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Coordinating Reactive Planning for Football Playing Agents 
 
Abstract 
 
In order to play football efficiently the actions of a team need to be united. This 
work pursues an investigation of cooperation among agents. The construction of 
two cooperation models originating from two different viewpoints is described. 
They are implemented and integrated in the planning engine of the Team Sweden 
RoboCup team. The main challenges that collaboration on the football field faces is 
adjusting to the dynamic environment and acquiring the ability to take advantage of 
what is known about the teammates of a robot. This report contains results of a 
comparison of the two models of cooperation. 
 
 
 
 
Koordinerad reaktiv planering av fotbollsspelande agenter 
 
Sammanfattning 
 
För att spela fotboll på ett effektivt sätt behöver lagspelarnas agerande 
sammanfogas till en helhet. Med denna utgångspunkt så eftersträvar detta arbete en 
vettig hållning till samarbete bland agenter. Konstruerandet av två modeller för 
samarbete som grundar sig på olika förhållningssätt till samverkan beskrivs. De 
implementeras och integreras i Team Swedens planerings motor för RoboCup 
miljön. Samarbetande robotar stöter på en mängd utmaningar på fotbollsplanen. De 
måste kunna anpassa sig till den dynamiska miljön och ta vara på den kunskap de 
har om sina lagkamrater. Denna rapport innehåller en jämförelse av de två 
modellerna för samarbete.  
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1 Introduction 
 

1.1 RoboCup 
 
The international competition of RoboCup [1] has been held annually since 1997. 
Football has been chosen as a dynamic game to make advances in AI, robotics and 
other related fields. Teams from all around the globe compete in a range of leagues 
with physical robots and in simulators. In order to perform well the participants 
need to master areas such as team coordination, real-time planning, sensor-fusion, 
autonomous agent design and robotics. The advances made are hoped to aid 
development in socially more significant fields and industries. The project itself 
also has the following ultimate goal. 
“By 2050, develop a team of fully autonomous humanoid robots that can win 
against the human world champion team in soccer.” 
 
1.2 Formulating the Problem 
 
Team Sweden [2] is a joint effort by Örebro University, Blekinge Institute of 
Technology, Lund University, Umeå University and Murcia University of Spain to 
participate in RoboCup. It has entered the contest since 1999 and over the years an 
effective method for reactive planning has been established. So far only sparse 
attempts have been made to coordinate planning within the team. As it is their view, 
as well as mine, that such attempts could hold great benefits, it was suggested as the 
starting point for this investigation. To unite the actions of robots in a rapidly 
changing dynamic environment puts demands on time consumption, strategy 
modeling and fault tolerance on a cooperation model.  
 
The challenge is thus to find a way to cooperate that will benefit the overall 
performance of the team and that at the same time is sensitive to the characteristics 
of the domain. A model for this cooperation is then to be constructed, which 
incorporates the planning structure of Team Sweden. 
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1.3 The Report 
 
This report aims to describe two separate models for united actions within a 
dynamic multi-agent environment and the assignment is introduced in Chapter 1. 
The concept of Multi-Agent Systems is then presented in Chapter 2 and the 
software architecture of Team Sweden is described in Chapter 3. In order to make 
the reader familiar with different theoretical approaches to team work a reasonable 
view on cooperation is discussed in Chapter 4. Furthermore the report seeks to 
show how these theories are translated into models, which are integrated into the 
Team Sweden architecture. A model based on the anticipation of the teammates’ 
actions is introduced in Chapter 5. Another model based on the dynamic 
distribution of roles is described in Chapter 6. Test results and the evaluation of the 
utility of the two models are presented in Chapter 7 and finally the report is 
concluded in Chapter 8. 
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2 Background 
 
2.1 Multi-Agent Systems 
 
In the field of computer science the term agent refers to a program, or piece of 
program, that functions as an active entity in a computerized environment together 
with other processes or programs. The term agent often entails an autonomous 
quality for which the following definition has been suggested by Stan Franklin and 
Art Graesser [3]. 
 
“An autonomous agent is a system situated within and a part of an environment 
that senses that environment and acts on it, over time, in pursuit of its own agenda 
and so as to effect what it senses in the future.” 
 
I will incorporate the quality of making individual decisions based on perception of 
the environment, whenever I refer to agents in this report.  
 
Multi-Agent Systems (MAS) consist of a defined space, either physical or computer 
generated, containing a number of objects. These objects can either be agents or 
some form of resource. A resource can be available or occupied by an agent and 
therefore a position might also be considered as such. The coexisting agents’ use of 
resources may not overlap and their goals may be fully independent of each other. If 
this is the case the domain presents no real reason for interaction between agents. In 
systems with shared resources and mobile agents with agendas that affect each 
other encounters are likely to occur. Coordination of actions in such environments 
often benefits all the agents involved.  
 
Wang, Wang, Wang and Soh [4] have described the domain of RoboCup Football 
(RCF) as Real-time, Cooperative and Adversarial (RCA). As such it requires agents 
to make real-time individual decisions, as the football field is a rapidly changing 
environment. It also promotes cooperation of agents within a team as they share the 
same goal. Finally the rivalry of two competing teams leads to the perception of the 
opponent as an agent with an agenda, which benefits from obstructing the own 
team’s goal. 
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2.2 Sony Legged Robot League (SLRL) 
 
The SLRL is one of the leagues of RCF in which the teams consist of four identical 
robots each. Since all teams use the same kind of robots the league is especially 
interesting from a software engineering viewpoint. The games are played on a field 
that is 460 cm long and 310 cm wide and the robots of the two teams are marked 
differently so they can be recognized. The goalie is marked separately and is the 
only player who is allowed to stay within the penalty area of its own team. On each 
side of the half way line and in every corner landmarks are placed to help the agents 
orient themselves. A match is played in two halves of ten minutes each and a 
limited-bandwidth radio communication is allowed between teammates. 
 

 
Fig. 1.  Sony’s AIBO ERS-210a. 

 
2.3 Sony’s AIBO 
 
The hardware used in the SLRL is the Sony AIBO ERS-210 model robot [5] seen in 
Figure 1. The dog-like robot is about 30 cm long and 27 cm tall. It has three degrees 
of freedom in each leg and 20 degrees of freedom in all. A color camera is located 
in its nose and microphones on the sides of its head. There is also a speaker in its 
mouth and a number of other various features. An API called OPEN-R has been 
developed by Sony to operate the different functions of the robot. 
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3 The Team Sweden Platform 
 
The aim of this chapter is to make you familiar with the software structure and 
reactive planning of Team Sweden. 

 
Fig. 2. Software architecture used by Team Sweden. 

 
 
3.1 The Architecture 

 
The agents of Team Sweden use the software structure shown in Figure 2 above. 
This layered architecture is based on the Thinking Cap model [6] developed at 
Örebro University. Three levels of control, from physical to theoretical are 
implemented. The lower level contains the commander module (CMD), which 
handles the motion of the robot, e.g. turning its head to let the camera register the 
environment and moving its feet to achieve an appropriate style of walking. 
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In the middle layer the perceptual anchoring module (PAM) holds a local map 
portraying the robot’s view of the world. Objects are represented in agent-oriented 
coordinates and associated with a value called an anchor. It is a value on a [0, 1] 
scale, stating how recent, and therefore reliable, the information about the object is. 
Whenever the camera detects an object or when the robot moves, the map is 
updated and the anchor value set. Fuzzy logic is a branch of logics with truth-values 
between 0 and 1, which is used here to deal with knowledge representation. It is a 
suitable tool to manipulate knowledge about the environment in a dynamic domain.  
 

IF (BallOnLeft and not(BallHere))  TURN(Left) 
  IF (BallOnRight and not(BallHere))  TURN(Right) 
  IF (BallAhead or BallHere)   TURN(Ahead) 
  IF (not(BallHere))    GO(Fast) 
  IF (BallHere)     GO(Stay) 
  ALWAYS     SIDE(None) 

Fig. 3. Translation of the GoToBall behavior. 
 
A set of high-level behaviors is implemented in the Hierarchical Behavior Module 
(HBM), also located in the middle layer. Complex high level behaviors are 
organized in a hierarchical rule structure that translates them to commands that can 
be executed by the CMD. Using information from the PAM together with rules 
based on fuzzy logic, high level behaviors are translated into low level ones. Figure 
3 illustrates such a translation for the GoToBall behavior. E.g. the BallAhed fuzzy 
predicate has the value 1 if the ball is located straight in front of the agent and 
declines to zero at 30 degrees angle to the left or right.     
 
The upper layer holds the Global Map (GM), which represents all that, is known 
about the current state of the game. It is updated by the PAM converting 
information about the objects to field-oriented coordinates. Here as well the objects 
are associated with a fuzzy anchored value stating their reliability. Teammate 
communication also helps to revise the GM trough map fusion. The Reactive 
Planner (RP), which is the subject of the next chapter, decides what behavior to use 
based on information from the GM. 
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3.2 The Electric Field Approach 
 
The RP module is the planning engine of the agent structure. Its purpose is to 
choose which behavior the agent is to execute, based on information from the GM. 
This is done by simulating a number of available behaviors and evaluating the 
global states they result in. Adding positive and negative charges to strategically 
important locations creates an artificial potential field. By probing key positions in 
the field a heuristic potential can be assigned to a specific state. Values for all the 
charges proportional to their distance to the probed position are added together. The 
behavior resulting in the state with the highest potential measured is the one chosen. 
This procedure is known as the Electric Field Approach (EFA) [7].  
 
There are two kinds of charges. Static charges, which stay the same throughout the 
game, make up the underlying basic strategy for attacking the global task of playing 
football. This task can crudely be formulated as, getting the ball into the opponents’ 
net while keeping it out of your own. Thus positive charges are placed along the 
opponents’ goal line and negative ones along that of the own team, illustrated in 
Figure 4. The formulation also suggests probing the position of the ball, as it needs 
to be manipulated in order to complete the task. This rough base of the EFA, 
evaluates states simply on the basis of closeness of the ball to the opponents’ net. 
 

 
Fig. 4. Illustrating the static charges of the nets and the dynamic charges around the robot. 
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The way the other players are placed in the field should also be considered when 
grading a state. This increased sensitivity is obtained by adding dynamic charges to 
the basic potential field when presented with a new state. Opponents are represented 
by a single negative charge to avoid getting the ball near them. Teammates on the 
other hand are represented by a positive charge to encourage passes. This charge is 
placed in front of the robot, on the side of the opponent net, where a pass is 
preferably received. The potential of these charges is set proportional to the 
anchoring value of the respective agent to reduce the potential influence of 
perceptive faults. 
 
To keep the planning agent on the desired side of the ball at all times, additional 
charges are set around the robot, as illustrated in Figure 4. Negative charges are 
placed behind the robot, on the side of the own net while a positive charge is placed 
on the other side of the robot. A head charge is placed in front of the robot, as this is 
a desirable place to have the ball. Together with the static charges this makes up the 
strategy for evaluating heuristic potential. 
 
At any given time in a match a subset of the behaviors implemented in the HBM is 
available to the agent and make up part of the strategy of the team. It is possible to 
change the composition of this set dynamically during a game. By evaluating a few 
parameters, e.g. the position of the ball, it can be determined whether the situation 
has changed. A new strategy could then be chosen which could also include an 
additional probing position. To induce an agent to move to a passable position a 
strategic probe can be used, e.g. by adding an additional probe at some strategic 
position in the field where an agent is likely to receive a pass. If an agent knows 
that a teammate is in charge of the ball such a probe can be used to produce a 
supportive behavior. Ball possession can be communicated via the radio link. 
 
The evaluation loop determines what behavior to use next and is triggered by any of 
the following events: 
 

• The current behavior is about to finish. 
• The current behavior is in trouble. 
• The situation of the game has changed significantly since the last evaluation. 

 
The behaviors of the current strategy are graded one by one. If the preconditions of 
a behavior are met it is simulated by moving the concerned objects on a copy of the 
GM accordingly. Dynamic charges are set in the resulting state as described above. 
The position of the ball is probed adding a value for each of these charges as well as 
the static charges. This value is proportional to the distance of the charge. If the 
strategic probe is used for the behavior evaluated, the value of the charges at its 
position is added to those of the ball probe. The behavior with the highest potential 
is the one chosen, translated by the HBM and executed by the CMD. 
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4 Constructing Team Play in RCF 
 
In this chapter I will present various theoretical approaches to collaboration, 
discussing which is best suited for the RCF domain.  
 
4.1 The Nature of Cooperation in RoboCup 
 
Collaboration is achieved through the coordination of actions. It aims to benefit the 
respective agendas of the agents involved. The coordination effort can be made 
either before, after or be incorporated in the individual planning, thereby defining 
the nature of cooperation.  
 
The RCA aspect of the RoboCup domain, introduced in Chapter 2, establishes the 
concept of teams. Within a team agents share a common goal and are consequently 
aware of each other’s agendas. As this goal also includes the obstruction of the goal 
of the opponents and vice versa they are also partially aware of their agenda. These 
aspects make predictions about the actions of other agents possible to a certain 
extent. Collaboration in the football domain could benefit from the exploitation of 
such predictions. Furthermore real-time planning requires the cooperation models to 
be robust in order to deal with the rapid changes of the domain. 
 
As the goalie has separate rules in the SLRL it will not be included in any 
collaboration schemes discussed in this report. 
 
4.2 Negotiation 
 
The most common way to combine efforts in MAS is probably through a 
negotiation process. Sascha Ossowski has given a suggestion to the outlines of a 
general model for such a process [8]. A plan is formed based on how the current 
state of the environment, as perceived by the agent, differs from the goal state it 
whishes to attain. The actions available, coinciding with this plan, are evaluated and 
ranked by some fitness function. Through communications with the other agents of 
the domain a bargaining procedure is initiated. A set of logical relations and rules is 
used to decide which of the behaviors should be executed together, based on what 
resources they occupy. The actions are fused to the best distribution with regards to 
both the individual and the group. 
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To cooperate through negotiation can be favorable in a couple of situations. Firstly 
when agents share resources that should not be occupied at the same time this is 
easily expressed in the logic rules. The bargaining procedure then makes sure that a 
conflict is avoided. In a RCF team the ball could be seen as such a resource. 
Behaviors involving the ball would in this way only be chosen by one teammate at 
the time. Apart from the ball, however, there are no other obvious joint resources in 
a football game. A bargaining rule system that has to keep track of the relations 
between all possible behaviors would have to be rather complex.  
 
Secondly, heterogeneous agents with different software structure can collaborate, as 
long as they share a communicative protocol for the fusing of plans. One of the 
main concepts of negotiation is that individual planning is separate from, and 
thereby independent of, coordination. This advantage is lost in RCF with 
homogenous agents that are familiar with the software structure of their teammates. 
It also means that none of the specific RCA aspects of cooperation are considered in 
this approach. 
 
4.3 Global Planning from a Local Perspective 
 
The Tsinghua University of China has presented a cooperation model [9] rooted in 
the way a team’s utility is measured for a certain state. To assign a specific value to 
any global state is difficult for an agent, since RCF is a partially observable domain. 
Their solution is based on modeling global utility as “the integration of influences 
each individual behavior contributes to the environment”. Maximization of the 
collective utility is achieved by maximizing the sum of utilities gained trough 
individual actions. The compound utility P(AB) of action A with utility P(A) and 
action B with utility P(B) can be formulated P(AB) = P(A) + P(B) + I(A, B). I(A, 
B) is the negative or positive influence of putting A and B together. This influence 
is 0 if they are independent of each other and –∞ if A and B can not be executed 
together.  
 
The planning process can be described in the following steps: 
 

• Subtask generation: the subtasks that the current situation requires are 
generated.  

• Subtask-Executor pair generation: the subtasks are linked to agents able to 
carry them out. 

• Arrangement evaluation: calculation of the individual utility gained when a 
given agent performs a subtask. 

• Generation of the execution set: the selection of arrangements with the 
highest global utility is calculated. 

• Task assignment: the agent picks out its own task and executes it. 
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This procedure looks similar to central planning but every agent carries it out 
individually. In a dynamic environment team members are bound to have different 
opinions of what the global state looks like. Individual evaluation can therefore lead 
to different distributions of subtasks for different agents at any given time. A crucial 
subtask thus runs the risk of not being executed by any agent. The planning process, 
suggested above, assumes that perception of the global state is sufficiently accurate 
and equal among team members for consistent distributions to be made. 
 
Shared knowledge about the actions of teammates, called privities, is used to 
minimize the risk of misunderstanding. Agents within a team are familiar with the 
behavior pattern of all the players and share some public rules to attain these 
patterns in certain situations. A shared planning structure for all the agents in a team 
makes these assumptions realistic. Mutual beliefs about the environment are also 
needed to reach privities. To know a teammate’s view of the current state of the 
game one needs to be familiar with that agent’s internal state. This can either be 
mediated trough communications or obtained by behavior recognition. In a rapidly 
changing domain, such as RCF, these methods might prove to be too time 
consuming. The solution is to simply regard the local state as a global one and 
assume that the teammates share this view of the environment. 
 
There is a built-in fault tolerance in anticipating the actions of teammates to 
maximize team utility. If one agent has a faulty view of the global state the rest of 
the team still functions normally as planning is done individually. In this way the 
model also makes use of the specific RCA qualities of the domain, as anticipation is 
used to predict future actions of teammates. 
 
4.4 Role Assignment 
 
The most common way to coordinate a human football team is to assign different 
player types. The current formation used specifies an area in which a certain player 
type is desired to operate in any given situation, thus forming the spatial tactics of a 
team. Players are likely to be inclined to play certain types due to physical 
differences. The fast runner with the precise left foot will, e.g., play leftfielder 
advancing on the side to pass the ball to the forward. In a team of autonomous 
agents there are no such physical differences. Attacking the global task with a 
formation of player types, each addressing some subtask, still proves an effective 
way to unite their actions. 
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 “A role, r, consists of a specification of an agent’s internal and external 
behaviors.” This meaning of the term has been suggested by Peter Stone and 
Manuela Veloso [10]. Thus a role becomes the arguments to, and conditions for, the 
function that translates the agent’s inner state into a behavior. An executing agent 
assigned a role, in the RCF domain, consequently adopts a certain player type.  
 
Distribution of the roles determines the flexibility of the teamwork effort. Keeping 
the same player types static throughout the game would limit real-time coordination 
efforts and thus the computational power used. With the fast changes of the 
environment and limited amount of players this would cause agents to have to move 
unreasonable distances to comply with new states.  
 
For every role a reference position can be associated, at every global state, from 
which it is ideally executed. For a homogenous team, roles can be dynamically 
assigned to minimize the team’s distance to these positions at any time. This way a 
team can respond to a new state a lot faster. Stone and Veloso introduce such a 
system with flexible roles and protocols for assigning them. Information shared 
through communication determines which role is the best suited for each teammate. 
 
4.5 Coordinating Planning Within Team Sweden. 
 
Team Sweden has already explored some methods for cooperation. It is possible for 
an agent to claim possession of the ball using the radio link. An agent receiving 
such a claim from a teammate will change its current strategy. Using a strategic 
probe, described in 3.2, it can assume a supportive role by moving to a passable 
position.  
 
Fusing methods for sharing local information through communication has been 
developed for the Team Sweden architecture by Påhlstorp and Ronnovius [11]. The 
team’s shared view of the global state of the game has greatly improved thanks to 
their work. This joint map construction provides a favorable starting point for 
coordination as teammates can be assumed to have a similar perception of the 
global state at any given moment. The possibility arises to predict the actions of 
team members not only due to a shared goal but also a shared view of the global 
state. 
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5 Anticipation Model (AM) 
 
In this chapter I will present a model for cooperation, which incorporates 
coordination in the EFA planning by anticipating the actions of the teammates to 
maximize the compound utility of the team. 
 
5.1 The Foundation 
 
The basis for the AM lies in the forging of two hypotheses. Firstly the GMs of the 
agents on the team are consistent enough to estimate the actions of teammates as 
well as one’s own. The fusing of information through communication makes this a 
reasonable assumption. Secondly the global utility of a team can be viewed as the 
collected potential of its agents. Therefore the maximization of the sum of 
individual potentials also maximizes the team’s utility as a whole. This viewpoint is 
derived from the Tsinghua University RoboCup effort described in 4.3. 
 
The calculation of the potential of a state in the EFA, as discussed in chapter 3.2, is 
based on the adding of the influence of a number of charges to a probed area. This 
additive nature makes it reasonable to estimate the compound global utility of the 
team as an extension of this approach by adding the sum of individual potentials. As 
shown in 4.5, it is reasonable to assume a certain degree of consistency in the GMs 
of team members. The position of the teammates is assumed to be known to an 
agent at any given time. Anticipating that their internal state is equal to the own, 
planning for the whole team is possible. In this way the best distribution of actions 
can be obtained and the behavior maximizing the global utility chosen. 
 
5.2 Adjusting to the EFA 
 
Trying to apply the Tsinghua approach in EFA planning the first step is subtask 
generation. A number of behaviors, of those implemented in the HBM, are chosen 
to address the global task of playing football at a certain state of the game. This set 
makes up part of the current strategy of the team, and can be referred to as the 
“starting set”. The EFA supports dynamic switching between different starting sets 
as the situation of the game changes. But for simplicity I will consider a single 
static starting set here as this feature does not have any direct influence on 
cooperation in the AM.  
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The complete homogeneity of the team makes all agents potential candidates for all 
the behaviors. To adjust smoothly to new situations in the field it is preferable that 
the agent best positioned for a behavior is the one to execute it. As the EFA 
evaluates the situation after simulating a behavior no consideration is given to the 
prior state. E.g. a GoToBall behavior would therefore receive the same potential 
simulated by an agent two meters from the ball as one only one meter away. Agents 
close to the ball are actually disadvantaged as other agents benefit from the positive 
charge at their position when GoToBall is simulated. Some form of spatial 
consideration needs to be given when evaluating behaviors that involve moving to a 
position. When calculating their potential I have chosen to simply subtract a smaller 
value proportional to the distance to this position. Other behaviors like e.g. 
KickForward need no such extra potential, as it requires the agents to already be 
located at a certain position in the field.  
 
In order to compose a distribution of behaviors from the starting set, to meet a given 
state, rules about how they can be put together are needed, as shown in 4.3. As there 
are only three field players in a team in the SLRL domain, some simplifying 
assumptions are feasible to eliminate such a rule system:  
 

1. It never benefits the team to have two or more agents executing the same 
behavior at the same time. 

 
2. The benefit of executing a certain behavior is proportional to the potential 

its resulting state is given by the EFA. No additional benefit is given by 
executing it together with another specific behavior.  

 
These assumptions reduce the generation of the execution set to finding the best 
permutation of three candidates from the starting set. The behavior to execute is 
chosen from the permutation with the highest combined potential.  
 
5.3 The Behaviors to Consider 
 
The composition of the starting set is a vital part of the coordination effort of the 
anticipation model. It has to contain behaviors that, executed together, satisfy the 
global task at the current state of the game. As I have chosen to consider the same 
starting set throughout the game it must be able to satisfy every possible state. The 
behaviors I have included in the starting set are: 
 

GoToBall:  Move to the ball 
KickForward:  Kick the ball in the current facing direction 
FaceBall:  Turn to ball 
PushBall:  Lightly push the ball forward and follow it 
AlignBallAndNet1: Face the ball and the opponent goal 
GoBetweenBallNet2: Go to a position between the own goal and the ball 
OpenBehavior:  Go to a passable position 

 
 



 
19

The preconditions of the behaviors determine whether they are applicable in certain 
situations. So even if a KickForward behavior is in the starting set it is only 
considered and evaluated when an agent is close enough to the ball. 
 
I have constructed the OpenBehavior as a supportive behavior to be able to move to 
a position where it is likely to intercept passes and lost balls. Such a behavior has 
previously been investigated using the strategic probe presented in 3.2. However 
this approach considers the same static passable position throughout the game. The 
idea of the OpenBehavior originates from the SPAR algorithm presented at CMU 
by Veloso, Stone and Bowling [12]. They argue that an agent not currently in 
pursuit of the ball should position itself where it anticipates it is most likely to come 
in possession of it in the future. And such a position they calculate by maximizing 
the distance from other robots and minimizing the distance to the ball and to the 
goal.  
 
I assume that the most open position is the one furthest away from any other agent. 
The calculation needs to estimate some starting positions, as it is not feasible to 
consider every position in the field. I have made an approximation by starting from 
the landmarks that are currently known to a player. For all these landmarks the 
combined distance to all the agents in the field is calculated. The landmark with the 
greatest total value is then chosen. The approximated open point is located between 
this landmark and its nearest agent. When the behavior is simulated, this point is 
probed instead of the ball. If the position is near the opponent goal far away from 
opponents it will receive a high potential. 
 
5.4 The Evaluation Loop with Anticipation 
 
The cooperative planning in the EFA engine with the AM means a few additions to 
the evaluation loop. The applicable behaviors in the starting set are simulated for all 
the field players in the team one by one. Planning for teammates is done with a 
copy of the GM in which the mate and the planning agent have changed places. 
Heuristic potentials are calculated and saved together with the corresponding agent 
and behavior. The distribution of behaviors with the highest sum of potentials is 
chosen as the execution set. In effect an agent does not necessarily choose the 
behavior with the highest potential. The choice is made to maximize the potential of 
the team based on the anticipation of the actions of all its members. 
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Finding the execution set is a computationally complex problem, which demands 
that all possible permutations of three behaviors are tested. The starting set can be 
compared to a complete graph, in which all possible ways to visit tree nodes must 
be tested. The complexity of the problem for a starting set of size n is: n * (n-1) * 
(n-2)  O(n3). This, however, is a worst-case scenario. As the evaluated behaviors 
are saved they are sorted by their potential. When starting to go through the 
behaviors with high potential, good permutations are found early. A lot of the 
following permutations can be disregarded, as they are fast found to be 
uninteresting. As the number of behaviors is limited the computation is a feasible 
addition to the evaluation loop. 
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6 Dynamic Role Model (DRM) 
 
Here I will present a model for teamwork based on the dynamic distribution of 
roles, which are modeled by modifying the charges and probes of the EFA engine. 
 
6.1 The Basis of the Model 
 
Roles can be constructed by modifying the distribution of charges and the probe 
locations of the EFA engine. A well-thought-out composition of such roles can 
produce efficient team play. In the rapidly changing environment of RCF dynamic 
distribution minimizes the time it takes a team to react to a new situation. As 
discussed in Chapter 4, a reference position in the field can be estimated for each 
role. When distributing a role at any state of the game the agent closest to this 
position should be chosen to execute it. This is the basic foundation of the DRM. 
 
For a football team to meet a global state of the game with a number of roles 
corresponds to dividing the global task into subtasks. As an agent is only capable of 
executing one role at a time the number of roles should be equal to the number of 
team members. With three field players in the SLRL one offensive charging role 
(OCR), one offensive supportive role (OSR) and one defensive role (DR) is 
considered. These three roles need to be flexible enough to efficiently handle any 
situation that may arise together. The goal of a subtask is not the same as the global 
goal and therefore the basic strategy of a role is different from that of the team. 
 
6.2 Modeling the Roles 
 

 
Fig. 5. Agents adjusted to their roles in a given state. 
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The task of the OCR is to pursue the ball moving it forward in the field, shooting it 
at the opponents’ goal or passing it to a teammate. To induce such a behavior the 
static charges are set in the same way as described in 3.2. Positive charges are 
placed along the opponents’ goal line and negative ones along that of the own goal. 
As the resource that the role seeks to modify is the ball, this is also the location in 
the field that is probed. Dynamic charges are also deployed in the way described for 
the EFA approach without coordination.  
 

 
Fig. 6. The dynamic charges making up basic strategy for the DR. 

 
The OSR is to place itself in a passable position upfield, at the same time being 
ready to intercept lost balls. As discussed in 5.3 such a position is approximated to 
the one farthest away from any other player. This is achieved by probing the agent’s 
own position, instead of the ball, placing smaller negative charges on the position of 
all known other players. Keeping the negative static net charge of the own net but 
setting a smaller negative charge at the opponent’s goal makes the behavior 
offensive but restrains the agent from running into the opponents goal. One could 
also consider keeping an open angle between the ball and the agent to ensure that it 
is passable, but so far I have not pursued this further. No charges are placed around 
the robot, as the position of the ball is not probed.  
 
The goal of the DR is to stop offensive opponent attempts while also being ready 
for lost balls. This is achieved by placing itself between the ball and the own net 
ready to intercept the ball. Positive charges are placed along a line from the center 
of the agent’s own penalty line to the ball to induce such behavior. No static 
charges are used as the basic strategic positioning for this role changes dynamically. 
Smaller positive charges are also placed on the positions of all known opponents. 
This causes the agent to charge an attacker with the ball. As the object that the role 
seeks to modify is the agent itself, the own position is probed here too. No charges 
are placed around the robot here either. 
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6.3 Distributing the Roles 
 
An order of urgency can be established for these three roles, thereby stating the 
order in which they are to be assigned. It presents an explicit approach to the global 
task presented as three subtasks: 
 

1. Move the ball up field  OCR 
2. Defend the own net   DR 
3. Present a pass alternative  OSR 

 
As shown in 4.5, agents can be assumed to have a similar representation of the GM 
at any given time. With a good estimation of the position of every teammate, role 
distribution can be made without further communication.  
 
An agent makes an individual evaluation of each consecutive role assigning it to the 
team member closest to its reference position. Once an agent is picked it is not 
considered for the next role. The reference position of the OCR is at the ball 
location. For the DR the whole line between the ball and the own net in the given 
state is considered as the reference position. As the OSR is always rewarded the 
agent least suitable for the other two roles, no position needs to be considered for it. 
 
To make the procedure sensitive to the uncertainty of the agent representation, the 
distances to the reference points are divided by the anchor value associated with 
each team member. The order of assignment together with this sensitivity makes up 
a robust system for dynamic role distribution. If the evaluation has a different 
outcome in different robots simultaneously, the most important role will most likely 
be executed. It is likely to be awarded to the agent whose position was the most 
certain. 
  
When the distribution of roles is done the agent executes the role it was given. 
Adjusting the charges and probes of the EFA accordingly it then follows the 
evaluation loop as described in 3.2. The starting set considered is the same as the 
one presented in 5.3. 
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7 Evaluating the Models  
 
7.1 The Simulator 
 
Some efficient way to test the cooperation models is needed in order to establish the 
different aspects of their utility. The obvious way would seem to be playing 
matches with a team of AIBOs using the Team Sweden software with the 
coordination extensions. In the absence of eight robots and a full size field such a 
test is not feasible. Furthermore, a fully computerized environment has the 
advantage of providing easy access to data from a large number of tests.  
 
The AM and the DRM have been implemented and tested using a RoboCup 
simulator developed by Påhlstorp and Ronnovius [11]. It was developed for the 
cooperative map construction discussed in 4.5. Consequently, it uses the global 
structures of the Team Sweden architecture and simulates the various modules of 
the design with varied thoroughness. The movement of the robots is limited so that 
behaviors can only be translated into a direction and a speed. This constrains an 
agent’s precision to a great extent. Kicks cannot be fully simulated as the only way 
to manipulate the ball is by bumping into it from some direction. Consequently only 
a number of the behaviors implemented in the HBM could be considered in the 
simulator. Vision is simulated by showing the agent the part of the global map that 
corresponds to the presumed robot’s field of vision. The accuracy of perception can 
easily be adjusted by adding a preferred amount of noise to the local map. A great 
advantage of the simulator is that the source code is limited so that the RP module 
with the cooperative additions could easily be incorporated into it.  
 
7.2 Performed Tests 
 
To estimate how well a model for football cooperation performs it is ultimately 
desirable to see how many matches are won and goals scored using it against 
various opponents. As the possibility of precise movement is limited, the accuracy 
of goal attempts is low in the simulator. Additional aspects need to be tested to 
provide a base for the evaluation. In this way the effectiveness of the models can be 
established with a higher precision. 
 
Ball possession is an important variable to calculate as it estimates how active the 
players are in the pursuit of the ball and how well they manage to keep it within the 
team. At the same time it approximates a team’s ability to adjust to the dynamic 
environment, e.g., to intercept lost balls. This will thereby also, to some extent, give 
an estimation of how well a team is distributed on the field.  
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The amount of time the ball is located on either side of the field is also worth 
testing. It gives an estimation of how offensive, respectively defensive, a strategy is. 
Goals are made on the opponents’ half of the field so a team should spend as much 
time there as possible. In order to play football offensively this is an important 
aspect to consider.  
 
Goals scored and conceded are other variables considered to evaluate the models. 
As the game continues in the simulator without a kick off after a goal is scored, this 
variable has to be considered with caution. Several consecutive goals can be 
registered if the ball is trapped between a player and the net. When appearing close 
together like this, a number of goals should be considered as one, as they were the 
result of the same offensive opportunity. As discussed above, however, these 
variables involve a lot of chance due to the simulator design. 
 
Changing the accuracy of the robots’ perception can test the robustness of the 
models. The foundation of coordination for both the models lies in the own agent’s 
view of the environment. For this reason it is interesting to examine how well they 
function if this view is inaccurate. This gives an evaluation of the fault tolerance of 
the other test variables. 
  
The models were tested against the planning basic model of the simulator, the 
strategy of which is simply to have all the team members hunt the ball.  In this way 
the utility of each model is tested independently of each other and an objective 
comparison can be made. The different variables were tested in three-minute passes. 
This was estimated to be enough time for a number of situations to occur in a game. 
Thirty such passes were evaluated for each model. The results are presented in 
Tables A and B.  
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Noise (%) Ball 
Possession 
(%) 

Time on 
Offensive 
Field (%) 

Goals Scored Goals 
Conceded 

0 63 52 5 6 
20 57 54 4 5 
50 52 50 2 4 

 
Table A: The test results for the AM. 
 
 

 
Table B: The test results for the DRM. 
 
 
 
7.3 Evaluation 
 
The results of the tests performed indicate that the limited motion and ball handling 
skills introduce a big element of chance into the simulator. Viewing the simulator’s 
graphic visualization of the game it is obvious that the ball is often accidentally 
pushed off in some arbitrary direction. The validity of goals as a measure of 
successful football playing is, as mentioned earlier, questionable. Many of the goals 
are scored by chance. The seemingly random distribution of goals in the test results 
also indicates that this is the case. I have therefore mainly chosen to view the other 
variables as indicators of how well the models perform.  
 
The AM showed a high degree of ball possession. Assuming the reliability of this 
variable it shows that the model distributes the agents well in the field. It would also 
imply that the AM adjusts effectively to the dynamic environment. The possession 
can be seen to decrease steadily with the increased amount of noise. This could be 
seen to reflect the fact that planning for the whole team is made on the basis of the 
distorted local map.  
 
 
 
 
 
 
 
 

Noise (%) Ball 
Possession 
(%) 

Time on 
Offensive 
Field (%) 

Goals Scored Goals 
Conceded 

0 56 53 4 4 
20 52 49 5 3 
50 49 50 2 4 
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The DRM on the other hand shows a substantially lower percentage of ball 
possession. It can therefore be assumed that it does not distribute the agents as well 
as the AM and has a harder time adjusting to changes. One explanation could be 
that the charges making up the basic strategies of the roles were not compatible 
with the behaviors in the starting set. The amount of noise can here be related to the 
grounds for role distribution. 
 
The time the agents of the AM spent on the opponents’ half of the field is slightly 
longer then that on the own field. The difference is so small that no evident 
conclusion can be drawn from it. The strategy can be said to be neither offensive 
nor defensive. The DRM shows a similar result. The amount of noise does not seem 
to have any significance in this aspect. To increase the amount of uncertainty would 
probably also increase the amount of chance and therefore give a more random 
result. 
 
The relatively limited success of the two models can probably be attributed, to a 
certain extent, to the impreciseness of the simulator. Opposing a team with a ball 
hunting strategy probably gives a one-sided evaluation of the utility of the team. 
There is, however, a lot of the components of the models that could have been 
constructed differently, e.g., the composition of the starting set and the position of 
the charges. A more thorough modeling and a careful evaluation of these models 
could probably improve their efficiency a great deal. 
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8 Conclusion 
 
Coordination of agents is a complex issue that sets high demands on the diversity of 
the software structure. The constraints of the RoboCup domain raise these demands 
even higher. In this report two attempts to improve cooperation have been 
presented. The evaluation of the models showed at least one of them to be fit to deal 
with a dynamic environment. The reliability of the test results can however be 
questioned and further extended testing would be desirable in order to fully 
establish the utility of the models. 
 
It would be interesting to see how the AM and DRM function within the complete 
Team Sweden architecture. This would add an additional level of movement 
precision to the team and make it possible to consider a large number of behaviors. 
This poses an interesting challenge for the future. 
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