
On a Semantics for Active Logic

Johan Hovold

Examensarbete för 20 p, Institutionen för Datavetenskap,
Naturvetenskapliga fakulteten, Lunds universitet

Thesis for a diploma in computer science, 20 credit points,
Department of Computer Science, Faculty of Science, Lund University



Om en semantik för aktiv logik

Sammanfattning

Detta arbete behandlar modellering av realistiska agenters resone-
rande. Speciellt analyseras, kritiseras och utökas en semantik för aktiv
logik som är en logisk formalism avsedd att kunna hantera tidens g̊ang
s̊aväl som inkonsistens. Baserat p̊a vad som kallas perceptionsfunk-
tioner definieras uppfattade temporala strukturer som möjliggör för
inkonsistenta kunskapsbaser att ha modeller. Genom dessa strukturer
konstrueras en konsekvensrelation kallad aktiv konsekvens. Aktiv kon-
sekvens troddes tidigare sammanfalla med klassisk logisk konsekvens
när den begränsades till en bestämd delmängd av spr̊aket och konsi-
stenta premisser. Vi visar att denna identitet inte h̊aller p̊a grund av
problemet med Σ-oavgörbarhet – att det finns satser för vilka man in-
te kan avgöra huruvida de följer aktivt fr̊an en given mängd Σ – och
föresl̊ar en förfinad definition av aktiv konsekvens som lösning. V̊art
viktigaste resultat är emellertid att vi visar att aktiv konsekvens är
explosiv, det vill säga att vad som helst följer aktivt fr̊an en direkt
motsägelse. Därför, och i motsatts till vad som tidigare har hävdats,
är en logik baserad p̊a denna konsekvensrelation inte parakonsistent.

On a Semantics for Active Logic

Abstract

The object of study for this thesis is the problem of modelling the
reasoning of real-world agents. In particular, a semantics for active
logic, which is a logical formalism conceived to be able to cope with
the passing of time as well as inconsistency, is analysed, criticised
and refined. Based on what is called perception functions, a notion
of perceived temporal structure is defined, which allows inconsistent
knowledge bases to have models. Using such structures, a consequence
relation called active consequence is constructed. Active consequence
was previously believed to coincide with classical logical consequence
when restricted to a certain subset of the language and consistent
premises. We show that this identity does not hold due to the prob-
lem of Σ-undeterminism – that there are sentences for which it cannot
be determined whether they follow actively from a given set Σ – and
suggest a refined definition of active consequence as a solution. Our
main result, however, is that we show that active consequence is explo-
sive, that is, that anything follows actively from a direct contradiction.
Consequently, and contrary to what has been previously claimed, a
logic based on this consequence relation is not paraconsistent.
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1 Introduction

The object of study for this thesis is the problem of modelling the reason-
ing of real-world agents. Real agents have some important characteristics
that need to be taken into account when trying to formalise their reasoning.
First, their reasoning takes place in time, and time passes as their reason-
ing proceeds. Secondly, real-world agents are fallible and must be able to
reconsider previous beliefs and handle contradictions, which will inevitably
arise from time to another. Classical logical formalisms are thus not, at least
at first sight, particularly well-suited for modelling the ever-changing set of
beliefs of such an agent. In the classical paradigm time is not the primary
concern, and classical concepts such as logical consequence that lets us con-
clude that, for instance, ψ follows from ϕ gives us no information about how
long it will take (for a specific agent) to deduce ψ given ϕ. For our purposes,
knowing that something follows given enough time to deliberate is not suffi-
cient. Furthermore, real-world agents are necessarily resource bounded, and
at every point in time, only a finite subset of the consequences of an agent’s
beliefs are known to the agent. This set of explicit beliefs is contrasted with
the the agent’s implicit beliefs, which is the set of conclusions that follow
logically from the explicit beliefs (and which may eventually become explicit
given enough time to deliberate) [Lev84]. Classical logical formalisms do not
make this distinction and only deal with what we have called implicit be-
liefs. These formalisms can thus only be used to model idealised agents that
always believe every consequence of their current beliefs (i.e. their implicit
and explicit beliefs coincide).

Inconsistency is also a problem with classical logic since anything fol-
lows from contradictory premises, ex contradictione quodlibet. There are,
however, formalisms that challenge this logical principle. Let |= be a con-
sequence relation that is either proof theoretically or semantically defined.
Then |= is said to be explosive if and only if for every formula ϕ and ψ,
{ϕ,¬ϕ} |= ψ. Classical logic, intuitionistic logic, and most other standard
logics are explosive. A logic with a consequence relation that is not explosive
is said to be paraconsistent [PT04]. An agent reasoning in the real world
would obviously benefit from using a logic that is paraconsistent – the agent
should try to resolve inconsistencies rather than happily infer anything from
them.

Active logic is a formalism conceived to be able to cope with the pass-
ing of time as well as inconsistency [EDP90, GKP00, AGGP05a]. Its first
incarnation, step logic, was developed as a tool that could be used to reason
about approaching deadlines. Active logic is a logical formalism but also
a reasoning mechanism for an agent1. In particular, it is (primarily) an
object-level formalism rather than a metalevel formalism about reasoning

1For a discussion of this widened notion of “logic” see [GW01].
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agents (although it includes some metalevel elements from epistemic logic
such as the ability for the agent to reason about its own beliefs).

Reasoning in active logic proceeds in a step-wise manner using rules like

t :

t+ 1 : now(t+ 1)

and active versions of classical rules such as modus ponens:

t : ϕ,ϕ → ψ

t+ 1 : ψ
.

The rules are applied to the agent’s knowledge base, which is a set of for-
mulae representing the agent’s current beliefs. A belief ϕ at time t is not
necessarily believed at the next time step. Rather, beliefs are “inherited”
using rules such as

t : ϕ

t+ 1 : ϕ

[condition: ¬ϕ is not believed at time t and ϕ 6= now(t)],

which allow for a kind of default reasoning. Note, that active logic is by its
nature non-monotonic (e.g. now(t) is retracted at time t+ 1 for every t).

The step-wise control of the deductive process allows inference rules to
refer to previous steps in the reasoning history. In particular, this allows the
agent to reason about its own past, thereby making it possible, for exam-
ple, to reason about the causes of arisen contradictions as well as possible
remedial actions to take in response to them. Current implementations of
active logic use rules like

t : ϕ,¬ϕ

t+ 1 : contra(pϕq, p¬ϕq, t)
,

whereby direct contradictions (ϕ and ¬ϕ) can be spotted and some reasoning
process to handle them initiated.

Now, what we have is a proof-theoretical (syntactical) characterisation
of active logic, and we would like to have a model-theoretical (semantical)
characterisation as well. In particular, we are in this thesis concerned with
a model-theoretical characterisation at the object level – of modelling the
evolving set of explicit beliefs of a reasoning agent (expressed in the agent’s
own language).

“Semantics” is probably best translated with “study of meaning”, and
the term itself is a derivation from the Greek word sema, which means
“sign” [vW65]. The (philosophical) semantics concerns concepts such as
meaning, truth, and soundness. In particular, semantics involve connecting
formal languages and mathematical structures through the notion of truth.
Following Tarski we shall say that a sentence ϕ is true in a structure A, or
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that A is a model of ϕ, if it is actually the case that ϕ holds in A. (The
sentence “Snow is white” is true if snow is actually white.) [Man99]

We will later define a formal language of active logic and mathematical
structures that (hopefully) will be appropriate for modelling reasoning that
uses this formal language. We will also define formally when a sentence of
this language holds in such a structure. In particular, we will – in contrast
to classical logic – define a notion of structure that allows us to model
inconsistencies. This way, we shall try to define a semantical concept of
consequence that does not suffer from the explosiveness of classical logical
consequence. (The explosiveness of the classical consequence relation follows
from the fact that inconsistent sets of sentences have no classical models.)

There are many related theories on resource-bounded reasoning that
give semantical accounts of reasoning agents at the metalevel (e.g. [GKP00,
Ågo04]). That is, they model a theory (expressed in a metalanguage) that
describes an agent that reasons using some (object-level) formalism such
as active logic. Metalevel modelling can be done using classical logical for-
malisms since even an incomplete and inconsistent object-level theory has a
corresponding complete and consistent theory at the metalevel. For exam-
ple, even if an agent believes in a contradiction, say ϕ and ¬ϕ, the metalevel
propositions “the agent believes pϕq” and “the agent believes p¬ϕq” do not
constitute a contradiction (see also Section 2.4). When modelling at the
object level on the other hand, one cannot resort to classical logic because
inconsistent theories have no models in classical formalisms. We are not
aware of any theory besides the one recently published in [AGGP05a] that
tries to model the reasoning of real-world agents at the object level.

The step-model semantics that accompanied the original presentation
of step logic (e.g. in [EDP90]) does not model at the object level either
in that it does not model individual belief sets. The only theory (again,
that we are aware of) that models individual belief sets of real-world agents
and has a (semantical) consequence relation between such sets is the one in
[AGGP05a]. Step-model semantics models the complete agent theory, that
is, the infinite sequence of belief sets of a reasoning agent (expressed in the
agent language, though) and lacks, and cannot have, a consequence relation
between single belief sets. In this sense, it is also a metalevel semantics.
Furthermore, the step model semantics is restricted to infinite sequences of
consistent knowledge bases, and thus cannot be used to model real-world
agents which may have inconsistent belief sets at times. In particular, step-
model semantics does not allow the agent, at a particular time, to have a
model of its potentially inconsistent beliefs.

Since active logic allows the agents to reason about their own beliefs
(i.e. to do some metareasoning), the agents may have metabeliefs, and these
require metalevel modelling. This part of the semantics thus may be influ-
enced by, or use elements from, theories on metalevel modelling of reasoning
agents. Where step models depend on the whole sequence of belief sets of
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an agent (i.e. also on future beliefs), the perceived temporal structures of
the new semantics “only” depend on what has been (and what is) believed.
That is, also the new semantics refers to relations outside the current belief
set, namely to the actual reasoning history of the agent. In this sense, also
the new theory is a metalevel theory (if only in part).

The focus of this thesis is on the semantics for active logic proposed
in [AGGP05a]. This first serious attempt of modelling an agent’s beliefs at
the object level is analysed and refined, and some useful metatheorems are
proved. The semantics is found to have several flaws – the gravest being
the failure to deliver a consequence relation which would make the logic
paraconsistent.

The rest of this thesis is organised as follows. Section 2 presents (a re-
formulation of) the semantics for active logic from [AGGP05a]. Section 3
focuses on problems with the semantics and suggests some refinements of
the theory. Several metatheorems are also proved here. In Section 4 we
show that the proposed consequence relation is explosive. Our results are
summarised in Section 5, where some points for future work are also out-
lined.
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2 Perception Functions and Active Consequence

In [AGGP05a] a semantics for active logic based on what the authors call
perception functions is proposed. In this first sketch of the semantics, a
heavily weakened active logic is considered. Most notably the language is
based on propositional logic rather than full first-order logic. Furthermore,
a useful distinction between world and agent language is introduced, allow-
ing further restrictions on the logic. The semantics include semantic-like
concepts such as active consequence and active soundness, as well as some
theorems regarding their relations to their classical counterparts.

The following presentation of the logic and its semantics follows the one
given in [AGGP05a]. With the intention to increase stringency and under-
standability, the original theory has been reformulated and some remarks
and examples have been added. Several errors in the original paper have
also been corrected.2

While this thesis was being finished, an extended article about the se-
mantics has been submitted for publishing [AGGP05b]. We had already
pointed out some of the errors and ambiguities found in the original paper
to the authors, and some of our suggestions have been acknowledged in the
new article.3 Otherwise, the theory is essentially the same (although per-
ception functions are called apperception functions), and several problems
still remain.

Our analysis of the semantics is postponed to Section 3.

2.1 Starting Assumptions

The logic is presented under following assumptions

• There is only one agent a.

• The agent starts its life at time t = 0 and runs indefinitely.

• The world is stationary for t ≥ 0. Thus, changes occur only in the
beliefs of the agent.

2In particular, the definitions of the language La and its semantics have been heavily
modified, the language L has been more precisely defined and a definition of L-satisfaction
has been added. The definition of perception functions has also been heavily modified.
The definitions of active consequence and of the timing rule have been changed slightly.
The proof of Theorem 2.1 has been rewritten and corrected, and the proof of Theorem 2.2
has been corrected and extended so that the theorem is now (fully) proved. The proof of
Theorem 2.4 has been rewritten. The “theorem” concerning the active unsoundness of the
explosive rule has been disproved. Examples 2.1, 2.2 and 2.3 are new, and examples 2.4
and 2.7 have been rewritten.

3The definitions of the language L, La-structure, perception function and active conse-
quence (via Gpert

) have been modified. The proof of Theorem 2.1 has also been corrected.
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However, we will in our presentation in a sense relax the assumption of
one sole agent. In particular, we shall interpret it as meaning that we only
model one agent at a time and that agents can only reason about their own
beliefs (and not about the beliefs of other agents). We will in Section 3.4
argue that this interpretation is in conformity with the original theory.

2.2 The Language L

The language used is a sorted first-order language L defined in two parts:
the propositional language Lw used to express facts about the world and
the first-order language La used to express facts about the agent and the
agent’s beliefs. Let SnL denote the set of all sentences of a language L, that
is, the set of all closed formulae of L. (Note that for a language L without
variables, SnL coincides with the set of formulae of L.) Let N denote the
set of natural numbers (non-negative integers).

Definition 2.1 (Lw). Let Lw be the propositional language consisting of
the following symbols:

• a set S = {Si | i ∈ N} of sentence symbols (propositional or sentential
variables),

• the propositional connectives ¬ and →, and

• parentheses ( and ).

The formulae of Lw are defined in the standard way: Every sentence symbol
is an atomic formula, and if ϕ and ψ are formulae, then so are ¬ϕ and
(ϕ→ ψ).

Note that we will allow ourselves to drop the parentheses from formulae
when there is no risk for ambiguity.

Definition 2.2 (La). Consider the sequence 〈Ln〉n∈N of restricted, sorted
first-order languages, where each Ln has three sorts, S1, S2 and S3, but no
variables or quantifiers. The sequence is defined inductively as follows.4

1. The language L0 consists of the following symbols:

• a set C = {ci | i ∈ N} of constant symbols of sort S2,

• a set D = {dϕ | ϕ ∈ SnLw} of constant symbols of sort S1,

• a set E0 = {eϕ | ϕ ∈ SnLw} of constant symbols of sort S3,

• the unary predicate symbol now of sort S2,

• the ternary predicate symbol contra of sort (S1 × S1 × S2),

4This definition is inspired by [AGGP05b]. The original definition of La suffered from
problems related to self-reference.
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• the binary predicate symbol bel of sort (S3 × S2), and

• the propositional connective ¬.

The formulae of L0 are defined in the standard way: Every predicate
symbol applied to constant symbols of the appropriate sorts is an
atomic formula, and if ϕ is a formula, then ¬ϕ is a compound formula.

2. The language Ln+1, n ≥ 0, consists of the same symbols as Ln and an
additional set En+1 = {eϕ | ϕ ∈ SnLn} of constant symbols of sort S3.

The formulae of Ln+1 are defined analogously to those of L0.

We define La to be the language consisting of the symbols of every lan-
guage in 〈Ln〉n∈N. In particular, La consists of the same symbols as L0 and
a set E =

⋃

n∈N
En of constant symbols. The formulae of La are defined

analogously to those of L0. In particular, SnLa =
⋃

n∈N
SnLn .

The intended meanings of now, contra, and bel are to indicate the cur-
rent time, the existence of a direct contradiction at some time, and that an
agent had a belief at some time, respectively. The semantics of the symbols
is defined formally in Definition 2.9 below. Note that La only includes one
connective ¬, thus heavily limiting the expressiveness of the language. The
sets of constants are introduced to name time points and sentences of the
languages.

Example 2.1. The following formulae are all sentences of La: now(c5),
contra(dS1

, d¬S1
, c7), and ¬bel(enow(c5), c4).

Definition 2.3 (L). The language L is the sorted first-order language con-
sisting of the symbols of the languages Lw and La. The symbols are sorted,
and the connectives only apply to formulae of either language using stan-
dard syntax. In particular, the set of sentences of L, SnL, is the union of
the disjoint sets SnLw and SnLa.

Note that the language L is defined in such a way that its set of sentences
is the union of the sentences of Lw and La, respectively. In particular, for-
mulae such as now(c5) → S1 are are not well formed because the implication
connective applies only to Lw-formulae (i.e. the connective, which could be
written →w as it stems from Lw, is sorted). The definition of the language
L and its consequences for the logic are discussed further in Section 3.2.5

The agent’s knowledge is expressed within SnL. In fact, at any time t,
the agent’s knowledge base KBa

t is identified with a finite6 subset of SnL.7

5The definition presented here is an interpretation of the original definition found
in [AGGP05a]. The possibility of other interpretations is also discussed later.

6Note that, although not explicitly stated in [AGGP05a], it is implicit that the agent’s
knowledge base is always finite. For example, perception functions (to be defined later),
which are applied to knowledge bases, are functions with finite subsets of SnL as domain.
In [AGGP05b] it has been made explicit.

7Cf. Ågotnes’ term finite syntactic epistemic states [Ågo04].
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The knowledge base will thus always be incomplete, and it may at any time
also be incorrect (with respect to the actual world) or contradictory.

Definition 2.4 (KBa
t ). The knowledge base of an agent a at time t, de-

noted KBa
t , is a finite subset of SnL.

2.3 Semantics for Lw

In the following definitions, a semantics for Lw is defined in the standard
way.

Definition 2.5 (Lw-Truth Assignment). An Lw-truth assignment is a
function h : S → {⊤,⊥}, which assigns truth values to all sentence symbols
in Lw.

Definition 2.6 (Lw-Interpretation). An Lw-interpretation h (keeping
the same notation) is a function h : SnLw → {⊤,⊥} that extends an Lw-
truth assignment h as follows:

h(¬ϕ) = ⊤ iff h(ϕ) = ⊥

h(ϕ → ψ) = ⊥ iff h(ϕ) = ⊤ and h(ψ) = ⊥

(“Iff” means “if and only if”.) If h(ϕ) = ⊤, we say that h is a model of ϕ
and that h satisfies ϕ. We will also use the notation h |= ϕ for h(ϕ) = ⊤.

Definition 2.7 (Lw-Consistency). A set of sentences Σ ⊆ SnLw is con-
sistent if there exists an Lw-interpretation h in which all the sentences are
true. Denote with h |= Σ the fact that every sentence of Σ is assigned ⊤ by
h. If h |= Σ, we say that h is a model of Σ and that h satisfies Σ.

2.4 The La-Model

Even an incomplete and inconsistent agent theory has a corresponding com-
plete and consistent theory at the metalevel. For instance, if the agent
believes both S1 and ¬S1, then its theory is inconsistent. As mentioned
above, an agent theory is always incomplete since the knowledge base is
finite. But at the metalevel, a theory containing the sentences “the agent
believes pS1q” and “the agent believes p¬S1q” at the same time, need not
be inconsistent. Furthermore, if it includes a countable number of sentences
of the form ‘‘the agent does not believe pϕq” it may also be complete.

Such a metatheory may be expressed using the language La. Below, a
semantical account is given by introducing a structure that models a theory
at a given time t.
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Definition 2.8 (La-Structure). The La-structure Ha
t at time t, given the

agent’s knowledge bases KBa
k for 0 ≤ k ≤ t, is the structure

Ha
t =

〈
SnLw ,N, SnL, 〈ck〉k∈N, 〈dϕ〉ϕ∈SnLw

, 〈eϕ〉ϕ∈SnL
,now,bel, contra

〉
,

where

1. for every k ∈ N, ck names the time index k,

2. for every ϕ ∈ SnLw , dϕ names the sentence ϕ,

3. for every ϕ ∈ SnL, eϕ names the sentence ϕ,

4. the relation now ⊆ N has only one element t,

5. the relation bel ⊆ (SnL×N) is the set {〈ϕ, k〉 | k ≤ t and ϕ ∈ KBa
k},

and

6. the relation contra ⊆ (SnLw × SnLw × N) is the set

{〈ϕ,ψ, k〉 | k ≤ t, {ϕ,ψ} ⊆ KBa
k , and either ϕ = ¬ψ or ψ = ¬ϕ}.

Note that the La-structure depends heavily on the agent’s actual reason-
ing process, that is, on the sequence 〈KBa

k〉
t
k=0: the bel-relation contains the

agent’s complete history, and the contra-relation stores a complete record
of all direct contradictions (involving world knowledge) that have ever oc-
curred.

The sentences of La are interpreted in an La-structure in the standard
way:

Definition 2.9 (Satisfaction in Ha
t ). Let Ha

t be an La-structure at time
t. Then satisfaction in Ha

t , written Ha
t |= ϕ, is defined inductively by

1. Ha
t |= now(ck) iff ck ∈ now,

2. Ha
t |= contra(dϕ, dψ , ck) iff 〈dϕ,dψ, ck〉 ∈ contra,

3. Ha
t |= bel(eϕ, ck) iff 〈eϕ, ck〉 ∈ bel, and

4. Ha
t |= ¬ϕ iff Ht 6|= ϕ.

Let Ha
t |= Σ denote the fact that Ha

t satisfies every sentence in the set
Σ ⊆ SnLa. If Ha

t |= ϕ, ϕ ∈ SnLa, we say that ϕ is true in Ha
t , otherwise ϕ

is false in Ha
t .

Example 2.2. Let Ha
t be an La-structure at time t. Then, a sentence

now(ck) is true (in Ha
t ) if and only if k = t, that is, if the time is actually k.

Furthermore, a sentence bel(eϕ, ck) is true if and only if the agent actually
believed ϕ at time k ≤ t. Finally, a sentence contra(dϕ, dψ , ck) is true if
and only the agent actually believed both ϕ and ¬ϕ (or, ψ and ¬ψ) at time
k ≤ t and ϕ (and ψ) are about the world (i.e. they are sentences of Lw).
Note that the meaning of “believe” in this paragraph (and thesis) is simply
that the sentence believed was in the agent’s knowledge base.
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2.5 L-Structures

As mentioned above, the agent expresses its knowledge in SnL. To be able
to model the agent’s full reasoning, we need to define a structure appropriate
for L-theories.

Definition 2.10 (Active Structure). An active structure, or a-structure,
at time t is an L-structure Ma

t defined as

Ma
t = 〈ht,H

a
t 〉,

where ht is an Lw-interpretation and Ha
t is an La-structure at time t.

Note that active structures depend implicitly on the agent’s history of
reasoning (the sequence 〈KBa

k〉
t
k=0) via the La-structure Ha

t .
Since the set of sentences of SnL is the union of the two disjoint sets

SnLw and SnLa, satisfaction in L-structures is straightforward to define.8

Definition 2.11 (Satisfaction in Ma
t ). Let Ma

t = 〈ht,H
a
t 〉 be an active

structure at time t. Then satisfaction in Ma
t , written Ma

t |= ϕ, is defined
by

1. if ϕ ∈ SnLw , then (Ma
t |= ϕ iff ht |= ϕ), and

2. if ϕ ∈ SnLa, then (Ma
t |= ϕ iff Ha

t |= ϕ).

We say that Ma
t satisfies Σ ⊆ SnL, denoted Ma

t |= Σ, if Ma
t satisfies every

sentence in Σ. If Ma
t |= Σ we also say that Ma

t is a model of Σ.

2.6 Perception Functions

In this section an attempt to model the agent’s beliefs at the object level is
made. First, two notions of temporal consistency relative to the language L
are defined.

Definition 2.12 (Temporal Strong Consistency). A set of sentences
Σ ⊆ SnL is said to be temporally strongly consistent at time t, t-strongly
consistent for short, if there exists an active structureMa

t such thatMa
t |= Σ.

Definition 2.13 (Temporal Weak Consistency). A set of sentences Σ ⊆
SnL is said to be temporally weakly consistent at time t, t-weakly consistent
for short, if there exists an active structure Ma

t such that Ma
t |= (Σ∩SnLa).

That is, a set of L-sentences is t-weakly consistent if at least the La-
sentences of the set are consistent. For t-strong consistency, also the Lw-
sentences of the set must be consistent. Note that we will often drop the
time specifier “at time t” as it is usually clear from context.

From now on, it is assumed that the agent’s knowledge base is t-weakly
consistent.

8This definition is not found in [AGGP05a] and of course depends on how we define L,
which also is an object of interpretation (see Section 3.2).
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Definition 2.14 (Σω
t ). Let Σω

t denote the set of finite, t-weakly consistent
subsets of SnL at time t.

In order to express the agent’s awareness of its knowledge about the
world, a new language L′

w is defined.

Definition 2.15 (L′
w). The propositional language L′

w derived from Lw
consists of the following symbols:

• a set S′ = {Sji | Si ∈ Lw and j ∈ N} of sentence symbols,

• the propositional connectives ¬ and →, and

• parentheses ( and ).

The formulae of L′
w are defined as in the definition of Lw.

Thus, for every sentence symbol in Lw there is a corresponding infinite
pool of sentence symbols in L′

w. We define L′
w-truth assignments h : S′ →

{⊤,⊥} and L′
w-interpretations h : SnL′

w
→ {⊤,⊥}, and satisfaction and

consistency for L′
w analogously to their Lw-counterparts.

Definition 2.16 (L′). Let L′ be the sorted first-order language consisting of
the (sorted) symbols of the languages L′

w and La. In particular, its sentences
is the set SnL′ = SnL′

w
∪ SnLa.

The language L′ is used to express the agent’s awareness of its agent-
and-world knowledge. Note that the definitions of temporal consistency can
be extended to L′ (we will define formally structures corresponding to active
structures at the end of this section). When clear from context, the language
will not be mentioned.

The notion of perception (awareness) function, to be formally defined
below, is intended to help capture, at least roughly, how the world might
seem to the agent. The idea is that the agent’s limited resources apply also
to its ability to inspect its own knowledge base. Even if both S1 and ¬S1

are present in the knowledge base, the agent may be unaware of the contra-
diction by maintaining that S1

1 and ¬S2
1 are both true. Only later might it

discover that S1
1 and S2

1 are in fact the same symbol (S1) and start a process
to handle the contradiction. This allows the agent to have inconsistent be-
liefs while still having a (classical) world model (see Section 3.3 for a critique
of this approach). Furthermore, this mechanism can also be used to prevent
the agent from deriving everything from an inconsistent knowledge base.

Let P(Σ) denote the power set of a set Σ.

Definition 2.17 (Perception Function). A perception (awareness) func-
tion at time t is a map pert : Σω

t → P(SnL′) that is defined by an infinite
sequence of non-negative integers 〈i1, i2, . . .〉 and

15



1. Let Σ ∈ Σω
t and denote with Γ the set Σ∩ SnLw . Order the sentences

of Γ alphabetically in a string, and let 〈Sj1, Sj2, . . . , Sjn〉 be the finite
sequence of all sentence-symbol tokens occurring in this string. Let
Γ′ be the set of sentences obtained by replacing Sjk in Γ with S

ik
jk

for
1 ≤ k ≤ n.

2. Let p : Γ → Γ′ be the bijection mapping every sentence of Γ to its
corresponding Γ′-sentence.

3. Let the set of (perceived) direct contradictions, denoted DC, be the
set

{ϕ ∈ Γ | p(ϕ) ∈ Γ′ and ¬p(ϕ) ∈ Γ′}.

4. Finally, let the image of Σ under pert be the set

(Σ − Γ) ∪ Γ′−

{p(ϕ) | ϕ ∈ DC} − {¬p(ϕ) | ϕ ∈ DC}∪

{contra(dϕ, d¬ϕ, ct} | ϕ ∈ DC}.

We denote with PERt the set of all perception functions at time t.

Informally, what the above definition says is the following. A perception
function only applies to world knowledge (Γ), by mapping every occurrence
of a sentence-symbol token (Sjk) in the set to a corresponding superscripted
symbol (resulting in Γ′). Note that this mapping is completely determined
by the sequence 〈i1, i2, . . .〉. Once the sentence-symbol tokens have been
superscripted, any direct contradiction in the set (Γ′) is removed and a
record, in form of a contra-sentence, is added.

Note that the set PERt is infinite for every t since there are infinitely
many ways of assigning superscripts to sentences (i.e. infinitely many se-
quences 〈i1, i2, . . .〉).

Example 2.3. Let Σ be the set {now(c5), S1,¬S2,¬S1}, and let per5 be
the perception function (at time 5) determined by the infinite superscript
sequence 〈1, 2, 1, . . .〉 (only the first three elements are shown). We now
wish to apply per5 to Σ. With the terminology of Definition 2.17, we get
Γ = {S1,¬S1,¬S2} (presented in alphabetically ordered form). Hence the
finite sequence of sentence-symbol tokens is 〈S1, S1, S2〉, and thus we get
Γ′ = {S1

1 ,¬S
2
1 ,¬S

1
2}. Since there are no direct contradictions in Γ′, we have

per5(Σ) = {now(c5), S
1
1 ,¬S

2
1 ,¬S

1
2}.

Should instead both occurrences of S1 have been mapped to the same
symbol, say S1

1 , we would have had a direct contradiction and the resulting
image would then have been the set

{now(c5),¬S
1
2 , contra(dS1

, d¬S1
, c5)},

instead.
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Theorem 2.1. If KBa
t is t-weakly consistent at time t, then there exists a

perception function pert ∈ PERt such that pert(KB
a
t ) is t-strongly consis-

tent (in L′) at time t.

Proof. Let Γ = KBa
t ∩ SnLw and consider the perception function perut

determined by the sequence 〈1, 2, 3, . . .〉. Applying perut according to Defi-
nition 2.17 renders a set Γ′ in which every sentence-symbol token is unique.
Thus, there exists an L′

w-interpretation which satisfies Γ′ since we can choose
the truth value of every atomic formula independently.9 (A concrete truth
assignment can easily be constructed through a recursive procedure.) Since
the remaining sentences of KBa

t are assumed consistent, pert(KB
a
t ) is t-

strongly consistent.

Definition 2.18 (KBa
pert

and W a
pert

). Let pert ∈ PERt be a perception
function at time t. Let KBa

pert
denote the agent’s perception (under pert)

of its knowledge base at time t, that is, KBa
pert

= pert(KB
a
t ). Let W a

pert
=

KBa
pert

∩ SnL′
w

be the agent’s perception of the part of its knowledge base
which concerns the external world.

Definition 2.19 (Gapert). Let pert ∈ PERt be a perception function at
time t. Define Gapert to be the set of L′

w-interpretations determined by
W a
pert

, that is, Gapert = {hpert | hpert |= W a
pert

}.

Remark. Note that, without further restrictions on pert, W
a
pert

need not
be consistent and thus the set Gapert might be empty (contrary to what is
claimed in [AGGP05a]).10 The consequences of this remark will be discussed
in Section 3.3.

Finally, an L′-structure used to model the agent’s knowledge base after
a perception function has been applied to it is defined. This is meant to
capture the way the world might seem to an agent at a given time.

Definition 2.20 (Perceived Temporal Structure). Let pert ∈ PERt
be a perception function at time t. Then a perceived temporal structure at
time t, pt-structure for short, is an L′-structure Ma

pert
defined as follows:

Ma
pert

= 〈hpert ,H
a
t 〉, where hpert is an L′

w-interpretation satisfying W a
pert

(i.e. hpert ∈ Gapert) and Ha
t is an La-structure at time t. Let M

a
pert

denote
the set of all pt-structures Ma

pert
.

9Note that the L′
w-interpretation used in the proof of this theorem in [AGGP05a] does

not model every Γ′. Consider, for instance, the set Γ = {¬(S1 → S2)} which is mapped to
Γ′ = {¬(S1

1 → S2
2)}. Now, both sentence symbols occur positively and are thus assigned

the value true. Consequently, the whole sentence is false, contrary to the claim of the
proof.

10Consider, for example, KBat = {S1,¬S1} and a perception function pert mapping
every token Sjk to S1

jk
. Then W a

pert
is the inconsistent set {S1

1 ,¬S
1
1}, which has no

model.
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Note once again that since Gapert might be empty, the existence of a
pt-structure at time t is not guaranteed (thus, M

a
pert might be empty as

well).
Satisfaction in pt-structures is defined analogously to satisfaction in

active structures.

2.7 Active Consequence

In this section we introduce the concept of active consequence – a concept
purported to be the active-logic equivalent of logical consequence.

Definition 2.21 (1-Step Active Consequence). Let Σ,Θ ⊆ SnL, and
let a be an agent with KBa

t = Σ. We say that Θ is a 1-step active conse-
quence of Σ at time t, written Σ |=1 Θ, if and only if

(∃pert ∈ PERt)(∃pert+1 ∈ PERt+1)(∀M
a
pert ∈ M

a
pert)

[Ha
t+1 |= (pert+1(Θ) ∩ SnLa) ∧M

a
pert

|= (pert+1(Θ) ∩ SnL′
w
)].

Roughly, if for the Lw-sentences, the set of conclusions as perceived by
the agent at time t + 1 are yielded by the antecedent as perceived by the
agent at time t, and if for the La-sentences, the La-structure Ha

t+1 models
the agent’s perception of the conclusions at time t+ 1, then it can be said
that the conclusions are 1-step active consequences of the antecedent.

Note, that in the above definition, the apparently unbound variable Ha
t+1

(it is not a constituent of Ma
pert) must be interpreted as a constant in order

for the formula to be well-formed. We will return to this in Section 3.11

Let us demonstrate the concept with a few examples.

Example 2.4. Let Σ = {ϕ,¬ϕ} and Θ = {contra(dϕ, d¬ϕ, ct)}. We want
to show that Σ |=1 Θ at time t. To do this we first fix an agent a with
KBa

t = Σ. Then we pick two perception functions pert and pert+1 at time
t and t + 1 respectively: in this case, we can choose an arbitrary pert, and
we choose a pert+1 such that pert+1(Θ) = {contra(dϕ, d¬ϕ, ct)}. Note that
such functions do exist: PERt is non-empty (as noted above, it is infinite)
for all t, and any pert+1 ∈ PERt+1 has the desired image (since percep-
tion functions only “modify” Lw-sentences). Now, since the La-structure
Ha
t+1 contains a complete record of any direct contradiction present in the

agent’s knowledge base at any time k ≤ t + 1, we have in particular that
Ha
t+1 |= contra(dϕ, d¬ϕ, ct) since {ϕ,¬ϕ} ⊆ KBa

t (see Definition 2.9). Since
pert+1(Θ)∩SnL′

w
is empty, the second conjunct in Definition 2.21 is satisfied

vacuously (this is why we could choose an arbitrary pert). We have shown
that Σ |=1 Θ.

11Note also that there is a slight difference between the definition of 1-step active conse-
quence given above and the definition found in [AGGP05a]. The original definition reads:
“Let Σ,Θ ⊆ SnLw

such that Σ = KBat . . . . ”. This difference is discussed and motivated
in Section 3.4.

18



Example 2.5. Let Σ = {now(ct), S1, S1 → S4, S12} and let Θ be the set
{now(ct+1), S4, S12}. Again, we want to show that Σ |=1 Θ at time t.

We first fix an agent a with KBa
t = Σ. Let pert ∈ PERt be a perception

function with pert(Σ) = {now(ct), S
i
1, S

i
1 → S

j
4, S

k
12} for some non-negative

integers i, j and k. Then for every hpert ∈ Gapert the following must hold:

hpert(S
i
1) = hpert(S

j
4) = hpert(S

k
12) = ⊤. Choose pert+1 ∈ PERt+1 such that

pert+1(Θ) = {now(ct+1), S
j
4 , S

k
12}. Clearly, Ha

t+1 |= (pert+1(Θ) ∩ SnLa) and
hpert |= (pert+1(Θ) ∩ SnL′

w
) for every hpert ∈ Gapert . We have shown that

Σ |=1 Θ.

Note that once the perception functions have been applied, determining
whether the Lw-sentences of Θ follow actively from Σ is similar to deter-
mining this classically, whereas for the La-sentences it is just a matter of
determining whether they are modelled by Ha

t+1 according to Definition 2.9.
However, as we shall see in Section 3.4, this may not always be as straight-
forward as it sounds, and we will in fact eventually be forced to refine the
concept of 1-step active consequence.

We will settle with one last example.

Example 2.6. Let Σ and Θ be as in the previous example, but with
bel(eS5

, ct) added to Θ. Now, since S5 6∈ Σ (and hence, S5 6∈ KBa
t ) we

have that Ha
t+1 6|= bel(eS5

, ct), and consequently that Σ 6|=1 Θ at time t.

A generalisation of 1-step active consequence is defined recursively12:

Definition 2.22 (n-Step Active Consequence). Let Σ,Θ ⊆ SnL, and
let n be a positive integer. We say that Θ is an n-step active consequence
of Σ at time t, written Σ |=n Θ, if there exists a set Γ ⊆ SnL such that
Σ |=n−1 Γ at time t and Γ |=1 Θ at time t+ n− 1.

Finally, active consequence is defined as follows.

Definition 2.23 (Active Consequence). Let Σ,Θ ⊆ SnL. We say that
Θ is an active consequence of Σ at time t, written Σ |=a Θ, if Θ is an n-step
active consequence of Σ at time t for some positive integer n.

Remark. When clear from context, the time specification “at time t” will
sometimes be left out when discussing active consequence.

Example 2.7. We show that Σ |=a Θ at time t with Σ = {S1, S2, S2 → ¬S1}
and Θ = {contra(dS1

, d¬S1
, ct+1)}.

Let Γ = {S1,¬S1}. We first show that Σ |=1 Γ at time t. Fix an
agent a with KBa

t = Σ. Let pert ∈ PERt be a perception function with

12The original restriction that Σ = KBat has been removed from the definition (and
from Definition 2.23) since it is implicit from Definition 2.21. Furthermore, the time
specifications, which were mediated through examples in [AGGP05a], have been made
explicit.
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pert(Σ) = {Si1, S
j
2, S

j
2 → ¬Sk1} for some i, j, k ∈ N with i 6= k. Then, for

every hpert ∈ Gapert the following must hold: hpert(S
i
1) = hpert(S

j
2) = ⊤ and

hpert(S
k
1 ) = ⊥. Let pert+1 ∈ PERt+1 be such that pert+1(Γ) = {Si1,¬S

k
1}.

Clearly, hpert |= pert+1(Γ) for all hpert ∈ Gapert . Since there are no La-
sentences in pert+1(Γ) to consider, we have shown that Σ |=1 Γ.

To show that Γ |=1 Θ at time t + 1, we first fix an agent b with
KBb

t+1 = Γ. (Note that we may have b = a, but this need not be the
case.13) Choose an arbitrary pert+1 ∈ PERt+1 and an arbitrary pert+2 ∈
PERt+2. By definition of perception function, we have that pert+2(Θ) =
{contra(dS1

, d¬S1
, ct+1)}. Since {S1,¬S1} ⊆ KBb

t+1, we have, again by def-
inition, that Hb

t+2 |= pert+2(Θ). As there are no Lw-sentences in Θ to
consider, we have shown that Γ |=1 Θ.

We have found a Γ such that Σ |=1 Γ and Γ |=1 Θ so we conclude that
Σ |=2 Θ, and hence Σ |=a Θ.

This last example demonstrated one case where n-step active conse-
quence with n > 1 is applicable. Unfortunately, as we shall see in Section 3
where active consequence is discussed further, it does not get much more
exciting than this.

The following theorem concerns the relation between active consequence
(restricted to the sentences of Lw) and the classical notion of logical conse-
quence. It says that for a consistent knowledge base KB = Σ, a set Θ is
an active consequence of Σ if and only if it is a logical consequence of Σ.
This should be intuitively clear. A given set Σ of sentences has a fixed set of
conclusions that may be drawn from it – the logical closure of Σ. We should
expect the closure under active consequence to contain the closure under
logical consequence since there exists a perception function which assigns
the same superscript to every sentence-symbol token and thus essentially
leaves the set of sentences, and its logical closure, unchanged. On the other
hand, there is no perception function which extends the closure: a percep-
tion function either leaves the closure unchanged or reduces the number of
sentences that can be inferred.

Remark. The last claim is crucial for the theorem to hold, but with the
current definition of active consequence it is not clear whether it is actually
true. The proof below depends (via Lemma 3.5) on a refined definition
of active consequence which is given in Section 3.4, where this matter is
discussed further.

Theorem 2.2. Let Σ,Θ ⊆ SnLw . If Σ is consistent, then

Σ |= Θ iff Σ |=1 Θ.

13In fact, this interpretation of n-step active consequence is slightly different from the
one found in [AGGP05a]. In the corresponding example it says that “Γ is potentially part
of KBat+1”. But since this allows for different (potential) paths of reasoning for agent a,
the result is essentially the same. See Section 3.4 for further discussion of this matter.
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Proof. Let Σ ⊆ SnLw be (classically) consistent, and let Θ ⊆ SnLw be
arbitrary.

⇒) Assume Σ |= Θ. This means that every Lw-interpretation h that is
a model of Σ is also a model of Θ. In particular, Θ is consistent since Σ
is consistent. Consider the perception functions pert ∈ PERt and pert+1 ∈
PERt+1 which map every sentence-symbol token Sik to S1

ik
. Note that

pert(Σ) is consistent since Σ is consistent. Since Θ ⊆ SnLw and Θ is con-
sistent, pert(Θ) ⊆ SnL′

w
and pert(Θ) = pert+1(Θ). Thus, we only need to

show that for every model h′ of pert(Σ), h′ |= pert(Θ).
Let h′ be a model of pert(Σ). Consider the Lw-interpretation h = h′ ◦

pert, with h(Sk) = h′(S1
k) for all k ∈ N. Obviously, for any consistent set

Γ ⊆ SnLw , h |= Γ if and only if h′ |= pert(Γ). Consequently, we have that
h |= Σ, and thus, by assumption, h |= Θ. Hence, h′ |= pert(Θ), and we have
shown that Σ |=1 Θ.

⇐) Assume Σ 6|= Θ. This means that there exists an Lw-interpretation h
such that h |= Σ, but h 6|= Θ. Let pert ∈ PERt and pert+1 ∈ PERt+1 be
arbitrary.

Now, if it was the case that Σ |=1 Θ, then according to Lemma 3.5,
for any pert+1 that satisfies the condition in the definition of 1-step active
consequence, pert+1(Θ) ⊆ SnL′

w
. We can thus assume that pert+1(Θ) ⊆

SnL′
w
, that is, no direct contradiction in Θ is mapped to a contra-sentence.

Let h′ be the L′
w-interpretation satisfying h′(Sji ) = h(Si) for all i, j ∈ N.

Then clearly h′ |= pert(Σ), but h′ 6|= pert+1(Θ), and we have shown that
Σ 6|=1 Θ.

The theorem may be extended to general active consequence14 since,
as shall be proven later, when the consistent premises and the conclusions
are Lw-sentences, active consequence may be identified with 1-step active
consequence (see Theorem 3.10).

Corollary. Let Σ,Θ ⊆ SnLw . If Σ is consistent, then

Σ |= Θ iff Σ |=a Θ.

14This is claimed to be proved already in [AGGP05a] (and [AGGP05b]) but the proof
does not hold for at least three reasons. First, the claim that (∀h |= Σ)∀h′[h′ |=
pert(Σ) ⇐⇒ (∀Sk ∈ A)(h(S1

k) = h(Sk))] is not true: the sets Σ = Θ = {S1 → S2} and
interpretations h and h′, with h(S1) = h′(S1

1) = h′(S1
2) = ⊤ and h(S2) = ⊥ constitute a

counterexample. (This has been corrected in [AGGP05b].)
Secondly, the if-part does not cover the case where Θ contains a direct contradiction

and pert+1(Θ) 6⊆ SnLw
.

Thirdly, the proof can only be used to make claims about 1-step active consequence
since it does not consider the recursive definition of n-step active consequence in the if-
part of the proof. In particular, the proof of Theorem 2.2 above is based on the ideas
found in this proof.
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Finally, we note that a corresponding theorem for La-sentences does not
exist. For instance, {bel(eS1

, ct)} follows actively, but not logically, from
{S1} at time t.

2.8 Sound and Unsound Inference Rules

Using active consequence, a notion of soundness may be defined.

Definition 2.24 (Active-Sound Inference). An active-sound (a-sound)
inference is one in which the conclusion is an active consequence of the
premises.

It follows immediately from the definitions of active consequence, percep-
tion function and La-structure that the following inference rules are active
sound.

Definition 2.25 (Timing Rule). The timing rule15 is defined by

t :

t+ 1 : now(ct+1)
.

Definition 2.26 (Direct Contradiction Rule). The direct contradiction
rule is defined by

t : ϕ,¬ϕ

t+ 1 : contra(dϕ, d¬ϕ, ct)
,

where ϕ ∈ SnLw .

Definition 2.27 (Introspection Rule). The introspection rule is defined
by

t : ϕ

t+ 1 : bel(eϕ, ct)
,

where ϕ ∈ SnL.

Definition 2.28 (Negative Introspection Rule). The negative intro-
spection rule is defined by

t : KBa
t

t+ 1 : ¬bel(eϕ, ct)
,

where ϕ ∈ SnL and ϕ 6∈ KBa
t .

Theorem 2.3. The timing, direct contradiction, introspection and negative
introspection rules are all active sound.

15The corresponding rule in [AGGP05a] has now(ct) as a premise (i.e. it requires now(ct)
to be in the knowledge base at time t). This implies an unnecessary requirement on every
agent that reasons using the timing rule to have now(c0) as an innate belief at time 0.
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Proof. We show that the introspection rule is a-sound. The active soundness
of the other rules follow immediately from definition in a similar way.

We show that {ϕ} |=1 {bel(eϕ, ct)} at time t. This holds since by Def-
inition 2.17 of perception function, pert+1({bel(eϕ, ct)}) = {bel(eϕ, ct)} for
every pert+1 ∈ PERt+1, and by Definition 2.9 of La-structure, Ha

t+1 |=
{bel(eϕ, ct)} for every agent a with KBa

t = {ϕ}.

Active versions of classical inference rules, such as modus ponens, may
also be defined.

Definition 2.29 (Active Modus Ponens). The active modus ponens rule
is defined by

t : ϕ,ϕ → ψ

t+ 1 : ψ
,

where ϕ,ψ ∈ SnLw .

Theorem 2.4. The active modus ponens rule is active sound.

Proof. Let ϕ,ψ ∈ SnLw . Assume without restriction that the string repre-
sentation of ϕ has i sentence-symbol tokens. We show that Θ = {ψ} follows
actively from Σ = {ϕ,ϕ → ψ}.

Let pert be the perception function in PERt determined by the sequence
〈1, 2, . . . , i, 1, 2, . . .〉. Then pert(Σ) = {ϕu, ϕu → ψu}, where every sentence-
symbol token in ϕu → ψu is unique. Since we can choose the truth value
of every atomic formula (in ϕu → ψu) independently, there exists an L′

w-
interpretation h such that h |= pert(Σ) (i.e. pert(Σ) is consistent). In par-
ticular, every model hpert of pert(Σ) must have hpert(ϕ

u) = h(ψu) = ⊤. Let
pert+1 ∈ PERt+1 be such that pert+1(Θ) = {ψu}. Then for every model
hpert of pert(Σ), hpert |= pert+1(Θ) as well, and we have shown that Σ |=1 Θ.

In [AGGP05a] (and [AGGP05b]) there is an example of a classically
sound inference rule that is claimed to be active unsound – a rule called the
explosive rule.

Definition 2.30 (Explosive Rule). The explosive rule is defined by

t : ϕ,¬ϕ

t+ 1 : ψ
,

where ϕ,ψ ∈ SnLw .

Unfortunately, the proof of the unsoundness of the explosive rule in the
original paper does not hold.16 As we shall see later, no such proof even

16The proof in [AGGP05a] (and [AGGP05b]) is not valid for at least two reasons. First,
it is obvious that {ϕ,¬ϕ} |=1 {ϕ} for every ϕ ∈ SnLw

. Secondly, and more importantly,
the proof only considers 1-step active consequence and thus cannot be directly used to
make claims about general active consequence. In particular, proving that something does
not follow in one step does not prove that it does not follow in n > 1 steps.
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exists – the explosive rule is active sound. We will return to this matter
and its dramatic implications for the theory in Section 4.
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3 Analysis and Extensions

In this section the semantics found in [AGGP05a] (and [AGGP05b]) is anal-
ysed further, problems are pointed out, and extensions are suggested. In
particular, we show that there are sentences for which it cannot be deter-
mined whether they follow actively from a given theory Σ, and we suggest a
refined definition of active consequence which does not suffer from this prob-
lem that we call Σ-undeterminism. With this refined definition we are able
to prove the fundamental equivalence between active consequence and clas-
sical logical consequence (see Theorem 2.2). Several useful metatheorems
concerning n-step active consequence are also presented.

3.1 The La-Semantics

When defining the La-structure

Ha
t =

〈
SnLw ,N, SnL, 〈ck〉k∈N, 〈dϕ〉ϕ∈SnLw

, 〈eϕ〉ϕ∈SnL
,now,bel, contra

〉
,

at time t, we noted that the structure implicitly contains the sequence
〈KBa

k〉
t
k=0 via the relations bel and contra. These relations store the

agent’s complete history of reasoning and a record of every direct contradic-
tion that has ever occurred, respectively. In a sense, the La-semantics can
be summarised as follows: A sentence ϕ ∈ SnLa is true if and only if what
ϕ expresses is or was (if ϕ 6= now(ck)) the case.

The following definitions will be useful in later discussions.

Definition 3.1 (t-Sentence). We say that a sentence ϕ ∈ SnLa is about
time t, or a that it is a t-sentence, if either of the following holds

1. ϕ = now(ct),

2. ϕ = contra(dψ, dθ, ct), where ψ, θ ∈ SnLw ,

3. ϕ = bel(eψ, ct), where ψ ∈ SnL, or

4. ϕ = ¬ψ and ψ ∈ SnLa is about time t.

Definition 3.2 (Affirmative Sentence). A sentence ϕ ∈ SnL is affirma-
tive if

1. ϕ is an atom, or

2. ϕ = ¬¬ψ and ψ is an affirmative sentence.

A negative sentence is an L-sentence that is not affirmative.
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We also note that the semantics will not allow for metareasoning about
future beliefs since every affirmative La-sentence about time k > t is, by
definition, false in Ha

t as none of the now-, contra-, and bel-relations in the
La-structure has any element with time component k > t (see Definition 2.8
and Definition 2.9). Consider, for example, the sentence ϕ = now(ck) → S1,
which says that S1 will be the case at time k > t (e.g. the sun will set at
9 p.m.). In fact, due to our heavily restricted language L, ϕ is not even an
L-sentence (see below), but imagine it will be as part of a future extension.
Now, consider an agent a that believes (has concluded) ϕ at time t. Then,
if it reasons using modus ponens and a clock rule (and if ϕ is not retracted),
it will conclude S1 at time k.

t : now(ck) → S1

. . .

k : now(ck) → S1, now(ck)
k + 1 : S1

Hence, we could argue that it would be rational for the agent to believe
the sentence bel(eS1

, ck+1) at time t, and thus it could seem appropriate
to assert the truth of this sentence (in Ha

t ) as well. But to the contrary,
Ha
t |= ¬bel(eS1

, ck+1), that is, it is true (in Ha
t ) that the agent will not

believe S1 at time k + 1, although we have good reason to believe it will
(and no apparent reason not to do so). Of course, one cannot (usually)
be absolutely certain about the future, and assuming that the knowledge
base is empty for every future time point may thus be the best default even
though it is (usually) highly unlikely. We again stress, however, that this
is not a problem for the current version of the logic since (this kind of)
metareasoning is not even possible, but it might need to be taken under
consideration in future work. We formulate the underlying observation as a
theorem for future use.

Theorem 3.1. Let ϕ be an affirmative sentence of La, and let a be an agent
with La-structure Ha

t at time t. If ϕ is about time k > t, then Ha
t 6|= ϕ, that

is, ϕ is false in Ha
t .

3.2 The Expressiveness of L

The definition of the language L in Section 2.2 is our interpretation of how
L was defined in [AGGP05a]. In the original paper, it says that L is a
first-order language that is defined in two parts – Lw and La – and in the
definition of La we read that

“. . .S3 is the sort of sentences in the language L = La ∪ Lw”.

Now, how is union between languages supposed to be interpreted? If we
were discussing formal languages in general and identified a language with

26



a set of strings over an alphabet, then everything would be fine. But we
are not.17 Instead, we identify a language with its symbols and grammar
(i.e. rules for how formulae of the language are formed). (In fact, nothing
is said about the grammars of Lw and La in [AGGP05a] so we assume that
standard propositional and first-order syntax, respectively, were intended.)
It is apparent that L has to be interpreted as being a language consisting
of the symbols of the languages Lw and La. But what about the grammar
of L? Nothing is explicitly said about this in [AGGP05a], but we mean that
the only reasonable interpretation is that the set of atomic formulae of L
is the union of the atomic formulae of Lw and La, respectively. For the
compound formulae, there are two plausible interpretations:

1. The formulae are combined using the connectives of L and standard
first-order syntax (just as we did with Lw and La).

2. The formulae and connectives are considered to be sorted and we may
only combine formulae and connectives of the same sort (using stan-
dard first-order syntax).

We decided on the second interpretation for our definition of L (and L′).
The reason was that this implies that the set of sentences of L, SnL, is the
union of the two disjoint sets SnLw and SnLa (and similarly, Sn′

L
= SnL′

w
∪

SnLa). This is in conformity with the second sentence in the definition of L′

in [AGGP05a] which reads:

“Let L′ = L′
w ∪ La. Let SnL′ = SnL′

w
∪ SnLa.”

Had we instead defined L according to the first interpretation then the
union SnLw ∪ SnLa would have been a proper subset of SnL. That is, the
set ∆ = SnL − SnLw − SnLa would have been non-empty. We would then
(in L) have been able to express sentences such as now(c21) → ¬S1 and
(now(c3) ∧ S2) → bel(eS2

, c3).
18 This may seem fine, since the ability to

reason in terms of “If it is 9 pm, then the sun is set.” (default reasoning)
and “If it is 3 am and it is dark, then I believe that its is dark at 3 am.”
may be desirable. Indeed, what is the purpose of doing metareasoning if
you cannot relate it to the external world?19

Unfortunately, this is not an acceptable alternative since anything in ∆
follows actively from anything. To see why, consider the sets Σ ⊆ SnL
and Θ ⊆ ∆. Let pert and pert+1 be arbitrary perception functions at
time t and t + 1, respectively. Now, for every La-structure Ha

t+1 and pt-
structure Ma

pert
of Σ, Ha

t+1 and Ma
pert

satisfies vacuously pert+1(Θ) ∩ SnLa

17Even if we were, the (lack of) expressiveness of L discussed below is still a problem.
18We allow ourselves to use conjunction as syntactic sugar.
19In earlier work on active logic (e.g. [GKP00]), the world language has been a part of

the agent’s metalanguage.
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and pert+1(Θ)∩SnL′
w
, respectively, since, by Definition 2.17, pert+1(Θ) = Θ.

Thus, Σ |=1 Θ. To avoid this, either SnL needs to be restricted in such a
way that ∆ = ∅, or the concept of active consequence (and other related
concepts) needs to be redefined. We assume that the former solution is the
intended one.20

But as noted above, restricting the syntax in such a way will render L,
more or less, uninteresting as metareasoning cannot be related to the exter-
nal word. Furthermore, with the additional restrictions on La – only one
connective and no quantifiers or variables – we seem to be left with a meta-
reasoning incapable of much more than a mere record keeping of beliefs and
contradictions.

3.3 Existence of a Model

As noted at the end of Section 2.6, the existence of a pt-structure for a given
perception function is not guaranteed. A pt-structure Ma

pert = 〈hpert ,H
a
t 〉

contains an L′
w-interpretation hpert , which, by definition, models the agents

perception of its Lw-sentences (W a
pert). But there exist perception func-

tions which may render inconsistent perceived knowledge bases. Take, for
example, the perception function perit, which assigns superscript 1 to every
sentence-symbol token and thus, in a sense, leaves the set unchanged. When
perit is applied to a set Σ that contains an indirect inconsistency, the per-
ceived set will be inconsistent as well (i.e it has no model). Then, the set
M
a
perit

of pt-structures is empty and the condition

(∃pert ∈ PERt)(∃pert+1 ∈ PERt+1)(∀M
a
pert

∈ M
a
pert

)

[Ha
t+1 |= (pert+1(Θ) ∩ SnLa) ∧M

a
pert |= (pert+1(Θ) ∩ SnL′

w
)],

in Definition 2.21 holds vacuously for every conclusion Θ ⊆ SnL. (Note
that Θ follows even if Ha

t+1 6|= (pert+1(Θ) ∩ SnLa).) That is, with the
current definition of active consequence, we may conclude that everything
follows actively from an indirectly inconsistent knowledge base, contrary to
our intention to limit the logical closure of inconsistent sets.

Of course, there always exists a perception function pert such that the
perceived knowledge base KBa

pert
is t-strongly consistent, for instance the

one used in Theorem 2.1. Thus we could postulate that an agent always
perceives its knowledge base in such a way that it appears consistent. Active
consequence could then be redefined as follows.

Definition 3.3 (1-Step Active Consequence). Let Σ,Θ ⊆ SnL, and
let a be an agent with KBa

t = Σ. We say that Θ is a 1-step active conse-

20Our interpretation has been confirmed by the authors in [AGGP05b].
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quence of Σ at time t, written Σ |=1 Θ, if and only if

(∃pert ∈ PERt)(∃pert+1 ∈ PERt+1)
[
M
a
pert

6= ∅ ∧ Ha
t+1 |= (pert+1(Θ) ∩ SnLa) ∧

(∀Ma
pert ∈ M

a
pert)(M

a
pert |= (pert+1(Θ) ∩ SnL′

w
)
]
.

By adding a condition on M
a
pert (and thus indirectly on pert), the problem

pointed out above is avoided.21 Note also that our previous results that
involve active consequence (i.e. the theorems and examples in Section 2.7 and
Section 2.8) are still valid since we have argued using perception functions
that have rendered consistent perceived knowledge bases.

Of course, one may raise philosophical objections to this solution: It is
indeed possible to actually believe that, for example, {S1, S1 → S2,¬S2}
is the case while still maintaining that the two instances of S2 name the
same proposition. In fact, human beings do this all the time – we have
inconsistent belief sets without being aware of the inconsistencies simply
because we have not yet drawn the appropriate conclusions.

3.4 Agent a and 1-Step Active Consequence

Consider two sets Σ,Θ ⊆ SnL such that Σ |=1 Θ at time t. By Defini-
tion 3.3, we know that Σ = KBa

t for some agent a, that there exist percep-
tion functions pert ∈ PERt and pert+1 ∈ PERt+1 such that pert(Σ)∩SnL′

w

is consistent, and that

1. Ha
t+1 |= (pert+1(Θ) ∩ SnLa), and

2. (∀hpert ∈ Gapert)(hpert |= (pert+1(Θ) ∩ SnL′
w
)).

Assume we want to verify that Θ actually follows actively in one step
from Σ given the two perception functions. We then need to verify the
conditions on the perception of Θ. The second condition, that every model
of pert(Σ) ∩ SnL′

w
is also a model of pert+1(Θ) ∩ SnL′

w
, is straightforward

and easily verified. But what about condition one? In order to verify if an
arbitrary La-sentence is satisfied by Ha

t+1, we need to know the complete
history of the agent a up until time t+1, that is, the sequence 〈KBa

k〉
t+1
k=0, or

the derived bel- and contra-relations, that is, the structure Ha
t+1 itself.22

But all we have is a single snapshot of the knowledge base at time t, namely

21This restriction on pert is most likely what the authors intended since in a remark
after the definition of W a

pert
, they claim that this set is consistent. But, as mentioned

before, as their definition stands in [AGGP05a], this is not true. For clarity, we have
chosen to restrict pert (via M

a
pert

) in the definition of active consequence rather than in
the definition of W a

pert
. The problem has been acknowledged in [AGGP05b], where instead

Gpert
has been redefined.

22Notice the apparent paradox in referring to KBat+1 when trying to determine whether
something follows from KBat since if it does it may end up in KBat+1.
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Σ = KBa
t , and we are thus only certain to be able to determine the truth

values of sentences about time t besides those of sentences about time k >
t + 1 (which follow from definition, see Theorem 3.1). Indeed, Σ can also
contain sentences about time k < t, and if it does, we can, since Σ is assumed
t-weakly consistent, conclude that these sentences are modelled by Ha

t+1. If
we have been able to assert the truth value of an La-sentence ϕ (in Ha

t+1),
it is also possible to derive the truth values of some related sentences. If the
true, affirmative bel-sentence ϕ is about another bel- or contra-sentence, we
know, again due to the assumption of t-weak consistency, that this sentence
is also true, for example,

Ha
t+1 |= bel(ebel(eψ ,cl), ck) ⇒ Ha

t+1 |= bel(eψ, cl),

for every ψ ∈ SnL and time points k and l. Furthermore, since La has
negation as its only connective, we can of course also derive the truth value
of every subformula of ϕ and of every sentence in which ϕ is a subformula.
Except for some special cases (e.g. now-sentences), this is about all we can
do – the truth value of every other La-sentence is undeterminable. We
formulate this discussion as a theorem after first defining the concept of
Σ-determinism.

Definition 3.4 (Σ-Determinism). Let Σ ⊆ SnL be t-weakly consistent,
and let a be an agent with KBa

t = Σ. A sentence ϕ ∈ SnLa is determinable
from Σ (or Σ-determinable) at time t+1 if we can determine whetherHa

t+1 |=
ϕ without additional information about a.

If ϕ is not determinable from Σ at time t+1, then it is Σ-undeterminable
at time t + 1. Denote the set of Σ-undeterminable sentences at time t + 1
with UNDt+1(Σ).

Remark. We will sometimes allow ourselves to drop the “at time t + 1”
specifier when it is clear from context.

Theorem 3.2. Let Σ ⊆ SnL, and let a be an agent with KBa
t = Σ. For

any sentence ϕ ∈ SnLa, ϕ is Σ-determinable at time t+ 1 if and only if one
of the following conditions holds:

1. ϕ = now(ck),

2. ϕ = contra(dψ, dθ, ck) but ψ 6= ¬θ and θ 6= ¬ψ,

3. ϕ is about time t or time k > t+ 1,

4. ϕ ∈ Σ and ϕ is about time k < t,

5. ϕ = ¬ψ and ψ is Σ-determinable,

6. ψ = ¬ϕ and ψ is Σ-determinable,
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7. ϕ = contra(dψ, dθ, ck) and contra(dθ, dψ , ck) is Σ-determinable,

8. ϕ = contra(dψ, dθ, ck) and both bel(eψ , ck) and bel(eθ, ck) are Σ-deter-
minable,

9. ϕ = contra(dψ, dθ, ck), bel(eψ, ck) or bel(eθ, ck) is Σ-determinable, and
Ha
t+1 6|= bel(eψ, ck) or Ha

t+1 6|= bel(eθ, ck), respectively,

10. ϕ = bel(eψ , ck) for some ψ ∈ SnLw , and contra(dψ, dθ, ck) is Σ-
determinable and Ha

t+1 |= contra(dψ, dθ, ck) for some θ ∈ SnLw ,

11. ϕ = bel(eψ, ck) and bel(eϕ, cl) is Σ-determinable and Ha
t+1 |= bel(eϕ, cl)

for some time l, or

12. ϕ = contra(dψ, dθ, ck) and bel(eϕ, cl) is Σ-determinable and Ha
t+1 |=

bel(eϕ, cl) for some time l.

Proof. Let Σ ⊆ SnL, let a be an agent with KBa
t = Σ, and let ϕ ∈ SnLa.

1. From Definition 2.8 and Definition 2.9 it follows that we can determine
the truth value of every now-sentence given the time (t+ 1).

2. From the same definitions, it is also apparent that contra-sentences are
never satisfied unless the involved sentences are direct contradictions
of each other.

3. We have already handled now-sentences so assume ϕ is not a now-
sentence. If ϕ is about time t then its truth value in Ha

t+1 is deter-
minable from Σ = KBa

t , and if ϕ is about time k > t+1 then its truth
value in Ha

t+1 follows from Theorem 3.1 and Definition 2.9.

4. Let ϕ ∈ Σ be about time k < t. Then Ha
t+1 |= ϕ since Σ is as-

sumed t-weakly consistent and what ϕ expresses (e.g. the presence of
a contradiction) is or was indeed the case according to Definition 2.8.

5. According to Definition 2.9, Ha
t+1 |= ¬ψ if and only if Ha

t+1 6|= ψ.

6. Similarly, Ha
t+1 6|= ϕ if and only if Ha

t+1 |= ¬ϕ.

7. Follows by symmetry from Definition 2.8.

8. Assume that ψ = ¬θ (θ = ¬ψ follows by symmetry, and the other
possibilities were handled in case 2 above). Now, again by Defini-
tion 2.8 and Definition 2.9: If we know for each of the sentences ψ
and θ whether it was in KBa

k or not, then we know whether Ha
t+1 |=

contra(dψ, dθ, ck).

9. If Ha
t+1 6|= bel(eψ, ck) or Ha

t+1 6|= bel(eθ, ck), then ψ or θ was not part
of KBa

k , and hence Ha
t+1 6|= contra(dψ, dθ, ck).
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10. Similarly, if Ha
t+1 |= contra(dψ, dθ, ck), then both ψ and θ were in

KBa
k , and thus Ha

t+1 |= bel(eψ , ck).

11. If Ha
t+1 |= bel(eϕ, cl), then ϕ ∈ KBa

l . Since KBa
l is assumed t-weakly

consistent and ϕ ∈ SnLa, H
a
l |= bel(eψ , ck). Consequently, we know

that ψ ∈ KBa
k , and thus also Ha

t+1 |= bel(eψ , ck).

12. If Ha
t+1 |= bel(eϕ, cl), then ϕ ∈ KBa

l . Since KBa
l is assumed t-weakly

consistent and ϕ ∈ SnLa, H
a
l |= contra(dψ, dθ, ck). Consequently, we

know that ψ, θ ∈ KBa
k and that ψ = ¬θ or θ = ¬ψ, and thus also

Ha
t+1 |= contra(dψ, dθ, ck).

We now argue that any other sentence is not determinable from Σ. For
any sentence ϕ ∈ SnLa not already handled above, we have that it is about
time k < t or time k = t + 1, it is not a now-sentence, and it is not the
object of any Σ-determinable, affirmative, true bel-sentence. We also know
that ϕ is not in Σ if k < t. Assume without restriction that ϕ is atomic.23

Then ϕ is of one of the following forms:

1. ϕ = contra(dψ, dθ, ck), ψ = ¬θ or θ = ¬ψ, and either

(a) neither bel(eψ, ck) nor bel(eθ, ck) is Σ-determinable, or

(b) either bel(eψ , ck) or bel(eθ, ck) is Σ-determinable, and Ha
t+1 satis-

fies bel(eψ , ck) or bel(eθ, ck), respectively.

In the first case we cannot tell whether {ψ, θ} ⊆ KBa
k , and thus ϕ is

not Σ-determinable. In the second case we have no more information
than that ψ or θ was in KBa

k , and thus ϕ is not Σ-determinable.

2. ϕ = bel(eψ, ck), and either

(a) ψ ∈ SnLa,

(b) contra(dψ, dθ, ck) is not Σ-determinable for any θ ∈ SnLw , or

(c) Ha
t+1 6|= contra(dψ, dθ, ck) for every θ ∈ SnLw for which the sen-

tence contra(dψ, dθ, ck) is Σ-determinable.

Since the only (remaining) possible ways of knowing that ψ ∈ KBa
k is

through contra-sentences, and since these are about Lw-sentences, we
can not determine whether ϕ is satisfied in the first case. Case two fol-
lows since we can not determine the needed contra-sentences, and the
third case follows since the fact that there was no direct contradiction
involving ψ in KBa

k does not rule out that ψ was in the knowledge
base at that time.

23Note that knowing that ϕ is in Σ when ϕ is about time t+1 is not enough to be able to
determine whether Ha

t+1 |= ϕ: Since Σ is assumed t-weakly consistent, ϕ must be negative
(and thus non-atomic), but its truth value in La-structures at time t is determined solely
by its syntactical structure (see Theorem 3.1).
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The following lemma sheds some more light on the concept of Σ-un-
determinism. Note that in the Lemma, and in the rest of this thesis, we
identify an agent with its representation. In particular, we identify an
agent a with an infinite sequence of knowledge bases (i.e. subsets of SnL),
〈KBa

k〉
∞
k=0.

Lemma 3.3. Let Σ ⊆ SnL be t-weakly consistent, and let ϕ ∈ SnLa. If ϕ is
Σ-undeterminable at time t+ 1, then there exists an agent a with KBa

t = Σ
but Ha

t+1 6|= ϕ.

Proof. Let Σ ⊆ SnL, and let ϕ ∈ SnLa be Σ-undeterminable at time
t + 1. We assume without loss of generality that ϕ is atomic. Then, since
now-sentences are obviously Σ-determinable, ϕ is either a contra-sentence,
contra(dψ, dθ, ck) for some ψ, θ ∈ SnLw and time k, or a bel-sentence,
bel(eψ , ck) for some ψ ∈ SnL and time k.

Given an arbitrary agent a with KBa
t = Σ, we can, by definition, not tell

if Ha
t+1 |= ϕ or not without additional information about a. In particular,

this implies that there exists an agent a with KBa
t = Σ such that Ha

t+1 6|= ϕ:
We consider first the contra-case. Assume the contrary, that for every

agent a with KBa
t = Σ, Ha

t+1 |= contra(dψ, dθ, ck), that is, for every such
agent, ψ, θ ∈ KBa

k . This is obviously not true, since there are no sentences
ψ and θ that have to be in KBa

k for every such agent – their presence in
KBa

k is not determined by KBa
t = Σ and this is the only restriction we have

on the agents.
Similarly, if ϕ = bel(eψ , ck), not every agent with KBa

t = Σ has to have
ψ ∈ KBa

k .

Who is agent a? According to the initial assumptions in [AGGP05a],
“There is only one agent a”, and their definition of active consequence begins
with:

“Let Σ,Θ ⊆ SnL such that Σ = KBa
t . Then Θ is said to be a

1-step active consequence of Σ at time t, . . . , if and only if . . . ”.

The way we have interpreted this formulation is that we can choose an
agent a with KBa

t = Σ (see Definition 3.3 above). Another, possibly far-
fetched, interpretation is the literal one: We have one sole agent a, and the
concept of active consequence only applies to its specific knowledge base at
each given time, that is, we can only speak about active consequences of Σ
at time t if Σ = KBa

t . With an additional assumption of perfect knowledge
about this unique agent, we are able to determine whether Σ |=1 Θ. This
seem to have strange implications as, for example, if {S1} |=1 {S1} at time t,
then {S1} 6|=1 {S1} at any other time k with KBa

k 6= {S1} (since nothing
follows actively at time k from a set Σ 6= KBa

k). We do not pursue this
interpretation further.
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Note also that our definition is applied in the exact same way as is
the definition in [AGGP05a]. In particular, even under the assumption of
“only one agent a”, the original examples starts with sentences such as “Let
Σ = {ϕ,¬ϕ} = KBa

t ”. Instead of having a single agent whose knowledge
base changes between examples, we found it more natural to change the
agent.

Our interpretation is in compliance with the assumption of one agent
in a weaker sense, namely that the assumption imposes a restriction on the
agent’s metareasoning capabilities: An agent can only reason about its own
beliefs and not about beliefs of other agents. Furthermore, we are modelling
one agent at a time in the sense that we are modelling single belief sets and
not families of belief sets. In particular, we are studying belief sets and a
binary relation of consequence between such sets.24

Another argument for our definition follows: In Example 2.7 we con-
cluded that Θ = {contra(dS1

, d¬S1
, ct+1)} follows actively in two steps from

Σ = {S1, S2, S2 → ¬S1} by showing that for Γ = {S1,¬S1}, Σ |=1 Γ and
Γ |=1 Θ. In particular, when applying our definition of 1-step active conse-
quence, we referred to two agents a and b with KBa

t = Σ and KBb
t+1 = Γ,

respectively. The corresponding example in [AGGP05a] only involves one
agent a with KBa

t = Σ, and instead it is said that “Γ is potentially part
of KBa

t+1” (our emphasis). This constitutes more evidence against the lit-
eral interpretation as the example is not about a fixed individual a about
which perfect knowledge is assumed. Rather, it opens for more than one
potential path of reasoning for agent a, and thus we are essentially dealing
with more than one agent. We consider, however, our definitions to be more
transparent on this point than are their counterparts in [AGGP05a].

Before we return to our discussion of agent a, note also the use of the
phrase “part of” in “Γ is potentially part ofKBa

t+1” above. This formulation
indicates an even more relaxed definition of 1-step active consequence, a
definition that could start with:

Let Σ,Θ ⊆ SnL, and let a be an agent with Σ ⊆ KBa
t .

. . .

Although it would imply that the set of Σ-undeterminable sentences
would also contain sentences about time t, this could be a reasonable exten-
sion. We leave this discussion for future work.

As we see it, there are three possible ways to refine the definition of active
consequence in order to handle the problem of Σ-undeterminism (i.e. that
there are sentences for which we cannot tell whether they follow actively
from a given set):

24In the concluding remarks in [AGGP05a] it is said the starting assumption will be
dropped in future work, which will include “multiple agents, reasoning both about the
world and about one another’s beliefs”.
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1. Existential quantification of the agent. That is, we require that there
exists an agent a with KBa

t = Σ and Ha
t+1 |= (pert+1(Θ) ∩ SnLa).

2. Universal quantification of the agent. That is, we require that for every
agent a with KBa

t = Σ, Ha
t+1 |= (pert+1(Θ) ∩ SnLa), or equivalently,

we postulate that if (Θ ∩ UNDt+1(Σ)) 6= ∅, then Σ 6|=1 Θ at time t.

3. We accept that there are sets Σ and Θ for which it cannot be deter-
mined whether Σ |=1 Θ (i.e. we clarify that this is the case and leave
the definition essentially unchanged).

Consider the first option, which, for instance, would make every singleton
subset of UNDt+1(Σ) follow actively from Σ at time t. This is hardly an
acceptable solution as then, for example,

∅ |=1 {bel(eϕ, ct−1)},

at time t for any ϕ ∈ SnL. In fact, we would have ∅ |=1 {¬bel(eϕ, ct−1)}
at time t as well, but still ∅ 6|=1 {bel(eϕ, ct−1),¬bel(eϕ, ct−1)} due to the
principle of bivalence – no agent a both believes and not believes ϕ at time
point t− 1, that is, either ϕ ∈ KBa

t−1 or ϕ 6∈ KBa
t−1.

The second and third options are more appealing, both ruling out the
preceding example. Consider first the third option: that we sometimes can-
not determine if Σ |=1 Θ or not. This is a reasonable solution although it
would severely limit the possibility of general results about the logic and
its semantics. A variant of this option would be to allow external informa-
tion about the agent when determining whether Σ |=1 Θ: Given enough
information about an agent a, we can, even if Θ contains Σ-undeterminable
sentences, determine whether Σ |=1 Θ at time t for agent a. We would then
have a situation where, given ϕ ∈ SnL, sometimes ∅ |=1 {bel(eϕ, ct−1)},
sometimes ∅ 6|=1 {bel(eϕ, ct−1)}, and sometimes we simply cannot tell, de-
pending on which agent a we are discussing and if we have enough infor-
mation about a. We conclude that this option, whether we allow external
information or not, is not satisfactory.

In particular, the fundamental equivalence of Theorem 2.2 (which is also
found in [AGGP05a]) depends on us being able to determine whether Σ |=1

Θ in the general case, that is, without referring to a specific agent about
which we have perfect knowledge. The theorem states that if something
in SnLw follows actively in one step, then it also follows classically. But
consider the sets Σ = ∅ and Θ = {ϕ,¬ϕ} for some ϕ ∈ SnLw . Let pert ∈
PERt be arbitrary, and let pert+1 ∈ PERt+1 be such that pert+1(Θ) =
{contra(dϕ, d¬ϕ, ct+1)}. Then, according to the definition of 1-step active
consequence, Σ |=1 Θ if Ha

t+1 |= pert+1(Θ). But Σ 6|= Θ, so in order for the
theorem to hold, we would have to have Ha

t+1 6|= pert+1(Θ) for every agent a
(even if ϕ,¬ϕ ∈ KBa

t+1). Consequently, Theorem 2.2 does not hold with
original definition of active consequence.
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This leaves us with the second option: that nothing in UNDt+1(Σ)
should follow actively from Σ at time t. The following formal definition of
1-step active consequence incorporates the idea.

Definition 3.5 (1-Step Active Consequence). Let Σ ⊆ SnL be t-weakly
consistent, and let Θ ⊆ SnL be arbitrary. We say that Θ is a 1-step active
consequence of Σ at time t, written Σ |=1 Θ, if and only if

(∃pert ∈ PERt)(∃pert+1 ∈ PERt+1)∀a
[

KBa
t = Σ →

[
M
a
pert

6= ∅ ∧ Ha
t+1 |= (pert+1(Θ) ∩ SnLa) ∧

(∀Ma
pert

∈ M
a
pert

)(Ma
pert

|= (pert+1(Θ) ∩ SnL′
w
)
]]

.

Remark. Note that we now need to explicitly add the condition that Σ must
be t-weakly consistent. Without this condition, everything would follow
from a non-t-weakly consistent set since no agent can have such a set as its
knowledge base. This condition was implicit in our previous definitions as
we required that there was an agent a with KBa

t = Σ.

We formulate the consequence of Definition 3.5 for Σ-undeterminable
sentences as a theorem.

Theorem 3.4. Let Σ,Θ ⊆ SnL. If (Θ∩UNDt+1(Σ)) 6= ∅, then Σ 6|=1 Θ at
time t.

Proof. Let Σ,Θ ⊆ SnL be such that (Θ∩UNDt+1(Σ)) 6= ∅, and let ϕ ∈ Θ be
a Σ-undeterminable sentence at time t+1. Let pert and pert+1 be arbitrary
perception functions at time t and t+1, respectively. We note that ϕ ∈ SnLa
and that therefore ϕ ∈ pert+1(Θ).

By Definition 3.5, Σ 6|=1 Θ if Σ is not t-weakly consistent so assume Σ
is t-weakly consistent. Then, by Lemma 3.3, we know that there exists an
agent a withKBa

t = Σ butHa
t+1 6|= ϕ. Hence, Σ 6|=1 Θ, by Definition 3.5.

Note that if ϕ ∈ UNDt+1(Σ), then neither ϕ nor ¬ϕ follows actively in
one step from Σ at time t.

As mentioned above, Theorem 2.2 depends on a refined definition of
1-step active consequence. In particular, the proof makes use of the following
lemma, which states that the perception function pert+1 in the definition of
1-step active consequence does not map any direct contradictions in Θ to
contra-sentences when Θ ⊆ SnLw .

Lemma 3.5. Let Σ ⊆ SnL and Θ ⊆ SnLw . If Σ |=1 Θ at time t, then
(pert+1(Θ) ∩ SnLa) = ∅ for every perception function pert+1 ∈ PERt+1

such that

(∃pert ∈ PERt)∀a
[

KBa
t = Σ →

[
M
a
pert 6= ∅ ∧ Ha

t+1 |= (pert+1(Θ) ∩ SnLa) ∧

(∀Ma
pert ∈ M

a
pert)(M

a
pert |= (pert+1(Θ) ∩ SnL′

w
)
]]

.
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Proof. Let Σ ⊆ SnL and Θ ⊆ SnLw be such that Σ |=1 Θ at time t. Let pert
and pert+1 be perception functions at time t and t + 1, respectively, that
satisfy the condition in Definition 3.5. In particular, Ha

t+1 |= (pert+1(Θ) ∩
SnLa) for every agent a with KBa

t = Σ.
Note that since Θ ⊆ SnLw , the only La-sentences that may be in the

set pert+1(Θ) are contra-sentences about time t+ 1 originating from direct
contradictions in Θ. Now, either these sentences are Σ-undeterminable at
time t+ 1, or they are not. We show that both cases lead to contradictions
and hence that pert+1(Θ) ∩ SnLa = ∅.

Assume ϕ = contra(dψ, d¬ψ, ct+1) is in pert+1(Θ) for some ψ ∈ SnLw .
Now, if ϕ is Σ-undeterminable, we know from Lemma 3.3 that there exists
an agent a with KBa

t = Σ, but Ha
t+1 6|= ϕ. Thus Ha

t+1 6|= (pert+1(Θ)∩SnLa),
which is a contradiction.

If ϕ is Σ-determinable, then it is true in Ha
t+1 for every agent a with

KBa
t = Σ because otherwise we would have Ha

t+1 6|= (pert+1(Θ) ∩ SnLa),
contrary to our assumption. Now, for every such agent a with KBa

t = Σ
and Ha

t+1 |= ϕ, there exists an agent a′ with the same reasoning history

〈KBa′

k 〉
t
k=0, but with KBa′

t+1 = ∅. In particular we have that KBa′

t = Σ,

but Ha′

t+1 6|= ϕ (since ψ 6∈ KBa′

t+1), contrary to our assumption.

We are now able to prove the following theorem, which states that only
the Lw-sentences of Σ are involved when determining whether Θ ⊆ SnLw
follows actively in one step from Σ. This result will be generalised to n-step
active consequence in the next section.

Theorem 3.6. Let Σ ⊆ SnL and Θ ⊆ SnLw . Then

Σ |=1 Θ iff (Σ ∩ SnLw) |=1 Θ.

Proof. Let Σ ⊆ SnL and Θ ⊆ SnLw .
First assume Σ |=1 Θ. Since Θ ⊆ SnLw , we have from the previous

lemma that there exist perception functions pert and pert+1 at time t and
t + 1, respectively, such that pert+1(Θ) ∩ SnLa = ∅, pert(Σ) ∩ SnL′

w
is

consistent, and (pert(Σ) ∩ SnL′
w
) |= (pert+1(Θ) ∩ SnL′

w
).

Since pert(Σ) ∩ SnL′
w

= pert(Σ ∩ SnLw) ∩ SnL′
w

(for every percep-
tion function pert), we have that pert(Σ ∩ SnLw) ∩ SnL′

w
is consistent,

and (pert(Σ ∩ SnLw) ∩ SnL′
w
) |= (pert+1(Θ) ∩ SnL′

w
) as well. That is,

(Σ ∩ SnLw) |=1 Θ.
Now, assume (Σ∩SnLw) |=1 Θ. Again by Lemma 3.5, we have that there

exist perception functions pert and pert+1 at time t and t+ 1, respectively,
such that pert+1(Θ) ∩ SnLa = ∅, pert(Σ ∩ SnLw) ∩ SnL′

w
is consistent, and

(pert(Σ ∩ SnLw) ∩ SnL′
w
) |= (pert+1(Θ) ∩ SnL′

w
). The identity pert(Σ) ∩

SnL′
w

= pert(Σ ∩ SnLw) ∩ SnL′
w

holds also for pert, and thus Σ |=1 Θ as
well.
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We conclude this section with the observation that all our previous re-
sults that were based on the original definition of active consequence are still
valid with the refined definition since they do not involve Σ-undeterminable
sentences. In particular, Lemma 3.5 makes the new definition of 1-step
active consequence equivalent with Definition 3.3 when the consequent is
in SnLw , and the old definition could then be used in practice.

3.5 n-Step Active Consequence

In this section we prove several useful results regarding n-step active con-
sequence. In particular, we show that subsets of SnLw follow actively from
t-strongly consistent sets if and only if they follow actively in one step.

According to the following lemma, we can when Θ ⊆ SnLw without re-
striction assume that the set Γ in the definition of n-step active consequence
is in SnLw as well.

Lemma 3.7. Let Σ ⊆ SnL and Θ ⊆ SnLw . If Σ |=n Θ, n > 1, then

(∃Γ′ ⊆ SnLw)(Σ |=n−1 Γ′ ∧ Γ′ |=1 Θ).

Proof. Let Σ ⊆ SnL and Θ ⊆ SnLw be such that Σ |=n Θ, n > 1. Then, by
definition,

(∃Γ ⊆ SnL)(Σ |=n−1 Γ ∧ Γ |=1 Θ).

Let Γ′ = Γ ∩ SnLw . Now, if Γ |=1 Θ, then because Θ ⊆ SnLw , Γ′ |=1 Θ as
well according to Theorem 3.6. Furthermore, if Σ |=n−1 Γ, then obviously
Σ |=n−1 Γ′ since Γ′ ⊆ Γ.

The preceding lemma is used to show that only the Lw-sentences of the
premises are involved in determining whether Lw-sentences follow actively,
thereby generalising Theorem 3.6.

Theorem 3.8. Let Σ ⊆ SnL and Θ ⊆ SnLw . Then for every n ≥ 1,

Σ |=n Θ iff (Σ ∩ SnLw) |=n Θ.

Proof. Let Σ ⊆ SnL and Θ ⊆ SnLw . The theorem holds for n = 1 according
to Theorem 3.6, so let n > 1.

⇒) Assume Σ |=n Θ. From Lemma 3.7 it follows that there exist sets
Γ1,Γ2, . . . ,Γn−1 ⊆ SnLw such that

Σ |=1 Γ1 ∧ Γ1 |=1 Γ2 ∧ . . . ∧ Γn−1 |=1 Θ.

Now, since Σ |=1 Γ1 and Γ1 ⊆ SnLw , we have from Theorem 3.6 that
(Σ ∩ SnLw) |=1 Γ1. Hence, (Σ ∩ SnLw) |=n Θ as well.

⇐) Assume (Σ ∩ SnLw) |=n Θ. From Lemma 3.7 it follows that there
exist sets Γ1,Γ2, . . . ,Γn−1 ⊆ SnLw such that

(Σ ∩ SnLw) |=1 Γ1 ∧ Γ1 |=1 Γ2 ∧ . . . ∧ Γn−1 |=1 Θ.

38



Now, since (Σ ∩ SnLw) |=1 Γ1 and Γ1 ⊆ SnLw , we have from Theorem 3.6
that Σ |=1 Γ1 as well. Hence, Σ |=n Θ.

We now show that if a set of Lw-sentences follows actively in two steps
from a consistent set Σ ⊆ SnLw , then it follows actively in one step from
Σ as well. The lemma will serve as the base case in an inductive proof of
the equivalence of n-step and 1-step active consequence when restricted to
Lw-sentences and consistent premises.

Lemma 3.9. Let Σ,Θ ⊆ SnLw . If Σ is consistent and Σ |=2 Θ, then
Σ |=1 Θ.

Proof. Let Σ ⊆ SnLw be consistent, and let Θ ⊆ SnLw be arbitrary. We
show the contra-positive proposition: If Σ 6|=1 Θ, then Σ 6|=2 Θ.

Assume Σ 6|=1 Θ. From Theorem 2.2 it follows that Σ 6|= Θ classically.
We show that assuming Σ |=2 Θ, which by definition means that

(∃Γ ⊆ SnL)(Σ |=1 Γ ∧ Γ |=1 Θ),

leads to a contradiction. Note that since Θ ⊆ SnLw , we can according to
Lemma 3.7 without restriction assume that Γ ⊆ SnLw .

Let Γ ⊆ SnLw be such that Σ |=1 Γ. Then by Theorem 2.2, Σ |= Γ.
Assume that Γ |=1 Θ, which again implies that Γ |= Θ, or equivalently, that
every model of Γ is a model of Θ. Then, since every model of Σ is a model
of Γ, Σ |= Θ, contrary to our assumption. Hence, Σ 6|=2 Θ.

The following theorem allows results about 1-step active consequence to
be generalised to active consequence under certain circumstances without
having to resort to cumbersome inductive proofs. In particular, this allows us
to extend Theorem 2.2 to general active consequence – that classical logical
consequence and active consequence are equivalent (with respect to Lw)
when the premises are consistent.

Theorem 3.10. Let Σ,Θ ⊆ SnLw . If Σ is consistent, then

Σ |=a Θ iff Σ |=1 Θ.

Proof. The if part follows from definition. We show the only-if part, that
for any sets Σ,Θ ⊆ SnLw such that Σ is (classically) consistent, Σ |=n Θ ⇒
Σ |=1 Θ, n ≥ 1, by induction on n. The proposition obviously holds for
n = 1, and by Lemma 3.9 it holds for n = 2.

Assume it holds for some n ≥ 2. Let Σ,Θ ⊆ SnLw be such that Σ is
consistent, and assume Σ |=n+1 Θ. Then since Θ ⊆ SnLw , we have according
to Lemma 3.7 that

(∃Γ ⊆ SnLw)(Σ |=n Γ ∧ Γ |=1 Θ),
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which by the induction hypothesis implies

(∃Γ ⊆ SnLw)(Σ |=1 Γ ∧ Γ |=1 Θ),

or equivalently, Σ |=2 Θ. Lemma 3.9 thus gives us Σ |=1 Θ.

Note that Theorem 3.10 can also be proved by noting that Lemma 3.9 is
equivalent to the following proposition: If Σ,Θ ⊆ SnLw and Σ |=1 Θ, then
the closure of Θ under active consequence is a subset of the closure of Σ
with respect to Lw-sentences.25

Using Theorem 3.8, the restriction that Σ ⊆ SnLw may be relaxed.

Corollary. Let Σ ⊆ SnL and Θ ⊆ SnLw . If Σ is t-strongly consistent, then

Σ |=a Θ iff Σ |=1 Θ.

Proof. Let Σ ⊆ SnL be t-strongly consistent, and let Θ ⊆ SnLw . Then
Σ ∩ SnLw is classically consistent with respect to Lw, and Theorem 3.10
thus gives

(Σ ∩ SnLw) |=a Θ iff (Σ ∩ SnLw) |=1 Θ,

which by Theorem 3.8 implies

Σ |=a Θ iff Σ |=1 Θ.

In Section 4 we prove that no corresponding theorem for t-weakly con-
sistent sets exists.

Theorem 3.8 may also be used to give another characterisation of the
relation between active consequence and its classical counterpart that was
expressed in Theorem 2.2.

Theorem 3.11. Let Σ ⊆ SnL and Θ ⊆ SnLw . If Σ is t-strongly consistent,
then

(Σ ∩ SnLw) |= Θ iff Σ |=a Θ.

Proof. Let Σ ⊆ SnL be t-strongly consistent, and let Θ ⊆ SnLw . Then
Σ ∩ SnLw is classically consistent with respect to Lw, and the corollary to
Theorem 2.2 thus gives

(Σ ∩ SnLw) |= Θ iff (Σ ∩ SnLw) |=a Θ,

25Denote the closure under active consequence of a set Σ with respect to Lw-sentences
with Σ∗. Assume Σ |=n Θ for some Σ,Θ ⊆ SnLw

. Then, by Lemma 3.7, we know that
there exist sets Γ1,Γ2, . . . ,Γn−1 ⊆ SnLw

such that

Σ |=1 Γ1 ∧ Γ1 |=1 Γ2 ∧ . . . ∧ Γn−1 |=1 Θ,

and thus we have that
Σ∗ ⊇ Γ∗

1 ⊇ Γ∗

2 ⊇ . . . ⊇ Γ∗

n−1 ⊇ Θ∗
. (1)

Obviously Θ ⊆ Θ∗, and hence it follows from (1) that Θ ⊆ Σ∗. That is, Σ |=1 Θ.
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which by Theorem 3.8 implies

(Σ ∩ SnLw) |= Θ iff Σ |=a Θ.

We now turn our attention to the metalanguage La. The following re-
sults about n-step active consequence consider conclusions that are in SnLa
rather than SnLw . In particular, we will try to characterise the least (and
sometimes exact) number of steps it takes for an La-sentence to follow if it
follows at all.

Lemma 3.12. Let Σ be a t-weakly consistent subset of SnL. Then Σ |=n

{now(ct+n)} at time t for every n ≥ 1.

Proof. Let Σ ⊆ SnL be t-weakly consistent, and let n ≥ 1 be arbitrary. We
first note that since Σ |=1 ∅ and ∅ |=1 ∅ at any time t, Σ |=k ∅ at any time t
and k > 1 as well. Note also that perl({now(ct+n)}) = {now(ct+n)} for
every perception function perl at every time l. Now, if n = 1 then obviously
Σ |=1 {now(ct+n)} at time t since for every agent a, Ha

t+1 |= now(ct+1).
If instead n > 1 then, as noted above, Σ |=n−1 ∅, and since for every

agent a, Ha
t+n |= now(ct+n), ∅ |=1 {now(ct+n)} at time t + n − 1. That is,

Σ |=n {now(ct+n)} at time t.

Lemma 3.13. Let Σ be a t-weakly consistent subset of SnL. Then Σ |=a

{¬now(ck)} at time t for every k ∈ N. In particular, the conclusion follows
in two steps if k = t+ 1, otherwise it follows in one step.

Proof. Let Σ ⊆ SnL be t-weakly consistent, and let k ∈ N be arbitrary.
Obviously, Σ |=1 {¬now(ck)} if k ≤ t or if k > t + 1 since for every

agent a, Ha
t+1 6|= now(ck).

Now, assume k = t+1. As in the previous lemma, we have that Σ |=1 ∅.
Furthermore, ∅ |=1 {¬now(ck)} at time t+1 since for every agent a, Ha

t+2 6|=
now(ct+1). That is, Σ |=2 {¬now(ck)}.

Note that from the previous two lemmas, it follows that both singleton
sets {now(ct+n)} and {¬now(ct+n)} follow actively at time t from anything.
(Their union is, by definition, never satisfied in an La-structure and thus
does not follow, though.)

The following result concerns negative sentences about the future.

Lemma 3.14. Let Σ ⊆ SnL be t-weakly consistent, and let ϕ be a negative
La-sentence about time k > t+ 1. Then Σ |=1 {ϕ} at time t.

Proof. Let Σ ⊆ SnL be t-weakly consistent, and let ϕ be a negative La-
sentence about time k > t+ 1.

Since ¬ϕ is an affirmative sentence about time k > t + 1, we have by
Theorem 3.1 that for every agent a, Ha

t+1 6|= ¬ϕ, and thus Ha
t+1 |= ϕ. That

is, Σ |=1 {ϕ}.
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We hypothesise that similar results may be shown for every other La-
sentence, and that these may be used to prove the following conjectures that
characterise n-step active consequence when the conclusions are in SnLa.

Conjecture 3.15. Let Σ ⊆ SnL, and let ϕ ∈ SnLa be about time k. If
Σ |=a {ϕ} at time t, then the least number of steps in which {ϕ} follows
actively from Σ is

1. 1 step if k ≤ t,

2. 2 steps if k = t+ 1 and ϕ is a negative now-sentence,

3. 1 step if k > t+ 1 and ϕ is a negative now-sentence,

4. n steps if k = t+ n, n ≥ 1, and ϕ is an affirmative now-sentence,

5. 1 step if k = t+ 1 and ϕ is Σ-determinable at time t+ 1,

6. 2 steps if k = t+ 1 and ϕ is Σ-undeterminable at time t+ 1,

7. 1 step if k > t+ 1 and ϕ is negative, or

8. n + 1 steps if k = t + n, n > 1, and ϕ is an affirmative contra- or
bel-sentence.

Conjecture 3.16. Let Σ,Θ ⊆ SnL be such that Σ |=a Θ at time t. The La-
sentence in Θ that require the greatest number of steps to follow determine
the least number of steps in which Θ follows from Σ.

Case 1 in Conjecture 3.15 follows because if k ≤ t, then the necessary
information is already in Ha

t+1. We have already proved cases 2–4 and 7
in the preceding lemmas. Case 5 follows because if ϕ is Σ-determinable at
time t+ 1, then the needed evidence is already present at time t. If ϕ is Σ-
undeterminable at time t+1, then it does not follow in one step according to
Lemma 3.4, and it does not take more than two steps for it to follow since ϕ
is about time t+ 1 (cf. case 1 and 8). The last case follows since affirmative
sentences about time k are by definition false prior to time k and we need
an additional step to get the sentences that ϕ concerns into the knowledge
base of every agent (cf. Example 2.7).

We note that affirmative now-sentences about time t+n follow in exactly
n steps and that affirmative contra- and bel-sentences about time k > t+ 1
are false prior time k (see Theorem 3.1). This could be used to prove that
under certain circumstances, if something follows actively in n steps then it
also follows in n+ 1 steps.

Conjecture 3.17. Let Σ,Θ ⊆ SnL be such that Σ |=n Θ at time t for some
n ≥ 1. If there are no affirmative now-sentences and no sentences about
time k > t+ n in Θ, then

Σ |=l Θ for every l ≥ n.
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The formal proofs are left for future work.
We conclude with the observation that there is nothing “special” about

n-step active consequence. For Lw-sentences it is equivalent to 1-step active
consequence when the premises are consistent (otherwise it is, as we shall
see later, equivalent to 4-step active consequence), and for La-sentences the
number of steps n is completely deterministic as well. It can be used to
capture the least number of steps necessary for an La-conclusion to follow.
In particular, it captures that the time must be t for now(t + 1) to follow
in one step and that the time must be at least t for affirmative contra- or
bel-sentences about time t to follow.

3.6 Active-Sound Inferences

By Definition 2.24, an active sound inference is an inference in which the
conclusion is an active consequence of the premises. Consequently, the fol-
lowing inference is active sound:

t :

t+ 1 : now(ct+2)
,

since, by Lemma 3.12 from the previous section, now(ct+2) follows actively in
two steps, and thus actively, from anything at time t. This is obviously prob-
lematic since now(ct+2) is, by definition, not satisfied in any La-structure
at time t, and thus an agent reasoning using this rule will end up with a
knowledge base that is not t-weakly consistent.

By altering the definition of active sound inference in such a way that
time is taken under consideration, the problem pointed out above can be
avoided.26

Definition 3.6 (n-step Active-Sound Inference). An n-step active-
sound inference is one in which the conclusion is an n-step active conse-
quence of the premises.

Note that the inference rules that were proved active sound in Section 2.8
are also 1-step active sound. When clear from context, we shall allow our-
selves to drop the “n-step” prefix.

As mentioned before, we will in the next section prove that the explosive
rule is active sound. With the new definition of active soundness, this claim
must be modified with an “n-step” prefix. In particular, we shall prove that
the explosive rule is 1-step active unsound, whereas the 2-step variant

t : ϕ,¬ϕ

t+ 2 : ψ
,

where ϕ,ψ ∈ SnLw , is 2-step active sound.

26A similar modification has also been done in [AGGP05b].
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In Section 2.8 we saw that the active version of the classical rule modus
ponens was active sound. The rule is defined by

t : ϕ,ϕ → ψ

t+ 1 : ψ
,

where ϕ,ψ ∈ SnLw . Note that the proof of Theorem 2.4 is valid also when
ϕ or ψ are contradictions. Thus, like in the classical case, ψ follows actively
from {ϕ,ϕ → ψ} even if ϕ (or ψ) is a contradiction.

A more general result follows from Theorem 2.2 if we restrict ourselves
to consistent premises, namely that an inference from consistent premises
using a classically sound inference rule is active sound.

Theorem 3.18. All inferences using active versions of classically sound
inference rules that involve only Lw-sentences and consistent premises are
active sound.

Proof. Let Σ,Θ ⊆ SnLw be such that Σ is consistent, and let the following
inference be an inference that uses an active version of a classically sound
inference rule

t : Σ

t+ 1 : Θ
.

Since the underlying classical rule is sound, Σ |= Θ, and hence, by Theo-
rem 2.2, Σ |=1 Θ, that is, the inference is active sound.

Finally, we note that, without further restrictions on perception func-
tions, active consequence cannot incorporate the observation functions of
step logic (see [EDP90]). Assume ϕ ∈ SnLw is an observation at time t+ 1.
Then the observation rule says that

t :

t+ 1 : ϕ
.

Obviously, for any pair of perception functions, not every model of the per-
ceived premises (∅) models the perception of ϕ. That is, ∅ 6|=1 {ϕ} at time
t, and hence, by Theorem 3.10, the observation rule is active unsound.
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4 Active Consequence is Explosive

In this section the main result of this thesis is presented, namely that the
task of constructing a consequence relation that does not suffer from the
drawbacks of classical logical consequence has failed. In particular, we show
that the logic presented in [AGGP05a] (and [AGGP05b]) is not paraconsis-
tent as anything follows actively from an inconsistency.

Note that the proofs below do not depend on any of the extensions of
the original logic that were made in the previous section.

Theorem 4.1. Let ϕ,ψ ∈ SnLw be arbitrary. Then {ϕ,¬ϕ} |=2 {ψ}. That
is, anything in SnLw follows actively from a direct contradiction.

Proof. Let ϕ,ψ ∈ SnLw be arbitrary, and let Σ = {ϕ,¬ϕ}, Θ = {ψ}, and
Γ = {ϕ → ψ,¬ϕ → ψ}. Assume without loss of generality that the string
representations of ϕ and ϕ → ψ precede alphabetically the representations
of ¬ϕ and ¬ϕ → ψ, respectively, and that ϕ and ψ have k and l sentence-
symbol tokens, respectively. We show that Σ |=1 Γ and Γ |=1 Θ.

Let perut be the perception function at time t determined by the sequence
〈1, 2, 3, . . .〉, with perut (Σ) = {ϕ1,¬ϕ2}. Let per′t+1 be the perception func-
tion at time t+ 1 determined by the sequence

〈k + 1, k + 2, . . . , 2k
︸ ︷︷ ︸

k

, 1, 1, . . . , 1
︸ ︷︷ ︸

l

, 1, 2, . . . , k
︸ ︷︷ ︸

k

, 1, 1, 1, . . .〉,

with per′t+1(Γ) = {ϕ2 → ψi,¬ϕ1 → ψi}. Note that ϕ1 and ϕ2 have no
sentence symbols in common and that every sentence symbol in them is
unique. In particular, this implies that perut (Σ) is consistent (see Theo-
rem 2.1). Now, for every model h of perut (Σ), h(ϕ1) = ⊤ and h(ϕ2) = ⊥,
and thus, h(¬ϕ1 → ψi) = ⊤ and h(ϕ2 → ψi) = ⊤. That is, Σ |=1 Γ.

Let per′′t+1 be the perception function at time t + 1 determined by the
sequence

〈1, 1, . . . , 1
︸ ︷︷ ︸

k

, 1, 2, . . . , l
︸ ︷︷ ︸

l

, 1, 1, . . . , 1
︸ ︷︷ ︸

k

, 1, 2, 3, . . .〉,

with per′′t+1(Γ) = {ϕi → ψu,¬ϕi → ψu}. Let perut+2 be the percep-
tion function at time t + 2 determined by the sequence 〈1, 2, 3, . . .〉, with
perut+2(Θ) = {ψu}. Note that every sentence symbol in ψu is unique and
that therefore ψu is satisfiable. In particular, this means that per′′t+1(Γ)
is consistent. Now, for every model h of per′′t+1(Γ), either h(ϕi) = ⊤ or
h(ϕi) = ⊥, and thus h(ψu) = ⊤. That is, Γ |=1 Θ.

Corollary. Active consequence is explosive, and the logic is not paraconsis-
tent.
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Corollary. The explosive rule is active sound.27

Note that Theorem 4.1 can be generalised to sets of Lw-sentences since
the perception function per′t+1 above easily can be extended in such a way
that the sentences ϕ → ψ and ¬ϕ → ψ follow for every sentence ψ in the
conclusion Θ.

Corollary. Let ϕ ∈ SnLw be arbitrary. If Θ ⊆ SnLw , then {ϕ,¬ϕ} |=2 Θ.
That is, every subset of SnLw follows actively from a direct contradiction.

The following lemma states that a direct contradiction follows from ev-
ery set that is inconsistent with respect to Lw. Then the proposition that
everything in SnLw follows actively from a t-weakly consistent set that is
not t-strongly consistent follows immediately from the preceding corollary.

Lemma 4.2. Let Σ ⊆ SnL be t-weakly consistent. If Σ ∩ SnLw is inconsis-
tent, then

Σ |=2 {Si,¬Si},

for some i ∈ N.

Proof. Consider the identity perception function determined by the sequence
〈1, 1, 1, . . .〉. The identity perception of a set of Lw-sentences is consistent
if and only if the set itself is consistent. In fact, this is the case for any
perception function that maps every occurrence of a sentence symbol using
the same superscript. Thus, if the perception of an inconsistent set is to
be consistent, we must have that every model h of the perceived set has
h(Sji ) 6= h(Ski ) for some i and j 6= k.

Now, let pert be an arbitrary perception function at time t such that
pert(Σ) ∩ SnL′

w
is consistent. (The existence of pert is guaranteed by The-

orem 2.1.) From the observation above, we know that for every model h
of pert(Σ) ∩ SnL′

w
, there exists an index i for which h(Sji ) 6= (Ski ) for some

superscripts j and k. Note that these index-superscript triples 〈i, j, k〉 need
not be the same for every model. Let I be the set of all such triples (possibly
originating from different models h).

Assume 〈i, j, k〉 ∈ I is a triple for which there exists a model h of
pert(Σ) ∩ SnL′

w
that assigns the same truth value to both S

j
i and Ski .

(Note that if such a triple exists then the cardinality of I is strictly greater
than one.) Consider the perception function per′t that maps every sentence-
symbol token to the same sentence symbol as pert does except for the Si-
tokens previously mapped to Ski , which now get mapped to Sji . Now, the

models of pert(Σ) ∩ SnL′
w

that assigned the same truth value to both S
j
i

and Ski are also models of per′t(Σ) ∩ SnL′
w
. We can thus, without loss of

27As noted in the previous section, with a step-sensitive definition of active soundness,
we have shown that the 2-step explosive rule is 2-step active sound. The 1-step version is,
with this definition, proved 1-step active unsound later in this section.
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generality, assume that every model h of pert(Σ) ∩ SnL′
w

assigns different

truth values to the two sentence symbols Sji and Ski for every triple 〈i, j, k〉
in I (i.e. the elements of I do not originate from different models).

We have a perception function pert such that pert(Σ) ∩ SnL′
w

is consis-
tent. Furthermore, there exists a triple 〈i, j, k〉 ∈ I such that every model h
of pert(Σ) ∩ SnL′

w
has h(Sji ) 6= h(Ski ) and thus also h(Sji ∧ S

k
i ) = ⊥ and

h(Sji ∨S
k
i ) = ⊤.28 Denote with Γ the set {¬(Si ∧Si), Si ∨Si} and let per′t+1

be a perception function at time t+1 with per′t+1(Γ) = {¬(Sji ∧S
k
i ), S

j
i ∨S

k
i }.

Then every model h of pert(Σ)∩SnL′
w

is also a model of per′t+1(Γ), and thus
we have shown that Σ |=1 Γ.

Now, let per′′t+1 and pert+2 be perception functions at time t + 1 and
t+ 2, respectively, with per′′t+1(Γ) = {¬(S1

i ∧S
1
i ), S

2
i ∨S

2
i } and pert+2(Θ) =

{S2
i ,¬S

1
i }. Since per′′t+1(Γ) is consistent and every model h of per′′t+1(Γ) has

h(S1
i ) = ⊥ and h(S2

i ) = ⊤, h is a model of pert+2(Θ) as well. That is,
Γ |=1 Θ at time t+ 1, and we have proved that Σ |=2 Θ at time t.

Theorem 4.3. Everything in SnLw follows actively in four steps from a
t-weakly consistent set that is not t-strongly consistent. In particular, every-
thing follows actively from an inconsistent knowledge base.

Note that even though everything follows actively from an inconsistent
set, not everything follows in one step. Consider, for instance, the sets
Σ = {S1,¬S1} and Θ = {S2}. Let pert and pert+1 be arbitrary perception
functions at time t and t+ 1, respectively. There are two cases to consider:
Either pert(Σ) = {Si1,¬S

j
1} with i 6= j, or pert(Σ) = {contra(dS1

, d¬S1
, ct)}.

1. pert(Σ) = {Si1,¬S
j
1}, with i 6= j. Then there exists an L′

w-inter-
pretation h which models the perceived premises but not the conclu-
sion, namely one with h(Si1) = ⊤ and h(Sj1) = h(Sk2 ) = ⊥ for every
superscript k.

2. pert(Σ) = {contra(dS1
, d¬S1

, ct)}. Obviously, there exists an L′
w-inter-

pretation h which models the perceived premises,

pert(Σ) ∩ SnL′
w

= ∅,

but not the conclusion (for instance h above).

Hence, we have shown that Σ 6|=1 Θ. In particular, this means that there
is no equivalence between active consequence and 1-step active consequence
when the conclusion is a subset of SnLw , and thus Theorem 3.10 can not be
generalised to t-weakly consistent sets.

28We allow ourselves to use ϕ ∧ ψ and ϕ ∨ ψ as syntactic sugar for ¬(ϕ → ¬ψ) and
¬ϕ→ ψ, respectively.
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We conclude this section by noting that Theorem 2.2 can be extended to
include also inconsistent premises.29 That is, active consequence is equiva-
lent to classical logical consequence with respect to Lw.

Theorem 4.4. Let Σ,Θ ⊆ SnLw . Then

Σ |= Θ iff Σ |=a Θ.

Proof. Let Σ,Θ ⊆ SnLw . If Σ is consistent, then by Theorem 2.2, Σ |= Θ if
and only if Σ |=a Θ, so assume Σ is inconsistent.

Assume Σ |= Θ. Then, by Theorem 4.3, Σ |=a Θ.
Assume Σ |=a Θ. Then, since Σ is inconsistent, Σ |= Θ.

29As noted above, none of the results presented so far in this section depend on any
extension of the original logic. Theorem 2.2 does, however, indirectly depend on the
refined concept of active consequence presented in Section 3.4.
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5 Conclusions

In this thesis we have analysed a proposal for a semantics for active logic
based on the concept of perception functions. Using perception functions a
notion of perceived temporal structure is defined, which allows inconsistent
knowledge bases to have models. These structures are then used to construct
a consequence relation called active consequence.

Active consequence was previously believed to coincide with classical
logical consequence when restricted to the world language and consistent
premises. We have shown that this identity does not hold due to the prob-
lem of Σ-undeterminism – that there are sentences for which it cannot be
determined whether they follow actively from a given set Σ – and suggest a
refined definition of active consequence as a solution.

Our main result, however, is that we have shown that active consequence
is explosive, that is, that anything follows actively from a direct contradic-
tion. Consequently, and contrary to what has been previously claimed, a
logic based on this consequence relation is not paraconsistent.

5.1 Accomplishments

• We have shown that active consequence is explosive, and thus cannot
be used for a paraconsistent logic.

• We have pointed out that there are sentences which are not Σ-deter-
minable, by which we mean that it cannot be determined whether they
follow actively from a given set Σ.

• As a result of the problem of Σ-undeterminism, active consequence
does not coincide with classical logical consequence when restricted to
the world language and consistent premises.

• We have suggested a refined definition of active consequence, which
solves the problem of Σ-undeterminism and makes active consequence
equivalent to classical logical consequence when restricted to the world
language and consistent premises.

• Several lemmas and theorems regarding active consequence have been
proved. These results shed more light on active consequence and its
relation to classical logical consequence. The results and their proofs
can probably also be reused or serve as inspiration in future work on
a modified consequence relation.

• In particular, it has been proved that active consequence is equivalent
to one-step active consequence when the premises are consistent and
the conclusion is part of the world language. Furthermore, the restric-
tion to consistent premises cannot be relaxed since every conclusion
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follows in two steps – but not in one step – from directly inconsistent
sets. Similarly, anything follows in four steps from inconsistent sets.

• As part of our analysis, we have reformulated the original theory in
order to gain stringency and understandability. Several errors in the
original paper [AGGP05a] (and [AGGP05b]) have also been corrected.

• We have stressed that the restrictions imposed on the logic by the def-
inition of the language L render a logic that is too weak. In particular,
metareasoning cannot involve world knowledge.

• We have also noted that even if the language restrictions are relaxed in
order to allow non-trivial metareasoning, modelling reasoning about
future beliefs is problematic with the current La-semantics.

• Since there exist perception functions that render inconsistent per-
ceived knowledge bases, we have concluded that with the original defi-
nition of active consequence from [AGGP05a], everything follows vacu-
ously in one step from an indirectly inconsistent set. We have proposed
a minor modification of the definition as a solution.

5.2 Future Work

In order to meet the requirements put on active logic, a new consequence
relation that is not explosive needs to be defined. Perhaps it is possible
to redefine active consequence or at least to use some part of the original
theory, such as perception functions or perceived temporal structures.

Future work will also need to relax the restrictions on the language L so
that metareasoning can involve world knowledge.

Non-trivial reasoning about future beliefs requires the La-semantics to
be refined in such a way that not every affirmative sentence about the future
is false by definition. One way could be to extend the La-structure to include
also the agent’s future reasoning. This way, also sentences about the future
would become Σ-undeterminable at time t + 1 and would thus, in a sense,
be contingent rather than determined by their syntactical structure.

If active consequence can be made non-explosive, it would be interesting
to analyse the consequences of modifying the relation between Σ and the
agent knowledge base KBa

t by allowing Σ to be a proper subset of KBa
t in

the definition of 1-step active consequence.
Conjecture 3.15, Conjecture 3.16 and Conjecture 3.17, which characterise

n-step active consequence when the conclusion is in SnLa, should be formally
proved using the lemmas and ideas found in Section 3.5.
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