy = GetUnitY(u)
local real ad = path_dx/8
local integer j = 0

call ShowUnit(u, false)
call UnitAddAbility(u, ’Aeye’)

loop
exitwhen y > path_top

set x = path_left + path_dx / 2
loop
exitwhen x > path_right

set path_fieldloc[i] = Location(x,y)
call SetUnitPositionLoc(u, path_fieldloc[i])

36

if (ux > xtad) or (ux < x-ad) or (uy > y+ad) or (uy < y-ad) then
set path_passable[i] = false
elseif IssuePointOrder(u, "evileye", x, y) then
call SetUnitState(u, UNIT_STATE_MANA, 150)
set path_passable[i] = true
else
set path_passable[i] = false
endif

set x = x + path_dx
set i =1i+1
endloop

set y = y + path_dy
endloop

call RemoveUnit (u)
endfunction

37

Appendix B

The Wumpus world

This appendix includes code for the Wumpus world discussed in section 3.3.

B.1 A complete agent Al script

globals
boolean stench = false
boolean glitter = false
boolean bump = false
boolean draft = false
boolean scream = false
integer WALK = 1
integer LEFT = 2
integer RIGHT = 3
integer SHOOT = 4
integer GRAB = 5
integer CLIMB = 6
boolean exit = false

integer x =
integer y =
integer dir

n = =

integer array dx
integer array dy
integer array aleft
integer array aright

boolean gold = false

integer arrows = 1

boolean wumpusAlive = true
endglobals

function mod2 takes integer a returns integer
return a - (a/ 2) * 2

endfunction

function decode takes integer perceptSeq returns nothing

38

set stench = mod2(perceptSeq) == 1
set perceptSeq = perceptSeq / 2
set glitter = mod2(perceptSeq) ==
set perceptSeq = perceptSeq / 2
set bump = mod2(perceptSeq) ==

set perceptSeq = perceptSeq / 2
set draft = mod2(perceptSeq) ==
set perceptSeq = perceptSeq / 2
set scream = mod2(perceptSeq) ==

endfunction

function print takes string mess returns nothing
call DisplayTimedTextToPlayer (GetLocalPlayer(), 0, 0, 60, mess)
endfunction

function printPercepts takes nothing returns nothing

local string p = "("
if stench then

set p = p + "stench "
endif
if draft then

set p = p + "breeze "
endif
if glitter then

set p = p + "glitter "
endif
if bump then

set p = p + "bump "
endif

if scream then
set p = p + "scream "

endif
set P=P + ||)n

call print(p)
endfunction

function percepts takes nothing returns nothing
local integer cmd
local integer data
// call print("percepts: entering")
loop
exitwhen exit
// call print("percepts: looping")
exitwhen CommandsWaiting() > O
call Sleep(0.25)
endloop
// call print("percepts: recieving")
set cmd = GetLastCommand()
if cmd < O then
set exit = true

39

endif
set data = GetLastData()
call PopLastCommand ()

// call print("percepts: decode")
call decode(data)

// call print("percepts: exiting")

endfunction

function init takes nothing returns nothing
set dx[0] =1
set dy[0] =0
set dx[1] = 0
set dy[1] = 1
set dx[2] = -1
set dy[2] = 0
set dx[3] =0
set dyl[3] = -1
set aleft[0] =
set aleft[1]
set aleft[2]
set aleft[3] =
set aright[0]
set aright[1]
set aright[2]
set aright[3]

endfunction

1
2
3
0

1]
N = O W

function walk takes nothing returns nothing
set x = x + dx[dir]
set y = y + dyl[dir]

endfunction

function bumped takes nothing returns nothing
set x = x - dx[dir]
set y = y - dyldir]

endfunction

function right takes nothing returns nothing
set dir = aright[dir]
endfunction

function left takes nothing returns nothing
set dir = aleft[dir]
endfunction

function isHome takes nothing returns boolean
return x == 1 and y ==
endfunction

function hasGold takes nothing returns boolean

return gold
endfunction

40

function climbOut takes nothing returns boolean
return isHome() and hasGold()
endfunction

function getAction takes nothing returns integer
local integer action = WALK

if scream then
set wumpusAlive = false
endif

if climbOut() then
set action = CLIMB
elseif glitter then
set action = GRAB
set gold = true
elseif bump then
call bumped()
set action = RIGHT
call right()
elseif stench and arrows > O then
set action = SHOOT
set arrows = arrows - 1
else
set action = WALK
call walk()
endif
return action
endfunction

function printAction takes integer action returns nothing
if action == WALK then
call print(".ai: walk")
elseif action == LEFT then
call print(".ai: left")
elseif action == RIGHT then
call print(".ai: right")
elseif action == SHOOT then
call print(".ai: shoot")
elseif action == GRAB then
call print(".ai: grab")
elseif action == CLIMB then
call print(".ai: climb")
else
call print(".ai: strange action")
endif

endfunction

function getAgent takes nothing returns unit
local group grp = CreateGroup()
local unit u = null
call GroupEnumUnitsOfType(grp, "peasant", null)
set u = First0fGroup(grp)
call DestroyGroup(grp)

41

return u
endfunction

function sendAction takes integer action returns nothing
local unit u = getAgent()
if u == null then
call print("Failure in sendAction")
else
call SetUnitUserData(u, action)
endif

endfunction

function mainlLoop takes nothing returns nothing
local integer action
loop
exitwhen exit
call print("Waiting for percepts")
call percepts()
call printPercepts()
set action = getAction()
call printAction(action)
call sendAction(action)
endloop
endfunction

function main takes nothing returns nothing
call Sleep(1)
call init()

// call decode(31)

// call printPercepts()

call mainLoop()
call print("AI script shutting down")

endfunction

B.2 The map script

Please see http://ai.cs.1th.se for the code.

42

Appendix C

Fighting melee Al

globals
unit scoutUnit = null
real scoutX = 0
real scoutY = 0
real scoutHealth

endglobals

//

// resourceManager

//

// Collects resources by commanding peasants
//

function resourceManager takes nothing returns nothing
local integer goldPeasants = 5
local integer peasantsDone = GetUnitCountDone(’hpea’)
if peasantsDone < 6 then
set goldPeasants = peasantsDone - 1
endif

call ClearHarvestAI() // First reset the built in harvest-manager and
call HarvestGold(O, goldPeasants) // then tell it to have
// goldPeasants workers harvest gold
call HarvestWood(O, GetUnitCountDone(’hpea’) - goldPeasants)
// and the rest to harvest wood.

endfunction

//

// unitManager
//

// Trains units
//

function unitManager takes nothing returns nothing
if GetUnitCount(’hpea’) < 12 then
call SetProduce(1, ’hpea’, -1) // Train one peasant anywhere possible
endif
if GetUnitCount(’hfoo’) < 15 then
call SetProduce(1l, ’hfoo’, -1) // Train one foot soldier anywhere possible
endif
endfunction

43

//
// buildingManager
//
// Constructs buildings
//
function buildingManager takes nothing returns nothing

local integer produced = 12 + 6 * GetUnitCount(’hhou’)

local integer used = 1 * GetUnitCount(’hpea’) + 2 * GetUnitCount(’hfoo’)

local integer foodSpace = produced - used

local integer barrack = GetUnitCount(’hbar’)

if foodSpace < 6 then
// call DisplayTextToPlayer(GetLocalPlayer(),0.0,0.0,"Building house")

call SetProduce(1,’hhou’,-1)
endif
if barrack < 2 then
call SetProduce(l,’hbar’,-1)

endif
endfunction
//
// allocateScout
//
// Selects one unit as a scout, which will lead the troops.
//
function allocateScout takes nothing returns nothing

local group grp = CreateGroup()

call GroupEnumUnitsOfType(grp, "footman", null)

set scoutUnit = First0fGroup(grp)

call RemoveGuardPosition(scoutUnit)

set scoutX = GetUnitX(scoutUnit)

set scoutY = GetUnitY(scoutUnit)

set scoutHealth = GetUnitState(scoutUnit, UNIT_STATE_LIFE)
endfunction

//

// init

//

// Initializes script...

//

function init takes nothing returns nothing
endfunction

//

// walk

//

// 0Orders the unit u to move distance forward.
//

function walk takes unit u, real distance returns nothing
local real dir = GetUnitFacing(u) * 3.14 / 180
local real x = GetUnitX(u) + distance * Cos{(dir)
local real y = GetUnitY(u) + distance * Sin(dir)
call IssuePointOrder(u, "move", x, y)

endfunction
//

// walk

//

// O0Orders the unit u to move distance in direction.

44

//
function walkDir takes unit u, real distance, real direction returns nothing
local real dir = direction * 3.14 / 180
local real x = GetUnitX(u) + distance * Cos(dir)
local real y = GetUnitY(u) + distance * Sin(dir)
call IssuePointOrder(u, "move", x, y)

endfunction

//

// helpScout

//

// Sends units that follows in the scouts tracks
//

function helpScout takes nothing returns nothing
local group grp = CreateGroup()
local unit u
call GroupEnumUnits0fType(grp, "footman", null)
set u = First0fGroup(grp)
loop
exitwhen u == null
if u != scoutUnit then
call IssuePointOrder(u, "attack", scoutX, scoutY)
endif
call GroupRemoveUnit(grp, u)
set u = First0fGroup(grp)
endloop
call DestroyGroup(grp)
endfunction
1/
// scout
//
// Controls the scout that wanders randomly on map.
//
function scout takes nothing returns nothing
local real R = 1024

local real x = GetUnitX(scoutUnit)
local real y = GetUnitY(scoutUnit)
if scoutX == x and scoutY == y then

// call DisplayTextToPlayer(GetLocalPlayer(),0.0,0.0,"== Bump ==")
call walkDir(scoutUnit, R, GetUnitFacing(scoutUnit) + GetRandomReal(90, 270))
else
set scoutX = x
set scoutY =y
call walk(scoutUnit, R)

endif
endfunction
/7
// combatManager
//
// Controls the army by having them follow the scout...
//

function combatManager takes nothing returns nothing
// call DisplayTextToPlayer(GetLocalPlayer(), 0.0, 0.0, "In combatManager")
if scoutUnit == null or not UnitAlive(scoutUnit) then
call allocateScout()

45

endif

if GetUnitCountDone(’hfoo’) > 4 and scoutUnit '!'= null then
call scout()
call helpScout()

endif
endfunction
//
// main
//
// Main function that runs the AI.
//

function main takes nothing returns nothing
call Sleep(1.0) // Sleep 1 second
call DisplayTextToPlayer(GetLocalPlayer(), 0.0, 0.0, "Script started")
call init()
loop // start eternal loop
// call DisplayTextToPlayer(GetLocalPlayer(), 0.0, 0.0, "in loop")
call resourceManager()
call unitManager()
call buildingManager ()
call combatManager ()
call Sleep(5.0) //If we do not sleep sometimes, the engine will kill us.
endloop
call DisplayTextToPlayer(GetLocalPlayer(), 0.0, 0.0, "Script exiting")
endfunction

46

Appendix D

Command parser

This section will show the mechanisms used for implementing a command parser,
useful for communicating with AT scripts and for debugging. There are two different
ways to implement a command parser. It can be set up so that different triggers get
called depending on the entered chat string, or the same trigger can be called for every
entered string. A simple parser with few commands that take no arguments can be set
up quick and easy using one trigger per command and using the graphical interface.
If more advanced parsing is needed, it is easier, and more flexible, to use the textual
programming and having one trigger take care of all entered text. There are ofcourse
ways to combine these approaches.

To get hold of the text entered by the user, a trigger that reacts on the Player N
types a chat message event. A graphical version of such a trigger could look like this:

Parser
Events
Player - Player 1 (Red) types a chat message
containing <Empty String> as A substring
Conditions
Actions
Game - Display to (All players) the text: (Unknown command: + (Entered chat string))

Translating this to custom text, Jass code, yields:
function Trig_Parser_Actions takes nothing returns nothing

call DisplayTextToForce(GetPlayersAll(), ("Unknown command: " + GetEventPlayerChatString()))
endfunction

1/

function InitTrig_Parser takes nothing returns nothing
set gg_trg_Parser = CreateTrigger()
call TriggerRegisterPlayerChatEvent(gg_trg_Parser, Player(0), "", false)
call TriggerAddAction(gg_trg_Parser, function Trig_Parser_Actions)
endfunction

The entered chat string can be substringed and compared to detect commands
with parameters. A command that exits the game in two different ways, depending
on if a certain parameter is added to the quit command can be implemented textually
like the following:

47

function Trig_Parser_Actions takes nothing returns nothing
local string s = GetEventPlayerChatString()
if "quit" == SubStringBJ(s, 1, 4) then
if "victory" == SubStringBJ(s, 6, 12) then
call CustomVictoryBJ(Player(0), true, false)
else
call CustomDefeatBJ(Player(0), "Defeated!")
endif
else
call DisplayTextToForce(GetPlayersAll(), "Unknown command: " + s)
endif
endfunction
/7
function InitTrig_Parser takes nothing returns nothing
set gg_trg Parser = CreateTrigger()
call TriggerRegisterPlayerChatEvent(gg_trg_Parser, Player(0), "", false)
call TriggerAddAction(gg_trg_parser, function Trig Parser_Actions)
endfunction

48

Appendix E

Dictionary

building Constructed by workers. Treated as a unit, by the game engine.

campaign Game style which normally stretches over several maps. The game-play
on the maps of a campaign can different for each map and can be more or less
similar to a melee game.

map A game level or specific game world.

melee Game style where every player starts with a main building and a few workers.
The goal is to eliminate all opponents by creating and using military units.

real-time strategy (RTS) game Computer strategy game where events takes place
in real-time (as opposed to turn-based). An RTS game normally includes re-
source gathering, training of military units and warfare.

research Makes new abilities possible or upgrades special statistics of units or build-
ings.

RTS game see real-time strategy game.

unit Human or computer controlled entity. There exist military units, workers, and
transports. The game engine also treats buildings as units.

49

