
Reactive Cooperation of AIBO Robots

Iñaki Navarro Oiza

October 2004

Abstract

The aim of the project is to study how cooperation of AIBO robots could be
achieved. In order to do that a specific problem, in which two robots have to
pass the ball between them, was introduced. To cooperate, the robots must be
able to communicate, therefore a suitable module was developed. In order to
design the solution there was the need for an analysis of the existing framework
used by Team Chaos in RoboCup. It was found that self-localization module was
not functioning sufficiently well. This made it difficult to create a deliberative
solution due to the lack of an environment map. Therefore a reactive approach
was taken. While performing the passes each of the robots had a specific role:
receiver or kicker. This role was decided taking into account, among other
things, the information received from the other robot. Several experiments
were undertaken investigating how effectiveness at the given task depends on
the type and amount of shared information. Four solutions were implemented
and their results compared. It has been shown that given the circumstances the
robots may cooperate with reasonable accuracy.

Contents

1 Introduction 3
1.1 The Robots . 3
1.2 The Environment . 4
1.3 The TCC Framework . 5

1.3.1 Vision Module . 8
1.3.2 Communication Module 8
1.3.3 Behavior Module . 9
1.3.4 WorldState Module . 10
1.3.5 Tekkotsu Module . 10

1.4 Cooperation . 10
1.5 Goal of the Project . 11

2 Analysis of the TCC Framework 12
2.1 Vision . 12

2.1.1 Segmentation . 12
2.1.2 Object Recognition . 14
2.1.3 Movement of the Head . 17

2.2 Localization . 17
2.3 Behavior . 18

2.3.1 Kicks . 18
2.4 Conclusions . 21
2.5 Code of the Analysis . 22

3 Communication Module 23
3.1 Description and Implementation 23
3.2 Limitations . 25
3.3 Code of the Communication Module 26

4 Passing the Ball Problem 27
4.1 Definition of the Problem . 27
4.2 Solution for the problem . 28

4.2.1 Expected Results . 29
4.3 Basic Behaviors . 30

4.3.1 Go To Object Behavior 30
4.3.2 Go Around Object Behavior 32
4.3.3 Align Object With Object Behavior 33

4.4 Finite State Machines . 35
4.4.1 Object Oriented Implementation 36

1

4.4.2 Find and Look for Ball FSM 36
4.4.3 Go and Align FSM . 37
4.4.4 Kick FSM . 40
4.4.5 Kicker FSM . 43
4.4.6 Receiver FSM . 45
4.4.7 Searcher FSM . 47
4.4.8 Main Pass Ball FSM 48
4.4.9 Relationship Between the FSMs and the Basic Behaviors 48

4.5 The Roles of the robots . 48
4.5.1 Deciding the roles by stigmergy without any communication 48
4.5.2 Deciding the roles by exchanging the distance to the ball 51
4.5.3 Deciding the roles taking in account the own perception

with communication . 52
4.5.4 Fixed Roles, without communication 53
4.5.5 Without taking in account the perceptions, exchanging

the roles by token passing. 53
4.6 General Results of the Investigation 54
4.7 Code of the solution . 55

5 Conclusions and Future Work 56

Bibliography 58

A Segmented Images 60

B Object Recognition Statistics 66

C Localization Statistics 82

D Measures of the Kicks 86

E Glossary of Constants of the Behaviors 90

2

Chapter 1

Introduction

The aim of the project is to define and solve some problems of cooperation
between robots. The robots used are AIBO ERS-7. They interact in a soccer
environment, one that is used in the RoboCup [1] competition. RoboCup is a
robot conference and tournament in which teams of different universities and
nationalities participate. There are different leagues, each with its own rules,
for different types of robots. In the four-legged league the teams are formed by
AIBO robots, the same ones as the used in this project.

The rest of this Chapter describes the robots, the environment and the
framework used. It also gives some notions about cooperation and explains
the goal and scope of the project. The framework used was very new and
no documentation or specification was provided. That is the reason why the
first step was analysis and evaluation. Those are explained in Chapter 2. The
robots, in order to cooperate, need a communication facility. No such module
was available in the framework, so it had to be developed. The details are
shown in Chapter 3. In Chapter 4 the Ball Passing problem is presented and
the proposed solutions and their results discussed.

1.1 The Robots

The robots used in the problem are two ERS-7 [2, 3], the last generation of the
AIBO Robots developed by Sony Corporation. ERS-7, as the rest of the AIBO
family, is a four legged robot with the appearance of a dog. It is around 20
cm high, 18 cm wide and 32 cm long. Its head as well as each leg has three
degrees of freedom. In addition to that the robot has a tail and two ears that
can be moved, although it is mainly useful for debugging purposes. The other
actuators are LEDs and a speaker.

The main sensor of the robot is a CMOS color camera, with a resolution of
416x320 pixels, located in the head. AIBO also posses a set of infrared sensors
in order to measure distances, placed in the chest and in the head. In addition

3

it has an acceleration sensor for all three axes. Other inputs are a pair of
microphones and some buttons for interaction with humans. It has Wireless
LAN capabilities to communicate with the computer and other robots. The
different parts of the robot can be seen in Figure 1.1.

Figure 1.1: Different parts of ERS-7.

The robots are white and grey, but for easier detection by image process-
ing routines, they were dressed with red patches similar to the official ones of
RoboCup. In Figure 1.2 a picture of the dressed robot can be seen.

1.2 The Environment

The environment where the robots act is just like the one used officially in
RoboCup. The Robot World Cup Initiative is a group of robotic activities

4

Figure 1.2: One of the ERS-7 used, with the red patches attached.

like conferences and competitions held every year [1, 4] and attended by differ-
ent universities from all around the world. It aims to promote the research in
robotics by defining a benchmark: making robots to play soccer. In the compe-
tition part of RoboCup there are many leagues: Simulation, Small Size, Middle
Size and Four Legged, among others. The field used in this project and also the
ball are the same as the ones used in the Four Legged League.

The football field is 420 cm long and 270 cm wide. It is surrounded by an
inner small white wall of 10 cm height to avoid that the robots go out of the
field. There is an outer white wall of 1 m high to avoid that the robots see
things from outside. The floor is a green carpet. One of the nets is yellow and
the other blue. There are also four landmarks, one in each corner of the field,
made of a combination of two colors: pink and blue or pink and yellow. They
are placed in predefined positions to allow the robots to localize themselves.

The only other object in the environment, except the robots themselves, is
an orange ball, 5 cm of radius. To make vision and object recognition easier (or
at all feasible) objects are uniquely colored. In Figure 1.3 a schematic of the
field can be seen. A photo of the field is shown in Figure 1.4.

As it will be said in Chapter 4 only the ball and the other robot will be
considered and used in the Ball Passing problem, so the rest of the objects of
the environment will not be important.

1.3 The TCC Framework

TCC Framework is the software framework created by the members of Team
Chaos Challenges (TCC) and gets the name from that. TCC is a part of Team
Chaos, formed by students and professors of Lund University and Blekinge
Institute of Technology. TCC have participated this year in the Challenges part
of RoboCup 2004. This framework was build from scratch in order to participate
in this competition. The Framework is not only to be used in the RoboCup but
also in other projects like the one presented in this report.

5

Figure 1.3: Schematic of the field.

Figure 1.4: Half part of the field.

The Framework is based on the OPEN-R SDK [3, 5, 6] and the Aperios Op-
erating System [3] provided by Sony to program the different Sony robots like
the AIBO ERS-7. The TCC Framework is also based on Tekkotsu [7] that is an-
other framework for AIBO, developed by Carnegie Mellon University. Tekkotsu
provides the low level interface with the robot in order to get information from
it and order actions. In Figure 1.5 the relationship between Aperios, OPEN-R,
Tekkotsu and TCC Framework is shown.

The Framework consists of 4 modules (Tekkotsu, Vision, Communication
and Behavior) that operate in a Token Ring architecture, plus a fifth module
called WorldState that contains all the information concerning the environment

6

Figure 1.5: Relationship between Aperios, OPEN-R, Tekkotsu and TCC.

and the robot that can be accessed by the others. There exists yet another
module that operates at a lower frequency and is in charge of the localization.
This module can be disconnected when the localization is not used. The other
modules work cyclically: when is the turn for one of them it gets WorldState,
when it is done it leaves WorldState with the new data and passes the token to
the next module. The loop as it can be seen in Figure 1.6 takes the following
order: Tekkotsu, Vision, Communication, Behavior and finally Tekkotsu again.

Tekkotsu

Vision

Communication

Behavior
World

State

Set

Get

SetGet

Set

Get

Set Get

Figure 1.6: TCC Framework Modules (Without the Localization Module).

7

1.3.1 Vision Module

The Vision Module takes the sensory information from the WorldState and
processes it. The main task is the recognition of the objects made in two steps:
first the Image Segmentation, and after that the Object Recognition.

Image Segmentation is a process in which the value of the pixels of the
image are transformed from the original range of values to a very reduced one.
In this case the segmentation has as results the colors used in the RoboCup
competition. In addition the result is given as blobs, that is groups of pixels
with the same color. The segmentation is done using the SRG algorithm [8] of
Team Sweden.

The inputs of the Object Recognition are the results of the Image Segmen-
tation. The aim of this module is to identify the different objects in the envi-
ronment (nets, other robots and landmarks) and estimate their position. Once
an object is identified its position is estimated taking into account the place of
the blob in the images, its size and the position of the head when the image
was taken. For each object the information resulting from Object Recognition
is the following:

Distance The distance from the center of the robot to the center of the ob-
served object (expressed in mm).

Theta The horizontal angle from the center of the robot to the center of the
object (expressed in radians).

Epsilon The vertical angle from the center of the robot to the center of the
object (expressed in radians).

Confidence A value between 0 and 1 that gives information about how sure it
is that the object is there. In the frame that the object is seen Confidence
is set to 1. When time passes this value is decreased. When the value
reaches 0 there is no certainty at all that the object is there any more.

Accuracy Is a value between 0 and 1 that gives an idea of how much position
error is expected.

All these results are placed in WorldState so that other modules can make
use of them.

The Vision Module is also in charge of taking the information from the
infrared sensors a preprocessing it. In addition it has the responsibility of the
head movements.

1.3.2 Communication Module

This module is responsible for the communication between the different robots
and the computer and among the robots. It is explained in Chapter 3.

8

1.3.3 Behavior Module

The Behavior Module takes the information produced by the Vision Module
and the one stored in the received messages in order to take different actions.
These actions as will be explained in Chapter 4 are mainly done by Finite State
Machines and some basic behavior functions.

The different actions are performed by modifying some properties of the
robot present in the WorldState:

• Related to the movement of the head:

setPan Sets the pan angle of the Head overwriting the desired position
given by vision.

setTilt Sets the tilt angle of the head overwriting the desired position
given by vision.

setNod Sets the nod angle of the head overwriting the desired position
given by vision.

Object.Importance This value tells Vision Module the importance of
every object. Then Vision will move the Head according to it. The
value must be between 0 (not important) and 1 (most important).
When one object has importance of 1 and the rest 0 the Vision makes
the head to move until it sees that object, and then stays all the time
looking at it.

• Related to the movement of the robot:

Speed Gives the velocity of the translation movement. Must be a value
between 0 (stop) and 1 (maximum velocity)

Alpha Tells the angle of the translation movement, expressed in radians
between 0 and 2π. 0 Means forward and π backwards

Spin Tells the robot the rotational velocity. Between -1 and 1. -1 means
maximum velocity clockwise, 1 maximum counterclockwise and 0 no
rotational movement.

• Related with two low level filters that the robot has to avoid obstacles:

CollisionDetection When it is set to true, if the infrared sensor of the
chest finds something in front of it, then it makes the robot to turn
around to avoid the obstacle. The actions given by Speed, Spin and
Alpha are not taken in account. It can be very useful when the robot
gets stuck against the boundary wall.

ObstacleAvoidance This Filter is a little more complex. It makes the
robot to go around an object, when the robot founds an object in
front of itself then turns around the object. A list of the objects to
avoid must be provided.

• Related to their types of actions:

WagTail If it is set to true it moves the tail. If false is stopped.

9

FlapEars If it is set to true it moves the ears. If false is stopped.

Switch LEDs The LEDs are controlled with some variables of World-
State.

1.3.4 WorldState Module

The WorldState holds all the information concerning the environment and the
robot so the different modules can share it. The data contained in WorldState
is: sensor information, processed sensor information, the actions to take, the
messages to send and received, etc.

1.3.5 Tekkotsu Module

This module makes two things. First it reads the WorldState and moves the
effectors in the appropriate way. Then it reads the sensor information and copies
it to WorldState so that any module can read it. It is, as it was said before, the
only interface with the robot.

More information about the Framework can be found in Chapter 2 were the
different features of it are analyzed.

1.4 Cooperation

When two or more robots coexist in the same environment it can be said that it
is a multi-robot system, but that does not mean that it is a cooperative system.
There can be two robots performing different tasks and having no idea of the
existence of the other. Cooperation occurs when some robots work together to
perform a common task. It is not necessary that they know about the existence
of the others. If a robot knows about the existence of the other it can be said
that it has the Awareness property. A robot with this last property can be
coordinated or not. Coordination occurs when the actions performed by each
robot take in account the actions executed by the other, this does not mean
that communication needs to take place [9].

In this project the robots cooperate since the passing ball is a common task.
They are also aware since they know of the existence of the other robot. In
addition, as it will be shown in future sections, they are coordinated.

There can be cooperation and even coordination without communication.
In coordination without communication robots coordinate by making use of
stigmergy, this is they know about the other and decide their actions just by
perceiving the environment [9, 10, 11]. Some experiments designed to solve the
problem work with communication, others do without it.

Iocchi [9] and Murphy [12] divide the groups of robots in homogeneous, those
in which every robot has the same structure (both in a hardware and software

10

perspective), and heterogeneous when at least one of the robots has a different
property than the others. In this problem the robots are the same and also their
software, so they are homogeneous. They do another classification: distributed
and centralized systems. Centralized are those in which there is one robot or
computer that makes decisions for others. In distributed ones, as in this project,
each robot takes its own decisions.

One of the problems of multi-robots system that Murphy [12] lists is inter-
ference. Having more than one robot makes the possibility that they interfere
with each other making the success more difficult. This was observed in the
experiments.

1.5 Goal of the Project

Many types of different cooperation problems could be defined: cooperative
movement of objects, searching for objects, passing the ball from one robot
to the other, etc. After much deliberation, due to the requirements of those
problems, the Ball Passing was chosen. Cooperative movement of objects would
need from vision module the recognition of those possible objects, and it was not
available. Searching for objects in a cooperative way needs a self-localization
facility that, as it will be shown in Chapter 2, is not working sufficiently well
for such a purpose.

The Ball Passing problem may be formulated as follows: there are two robots
on the field. At first both have to find the ball, and after that they should start
to make passes from one to the other. In this thesis it was intended to define,
solve and analyze a family of such problems, varied by different amount and
type of information shared.

11

Chapter 2

Analysis of the TCC
Framework

In order to do the experiments with cooperation between the AIBO robots,
more exactly how the Ball Passing problem, it was necessary to know the qual-
ity of the TCC Framework. In a design process analysis is always present in
order to identify the weaknesses of the approach [13]. Statistics must be taken
because two measures are never the same in a dynamic environment due to the
complexity of robot-environment interaction. Because of the early state of the
Framework not everything was working perfectly. In addition, no tests of its
capabilities have been made. In order to continue with the behavior part of
the project it was necessary to know how Vision, Localization and the basic
behaviors worked. The previous experience was that while working with the
Framework, if something failed it was very difficult to localize the source the
problem (Segmentation, Object Recognition, Localization).

It was really important to know whether the Localization worked and to what
extent, because in order to do some kind of cooperation the self localization is
extremely important. Some of the objects in the environment, as Landmarks
and Nets, were analyzed, even though finally they were not used at all in the
final solution of the problem. In the next sections the analysis of the different
parts of the Framework is presented.

2.1 Vision

2.1.1 Segmentation

The most basic step of Vision is the Segmentation. If it is not working prop-
erly then the Recognition will not work, and not Localization, and so on. The
segmentation used is SRG Segmentation from Team Sweden (based on region

12

growing) that has been used before without problems. So the only thing remain-
ing to be tested was to check if the current color tables were working properly.
In order to do it a total of 85 frames of the field were taken from different places
and of the different objects and colors of the environment.

The images are correctly segmented with all the defined colors identified in
most of the frames. Sometimes when an object is near the borders or corners
of the frame is not properly segmented. The reason is that the image got from
the camera is darker on the borders. This is not a big problem since a color
that is in the center and also in the borders is expanded from the center to the
outer region most of the times. Then only small objects close to the borders
are sometimes not seen. But this is not a problem because they usually will be
recognized in the next frame when robot will turn the head towards them. A
possible solution, as it was commented during the developing of the Framework,
is to make a filter of the image that will remove these differences of color of the
borders. In Figure 2.1 this problem can be observed.

Figure 2.1: Colors not segmented in outer region.

Other problem found is that when the ball is very close to the yellow net
the difference between the colors is not big enough and the net is segmented as
orange. So this is something to take in account while developing the behaviors.
A similar problem is that the blue net is sometimes seen as carpet, in one of the
pictures, when the robot is very close to it. Also pink is expanded on the wall
in one of the frames, but it is only one case of a big number of frames where
pink appears. Next three figures show these problems.

Figure 2.2: Yellow net segmented as orange.

The color table for green is not very good since lots of times it is seen as
carpet. This is not a problem because green is not used at this moment.

As a conclusion it can be said that the segmentation with these current color

13

Figure 2.3: Blue net segmented as carpet.

Figure 2.4: Pink expanded to the wall.

tables works rather well and most of the colors are segmented correctly in most
of the frames. All the images taken and segmented can be seen in Appendix A.

2.1.2 Object Recognition

In order to test the Object Recognition some measures of the object properties
(confidence, distance, theta, epsilon) were taken from fifteen different positions.
These positions can be found in Appendix C. From each one of these positions
and for every one of the objects seen, one thousand measures were taken, one
measure every six frames of the framework. To evaluate theses measures some
statistics have been calculated: average of the measured distance, average of the
error of the distance, average of the absolute value of the error of the distance,
minimum and maximum error of the distance, percentage of the distance error;
average, minimum and maximum values of the error of the theta coordinate,
and number of measures with confidence bigger than 0. These statistics can
be found in Appendix B. In addition all the measures taken can be found in
http://ai.cs.lth.se/xj/inaki/measures.tar

Ball

The recognition of the ball is very accurate in general. The average of the error
of the distance is around or below 10% for most of the fifteen cases analyzed.
When the distance to the ball is very big the relative error is bigger. Also in
one case the relative error is big when the ball is very close, but the absolute
error is small, in this case, only 10 cm.

14

In case of the measure of the relative angle to the ball it can be seen that the
maximum error found for all the cases is 0.1 radians that is quite small. There
is one exception when the ball is very close (50 cm) to the robot and the error
is bigger (0.5 radians). For every of the fifteen different positions the average of
the absolute error of the angle is never bigger than 0.05 radians and in most of
the cases around 0.01 radians, except in the case where the ball is very close.

As it has been mentioned for every position one thousand measures were
taken, but not all of them were used to do the statistics, only the ones with the
confidence value bigger than zero. It can be seen for the different positions of
the ball how many times the confidence is bigger than zero. This will indicate
how often the ball is seen since confidence is set to 1 when the ball is seen and
is decreased with time. The closer the ball is, the more values we get with
confidence bigger than zero. On the other hand the bigger the relative angle to
the ball, the less often the ball is seen. This can be explained by the properties
of the camera and the movement of the head.

As a conclusion it can be said that the ball is recognized rather well. The
relative angle and distance are estimated reasonably well except for very long
and very short distances.

Nets

The nets are not seen with the same precision as the ball. The average of the
absolute error of the distance to the nets is in most of the cases between 20%
and 25%. Only in two cases it is around 15% and in one below 10%. But there
are also cases with bigger average errors, like the one where a net is seen from
on side instead of the front, with an average error of 43%, that is quite big. It
is probably because the net is seen from the side and then the size of the blob
is smaller than expected.

In other case the average of the error of the distance is 64.7%. Looking
deeper in the measures one can see that sometimes the nearest landmark is
recognized as the net so both the angle and distance are wrong. If the pink blob
of the landmark is not seen it is difficult to solve this problem, but in this case
the landmark is recognized at the same time, that is in the same frame. This
should not happen since landmarks and nets cannot have the same theta. It
can be a problem for some behaviors if the landmarks are often recognized as
nets. Due to this problem also big errors in the angle estimation were detected.

The estimation of other three distances to a net had big errors of 43.5%,
43.2% and 59%. They are probably too big to try to do any type of localization.

For the error in the relative angle to the net it may be seen that the average
of the absolute value of the error is in most of the cases below 0.1 radians, and
the maximum errors are in most of the cases bigger than 0.8 radians. These
results are worse that the ones received for the ball. In addition, the errors
of the angle for the measures where the distance estimation had big values are
bigger, with average error values of the angle of 0.3 and even 0.8 radians.

15

The nets in the cases that they are seen, have confidence bigger than 0
for most of the frames. From most of the positions 100% of the frames have
confidence bigger than zero. Only when the angle to the net is π/2 or −π/2
this percentage decreases to 50%, because when the dog is looking to one side
and turns the head to the opposite side, a lot of time passes and the confidence
decreases to zero.

To sum up it can be said that the errors in the distance are quite big (20-
25%) and also a bit too big in the angle estimation. Most problematic are those
cases where errors are bigger (around 50%) and landmarks are identified as nets.

Landmarks

Landmarks are recognized better than the nets. The averages of the error of
the distance go from 4% to a maximum of 30%. There are two cases where
errors of 85% and 81% are found. But in these two cases only in 9 of 1000
frames confidences was bigger than zero. That means that something was seen
as landmark but that in fact was not a landmark. It must be taken in account
that vision can sometimes report objects which in fact are not visible. Of course
the angles measured in these two cases are wrong, since no landmark was there.

The accuracy about the theta angle that indicates the position of the land-
marks is a little better than for the nets but worse than for the ball. The
averages of the errors have a range between 0.01 radians and 0.1 for the differ-
ent positions. The maximum errors for the different positions go from 0.05 to
0.7.

To conclude it can said that the landmarks are seen with much more precision
than the nets. The error in the angle is quite small, and in the distance in most
cases it is reasonably good (under 15%) and in some goes to 30% in average,
that is not so bad.

Robot

The recognition of the other robots was not implemented when the analysis was
done. The only recognition was made by detecting the main blob of the color
of the robot (red). This recognition calculates the angles (theta and epsilon)
pretty well, but they have not been analyzed in detail. The distance estimation
is not working since the blobs seen of the robot have different sizes depending
if they are from the front, side, back or legs.

A possibility to get an approximate distance estimation is to change the
clothes of the robot so every part has the same size. The robots were dressed
with patches of the same height. Then the distance was estimated based in
the height of the blob. This approach was tested but it did not work very well,
yielding a lot of bad measures. It was mainly because of no precise segmentation
but also because the blobs are seen in different ways depending on from which
side the robot is seen. Finally, the robot distance estimation was not used.

16

Another problem found was that sometimes parts of the environment were
identified as red blobs, and because there was no algorithm to decide whether
a red blob is a robot or not, then they were considered as robots. This made
passing the ball almost impossible since it tried to align with spots of the field
segmented as red instead of the robot. To solve this, very basic conditions were
added to the Vision Module to make the object recognition more restrictive:

• The blob must me at least three pixels high and three pixels wide.

• The blob must be seen in five consecutive frames.

These conditions remove most of the spurious blob detection since most of the
times the blob is seen only in one or two frames and its size is very small,
sometimes only one pixel. The problem of this restrictions is that sometimes
the robot is not identified, or it takes much time to do it.

The main characteristics of object recognition can be shown in Table 2.1 for
the different objects analyzed.

Object Ball Nets Landmarks
Maximum of the average distance error 1.7% 13.3% 4.7%
Minimum of the average distance error 19.9% 64.7% 30.7%

Maximum distance error (mm) 1318 3673 2783
Maximum of the average theta error (rad) 0.101 0.119 0.109

Maximum theta error (rad) 0.495 1.434 0.941

Table 2.1: Summarize of the analysis of object recognition.

2.1.3 Movement of the Head

The movement of the head allows the robot to see the environment in 180
degrees around it. But because the head is sometimes pointing too low near
objects that are high, like landmarks, they can not be seen. Maybe it could be
useful to change the movement of the head to circles, looking from left to right
with one tilt and nod angle, and from right to left with bigger values of these
angles. This will allow the robot to see the ball when it is near and also the
landmarks1.

2.2 Localization

In order to test the Localization the estimated position of the robot was mea-
sured from fifteen different places taking one thousand measures from each one.
These measures were taken at the same time as the measures of the objects

1Landmarks were finally not used for the proposed problem, so it was not necessary to
modify the head movement.

17

(landmarks, nets and ball) so they can be compared. If the object recognition
is not working well then localization will not work, but it could happen that
object recognition was working properly but not self localization. The results
of the measures of the localization can be found in Appendix C. The measures
can be found in http://ai.cs.lth.se/xj/inaki/measures.tar

Localization was not working very well. Average errors of the distance for
the fifteen positions are between 50cm and 150 cm. That is too much for the
size of the field. Maximum distance errors are for most of the positions bigger
than 2 meters. Also the position estimation evolves jumping from one point to
another ones far away from the others. The estimation of the angle has average
errors between 0.2 and 0.7 radians. In addition the confidence value is always
set to zero, so it is never known how good is the estimation. All these things
make localization completely useless, at least for the purpose of this project.

The reason why localization is not working could be that the estimation
of the distance to the object is not accurate enough and that sometimes not
enough landmarks and nets are seen. On the other hand, the estimation of the
angle to objects is very good. In addition, from one position the two adversary
landmarks are seen with average distance errors of 25 and 33 cm. and with an
average of the angle error of only 0.035 and 0.039 radians. The net is seen from
that position with an average of the error of the distance of 50 cm and of 0.018
in the estimation of the angle. But as a result the localization has an average
error of 99 cm and a maximum distance error of more than 2 m. This means
that there is a problem not only with the Object Recognition module but with
the Localization as well.

2.3 Behavior

The behaviors available when the analysis was done were not basic and general
enough so it was decided to create new ones. Then none of the ones available in
the TCC Framework were analyzed, except the different kicks that were going
to be reused. It was important to know how they work, so the analysis focused
on them.

2.3.1 Kicks

The Framework has a total of thirteen different kicks, but there was no specifi-
cation of them. That is the reason why only some of them were analyzed. A kick
is a sequence of movements of the joints of the robot that under certain condi-
tions make the ball move. In Table 2.2 the basic information about all of them
can be seen. Only some of the forward kicks have been analyzed because kicks
HEADER and CHEST are harmful for the robot since it hits itself against the
floor. Side kicks (HEADLEFT, HEADRIGHT, LIGHTLEFT, LIGHTRIGHT,
LEFT100 and RIGHT100) have not been analyzed. Some tests were made of

18

Kick Num WS Kick Name Direction Analyzed
1 TWOHAND Forward Yes
2 HEADLEFT Left No
3 HEADRIGHT Right No
4 LEFTLIGHT Left No
5 RIGHTLIGHT Right No
6 CHEST Forward No
7 CHESTLIGHT Forward Yes
8 HEADER Forward No
9 BUTT Backward No
10 PUSH Forward Yes
11 CHEST100 Forward Yes
12 LEFT100 Left No
13 RIGHT100 Right No

Table 2.2: Kicks of the TCC Framework.

them but the result is that they are not accurate at all, and the resulting direc-
tion is highly dependent on the original position of the ball. BUTT kick was not
analyzed because it is useless to kick backwards in the context of the project.

To analyze the kicks each one of them was repeated 21 times and the resulting
position of the ball was measured. These measures can be found in Appendix D.
The ball was put close enough so that the robot could perform the kick. The
analyzed kicks are: TWOHAND (Kick 1), CHESTLIGHT (Kick 7), PUSH (Kick
10) and CHEST100 (Kick 11). In Figure 2.5 there is a graph with the resulting
positions for every kick. It gives a visually very first idea of the quality and
properties of each kick. Axes are in centimeters.

It can be seen that Kick10 makes the ball go around 50 cm from the center
of the robot, that is around 30 cm from where the ball was kicked. This makes
the kick useless for passing the ball to other robot. Kick1 makes the ball go
farther (around 1 m or more), but not in all the occasions because sometimes
the ball is not well kicked and finishes very near. Kick7 sends the ball to a
distance around one meter. It can be seen that the angle deviation is big, but
this deviation occurs in the last part of the ball path. Kick11 has a distance of
around 1.5 meters and a small angle error.

When a kick is going to be performed the ball must be close to the robot
because if not then it is not sure what is going to happen. If it is close enough
then the kick will be performed correctly. If the ball is farther than a certain
range, called now Range1, it will be touched but nothing will be known about
the performance of the kick. If the ball is even farther, more away than Range2,
then it will not be even touched by the robot. In Table 2.3 these distances
are shown for the analyzed kicks. The distances are measured from the chest
of the robot to the center of the ball. The third column of the table indicates
what happens with the robot after the kicking. These values were obtained
experimentally.

19

Figure 2.5: All the results of the analyzed kicks.

20

Kick Num Range1 Range2 What happens after the kick
1 5 cm 11 cm moves forward 5 cm
7 5 cm 9 cm moves backward 5 cm
10 10 cm 10 cm moves backward 4 cm
11 5 cm 12 cm moves backward 2.5 cm

Table 2.3: Conditions for the Kicks.

Some statistics about these kicks are shown below. In Figure 2.6 the main
statistical properties of the Y distance, i.e. how far the ball goes in the direction
the robot looks, can be seen for the four kicks.

Figure 2.6: Y statistics for the four analyzed kicks.

2.4 Conclusions

As it has been said above, the object recognition and estimation of angles and
distances work reasonably well for the objects in the environment, in particular
for the ball. An exception is the recognition and distance estimation of the
other robot, since it is only recognized by the blob color without any shape
features and because of this there is no knowledge about the distance. This is
very important to take into account since the aim of the experiment is to pass
the ball from one robot to the other. So the design of the solution must consider
that the recognition of the other robot does not work rather well.

The other main conclusion that can be derived from the analysis is that
the self localization can not be used because is not accurate enough and no
information about the confidence is provided. Then no maps of the environment

21

can be build and all the behaviors must be mainly reactive since the robots would
only have temporal and relative information about the environment.

2.5 Code of the Analysis

A program to store the measures taken was developed. It can be found as the
rest of the code of the project in the CVS of the TCC Framework. The files used
to do it were: W2File.h and W2File.cc that are located in TCC/Framework/
Behavior. These files are also available in http://ai.cs.lth.se/xj/inaki/

22

Chapter 3

Communication Module

In order to do the cooperation experiments with the robots a communication
functionality was necessary. The Communication Module of the TCC Frame-
work was not developed, so it was necessary to create it. The module should
be general enough to allow communication between every pair of robots and
also between a computer and any robot. In addition it was expected that ev-
ery module of the Framework (Vision, Behavior, etc.) would be able to send
messages to its corresponding module of another robot. Also it was assumed
important that the interface to send and receive messages would be easy to use
by every module. The interface used is one incoming mailbox in each robot per
pair of communicating units so every module can read messages from there. In
addition, there are outgoing mailboxes to send messages to the other robots or
to the computer.

3.1 Description and Implementation

As it has been observed above, a connection between every pair of robots or
robot and computer is necessary to be established. This communication is made
using the Wireless-LAN facility of the AIBO robot and TCP/IP connections.
TCP enables two hosts to establish a connection and exchange streams of data.
It also guarantees delivery of data and that packages will be delivered in the
same order in which they were sent. That is the reason why it was decided to
use TCP instead of UDP that provides few error recovery services.

OPEN-R has the TCP/IP functionality built-in [14]. The creation of the con-
nections, sending and receiving is made by using the interface given by OPEN-R.

The first thing that the Communication Module does is to create the the
TCP connections. In a TCP connection there is always a client and a server.
The server is running waiting for a client connection. When the client tries to
connect then if the server accepts the connection it is established. Since then
there is no difference between server and client and both of them are able to send

23

and receive messages through that connection. As connections must be created
between all robots, for each connection one robot must be the server and the
another one the client. It was decided that robots with higher IP would be th
servers for the robots with lower IP. In addition every robot is the server for the
computer-robot connection, so a telnet client can be used from the computer to
communicate with the robot.

The OPEN-R does not provide the facility to the server to identify from
which IP a connection is requested. This is an important issue in order to
know with which robot the communication is being established. To solve this
problem, a different port is used depending on which robot the server is receiving
the connection from. Connections from the computer will be made from the port
PORTBASE, connections from Robot1 to any other robot will be made from
port PORTBASE + 1, from Robot2 to Robot3 or higher from PORTBASE +
2, and so on. This is also useful for debugging purposes since a connection from
the computer can be done pretending to be done from any robot.

In the beginning every robot is set as a server for the computer, and a server
for every robot with lower IP number than itself. In addition it tries to connect
as a client to the robots with higher numbers than its own. When connections
are requested or accepted a function is called automatically by the system and
the connections are established. Once all the connections between one robot
and the rest of the hosts exist ,the communication between them may start.
The communication with the computer is treated in a separate way, since it
is not always necessary. Once the connection with the computer is established
communication can start.

In every loop of the Framework the outgoing mailboxes are checked to see if
there are new messages to send. The mailboxes are buffered because there can
be more than one message to send, but only one message per connection and
frame can be sent. The reason is that until the message is received no other
message can be sent through that connection, so if the previous message has
not been completely sent then the new message has to wait.

Messages can be received in any moment of the Framework loop, by a call
from the system to a function that must deal with the received message. This
function can not copy the message directly to the incoming mailbox since there
is no synchronization and in that moment there could be a module making use
of that mailbox. So messages are copied to a temporary mailbox. When it is
turn for the Communication Module, it reads the temporary mailboxes to see
if there are new messages. If there are any, they are copied to the incoming
mailboxes so that any module can read them. If the incoming mailboxes are
full the oldest messages are deleted without being read by any module.

Every module can make use of the outgoing mailboxes to send messages
and of the incoming mailboxes to read them. The first character of the message
indicates the type of the message in order to know which module has to take care
of it. The reading function of the incoming mailboxes must be done separately
for each module, since each one does a different task. Once a module has
read a message from the incoming mailboxes it must mark it as read so that
this position in the buffer can be reused. The incoming mailboxes are objects

24

of the WorldState. To send a message there is a PutMessage function in the
WorldState that copies the message to the outgoing mailbox in an appropriate
place.

The different type of messages handled by the Communication module are
the following:

W If a W is received as the first character then the WorldState structure is
sent. This is requested mainly by the computer in order to receive the
whole state of the robot.

E This is the Echo message and the received message is sent back without the
initial E. It is really helpful for debugging purposes.

S If the first character is an S then the received message is the SharedInfo
structure that contains information to share between the robots.

B If a B is received as the first byte, then an integer with the size of WorldState
is sent. It is requested by the computer.

In the Behavior Module two types of messages may be sent or received:

P This message contains the information that the robots share in the Ball
Passing Problem. Once it is received it is copied to the appropriate place.

0-9 If the first character is a digit between 0 and 9 then a variable of the
Behavior module is set to that value. It is used as a menu, to change the
actions of the robot from the computer.

3.2 Limitations

There are some limitations of the Communication module. Some of them have
an easy solution but other, due to technical problems, must probably remain
the same.

• The robots must be switched on in an appropriate order, that is, first the
one that works as server of all the others, then the one that is only client
of the first one and the server of the rest, and so on, until the one that
is client of all the others. This is necessary because when a client tries
to make a connection the server must be working. Otherwise there is a
connection error. The solution is very easy: just make the client robot
retry the connection until the server is on and the connection can be done
established.

• If one connection is broken because one robot is switched off then after
switching it on again the connection will not be reestablished. This can
be solved in a similar way as the previous problem. In case of the commu-
nication computer-robot, if it is finished then the robot can admit later
more connections. It is possible to make connections from the computer
and then disconnect and connect again.

25

• As it was said before, only at most one message per connection can be
sent per frame. In addition, if messages are sent repeatedly between all
the robots continously, this is every n frames the communication gets
stuck. This happens because one robot has not enough time to send the
messages and receive the ones that are sent to it. For example, if it only
sends messages the received messages are not read and have to wait. But
the waiting time may be very large maybe seconds or even few minutes.
During this time the robot that is the sender of that message is waiting
for the acknowledgment that the message was received.

It is really difficult to determine if this situation is going to happen since
it depends on many factors: size of the message, frequency with which he
message is sent, number of robots in the net, amount of computational
work in every robot, etc. The only way to know if this problem takes
place is to experiment, just by checking whether the problem occurs and
lowering the frequency with which the robots exchange the information.
Even then it is impossible to be sure that the problem is not going to
appear unless the protocol is normally verified, which seems unlikely in this
complex setting. A possible solution when the robots need to broadcast
their information is to use the UDP protocol instead the TCP and if even
though it is not a safe protocol. Then these big delays and the blocking
situation would disappear.

3.3 Code of the Communication Module

The code developed for this module can be found through the CVS of the
TCC Framework in the path Tcc/Framework/Wireless. The files that im-
plement the communication are: Communication.h, Communication.cc and
TCPConnection.h. These files are also available in http://ai.cs.lth.se/xj/
inaki/

26

Chapter 4

Passing the Ball Problem

4.1 Definition of the Problem

As it has been explained in Chapter 1 we have chosen the problem the problem
of passing the ball from one robot to the other as a simple framework to test
robot cooperation. In the beginning of the project the idea was that the robots
would make passes going towards the net in order to finally score. This is, both
robots would look for the ball and the one that finds it first tells the other and
goes to a position between the ball and the net that they have to score to. Then
the first robot passes the ball to the other. If the receiver robot and the ball are
close enough to the net then it tries to score. If not, the first robot should move
between the other and the goal and both continue like this until they score.
The problem can be extended to do it with more than two robots. In order to
solve this problem localization is necessary because robots must know, at least
roughly, their position in the football field. As it was observed in Chapter 2,
the localization is not working properly so the problem was simplified. The
requirement of going towards the net while passing was removed and only the
successful passes are the main focus of the problem. The problem is set as
follows:

1. One of the robots must look for the ball, find it and go to it. The ball is
located in a random place of the field.

2. It must find the other robot.

3. Finally it has to perform a kick to pass the ball to the other robot.

The aim is not only to solve the problem of passing the ball, but as well
to repeat the experiment exchanging different types of information between the
robots. Then different solutions of the same problem will be found and their
results will be compared. In the beginning, the solutions proposed were based
on different amount of shared information:

27

• Sharing the position and heading of both robots and of the ball, taking
into account also their relative perception of the other robot.

• Sharing the position and heading of both robots and of the ball, without
taking into account their own perception of the other robot.

• Sharing only the ball position.

• Sharing only the robots absolute position.

• Sharing the relative position of the other robot, i.e. each robot receives
information about where the other robot perceives itself.

• Without sharing any information.

Because Localization is not working, these problems were modified. In the fi-
nal solution the robots can have two roles, receiver or kicker, respectively. These
roles can be either fixed or decided dynamically on the basis shared information.
Five different ways to decide the role assignment have been analyzed:

• By stigmergy, without communication;

• Exchanging the distance to the ball;

• Taking in account the own perception and priorities, with communication;

• Fixed roles, without communication;

• Without taking in account the perceptions, only token passing.

They are explained in more detail in Section 4.5 below.

4.2 Solution for the problem

Because of the lack of self localization, the solution proposed is mainly reactive,
and no map of the environment is built. Every action is based on the last
perceptions of the environment, with measures only relative to the robot. Some
information from the other robot may be used too, but only to decide who
is supposed to be the kicker, not to interact with the environment. The only
information from the Vision Module used in the solution for the problem is
Distance, Theta and Confidence of the ball, and Theta and Confidence of the
other robot.

As it has been said in the previous section, each robot is going to have one
a role: receiver or kicker. There is a third role used when robots have not
found the ball yet and it is not decided which one is going to kick and which to
receive the ball. Then the problem may be divided in three subproblems that
are related to each other but can be solved separately.

The first step in all three subproblems is to search for the ball until it is
found, so an algorithm to look all around the field was designed. If the role

28

assumed is the third one (i.e. search without a ball yet), then the robot must
go towards the ball in order to become the kicker. When the robot is near the
ball then its role will change and it will become the kicker. This process will be
explained in Section 4.5, but for now the important thing is that the robot looks
and finds the ball, and then goes to it in order to become the kicker. It can
also become receiver if the other robot approaches the ball faster and becomes
kicker.

When the robots role is receiver and the ball has been found, the robot must
go towards the ball and stay at a distance of about 1 m looking at it. In this
way the robot will stay waiting until the other robot passes the ball to it.

If the robot is the kicker then after finding the ball it will go to it. The robot
will go around the ball searching for the other robot. When it finds the robot
it aligns and perform the kick. Because the receiver is supposed to be looking
at the ball, the ball will finish in front of it robot and it will be able to continue
with kicking it back.

Sections 4.3 and 4.4 explain how the solution was implemented.

4.2.1 Expected Results

Our expectation is that such role assignment will lead to correct behaviors of
the robots and that interactions between the robots will enforce role changes
accordingly. When the ball is passed from one robot to the other, the receiver
should be looking at the ball so that it will eventually capture it. Also when
the robot is the searcher, this is, it has the third role, it will become the kicker
after approaching the ball. Some possible problems of this approach are listed
below:

• The algorithm searching for ball consists of walking through the field in
a random way. It is supposed that sooner or later the ball will be found
but there is no way to predict how much time it will take.

• If the kicker is going around the ball to find the receiver, it could happen
that the receiver would not be able to see the ball anymore and would
start to finding it somewhere else.

• The robots can collide and get blocked. With the limited sensors of the
robot and without any estimation of the distance to the other robot it is
very difficult, if not impossible, to avoid this risk.

• The robot can get stuck inside the net without being able to get out of it.

• When the ball is near the boundary walls and the robot tries to go around
the ball, it is usually not going to be able to do it since it is not going
to have enough space. There is no localization and no recognition of the
walls so it is really difficult to avoid this situation. A similar problem may
occur when the robot is the receiver and tries to go backwards in order to
stay at a distance of 1 m, when the ball is close to the wall.

29

If any of the last three problems occurs human interaction will be necessary in
order to remove the robots from a blocked state.

4.3 Basic Behaviors

As the first step towards the solution, some basic behaviors have been created in
order to be reused in more complicated ones. The aim of the design was to make
them easy to use and simple to understand. They are implemented as functions
that must be called every cycle. All of them have some prerequisites that must
me fulfilled in order to work correctly, and also have some final outcome which
they achieve. The designed and implemented behaviors needed to solve the Ball
Passing Problem were: Go To Object, Go Around Object and Align
Object With Object.

4.3.1 Go To Object Behavior

This is the simplest Behavior. The function receives as its arguments an object
if the environment and a requested distance. It forces the robot to stay at the
requested distance to that object front of it, with a relative angle to the object
of 0 radians. To perform this behavior the actions of the robot are defined as
follows:

• The angular velocity, spin, is proportional to the relative angle to the
object (theta). It is 0 in the range −ThetaRange1 to ThetaRange1, when
theta is near 0. This way the robot turns faster to the object when theta
is bigger and it decreases turning speed to zero when theta is in vicinity
of 0. In Figure 4.1 spin dependence on theta is shown. Spin can not be
smaller than -1 or higher than 1, so the proportional part of the function
is limited. The constant ThetaRange1 and others that will appear later
in this chapter are listed and described in Appendix E.

• The direction of movement, alpha, is always 0 radians (forward) or π
radians (backward) depending on whether the robot is too close or too far
from the object.

• The speed depends on the distance to the object. If the robot is far
from the object, the speed takes the maximum value. If it is close to
the object then it decreases at square velocity with the distance. If the
distance is within the range of ±DistanceRange1 of the desired distance
then velocity is zero so oscillations are this way avoided. Proaching with
maximum velocity first and then decreasing it with distance allows the
robot to be fast near the desired position and at the same time stopping
slowly. In the beginning a linear proportional control instead of square
was implemented, but the latter leads to better results. In Figure 4.2
the speed dependence on distance is shown. Similar to spin, the speed is
limited by an upper bound of 1, corresponding to the maximal speed of
the robot.

30

- Θ

6

Spin

πThetaRange1−π

1

−1

Figure 4.1: Spin dependence on theta.

-

distance

6

Speed

0

1

desiredDist DistRange1

Figure 4.2: Speed dependence on distance.

• The importance of the object that the robot goes to is set to one (maxi-
mum), for the rest of the objects it is set to zero. So the head of the robot
is always looking at that object.

Prerequisites

The prerequisites for this basic behavior are simple: the object must be seen in
that frame or in the previous ones, so its confidence must be bigger than zero.

Outcome

Eventually the robot should fulfill the following relations with the object:

31

• |object.theta| ≤ ThetaRange1

• desiredDistance−DistanceRange1 ≤ object.distance ≤ desiredDistance+
DistanceRange1

Results

This behavior was tested for a number of distances (1000 mm, 400 mm, 300mm)
and several objects (ball and net) with good results. The robot was able to go
fast near the requested position and finally approach it slowly. Sometimes some
oscillations were detected, due to the variations in the distance estimation to
the object, but they were not severe.

4.3.2 Go Around Object Behavior

This behavior makes the robot turn around an object within a predefined dis-
tance and in clockwise or counterclockwise direction. The object, distance and
direction are passed as parameters of this function. This behavior is useful when
the robot has found an object, for example the ball, and wants to search for
another (like the receiving one) without losing the first one from sight. The
actions forming this behavior are the following:

• The angular velocity, spin, is, as in the Go To Object behavior, propor-
tional to the angle of the object that the robot goes around. Also it has
a range ±ThetaRange2 within which spin is zero. This allows the robot
to have the object always in front of it, while in the same time that there
are no oscillations.

• The speed is set to a fixed value.

• The direction of movement, alpha, depends on the distance to the object
and on its direction (clockwise or counterclockwise). As it can be seen in
the Table 4.1 if the robot is in the range desiredDistance±DistanceRange2
then it just moves to the right (alpha = −π/2) or left (depending on the
direction). If is it outside this range, it will try to approach or repel the
object wile in the same time it goes right (or left).

Alpha(distance, direction) counterclockwise clockwise
desiredDist− distance > DistRange2 −3π/4 3π/4
|desiredDist− distance| ≤ DistRange2 −π/2 π/2
desiredDist− distance < −DistRange2 −π/4 π/4

Table 4.1: Alpha(distance, direction) in radians.

• As in the Go To Object behavior, the importance of the object is set
to one. Then the robot is always looking at the object.

32

Prerequisites

As in the Go To Object behavior, the object must be seen in that frame or
in the previous ones. So its confidence must be bigger than zero. Although it is
better to use this behavior only when the robot is close to the desired distance,
and preceding it with the Go To Object behavior that approaches an object
in a more efficient way.

Outcome

The robot will not stop at any predefined position but will rather be going
around it trying to fulfill the following requirements:

• |object.theta| ≤ ThetaRange2

• desiredDistance−DistanceRange2 ≤ object.distance ≤ desiredDistance+
DistanceRange2

Most of the time the robot will be heading the desired object and will stay close
to the desired distance from it.

Results

The behavior was tested only with the ball as the object since it was the only
case needed for the Ball Passing Problem. It was tested for several distances
between 600 mm and 200 mm. It worked generally well performing the task
correctly. Problems were detected for distances below 250 mm. This happened
because the estimated distance to the object, in this case to the ball, gave false
values telling the robot that the ball was farther than it really was. This made
the robot lose the ball under itself. The problem is avoided by not using the
desired distance set below 300 mm.

4.3.3 Align Object With Object Behavior

When the robot wants to kick the ball it has to align it with the position it wants
to score to (net, other robot, etc). This behavior was created for this purpose.
Similarly to the other basic behaviors, it is used by calling a function were the
objects to align and the requested distance from the robot to the first object
are the arguments. The object closer to the robot will be called object1, the
other object2; with their respective angles Θ1 and Θ2, and distances distance1
and distance2. The behavior needs to know Θ1, Θ2 and distance1 but not
distance2. All these elements are illustrated in Figure 4.3 where object1 is the
ball and object2 the other robot.

The way to implement this behavior is very similar to how Go Around
Object behavior was implemented, but here the direction of movement is de-
termined by the difference between Θ1 and Θ2.

33

Figure 4.3: Robot, Ball and Dog with their related distance1, distance2, Θ1

and Θ2.

• The spin is as in the other behaviors, proportional to the angle with the
object, in case of object1 proportional to Θ1. Also there is no spin when
Θ1 is inside the range ±ThetaRange3, so oscillations are canceled.

• The direction of movement, alpha, depends on the distance to object1 and
on the difference Θ1−Θ2. It can be seen in Table 4.2 where the different di-
rections taken depend on distance1 while approaching or avoiding object1
or keeping the same distance; or depending on Θ1 − Θ2, moving to the
left, right or not at all. All these directions of movement make the robot
to maintain the desired distance while at the same time it tries to align
object1 with object2. There is one case when |desiredDist−distance1| ≤
DistRange3 and |Θ1 − Θ2| < ThetaDifferenceRange where no direction
is indicated. The reason is that for these conditions the robot is aligned
with both objects and stays at the desired distance to object1 so speed is
zero and there is no sense in specifying any direction.

• The speed is set to a fixed value except for the condition when the robot
is aligned. That speed is set to zero, as it was explained above.

• In this behavior the importance of all objects except object1 (set to 1)
is set to zero, so the robot is always looking at object1. The robot will
see also object2 since it must be in a similar direction to be able to align
them.

Prerequisites

It is necessary to have seen object1 and object2 in that frame or in previous
ones. Their confidences must be bigger than zero. It can be useful to use first

34

Alpha(dis,Θ1,Θ2) Θ1 −Θ2 < −R |Θ1 −Θ2| < R Θ1 −Θ2 > R

desiredDist−
distance1 > −3π/4 π 3π/4
DistRange3
|desiredDist−
distance1| ≤ −π/2 − π/2
DistRange3

desiredDist−
distance1 < −π/4 0 π/4
−DistRange3

Table 4.2: Alpha(distance1,Θ1,Θ2) in Radians. R is ThetaDifferenceRange.

Go Around Object behavior around object1 and once object2 is seen, apply
the aligning behavior.

Outcome

Eventually the robot will fulfill the following relations. Due to its spin move-
ment:

• |Θ1| ≤ ThetaRange3

And due to its translation movement:

• desiredDistance − DistanceRange3 ≤ distance1 ≤ desiredDistance +
DistanceRange3

• |Θ1 −Θ2| < ThetaDifferenceRange

Results

The behavior was tested with ball as object1 and net and the other robot as
object2. It worked pretty well aligning successfully the objects. As in the case
of Go Around Object behavior it did not work always for desired distances
under 250 mm, since sometimes it received false distance values losing the ball
under the robot.

4.4 Finite State Machines

The Behaviors described in Section 4.3 are just basic behaviors used by perform-
ing function calls, but in order to create more complex behaviors a structure
is necessary. The approach chosen was based on the Finite State Machines

35

(FSM), where the states that define action to be taken and transitions between
the states depend on the environment and the actions taken. With the FSMs
problems can be split in steps, going from one state to the next when some
conditions are fulfilled and also going back to previous steps when necessary.
In addition, having nested FSMs, with states that are implemented by other
FSMs, is a good way to divide the problem. In this way some behaviors can
be reused by different FSMs. The FSM are Moore machines, where the actions
only depend on the current state and not on the transitions.

4.4.1 Object Oriented Implementation

Choosing the way to implement the FSMs was an important design decision.
The classical way to implement an FSM is by using switch-case structures where
each case is a state and where for each one of them the transitions are checked
and the actions taken. The previous experience was that this way software
becomes very complicated when the FSMs grow and it is very difficult to have
nested FSM and reuse the code. That is the reason why an object-oriented
solution was chosen.

The solution is based on the ideas of Faison [15] about FSMs. Each state
is build as a C++ class. All the state classes inherit from the same class. All
these classes implement two basic methods: Do() that performs the appropriate
actions for that state, and CheckT() that check the possible transitions to other
states. If there is a transition to other state CheckT() returns a new object of
the class corresponding to that state. If there is no transition then it returns
the current state as an object. Then an FSM is implemented as a loop in which
for every frame an instance of a class state calls the CheckT() function to return
itself or another object, and calls the Do() function that takes the appropriate
actions.

The advantage of this approach is that every state can be built and modi-
fied separately. In the beginning there is only one instance of the state class,
that is only one FSM with one current state. Later some of the states can be
implemented as subordinated FSMs by having instances of state classes inside
their Do() function.

4.4.2 Find and Look for Ball FSM

This behavior will look for the ball in the environment and once it is found, the
robot will look at it. In the beginning the idea was to implement this behavior
in a deliberative way taking into account the global position of the robot and,
if possible, the information given by the other robot. But, as it has been said in
Section 2.4, this is not possible since that information is not available. Therefore
a reactive solution was taken and it is not claimed to be very efficient.

The behavior is implemented as an FSM with three basic states. The first
one is Walk Forward where the robot goes straight moving the head from
left to right to look for the ball. To avoid collisions the infrared avoidance

36

filters are connected, so the robot turns around when it finds an object (like the
boundary wall). This state is quit when the ball is seen (Ball.Confidence ≤
ConfidenceRange1) and the next state is then Look To Ball. In this case
ConfidenceRange1 is equal to zero. It also finishes after a fixed timeout if the
ball has not been seen. In this case the next state is Turn Around.

The Turn Around state is similar to the Walk Forward, but in this
case the robot spins around itself without any translation movement. Instead of
moving the head it is fixed in the middle position. The direction of movement
depends on the direction in which the ball was seen last. This allows the robot
to find the ball more easily. In this case the infrared avoidance filters are dis-
connected because the robot is already turning and is not going to collide with
the walls. The transitions are similar to the ones of Walk Forward state: if
the ball is seen then the next state is Look To Ball, and if the time the robot
is turning is bigger than a timeout then it jumps to Walk Forward State.

The Look to Ball state just makes the robot to spin towards the ball until
it is inside a range ±ThetaRange4, then it stops. Here, the ball importance is
set to one, so the head is always pointing to the ball. This state is not strictly
necessary but ensures that the robot does not lose the ball just after finding it.
If in this state the ball is lost then the next state will be Turn Around. The
FSM with the three states and their transitions can be seen in Figure 4.4.

There are no prerequisites to be fulfilled before applying this behavior.
As outcome or result we will in the end get the ball confidence bigger than
ConfidenceRange1 and the Θ angle to the ball between ±ThetaRange4.

Results

The behavior makes the robot to search randomly all the environment. By
going forward it is able to explore different positions and by turning it is able to
search in every direction while at the same time changes the direction to the one
in which it will walk next. The infrared filters are very useful when the robot
collides with an object. The behavior is not very effective since sometimes it
takes long time to find the ball. But this is not very important for Ball Passing
Problem because once the ball is found and the robots start to pass the ball
then next search for the ball is in general faster since the ball is usually near.
Sometimes the robot takes a lot of time to get out of a net when is inside it.

4.4.3 Go and Align FSM

The aim of this behavior is to align the robot with the ball and the other robot.
But the only prerequisite is that the ball must be seen. Currently the robot
will look for the other one in order to align it. The behavior is implemented as
an FSM that can be seen in Figure 4.5. It consists of three states that will be
described below.

37

Turn

Around

Walk

Forward

Look

to Ball

Timer1IsOver &
Ball.Confidence<=ConfRange1

Timer2IsOver &
Ball.Confidence<=ConfRange1

Ball.Confidence>
ConfRange1

Ball.Confidence<=
ConfRange1

Ball.Confidence>
ConfRange1

Timer1IsOver &
Ball.Confidence<=ConfRange1

Timer2IsOver &
Ball.Confidence<=ConfRange1

Ball.Confidence>ConfRange1

Figure 4.4: Find And Look For Ball FSM.

Go To Ball This state makes use of the Go To Object basic behavior to
make the robot go to the ball. So its prerequisite is this of this basic
behavior: ball confidence must be bigger than zero. In addition, it could
be useful that the angle theta to the ball would be within a certain range,
1 radian for example, but it is not strictly necessary. The outcomes will
be those of Go To Object behavior taking into account the desired
distance of value Distance1: |ball.theta| ≤ ThetaRange1 and Distance1−
DistanceRange1 ≤ ball.distance ≤ Distance1 + DistanceRange1.

If the distance to the ball is bigger than the value of DistanceRange4
then there is no transition. If the distance to the ball goes below this value
then there is a transition to the next step. In order to be sure that this
transition will eventually happen it must be certain that any of the final
outcomes will fulfill it. In the worst case Distance1−DistanceRange1 <
DistanceRange4. With the values used in the implementation this con-
dition is fulfilled.

Go Around Ball The aim of this state is to make the robot go around the

38

Go to

Ball

Go Around

Ball

Align

with Ball

Ball.Distance <
DistanceRange4

Ball.Distance >
DistanceRange5

Ball.Distance < DistanceRange5 &
OtherRobot.Confidence>ConfidenceRange3

OtherRobot.Confuidence <
ConfidenceRange2

Ball.Distance >=
DistanceRange6

Ball.Distance >=
DistanceRange4

Ball.Distance < DistanceRange5 &
OtherRobot.Confidence<=ConfidenceRange3

OtherRobot.Confuidence >= ConfidenceRange2 &
Ball.Distance >= DistanceRange6

Figure 4.5: Go And Align FSM.

ball at a fixed distance in order to find the other robot. To do it the
Go Around Object basic behavior was used. The prerequisite is this
of this basic behavior: ball confidence bigger than zero. The direction of
movement depends on the theta angle at which the other robot was seen
last time, so in case of losing it it will be found again easily. This is not
always an optimal strategy but it is in most of the cases. There is no
concrete outcome, but first the robot is always going around the ball with
a fixed distance to it, and also after a while the other robot will be found,
its confidence will be bigger than zero.

If the distance to the ball is bigger than DistanceRange5 then the next
state is again Go To Ball so the robot approaches the ball better
before going around it. If the other robot confidence is bigger than
ConfidenceRange3, this means that the robot has been seen and the
FSM jumps to Align With Ball state. If none of these things happen
the robot continues going around the ball in this state.

39

Align With Ball In this behavior the robot aligns itself with the ball and the
other robot. To do it the Align Object With Object basic behavior
is used where object1 is the ball and object2 is the other robot. The
prerequisites are those of the basic behavior: confidences of the ball and
the other robot must be bigger than zero. The confidence for the robot
will be certainly positive since it is the condition for the transition to this
state, and also if later is not fulfilled there is a transition back to Go
Around Ball state. The outcomes of this state are those of the basic
behavior used to implement it:

• |Ball.Theta| ≤ ThetaRange3

• Distance2−DistanceRange3 ≤ distanceBall ≤
Distance2 + DistanceRange3

• |Ball.Theta−OtherRobot.Theta| < ThetaDifferenceRange

If the other robot confidence decreases under ConfidenceRange2 then
there is a transition to Go Around Object state in order to find the
other robot again. Also if the distance to the ball is bigger than
DistanceRange6 then there is a transition to Go To Ball state.

The prerequisites to use the whole state machine are the prerequisites for
the first state of the whole FSM: Ball confidence must be bigger than zero. This
must be taken in account outside the FSM while using it. The final outcomes
that the FSM must reach are the ones of the Align With Ball state. If this
happens the robot will be able to kick the ball in order to pass it to the other
robot.

Results

This Behavior works reasonably well. The robot is able to go to the ball and
go around it until it finds the other robot and then align. But sometimes the
robot loses the ball under its head while it is going around the ball. On a few
occasions the robot was not able to identify the other robot and did more than
one complete turn around the ball before seeing the receiver.

The FSM can be modified to score a goal instead of passing the ball to the
other robot, by changing the second parameter to be a net.

4.4.4 Kick FSM

The aim of the Kick FSM is to pass the ball to the other robot. The prerequi-
sites to perform the kick correctly are the following:

• The ball must be at a distance below 400 mm.

• The Θ angle to the ball must be in absolute value smaller than an exper-
imentally calculated value of π/6 rad.

40

• The Θ angle to the other robot must be within a range, too. But this
range is big, about ±π/3 rad. The reason is that the robot realigns with
its objective just before kicking.

• The distance to the receiver robot is recommended to be under 1.5 m. If
not, the possibility that the ball will finish at some other place increases.

The behavior is implemented as a set of steps. Each step is implemented as
a state of the FSM. The FSM, Figure 4.6, has the following states:

GoForward The robot is not able to see the ball when it is too close to it. This
is because the ball ends up under the head so the camera can not see it
any longer. But in order to perform the kick the ball has to be very near.
The robot approaches the ball going to it for a fixed period of time. The
time has to be fixed since the ball disappears under the head and no visual
feedback can be collected. The direction of movement is zero radians while
the ball is not seen, and is corrected to a different angle when the ball is
seen so it will finish as centered as possible. Ball importance is set to one
and the rest of the objects have it set to zero. It is really important that
the ball will finish between the front legs and under the head of the robot.
This is a difficult operation and that is the reason why the speed value
used is very low. In this state most of the failures of the kicks occur due
to the lack of knowledge of the position of the ball. When this state is
finished there is only a transition to the Stop state.

Stop This state consists on a stop for 0.5 seconds so the robot is completely
still before starting the next state: CenterKick.

CenterKick It has been said before that robot, ball and receiver robot must
be aligned before starting the kick process, but in the GoForward state
they can be not aligned, so a realignment is necessary. In this state the
ball should be under the head of the robot, and in this condition if the ball
is kicked it will take the direction of the heading of the robot. So the angle
that the kicker robot sees the other robot must be zero radians or close
to it. This is achieved by changing the spin until the theta angle to the
receiver robot is within a certain range defined by ThetaRange5. In that
case a transition to Stop2 state takes place. On the other hand, if the
value of confidence to the receiver robot goes below a ConfidenceRange4
then the Kick FSM is aborted by jumping to the Finish state. In this
state the ball importance is set to zero and the other robot‘s importance
to one.

Stop2 This state has the same function as the Stop state above: to isolate
the movements between the previous and the next state. After 1 second
it jumps to the KickAction state.

KickAction This is the state in which the actual kick occurs. The TCC Frame-
work provides the user with twelve different kicks, but as it was observed
in the analysis in Section 2.3.1, only four of them are useful. One of those
four must be chosen. The PUSH kick is too soft with distances of around

41

GoForward

Stop

CenterKick

Stop2

KickAction

WaitDone

Finished

 Timer3IsOver

 Timer4IsOver

 |OtherRobot.Theta|<=ThetaRange5

OtherRobot.Confidence<=
ConfidenceRange4

 True

 KickIsDone

 Timer5IsOver

 Timer3IsOver

 Timer4IsOver

 |OtherRobot.Theta| >=ThetaRange5

 KickIsDone

 Timer5IsOver

 True

Figure 4.6: Kick FSM.

50 cm The TWOHAND has a more appropriate distance, but has prob-
lems with the direction the ball is sent to, since the robot does not grab
the ball before kicking. From among CHESTLIGHT and CHEST100 the
first one was chosen because it goes farther. And going farther implies
smaller probability that the ball will end in another direction during the
first part of the ball path.

WaitDone In KickAction state the kick is triggered but not finished, so in

42

this state the robot waits until the kick is actually done. After that the
next state is Finished state.

Finished This state is only to indicate to the users of the FSM that the kick
process has finished, either with or without success.

Results

The kick or passing action was the most difficult part of the Ball Passing Prob-
lem. It is mainly because during kicking the ball is not seen and because the
recognition of the other robot is not good, since it is only based on the use
of the red biggest blob. It is also difficult to measure the success of this part
since it depends a lot on the lighting conditions (varying in different parts of
the environment) and on the irregularities of the floor that make the ball to do
strange movements while the robot approaches the ball and also when the ball
is kicked. It can bee said that sometimes it seems to work pretty well with a
80-90% of success (the ball finishes very closely to the other robot) and other
times this percentage goes to 20%. No exhaustive measures have been made.

This behavior can be easily modified to kick towards the net instead of
passing the ball. So it can be used in other problems of the RoboCup domain.

4.4.5 Kicker FSM

As it was mentioned before the robot can assume three different roles depending
on whether it is the owner of the ball, so it has to pass it to the other robot, or
the other is the owner of the ball, so it has to receive it, or there is no owner
determined, so both robots want to become it. When the robot is the owner of
the ball then its behavior is given by the Kicker FSM where the robot must
first find the ball, then find the other robot and finally pass the ball to the
receiver. The FSM is represented in Figure 4.7 and has the following five states:

Find Ball This state make use of the Find and Look for Ball FSM so it
has no prerequisites and its outcome is the same as that of the FSM that
it uses: ball.confidence > 0 and |ball.theta| ≤ ThetaRange4. Then it is
certain that sooner or later there will be a transition to the Go To Ball
state since the conditions for it are the same as the outcomes, but with
different range values chosen so that they overlap.

To Ball This state has as its aim to make the robot go to the ball, then go
around it to find the other robot and align with it. All these tasks are
provided by the Go and Align FSM, so it is used here. Its prerequisite
is then ball confidence bigger than zero, that is fulfilled because of the
transition from the Find Ball state. The outcome is that of the FSM and
can be found in Section 4.4.3. There are two transitions from this state.
The first one is when the ball is lost, when its confidence is below the value
ConfidenceRange6, and the next state is then Forced Recover. The
second one is when the robot is ready to kick the ball. The conditions to
do it are the following (all of them must be fulfilled):

43

Find

Ball To

Ball

Kick

Ball

Forced

Recover

Recover

Ball.Confidence>ConfidenceRange8 &
|Ball.Theta| < ThetaRange6

Ball.Confidence<=
ConfidenceRange6

ReadyToKick

KickIsFinishedTimer6IsOver

Ball.Confidence>=ConfidenceRange7
|| Timer7IsOver

Ball.Confidence<=ConfidenceRange5 ||
|Ball.Theta| > ThetaRange6 Ball.Confidence>

ConfidenceRange6

& ReadyToKick

KickIsFinished

Timer6IsOver

Ball.Confidence<ConfidenceRange7

& Timer7IsOver

Figure 4.7: Kicker FSM.

• OtherRobot.Confidence ≥ ConfidenceRange8

• Ball.Confidence ≥ ConfidenceRange9

• Ball.Distance < DistanceRange7

• |Ball.Theta−OtherRobot.Theta| < ThetaDifferenceRange2

• |BallTheta| < ThetaRange7

All these conditions become eventually true because the outcome values
of the Go and Align FSM and the range values are chosen to overlap.
So the kick will be performed by jumping to the Kick Ball state. Is it
important to observe that there is no communication between the kicker
and the receiver in order to decide when the kick must be done. In fact the
only information that the kicker has about the receiver is the angle but
not the distance and not its orientation. In the beginning it was though
that some type of explicit coordination was necessary, but later was seen
that this was not the case. If the receiver robot is not well oriented and
is moving then it will be difficult for the first and fourth condition to be
fulfilled. The same situation happens if the receiver robot is too far from
the kicker. As it will be explained later in the Receiver FSM the receiver
robot tries always to stay at a fixed distance to the ball and looking at it,
to make the reception easier.

44

Kick Ball This state uses the Kick FSM to pass the ball to the other robot.
The prerequisites are then the same as those of the Kick FSM. They
are fulfilled since the transition from To Ball state ensure them. The
one related to the distance to the other robot will be in general true
because of the behavior of the receiver robot, as it has been said above.
After performing the kick the next state is always Forced Recover,
independently of whether the kick was a success or not.

Forced Recover When the ball it is lost it happens normally because it fin-
ishes under the robot head. So the best action is to go backwards until
the ball is found or a timeout occurs. In the first solution it was done this
way, but some oscillations that made the robot to move backward and
forward several times were detected. This was due to the ball distance
estimation that gave farther distances just when the ball was found and
made the robot to move forward instead of backward. To avoid it in this
state the robot is forced to move backward for a fixed time so if the ball
is under the robot, when this timeout happens the ball will be sufficiently
far away and no oscillations will occur. After the timeout is over the next
state is Recover.

Recover This state is a continuation of Forced Recover. It does the same
action, go backwards, but if the ball is seen then a transition to Find
Ball takes place. Also there is a timer that enables the same transition
in case the ball has not been found for a given time.

Results

It can be said that the FSM does its job well. It looks for the ball, then lets
the robot go to it, then align with the other robot, and finally pass. If the ball
is lost it will be looked for under the robot and if this does not help with the
Find And Look for Ball behavior. Many times it happens that the ball is
lost under the head, mainly because the kick is aborted or because the ball is
pushed while aligning. The initial state is Recover and not Find Ball. This
is because sometimes after a pass the robot becomes the kicker (since it has
received the ball) and the ball is under its head.

4.4.6 Receiver FSM

The Receiver FSM rules the behavior of the robot in case when the other robot
is the owner of the ball. The aim of the robot here is to find the ball and then
go to it and stay at a fixed distance of approximately 1 m. In Figure 4.8 it can
be seen that the FSM has the following three states:

Find Ball This state is exactly the same as as the one of Kicker FSM, with
the same actions, prerequisites and outcomes. If ball is seen and its theta
angle is below a threshold, that is fulfilled by the outcomes, then a transi-
tion to Stay Distance Ball state occurs. If not, it remains in the same
state looking for the ball and centering it.

45

Find

Ball

Stay Dis−

tance Ball

Recover

Ball

Ball.Confidence>ConfidenceRange10 &
|Ball.Theta| < ThetaRange8

Ball.Confidence<=
ConfidenceRange11

Ball.Confidence>ConfidenceRange12
| | Timer8IsOver

Ball.Confidence<=ConfidenceRange10 ||
|Ball.Theta| >= ThetaRange8

Ball.Confidence>
ConfidenceRange11

Ball.Confidence<=ConfidenceRange12

& Timer8IsOver

Figure 4.8: Receiver FSM.

Stay Distance Ball The aim of this state is to make the robot stay at a fixed
distance to the ball and looking at it so the robot can receive a pass. To
perform it the Go To Object basic behavior is used. The prerequisites
of this FSM are those of the basic behavior: the object, in this case the
ball, must be seen. The outcomes are also those of Go To Object:
the ball distance is at at the desired distance ±DistanceRange1 and the
angle theta in the range ±ThetaRange1. That will make the robot ready
to receive the ball. It could be thought that while the ball is passed
the robot will be going to try to maintain the distance to it by going
backwards. But this does not happen since the ball moves much faster
than the robot does, so in case of success the ball ends between the legs of
the robot. If the ball is lost then there is a transition to Recover Ball
state.

Recover Ball This state is the same as that of the Kicker FSM. In this case
the Forced Recover Ball state is not necessary since the oscillations
do not take place. When the ball is found, even if there is a distance error,

46

the robot goes backwards because the required distance to go in this case
is bigger, of about one meter. If the ball is seen or if the timer is over
then there is a transition to Find Ball state. It can be thought that
the receiver will never lose the ball under itself since it stays at one meter
distance to the ball. This is not true because when the robot receives the
ball it may land under the robot and in some cases it is still taking the
receiver role instead of the kicker.

Results

The FSM works well making the robot to find the ball and then stay at the
fixed distance. It works much better than the Kicker FSM since it needs not to
deal with the robot recognition, only with the ball.

4.4.7 Searcher FSM

When there is no owner of the ball then each robot must look for the ball and
go to it. When on of the robots is close to the ball then it becomes the owner,
unless the other robot had done it before. Then the aim of this behavior is to
look for the ball and after that approach it. We can see in Figure 4.9 that the
FSM consists of only two states:

Find

Ball

Go Near

Ball

Ball.Confidence>ConfidenceRange13 &
|Ball.Theta| < ThetaRange9

Ball.Confidence <= ConfidenceRange13 ||
|BallTheta| > ThetaRange9

Ball.Confidence>ConfidenceRange13 &
|Ball.Theta| < ThetaRange9

Ball.Confidence <= ConfidenceRange13 ||
|BallTheta| > ThetaRange9

Figure 4.9: Searcher FSM.

Find Ball It is the same as the ones of Kicker and Receiver FSMs and is
also using the Find And Look For Ball FSM. Here once the ball is
seen and is within a range of ±ThetaRange a transition to Go Near
Ball occurs.

Go Near Ball It makes the robot go near the ball. It uses the Go To Object
basic behavior so the prerequisite is that the ball confidence must be bigger
than zero. This is always true because of the transitions that ensure it.
Before the ball reaches the desired distance, the robot will assume either
the kicker or the receiver role so the FSM would be exited.

47

Results

This FSM does its job without problems. The robot is able to find the ball and
after that go to it.

4.4.8 Main Pass Ball FSM

This is the main FSM. It only takes into account which robot is the owner of
the ball and decides which inner FSM must be active: Kicker, Receiver or
Searcher. It is implemented as one state for each inner FSM. There exists
a fourth state that makes the robot stop. The transitions from this state to
the others or from the others to it are ruled by the buttons on the robot. This
allows the user to stop or initialize the robot when necessary just by touching
it.

4.4.9 Relationship Between the FSMs and the Basic Be-
haviors

As it was said in the beginning of this section, FSMs can be nested by using
FSMs inside the states of another FSM. Also the FSMs make use of the basic
behaviors. In Figure 4.10 the relationships between them are illustrated by
arrows. The basic behaviors appear in shaded, while the FSMs are white.

4.5 The Roles of the robots

The aim defined in the problem is to pass the ball from one robot to the other,
so there is always a kicker and a receiver. There is a variable called BallOwner
that says who is the owner of the ball. It can be 0 if there is no owner, or 1 or
2, depending which robot is the owner. The value of BallOwner is determined
in different ways depending of the solution adopted. Five different solutions
were devised, depending on if there is communication between robots and the
degree of shared information. Four of them were implemented and tested. The
five solutions are explained in the next subsections together with their possible
problems and obtained results.

4.5.1 Deciding the roles by stigmergy without any com-
munication

In this solution no communication is used to decide which robot is the owner
of the ball. The information used is the distances and angles to the ball and to
the other robot. With this information the distance from the other robot to the
ball can be calculated and the owner of the ball decided (the one who is closer
to the ball should be the owner). As it has been said in Section 1.4, cooperation

48

Main

Pass Ball

Kicker Receiver Searcher

Find and

Look for Ball

Go and

Align
Kick

Go To

Object

Go Around

Object

Align Object

With Object

Figure 4.10: Dependences between the FSMs (white) and the basic behaviors
(shaded).

and coordination without communication is possible Werger [10] has created a
soccer robot team in which reactive robots do not use any communication. This
team participated as The Spirit of Bolivia ranking third in RoboCup 97 [16].

Even with a good estimation of the other robots position there would always
be small errors of the distance that could lead into oscillations of the role of the
robot. To avoid them the algorithm to assign the BallOwner was designed as
robust as possible in this aspect. In this algorithm three concentric zones with
center in the ball are defined: the first one, Zone0, from the center of the ball
to a distance Range0, the second one, Zone1, from radius Range0 to radius
Range1, and the third one, Zone2, the rest of the environment. In this solution
it is important that the kicker performs the kick from Zone0 and the receiver
stays waiting for the ball in Zone2, so it is something to take into account while
deciding the values for Range0 and Range1. Depending on the zone that each
robot is staying in the BallOwner is decided. In Table 4.3 this decision can be
found.

49

Robot 1

Robot 2
Zone0 Zone1 Zone2

BallOwner = 2 BallOwner = 2 BallOwner = 2
Zone0

BallOwner = 1 BallOwner = 2 BallOwner = 2

BallOwner = 1 BallOwner = 2 BallOwner = 2
Zone1

BallOwner = 1 BallOwner = 2 BallOwner = 2

BallOwner = 1 BallOwner = 1 BallOwner = 0
Zone2

BallOwner = 1 BallOwner = 1 BallOwner = 0

Table 4.3: BallOwner decision based on three zones.

It can be seen that for every pair ZoneOfRobot1/ZoneOfRobot2 there are
two BallOwner decisions. The top one is what Robot1 decides and the bottom
is what Robot2 does. As we can see they take always the same decision except
in the case where both are in Zone0. To avoid collisions both are said that
the other is the BallOwner, and they will avoid the ball. In the rest of the
cases if one robot is in a zone closer to the ball than the other then it is the
BallOwner. In case they are both in the same zone there are three different
solutions. The first one explained above when they are in Zone0. The second
is when they are in Zone1. Here a preference is given to one of the robots
and it will be the BallOwner. This way the algorithm is not so efficient since
sometimes it can happen that the other robot is closer, but at least oscillations
are avoided. The third case is when both are in Zone2 and it is decided that
there is no BallOwner so both try to reach the ball, and the first one that
arrives in Zone1 will become the BallOwner.

The behavior of both robots must reach such state that one will finish in
Zone0 (to kick the ball) and the other in Zone2. We will demonstrate it by first
observing that when one robot is the BallOwner it goes towards the ball; when
the other is the owner the robot walks avoiding the ball until it is at about one
meter distance, and when there is no BallOwner then the robot goes towards the
ball. So if both robots are in Zone0 (in the Table in cell Zone0/Zone0), both will
avoid the ball because they think that the other is the BallOwner. Depending
on which one reaches Zone1 first or if they do it at the same time the next cell
will be Zone1/Zone0, Zone0/Zone1 or Zone1/Zone1. In Zone1/Zone0 the
BallOwner is Robot2 so it will remain in Zone0 and Robot1 will avoid the ball
going to Zone2 and reaching the state Zone2/Zone0. Here is where the pass of
the ball will take place. Following this way of reasoning it can be demonstrated
that starting in any cell of the table, either Zone0/Zone2 or Zone2/Zone0 cell
will be reached without entering any loop.

The main possible problem of this approach is the oscillations due to dif-
ferences in what each robot thinks the zone of each one is. For example one
robot can perceive that they are in Zone0/Zone1 while the other perceives as
Zone1/Zone1. Since this solution has not been tested there is no way to know
how it would work and how to solve it in the case the oscillations would occur.

50

One possible idea to solve this kind of oscillations would be to make the sizes
of the zones different for each robot. But this idea was rapidly discarded since
it could cancel some oscillations, but could introduce others instead. Another
possible solution is to use some kind of hysteresis as it is done in Section 4.5.3

Results

Distance estimation to the robot is not currently working in the Framework so
it was impossible to implement this solution.

4.5.2 Deciding the roles by exchanging the distance to the
ball

In this solution the distance to the ball is exchanged between the two robots.
It is done in order to test the zone based algorithm of the previous section.
The method to decide the BallOwner is exactly the same as the one explained
above. For practical reasons the distance is not exchanged, but just the zone
that the robot belongs to. Two things were taken into account in order to make
the solution work:

1. If ball confidence is zero then the robot is considered to be in Zone2, since
the robot has no idea where the ball is.

2. When the robot is about to kick the ball, it loses it under the head making
ball confidence zero, that eventually will make the robot think that it is
in Zone2 and would break the kicking sequence. To avoid this, when
the robot is NearBall then it is considered to be in Zone0 even if ball
confidence is zero. The robot is considered to be NearBall when it is
going around the ball, when it is aligning the ball with the other robot
and when it is kicking the ball.

One of the possible problems of this solution is the delay between when
something is seen by one robot and when this information is received and used
by the other robot. Also due to the limitations of the wireless communications
the Zone variable can not been exchanged every frame introducing another
delay. All this could make both robots oscillate in their roles or assign them
inconsistently, i.e., one perceiving the state Zone0/Zone2 while the other would
perceive Zone1/Zone2.

Results

The solution was tested with very good results. The robots were able to decide
their roles based on the zone algorithm. It was found that sometimes one robot
that was farther to the ball became the BallOwner because of the preference
given in Zone1/Zone1 case. On the other hand no minima situations or oscil-
lations were detected when the robots could get stuck. Also it was observed

51

that sometimes both had the same role, that is, both thought that they were
the owner of the ball or not the owner. This was due to the conditions in
Zone0/Zone0 and because of the delays of the shared information. The delays
are mainly due to the frame rate since one message is sent every ten frames, so
the information used is not always the current one.

4.5.3 Deciding the roles taking in account the own per-
ception with communication

In this solution each robot decides whether it is the BallOwner only taking into
account its distance to the ball. Then there is no shared information between
the robots, except that they just notify the other if they want to become the
BallOwner. One particular robot has preference over the other. The decision if
a robot is the BallOwner is based on the ball distance and is taking into account
two ranges. If the robot is closer to the ball than the first range it becomes the
owner. If after that the robot is farther than a second range then it stops being
the owner. This kind of hysteresis is done to avoid oscillations. The decisions,
that can be applied to groups of two or more robots, with a built-in preference
schema, may be formulated as follows:

• If (Ball.Distance < Range1) & (BallOwner < MyRobotNumber) then:

– Send to the other Robots: BallIsMine

– BallOwner = MyRobotNumber

• If (Ball.Distance > Range2) & (BallOwner == MyRobotNumber)
then:

– Send to the other Robot: BallIsNotMine

– BallOwner = 0

This will ensure that when a robot is close enough to the ball and it has
preference to get the ball (because there is no owner or because the other robot
has a lower number) then it becomes the BallOwner and also it notifies the
other robot about it. If for any reason the ball is too far and the robot was the
BallOwner then it sets BallOwner to zero (there is no BallOwner anymore)
and sends a message to the other robot saying that it is not the BallOwner.
When a robot receives a message from the other one then it does the following:

• If (ReceiveBallIsMinefromRobotNumberX) &
(RobotNumberX > BallOwner) then:

– BallOwner = RobotNumberX

• If (ReceiveBallIsNotMinefromRobotNumberX) &
(RobotNumberX == BallOwner) then:

– BallOwner = 0

52

This solution is theoretically not as efficient as the previous one since only
the own information about the environment is taken in account. So it can often
happen that a robot is close to the ball but farther than the other robot and
because it has preference it becomes the BallOwner anyway.

Results

The solution was tested with good results where the robots were able to decide
whether they were or not the BallOwner. A problem was detected in case
when the robot with larger preference became the BallOwner even when it was
farther to the ball than the other robot. The choice of Range1 and Range2
was important. Range1 should be big enough so that one of the robots will
eventually become the BallOwner. Also Range2 should be small enough so
that after a pass the kicker ceases to be the BallOwner and the receiver can
take that role to perform the pass back. But Range2 must be enough larger
than Range1 so that the hysteresis takes place.

4.5.4 Fixed Roles, without communication

In this solution the roles of the robot are fixed. One is the kicker and the other
is the receiver. This solution was made only to test the Kicker and Receiver
FSMs.

Results

The expected behavior was that after passing the ball the receiver would go
backwards to maintain the desired distance and the kicker forward to pass again.
And this is exactly what has been observed in the experiment. If the robots
started on one side of the field, sometimes after few passes they ended on the
other side.

4.5.5 Without taking in account the perceptions, exchang-
ing the roles by token passing.

This solution is an evolution of the Fixed Roles one. Here each robot starts
with a fixed role, and after performing a kick the kicker passes a token and the
receiver becomes kicker and vice versa. There exists communication between the
robots but not in order to decide who is the BallOwner, in fact no information
about the environment is used to decide it. Similarly the previous solution, it
was only used for debugging purposes in order to test the transitions between
the kicker and receiver roles.

53

Results

As it was expected, the results looked much nicer than the in the Fixed Roles
solution. But because passes are not always successful it can happen that after
a kick the new receiver is closer to the ball than the new kicker.

4.6 General Results of the Investigation

Most of the results of the investigation have been presented partially when pieces
of the solution were described in the previous sections. The solution works well
in general. The robots are able to find the ball, pass it and receive it. Also, as
it was said before, they are able to decide their roles as it was expected. In the
solution where the role is decided only taking into account the own perception
the preferences used are observed. Also preferences are seen in distance exchange
case but less often. This is due to the values used for the different ranges. All
the solutions work similarly, the main difference is whether preference occurs
and how often. Some relevant issues to comment are the following:

• The time that the robots need to find the ball is sometimes really high,
but in general really unpredictable, as it was expected. Sometimes a robot
gets stuck inside the net and it takes it a while to get out.

• Sometimes the robots collide getting blocked and they must be returned
to safe positions manually.

• The results were highly dependent of the lighting conditions. This can
be noticed because there are some parts of the field where the robots do
much better work than in others.

• The kicker, after aligning the ball and the receiver, starts the kick. While
performing the kick the robot sometimes loses the ball while it is approach-
ing it. This is most of the times due to the irregularities of the floor and
other times due to a bad alignment. Sometimes the ball is not lost, but
the robot in the last step is not able to see the receiver so it walks back-
wards to try to repeat the kick. In some places of the field this happens
continuously, getting into an infinite loop in which the robot tries to kick
and goes backward. This could be solved with a better recognition of the
robot.

• As it was expected, when the ball is near the boundary wall, the kicker is
not able to go all around it to find the other robot. And sometimes the
receiver is not able to stay at a distance of 1 m to the ball because there
is no room enough between the ball and the wall.

• When the receiver is looking at the ball and the other robot goes between
them then the receiver stops seeing the ball. It was expected that it
would restart with the looking for ball algorithm after losing the ball. But
this is not what usually happens. When the ball disappears behind the
kicker it is from time to time seen by the receiver between the legs of the

54

kicker. Because it is not seen completely, the Vision Module reports a
larger distance. That makes the robot go towards it. But then the ball is
not seen anymore. When the ball is not seen the Recover FSM jumps to
the Recover Ball state that makes the robot go backwards for a time
or until the ball is seen again. Normally this time is enough to make the
kicker disappear and make the ball visible again. If the robot is going
backwards for a long time without seeing the ball it will start to search
the ball using the Find and Look for Ball FSM.

4.7 Code of the solution

The code is avaliable through the CVS of the TCC Framework. It is contained
in the directory Tcc/Framework/Behavior. These files are also available in
http://ai.cs.lth.se/xj/inaki/. The different files developed were:

PassBall Contain the function that decides the ball owner, takes care of sharing
the information and runs the top Main Pass Ball FSM. It is called from
Behavior.cc of the framework.

StateRoot.h Is the class from which every class that is a state of an FSM
inherits.

MainPassBallState.h and MainPassBallState.cc Implement the states of
the Main Pass Ball FSM. 1

SearcherState.h and SearcherState.cc Implement the states of the Searcher
FSM.

ReceiverState.h and ReceiverState.cc Implement the states of the Re-
ceiver FSM.

KickerState.h and KickerState.cc Implement the states of the Kicker FSM.

SearchBallState.h and SearchBallState.cc Implement the states of the Find
And Look for Ball FSM.

KickState.h and KickState.cc Implement the states of the Kick FSM.

GoAndAlignState.h and GoAndAlignState.cc Implement the states of the
Go And Align FSM.

BasicBehaviors.h and BasicBehaviors.cc Contains the three functions that
implement the basic behaviors.

BehaviorValues.h Contains the values of all the constants used in the solu-
tion. It is very useful for tuning the behaviors and FSMs. 2

1The names of the classes that implement the states of the FSMs are not exactly the same
as the ones used in this document.

2The names of these constants are not exactly the same as the ones used in this report,
but they are explained so their correspondence should be obvious.

55

Chapter 5

Conclusions and Future
Work

In this report a solution to the Ball Passing Problem has been presented. It
was used to study several variants of cooperation among AIBO robots. As it
has been seen in the results of Chapter 4, the solution works reasonably well.
The robots are able to pass and receive the ball. Most of the problems that
occur are caused by errors in the recognition of other robot and also because
the robot does not see the ball for a few seconds immediately before kicking.
The different ways to decide the roles of the robots work as expected, although
a preference for one of the dogs can be often noticed. The choice of FSM as a
structure to implement the behaviors has yielded good results, since FSMs can
be nested and easily reused.

In the future the most important improvement should be making a better
recognition of the robot, one providing reasonable distance estimation. This will
also allow testing the case of deciding the roles without any communication.

Another thing that is strongly recommended in order to meaningfully con-
tinue this work is implementing self-localization. It has been seen during the
analysis that current version does not work enough well but it would be very
useful. Having localization will allow better ball searching algorithm, in which
robots would truly cooperate. In addition, the suggested behavior of going from
one side of the field to the other could be implemented. More degrees of shared
information could be compared since absolute positions of the objects would be
known.

On the other hand, one possible extension of this work which could be imple-
mented and tested easily without improving the Framework, is similar Passing
Ball problem, but with more than two robots. This can be done with minor
modifications to the code.

The Communication Module works as expected, but sometimes if messages
are sent constantly and very often the communication collapses. A communi-

56

cation based on the UDP protocol could be implemented and used in the cases
where information is being broadcast continuously.

57

Bibliography

[1] Web Site of RoboCup Competition. URL: http://www.robocup.org (veri-
fied 20/10/2004).

[2] Web Site of AIBO Robots. URL: http://www.aibo-europe.com (verified
20/10/2004).

[3] Web Site of OPEN-R Environment. URL: http://openr.aibo.com (verified
20/10/2004).

[4] M. Asada et al, RoboCup: Today and tomorrow - What we have learned,
Artificial Intelligence, vol. 110, Number 2, June 1999.

[5] OPEN-R SDK, Programmers Guide, Sony Corporation. 2003. URL:
http://openr.aibo.com (Members Area) (verified 20/10/2004).

[6] François Serra, Jean-Christophe Baillie, Aibo Programming using OPEN-
R SDK. Tutorial, ENSTA, June 2003. URL: http://www.ensta.fr/˜baillie
(verified 20/10/2004).

[7] Web Site of Tekkotsu Framework. URL: http://www.tekkotsu.org (verified
20/10/2004).

[8] Z. Wasik and A. Saffiotti. Robust Color Segmentation for the RoboCup
Domain. Int. Conf. on Pattern Recognition (ICPR), Quebec City, CA,
2002. URL: http://www.aass.oru.se/˜asaffio/Papers/icpr02.html (verified
20/10/2004).

[9] Luca Iocchi et al, Reactivity and Deliberation: A Survey on Multi-Robot
Systems LNAI 2103, Springer, 2001.

[10] B. B. Werger, Cooperation without deliberation: A minimal behavior-based
approach to multi-robot teams, Artificial Intelligence, vol. 110, Number 2,
June 1999.

[11] Stan Franklin, Coordination without Communication. University of Mem-
phis. URL: http://www.msci.memphis.edu/˜franklin/coord.html (verified
20/10/2004).

[12] Robin R. Murphy, Introduction to AI Robotics, MIT Press, 2000.

[13] Ulrich Nehmzow, Mobile Robotics: A Practical Introduction, Springer,
2000.

58

[14] OPEN-R SDK. OPEN-R Internet Protocol Version4, Sony Corporation,
2004. URL: http://openr.aibo.com (Members Area) (verified 20/10/2004).

[15] Ted Faison, Object-Oriented State Machines, Software Development
Magazine. URL: http://www.faisoncomputing.com/publications/articles/
OOStateMachines.pdf (verified 20/10/2004).

[16] B. B. Werger, Principles of Minimal Control for Comprehensive Team Be-
havior, Proceedings of the 1998 IEEE International Conference on Robotics
& Automation, Leuven, Belgium, May 1998.

59

Appendix A

Segmented Images

In this Appendix the images taken to see how the Segmentation and the color
tables work are shown. The original image is on the left and the segmented one
on the right.

60

61

62

63

64

65

Appendix B

Object Recognition
Statistics

In this Appendix the statistics for the different positions and different objects
analyzed are shown.

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

Appendix C

Localization Statistics

In this Appendix the statistics of the measures of the self localization for fifteen
different positions are shown. The fifteen different positions where the measures
were taken are shown in Table C.1. The point x = 0, y = 0 is the center of the
field. The positive x axes goes to the yellow net.

Position X Y Θ
1 0 0 0
2 1000 0 0
3 1700 900 0
4 -1000 0 0
5 0 0 π
6 0 1000 π
7 -1000 0 π
8 1000 0 π
9 -1700 900 −π/2
10 0 1200 −π/2
11 0 0 −π/2
12 -1000 0 −π/2
13 -2000 1200 −π/4
14 1000 -1000 −π/4
15 0 -1200 −π/2

Table C.1: Fifteen positions where the measures were taken (X and Y in mm,
Θ in radians).

82

Position 1

Position 2

Position 3

Position 4

Position 5

83

Position 6

Position 7

Position 8

Position 9

Position 10

84

Position 11

Position 12

Position 13

Position 14

Position 15

85

Appendix D

Measures of the Kicks

In this Appendix the measures of the position for the four analyzed kicks are
shown and also the histograms for theta and y distance.

Figure D.1: Measures of Kick1 in the left, of Kick7 in the right.

In Figure D.3 the histograms of the measures of the y value of the resulting
position can be seen for the kicks analyzed.

In Figure D.4 the histogram of the angles for the 21 repetitions of the four
kicks analyzed are shown in order to know how straight the kicks are.

86

Figure D.2: Measures of Kick10 in the left, of Kick11 in the right.

87

Figure D.3: Y histograms for the four analyzed kicks.

88

Figure D.4: Theta histograms for the four analyzed kicks.

89

Appendix E

Glossary of Constants of
the Behaviors

Here the constants used in the Basic Behaviors and in the FSMs are explained:

ConfidenceRange1 Value of the confidence of the ball that rules the transi-
tions in Find And Look for Ball FSM.

ConfidenceRange2 Value of the confidence of the OtherRobot that rules the
transitions in the Go And Align FSM.

ConfidenceRange3 Value of the confidence of the OtherRobot that rules the
transitions in the Go And Align FSM.

ConfidenceRange4 In the CenterKick State of Kick FSM if this confidence
of the Other Robot is not reached, the kick is canceled.

ConfidenceRange5 Value of the confidence of the Ball that rules the transi-
tions in the Kicker FSM.

ConfidenceRange6 Value of the confidence of the Ball that rules the transi-
tions in the Kicker FSM.

ConfidenceRange7 Value of the confidence of the Ball that rules the transi-
tions in the Kicker FSM.

ConfidenceRange8 Confidence of the OtherRobot that conditions if there
should be a transition from To Ball State to Kick Ball State in the Kicker
FSM.

ConfidenceRange9 Confidence of the Ball that conditions if there should be
a transition from To Ball State to Kick Ball State in the Kicker FSM.

ConfidenceRange10 Value of the ball confidence that rules transitions in the
Receiver FSM.

90

ConfidenceRange11 Value of the ball confidence that rules transitions in the
Receiver FSM.

ConfidenceRange12 Value of the ball confidence that rules transitions in the
Receiver FSM.

ConfidenceRange13 Value of the ball confidence that rules transitions in the
Searcher FSM.

Distance1 Desired distance for the Go To Ball State in the Go And Align
FSM.

Distance2 Desired distance for the Align With Ball State in the Go And
Align FSM.

DistanceRange1 Limit of distance in the Go To Object Behavior in which
speed(distance) behaves different.

DistanceRange2 Limit of distance in the Go Around Object Behavior that
makes alpha direction of movement change.

DistanceRange3 Limit of distance Align Object With Object that makes
alpha direction of movement change.

DistanceRange4 Distance range that rules transitions in the Go And Align
FSM.

DistanceRange5 Distance range that rules transitions in the Go And Align
FSM.

DistanceRange6 Distance range that rules transitions in the Go And Align
FSM.

DistanceRange7 Value of distance to the Ball that conditions if there should
be a transition from To Ball State to Kick Ball State in the Kicker FSM.

ThetaDifferenceRange Limit of the difference between Θ1 and Θ2 in the
Align Object With Object that makes alpha direction of movement
change.

ThetaDifferenceRange Difference between Θ1 and Θ2 that conditions if there
should be a transition from To Ball State to Kick Ball State in the Kicker
FSM.

ThetaRange1 Limit of theta in the Go To Object Behavior in which spin(theta)
behaves differently.

ThetaRange2 Limit of theta in the Go Around Object Behavior in which
spin(theta) behaves differently.

ThetaRange3 Limit of theta in the Align Object With Object Behavior
in which spin(theta) behaves differently.

ThetaRange4 In the Find and Look for Ball in the Look to Ball State
the theta converges to a value between ± ThetaRange4.

91

ThetaRange5 Limit of theta related to the OtherRobot that rules transitions
in the Kick FSM.

ThetaRange6 Value of theta to the Ball that rules the transitions in the
Kicker FSM.

ThetaRange7 Value of theta to the Ball that conditions if there should be a
transition from To Ball State to Kick Ball State in the Kicker FSM.

ThetaRange8 Value of theta to the ball that rules transitions in the Receiver
FSM.

ThetaRange9 Value of theta to the ball that rules transitions in the Searcher
FSM.

Timer1 Timer that rules transitions in Find And Look for Ball FSM.

Timer2 Timer that rules transitions in Find And Look for Ball FSM.

Timer3 Timer that rules transitions in Kick FSM.

Timer4 Timer that rules transitions in Kick FSM.

Timer5 Timer that rules transitions in Kick FSM.

Timer6 Timer that rules transitions in Kicker FSM.

Timer7 Timer that rules transitions in Kicker FSM.

Timer8 Timer that rules transitions in Receiver FSM.

Θ1 Theta angle to object1 in Align Object With Object Behavior.

Θ2 Theta angle to object2 in Align Object With Object Behavior.

92

