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Abstract

When  we  talk  about  computer  learning  in  competitive  games,  we 
think of an opponent that can learn from its mistakes and use creative 
new tactics to counter our own. Dynamic Scripting is a method for 
letting the game AI do just that – and do it in a believable way. The 
setting  for  this  work  is  the  strategy  game World  in  Conflict.  The 
dynamic scripting agent will be learning how to utilize its units and 
their  different  abilities  to  win  tactical  battles  against  different 
opponents. This thesis aims to show how a list of actions, actions that 
humans also use to make up their game play, can be combined by the 
dynamic scripting agent into fully working tactics, capable of adapting 
to beat its opponents. It will also investigate how the knowledge of 
such an agent can be used to create a static, well-performing AI. The 
results clearly show that both the learning agent and the static agent 
derived  from  it  perform  well.  I  therefore  conclude  that  dynamic 
scripting works in the setting of tactical combat in a strategy game, 
both as an on line and as an off line learning method.

Introduktion

När  man  talar  om inlärning  hos  en  datorstyrd  motståndare  i  olika 
datorspel, tänker man på en motståndare som anpassar sig genom att 
lära sig av sina misstag och uppfinner nya taktiker för att övervinna 
spelaren.  Dynamic  Scripting  är  en  metod  som  låter  den  AI-styrda 
motståndaren  utnyttja  sina erfarenheter  för  att  lära sig  spela  bättre. 
Detta examensarbete kommer att visa hur denna metod kan användas i 
det  moderna  strategispelet  World  in  Conflict  för  att  skapa  ett 
trovärdigt och effektivt lärande hos AI-spelaren. Metoden går ut på att 
AI-spelaren har tillgång till en mängd grundläggande beteenden som 
kombineras för att skapa olika taktiker, som utvärderas och förbättras 
för  att  anpassa  sig  till  den  nuvarande  motståndarens  spelstil.  Jag 
försöker  i  detta  examensarbete visa  dels  hur  denna  metod  kan 
användas av AI:n för att genom aktivt lärande hitta ett framgångsrikt 
beteende i strid, men även hur sådana inlärda taktiker kan användas 
som  grund  för  utvecklingen  av  mer  traditionella,  statiska  taktiker. 
Resultaten  visar  tydligt  att  både  den  dynamiska  AI:n  med  aktivt 
lärande  och  den  statiska  AI:n  som härleds  från  den  dynamiska  är 
framgångsrika. Jag drar därför slutsatsen att Dynamic Scripting är en 
lämplig metod både för att  träna upp en traditionell  AI och för att 
skapa en intressant dynamisk motståndare.
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1. Introduction

1.1. Learning in computer games

Looking  back,  the  first  significant  computer  program  that  could  learn  was  a 
checker-playing program written by Arthur Samuel [Russell2003]. It was able to 
learn  good  checker  play,  by  combining  search  methods  and  updating  its 
evaluations  of  board  positions.  Since  then  many  more  programs  capable  of 
learning to play board games have seen the light of day, and they have grown 
increasingly good at playing their respective games. Checkers and similar games 
have large search spaces, but they are not very complex, as the possible actions in 
a given state are limited. Modern computer games, however, generally have huge 
complex search spaces of behaviour which makes searching through them very 
difficult and ineffective. This means successful learning methods that will affect 
the game play as a whole must make decisions based on abstractions and limited 
models of the world it can observe. Furthermore it must use its knowledge and 
experience  in  such  a  way  that  the  learned  behaviour  is  undeniably  an 
improvement of the old one. The risk that an AI player1 might as well learn a 
behaviour that is worse than the original has been a major concern regarding on 
line learning for game developers in the past [Woodcock2002], and its general 
unpredictability seems to remain a problem for the industry [Champandard2007]. 
Hopefully this will change, and this thesis is an attempt to take a step in the right 
direction.  Another  problem with  adaptive  AI  is  that  it  might  not  even  be  an 
attractive  feature  of  a  game,  in  which  case  commercial  game  developers  are 
unlikely to implement it in their games, no matter how good it is technically.

1.2. Dynamic Scripting

Dynamic  Scripting  [Spronck2004]  is  a  reinforcement  learning  technique 
[Russell2003] developed for on line learning in computer games. It behaves much 
as  one  expects  a  human  to;  it  plays  the  game for  a  while,  evaluates  its  own 
behaviour, and builds up a tactic from behaviours that it has been successful with 
so far. If it starts to lose, it quickly adapts and discards current tactics, trying to 
learn how to deal with the new threat. Dynamic scripting has for the largest part 
been used for controlling agents in role-playing games, with each character or unit 
in the game using its own dynamic scripting “brain”. It has also been used to 
control the strategical decisions of an AI player in a strategy game, such as base 
building plans, technological research, and amassing an army.  A more detailed 
1 'Player' in this context refers to an agent that is playing a game. The expression 'AI player' 

refers to a player that is controlled by an artificial intelligence, as opposed to a human player.
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description of the Dynamic Scripting algorithm can be found in section 3.2.

1.3. Purpose

This thesis will  investigate the use of dynamic scripting for an AI player  in a 
strategy  game,  but  instead  of  controlling  its  strategical  thinking  it  will  be 
operating its tactical skills in combat. The first goal will be to create an AI player 
that can learn to use its available units in such a way that it can outperform its 
opponent. The game in question is the strategy game World in Conflict released in 
September 2007, a game where combat is in focus and such things as resource 
gathering or technological advancement do not exist. It is all about calling in units 
- such as helicopters, tanks and infantry - to the battlefield, and winning ground 
from your opponent through battle. Combat tactics therefore have a very large part 
in the game,  and utilizing every aspect of your  arsenal is  required to beat the 
opponents.

Humans playing this game make up their tactics from smaller actions that 
we know we can use in the game. Examples are moving a unit, ordering a unit to 
attack  another  unit,  hiding  a  unit  from enemy fire,  spreading  out  your  units, 
scouting with a unit. My first goal is to have dynamic scripting work very similar 
to a human in this game. It is given exactly those types of actions described above 
to choose from, and it will test them in different combinations and situations to 
see which ones are worth using more often and which ones are not. Hopefully, 
this will amount to tactics that can be considered good, by winning a lot of battles 
in practice. The second goal is to use the dynamic scripting player as a test agent 
by letting it  develop winning tactics,  and then using the actions it  has proven 
successful to create a traditional static AI2.

2 The expression 'static AI' refers to an AI player that does not learn new behaviour as the game 
progresses.
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2. Problem Definition

The problem consists of two parts.

1. The first  part  is  the question whether  or  not  dynamic  scripting can be 
successfully applied to a tactical combat situation in a computer strategy 
game,  where  the  AI  player  rather  than  a  single  game  unit,  such  as  a 
rifleman or a tank, is the learning agent. Another way to phrase it would 
be: Is it possible for an AI player to learn successful combat tactics in a 
computer  strategy game through use of dynamic  scripting? First,  I  will 
focus on learning to outmatch a particular AI player, and if that succeeds, I 
will see if the system can adapt to another opponent with different tactics 
as well. Logically, it would be quite difficult to prove that it is not possible 
to  use  dynamic  scripting  to  these  ends,  so  I  will  simply  try  to  give 
examples showing that it is.

2. The second problem is to determine, if possible, a way to use the results of 
dynamic scripting training against a particular opponent to create a static 
AI which is far superior to said opponent. This is mentioned as one of the 
possible uses of dynamic scripting [Spronck2006].

The answer to the second question is heavily dependent on the answer to the first 
one, since if it is not possible to learn well against the opponent in the first place, 
then the resulting behaviour is not likely to be successful either.
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3. Method

3.1. Preconditions

The setting for this thesis is the newly released game World in Conflict (WiC), 
and  the  opponents  for  the  majority  of  the  experiments  will  be  the  game  AI3 
shipped  with  the  game.  Each  AI-controlled  player  in  WiC  has  a  role;  either 
Infantry, Armor, Air or Support. Each role governs a particular subset of all the 
unit  types  in  the  game,  for  example,  the  air  player  governs  the  use  of  all 
helicopters  and  the  support  player  handles  anti-air  vehicles  and  artillery.  The 
players  communicate  and ask  each  other  for  help,  just  like  a  team of  human 
opponents would. I will therefore consider a team of four players,  each player 
filling one each of the roles and commanding the units belonging to that role, to 
be the opponent in the cases where the WiC game AI is used.

In all experiments each side of the battle will command an equal set of units. 
While it would be interesting to study the ability to learn in situations where this 
is not the case, it would simply bring too much risk of imbalance between the 
fighting sides to be worth the effort, at least for the purpose and time span of this 
thesis. 

In  the  game  there  are  twenty  different  unit  types,  such  as  heavy  tank, 
medium tank, infantry squad, sniper, heavy attack helicopter, and so on. Some 
were excluded because the extra effort to include them in the dynamic scripting 
framework would have taken too much time, or because the game AI did not 
utilize them properly.

For all the experiments, each side commanded one unit of each unit type, 
except those excluded as described above. The tests were performed on a certain 
map, with both sides having the mission of capturing a particular area on the map, 
resulting in a battle at this location.

3.2. Dynamic Scripting

The behaviour  of  an agent  in  dynamic  scripting is  represented by state-action 
pairs, where the action is executed only if the state in the pair matches the state of 
the  world  at  the  time  of  execution.  Such  a  pair  might  be  “If  the  enemy has 
helicopters and I do not have anti-air, then we should retreat” or “If the enemy is 
bombarding the area with artillery fire, then we should spread out”.  Using the 
terminology of Spronck et al. (2004) I will refer to the state-action pairs as rules 

3 The expressions 'game AI' and 'standard game AI' refer to the artificial intelligence framework 
that controls the behaviour of the computer controlled players, also known as 'bots', in the 
World in Conflict game.
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and the generated sequences of those rules as scripts. All the rules are available in 
a rule base, where they are all associated with a weight value. Each rule is coded 
by an AI programmer and should produce reasonable and plausible behaviour. 
This requires some domain knowledge on the programmers side.

For each round of combat, a predetermined number of rules are selected to 
make up a script, which is a list of rules in a certain order. The probability for any 
given rule in the rule base to be selected for the script is directly proportional to its 
weight, and the sum of the weights of all rules in the rule base is always kept the 
same throughout the learning process. In a round of combat this script is then 
continuously  polled  for  applicable  rules,  and  the  respective  behaviours  are 
executed. The implementation of this process is described in greater detail under 
the section named “Combat Procedure” below.

When combat has ended the result is evaluated by a fitness function, and 
rules that participated in the script will be rewarded with a weight increase if the 
battle went well, or a weight penalty, i.e. a weight decrease, if it went poorly. The 
design of the fitness function is highly domain specific and of great importance to 
the effectiveness of the algorithm. Once the participating weights have received 
their weight change, the rules in the rule base which where not part of the script 
will be compensated in the opposite direction, in order to keep the weight of all 
sums  equal  from round  to  round.  This  lets  the  system  adapt  to  a  new tactic 
quickly, since it is sufficient that the currently prominent rules start to lose for the 
other rules to have their chance of being selected for a script increased.

3.3. Implementation

The larger  part  time-wise of my work on this thesis was spent integrating the 
learning system with the game code, and implementing the rules in the rule base 
for the dynamic scripting agent. The complete rule base can be seen in Appendix 
A. The structure of the chain of command was such that during combat, the AI 
player would give orders with a certain frequency to all its units in accordance 
with the generated script. This frequency had to be quite high to get an effective 
behaviour, the reasons for which are explained more thoroughly later on. Below 
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follows  a  more  detailed  description  of  the  different  stages  of  the  learning 
algorithm.

Script Generation

Generating  the  script  was  a  fairly  straightforward  task.  Before  combat  was 
initiated, the script was generated according to the pseudo code in Figure 2 below. 
A random number between zero and the weight sum of all weights in the rule base 
was generated, and then mapped to one of the rules in such a way that the chance 
of selecting a certain rule is proportional to its weight. This was then repeated 
until  the desired number of rules had been selected for the script.  For reasons 
mentioned  in  the  next  section,  the  script  was  also  sorted  by  rule  weight  in 
descending order before the script was returned.

Combat Procedure

The method with which to give orders to the units during the battle given a script 
is not part of the dynamic scripting algorithm as such. There were, however, two 
basic choices made obvious by the game mechanics in question. One could either 
iterate over the units and give each unit the first order that was applicable to that 
unit in that situation, or one could iterate over the rules in the script and for each 
rule give orders accordingly to all units that matched the prerequisites of that rule. 
I chose the latter, mostly for practical reasons. The major factor in my decision 
was the fact that I would then have available a list of units for each rule when it 
was to be executed, rather than having to keep track of who had gotten what order 
in some other manner. This was convenient for certain behaviours, for example 
movement  orders  that  were dependent  on group cooperation,  such as  flanking 
tactics or formation tactics. After a unit had received an order, it was removed 
from the list of available units for that update, i.e. a unit could only receive one 
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script = new List();
while script.size() < WANTED_SCRIPT_SIZE:

fraction = random(0, rulebase.getWeightSum());
for each rule in rulebase:

if (fraction <= rule.weight):
if (rule not in script):

script.add(rule);
break; // This breaks the for-loop

else:
fraction = fraction – rule.weight;

return script;

Figure 2: The script generation function in pseudo code. A new rule is added to the 
script repeatedly until the it has reached the desired size.



order per update.
This order of rule execution makes the rule order in the script an important 

detail.  There are several ways to do this, for example by manually assigning a 
priority  value  to  each  rule  [Spronck2006].  There  is  also  some  research   on 
alternatives  for  automatic  ordering  of  the  execution  of  rules  in  such  a  script 
[Timuri2007]. I chose the simple automatic method of ordering by weight. This 
was partly due to lack of time, but also because more sophisticated methods are 
merely an enhancement of a working system, not part of its requirements, and thus 
it falls outside the scope of this thesis. In practice this means the iteration order 
when executing rules starts at the rule with the highest weight and ends with the 
rule that has the lowest weight, and so whenever a high weight rule is applicable, 
it is certain that it will  execute. This seems fairly reasonable as a high weight 
should  only  be  acquired  by  rules  that  are  generally  very  successful,  and 
consequently those rules should have high priority.

The frequency with which the script  should be queried for orders during 
combat was not obvious from the start. It soon became apparent, however, that an 
effective AI player would need to deliver new orders to its units quickly as the 
combat  progressed  and  changed.  One  example  was  when  a  tank  was  rolling 
towards an infantry unit and the infantry unit didn't get the order to move out of 
the way until it was too late. After some testing, I set the order update frequency 
to twice per second. This created a new problem where orders that had random 
elements  were  repeated  every  0.5  seconds,  which  resulted  in  stale  behaviour 
where no order was carried out to any particular length. One example was with an 
order to scout around a certain area by moving a random distance in a random 
direction.  Given the  high update  frequency the unit  in  question barely moved 
anywhere in practice, since it repeatedly got new a order which contradicted the 
recently received one. I remedied this by checking in each update for each new 
order given if the new order was the same as the last order given to the unit and if 
the unit was still carrying out an order. If both of those conditions were true, that 
order was not given again, but the unit was still considered unavailable for other 
orders this update.

Combat was considered to be over when one of the following conditions 
was fulfilled.

• Either side has zero troops left.
• More than five minutes has passed since the start of combat.

While the first point is quite reasonable the second warrants an explanation. Some 
orders would bring the fight  to a stale  mate,  for example an order to  flee the 
battlefield if you couldn't  harm any of the remaining enemy units.  After some 
testing I concluded that if a fight was not over in five minutes, it was not likely to 
end at all.
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Performance Evaluation

Evaluation of combat is performed by a fitness function which serves to evaluate 
the success of the script as a whole, taking into account several factors about the 
battle. The fitness function I used produced a value in the range [0, 1], where 1 
was a perfect win, and 0 was a complete loss. During the course of the testing, I 
changed fitness function to try to improve the results.  This can be seen in the 
“Experiments” section below, and I will not go into greater detail about it here.

Given a fitness value from this fitness function, the rule weights of the rule 
base could now be updated accordingly. Below in figure 3 is the formula I used to 
calculate the weight change for a rule in the script, which is practically the same 
formula  used  in [Spronck2006].  I  chose this  formula  as  a  starting point,  with 
intention to modify it if needed. This proved unnecessary, and it was used in its 
original form throughout the experiments:

where ΔW is the weight change for each rule in the script.  Pmax and Rmax are the 
maximum  penalty  and  the  maximum  reward  for  a  single  round  respectively, 
limiting  ΔW to  the range [-Pmax,  Rmax].  F is  the fitness  value computed by the 
fitness function, and b is the breakpoint. The breakpoint is the threshold value for 
the fitness value. A fitness value higher than the breakpoint means the script rules 
will be rewarded, whereas a fitness value lower than the breakpoint will yield a 
penalty.

The distribution of weight updates in the function I used consists of four 
parts, and are presented in pseudo code in figures 4, 5, 6 and 7 below. The first 
part  is  to  apply  the  ΔW change  to  each  rule's  weight  in  the  script.  In 
[Spronck2006] a modification is used to award the rules that were not actually 
activated in the fight, but present in the script, only half the weight change of the 
ones that were activated. This is to allow empty rules to gain and lose weight, and 
to reduce punishment of rules that may be good but could not affect the battle 
since they were not activated in this particular round of combat. Empty rules are 
rules that are never activated. They are present in the rule base to let the script in 
effect adjust its own size when the preselected number of rules is too high for 
optimal performance. I decided to use this approach as well.
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Figure 3: The weight change formula.
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b−F
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F−b
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The second part is to compensate all rules that were not in the script, to keep the 
weight sum of all rules in the rule base constant.

The final weights are limited by maximum and minimum weight values, Wmax and 
Wmin, and so the third part is to adjust all weight values that exceed these limits 
and keep track of the remainder this creates.

The fourth part is distributing this remainder among the weights in such a way 
that it does not make them exceed the limits.
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delta_w = CalculateWeightChange();
script_adj_sum = 0;
for each rule in script:

if (rule.activated):
rule.weight += delta_w
script_adj_sum += delta_w

else:
rule.weight += 0.5 * delta_w
script_adj_sum += 0.5 * delta_w

Figure 4: Pseudo code for distribution of weight change over the participating rules.

compensation = – script_adj_sum / (rulebase.size – script.size);
for each rule in rulebase:

if (rule in script):
continue;

rule.weight += compensation;

Figure 5: Pseudo code for weight compensation for non-participating rules.

remainder = 0;
for each rule in rulebase:

if (rule.weight > W_MAX):
remainder += rule.weight – W_MAX;
rule.weight = W_MAX;

else if (rule.weight < W_MIN):
remainder += rule.weight – W_MIN;
rule.weight = W_MIN;

Figure 6: Pseudo code for clipping the rule weights to their maximum and 
minimum allowed values.



Once all  the weights have been updated and the remainder distributed the rule 
base is ready for new script generation and a new round of combat.

3.4. Experiments

I conducted a total of seven different experiments. Four of these were actual on 
line learning sessions for the dynamic scripting player against the standard game 
AI, and I  will  call  these Learning Experiments 1 through 4 according to their 
chronological  order.  One  was  a  reference  experiment  where  no  learning  was 
active, and I will call this the Reference Experiment. The other two tried a static 
AI derived from the best of the four learning sessions against a regular game AI 
opponent  and a  dynamic  scripting opponent  respectively,  and I  will  call  them 
Static Experiments 1 and 2. 

The learning experiments and the reference experiment will serve to achieve 
the first goal of this thesis, answering the question: “Is it possible for an AI player 
to learn successful  combat tactics in a computer strategy game through use of 
dynamic  scripting?”.  The first  static  experiment,  where  the  standard  game AI 
meets the static scripted AI, is meant to answer the second question: “Is it possible 
to use the results of dynamic scripting training against a particular opponent to 
create  a  static  AI  which  is  far  superior  to  said  opponent?”.  The  last  static 
experiment, trying a regular dynamic scripting agent against this static scripted 
opponent, will hopefully shed additional light on both questions.

Throughout the experiments, the initial weight of all rules was 100, Wmin was 
20, and the breakpoint  b for the weight update formula was 0.4. For a player to 
win a battle, it would need to kill all the opponent's units and still have units left, 
or hold command over the area for which the battle was fought when time had run 
out.  Holding  the  area  meant  clearing  two  perimeter  points  from  enemies, 
fortifying them with your own troops, and keep the enemy from taking any of 
them back.

The reason I did four learning experiments is that this is the time it took 
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fraction = remainder / (rulebase.size * 3);
while remainder not 0:

for each rule in rulebase:
new_weight = rule.weight + fraction;
if (new_weight > W_MAX or new_weight < W_MIN):

continue;
else:

rule.weight = new_weight;
remainder = remainder – fraction;
if (remainder == 0):

break;

Figure 7: Pseudo code for distributing the remainder from the weight clipping 
over all eligible rules.



before I felt  I  had a set of parameters and a fitness function which performed 
adequately.

Learning Experiment 1

For Learning Experiment 1 I constructed a fitness function based on three factors: 
winning the game, keeping as many units alive as possible, and keeping all units 
at  as  high health  as  possible.  From this  the  fitness  value  f was  calculated  as 
follows:

f = 0.4  0.4 F units  0.2 H units if the battle was won, and

f = 0.4 F units  0.2 H units if the battle was lost

where Funits is the number of friendly units alive divided by the number of friendly 
units alive at the start of combat, and  Hunits is the total health4 of the remaining 
friendly units divided by the total health of all friendly units at the start of combat. 
This function rewards keeping units alive no matter what their health, but also 
gives a bonus for a low overall health loss. I set the script size to 15, Rmax and Pmax 

to 100 and 50 respectively, and Wmax to 250. I limited the number of generations 
for  the  dynamic  scripting  agent  to  learn  to  100.  Although  it  seemed  that  the 
dynamic scripting agent is learning, as can be seen under “Learning Experiment 
1”  in  the  “Results”  chapter,  it  certainly  seemed  like  there  was  room  for 
improvement.

Learning Experiment 2

For Learning Experiment 2 I constructed a new function to calculate the fitness 
value f:

f = 0.4  0.4 F units  0.2 H units if the battle was won, and

f = 0.3 E killed  0.1 F units if the battle was lost.

where Funits and Hunits mean the same as above, and Ekilled is the number of enemy 
units killed divided by the number of enemy units present at the start of the fight. 
The reason for changing the fitness function was that  while in theory it  could 
assume any value between 0 and 1, in practice it was almost always either zero or 
something over 0.4. This is because the chances of actually being rewarded for 
living units and healthy units are quite slim, if the agent did indeed lose the fight. 
4 'Health' in this context refers to hit points, which represents how much more damage the unit 

can take before it is destroyed.
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The new fitness function takes into account how well the agent performs under the 
circumstances  that  it  actually  performs  badly,  which  creates  a  better  learning 
opportunity  from  lost  battles.  This  function  was  also  used  for  the  remaining 
experiments.

Learning Experiment 2 used the same values for the constants as Learning 
Experiment 1, except for the learning rate, which was halved by setting Rmax to 50 
and Pmax to 25. Since learning rate was halved it also seemed appropriate to double 
the time from 100 to 200 generations during which the agent could learn. From 
the results in “Learning Experiment 2” in the “Results” chapter below, it seems 
that these parameters worked slightly better than in the previous experiment.

Learning Experiment 3

For Learning Experiment 3 I decided to try to let rules that performed particularly 
well have an even greater chance of being selected in each script generation, so I 
doubled Wmax, setting it to 500, while keeping the learning rate and the generation 
count the same as in Learning Experiment 2. This proved successful, as can be 
seen under “Learning Experiment 3” in the “Results” chapter.

Learning Experiment 4

I wanted to continue and explore the effects of different parameter values, so for 
Learning Experiment 4 I changed the script size from 15 to 10 and set Wmax to 750. 
I also set the learning rate and generation count back to what it was in Learning 
Experiment 1, hoping for better results in less time. However, the agent performed 
worse under these conditions than in Learning Experiment 3, as can be seen under 
“Learning Experiment 4” in the “Results” chapter. 

At  this  point  I  settled  with  the  parameters  I  had  used  in  Learning 
Experiment 3. Clearly it was possible that there existed better sets of parameters, 
but it was not feasible to keep testing more when my goal was not to find the best 
set of parameters but to find a set that worked well enough.

Reference Experiment

For the Reference Experiment, I used a regular dynamic scripting agent, with the 
alteration of disconnecting the weight updates from the learning algorithm. I let 
this  non-learning  dynamic  agent  fight  against  the  standard  game  AI,  and  the 
results  are  found  under  “Reference  Experiment”  in  the  “Results”  chapter.  By 
disconnecting the weight updates, the only parameter affecting the result was the 
script  size.  This was set  to 15 for the experiment  to compare well  to the best 
learning experiment.
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Static Experiment 1

The static AI was implemented by altering the original dynamic scripting agent, 
changing the script generation function to always return an ordered script with the 
fifteen most successful rules. To select these rules, each rule was given a score by 
counting how many times it had had a weight of at least 80% of the maximum 
weight in the last generation of Learning Experiment 3, the most successful one. 
The script, which can be seen in Appendix B, was then composed by picking the 
fifteen rules with the highest score, sorted in descending order.

In Static Experiment 1, the static scripted agent fought the standard game 
AI. The scripted agent was very successful, and the results are found under “Static 
Experiment 1” in the “Results” chapter.

Static Experiment 2

For Static Experiment 2, the static scripted AI fought the dynamic scripting agent 
from Learning Experiment  3,  using the same parameter  values and generation 
count as in that experiment. These parameters proved less successful against the 
static AI than against the standard game AI, but it is clear from the results under 
“Static Experiment 2” in the “Results” chapter that it adapted and learned a to 
some extent successful tactic. 
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4. Results

4.1. Experiment Results

In this section I will present the results of all the experiments I conducted. I will 
present the win ratios of the agents in each learning experiments. The win ratio of 
a certain agent, for a certain number of battles, is the number of wins for that 
agent in those battles divided by the total number of battles.
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Learning Experiment 1

This experiment consisted of twelve tests with one hundred generations of training 
in each test, where the dynamic scripting agent faced the standard game AI.
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Figure 8: A graph showing the learning development of the twelve Dynamic Scripting agents in  
Learning Experiment 1. Each line represents one agent.
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Generations Mean win ratio Standard deviation
1-25 0.53 0.12

26-50 0.61 0.12
51-75 0.67 0.09

76-100 0.66 0.14

Table 1: A table showing the mean win ratio and standard deviation of the win ratio for all the 
agents during each generation interval in Learning Experiment 1.



Learning Experiment 2

This experiment consisted of ten tests. Each test had a dynamic scripting agent 
fighting for 200 generations against the standard Game AI.
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Figure 9: This graph shows the learning process of the ten agents in Learning Experiment 2.  
Each line represents an agent.
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Generations Mean win ratio Standard deviation
1-50 0.59 0.11

51-100 0.65 0.07
101-150 0.66 0.09
151-200 0.69 0.07

Table 2: This table shows the mean win ratio and standard deviation of the win ratio for all the 
agents during each generation interval in Learning Experiment 2.



Learning Experiment 3

This  experiment  consisted  of  twenty  tests,  each in  which  a  dynamic  scripting 
agent fought against the standard game AI for 200 generations.
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Figure 10: This graph shows the learning process of the twenty agents in Learning Experiment 3.  
Each line represents an agent.
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Generations Mean win ratio Standard deviation
1-50 0.57 0.10

51-100 0.72 0.11
101-150 0.80 0.08
151-200 0.81 0.06

Table 3: This table shows the mean win ratio and standard deviation of the win ratio for all the 
agents during each generation interval in Learning Experiment 3.



Learning Experiment 4

This  experiment  consisted  of  thirteen tests.  Each test  had a  dynamic  scripting 
agent play 100 battles against the standard game AI.
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Figure 11: This graph shows the learning process of the thirteen agents in Learning Experiment 4.  
Each line represents an agent.
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Generations Mean win ratio Standard deviation
1-25 0.55 0.06

26-50 0.66 0.13
51-75 0.66 0.14

76-100 0.73 0.10

Table 4: This table shows the mean win ratio and standard deviation of the win ratio for all the  
agents during each generation interval in Learning Experiment 4.



Reference Experiment

Although no learning progression could be expected, and in fact no change in win 
ratio over time at all, I decided to test and present this experiment in the same 
manner  as  the  learning experiments,  to  make it  easier  to  compare  the results. 
Thus,  for  the  reference  experiment  twenty  tests  where  conducted  with  100 
generations in each test. A dynamic scripting agent without weight updates fought 
the standard game AI. 
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Generations Mean win ratio Standard deviation
1-25 0.45 0.09

26-50 0.45 0.10
51-75 0.50 0.08

76-100 0.42 0.12

Table 5: This table shows the mean win ratio and standard deviation of the win ratio for all the  
agents during each generation interval in the Reference Experiment.

Figure 12: This graph shows the win ratio progression of the twenty agents in the Reference 
Experiment. Each line represents an agent.
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Static Experiment 1

This experiment was slightly different from the ones presented above. It consisted 
of  five  tests  of  variable  length,  not  being  limited  to  a  certain  number  of 
generations.  This  would  have  had  no  purpose  anyway,  since  each  battle  will 
always start out under the exact same circumstances as the previous one, and is 
thus independent of all other battles. During these five tests,  a total number of 
2385 battles were fought between the static scripted agents and the standard game 
AI. The scripted agents won 2121 of these, which is a win ratio of 0.89.

The standard deviation of the mean win ratio between the agents is 0.015.
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Agent Wins Losses Win ratio
One 481 73 0.87
Two 404 37 0.92

Three 415 49 0.89
Four 403 52 0.89
Five 418 53 0.89

Table 6: This table shows the wins, losses, and win ratios for the five different static  
agents in Static Experiment 1.



Static Experiment 2

This experiment consisted of six tests where a dynamic scripting agent with the 
parameters  from Learning  Experiment  3  fought  the  static  scripted  AI  for  200 
generations.
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Generations Mean win ratio Standard deviation
1-50 0.47 0.10

51-100 0.54 0.10
101-150 0.65 0.06
151-200 0.65 0.08

Table 7: This table shows the mean win ratio and standard deviation of the win ratio for all the  
agents during each generation interval in Static Experiment 2.

Figure 13: This graph shows the learning progression of the six agents in Static Experiment 2.  
Each line represents an agent.
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4.2. Comparisons and notes

To compare the different learning results and the reference test I will display the 
mean win ratios of all the experiments in one graph. These can be found in tables 
1, 2, 3, 4 and 5 above. I will use four discrete points for the x-axis for the intervals 
in  each  experiment,  noting  that  these  points  will  refer  to  different  generation 
intervals in reality. For some it will be intervals of 50 generations and for the rest 
it  will  be  25  generations.  This  means  that  the  graph  will  not  be  a  direct 
comparison  between  these  results.  It  will,  however,  provide  us  with  some 
clarification about the performance of the agents in each experiment.

From Figure 14 two things are made clear.  First,  by comparing them with the 
reference data, we can conclude that all learning experiments were successful in 
learning a superior combat behaviour. It should be noted, however, that Learning 
Experiment 4 only used ten rules for the script, and no separate reference test was 
made with these parameters. The second thing to note is that the agents in the 
third learning experiment clearly outperformed the others.

From Static Experiment 1, we should notice two things. From the mean win 
ratio of all the fights it is clear that the scripted agents severely outperformed the 
standard game AI. We should also note that the standard deviation of win ratios 
between agents is very low.

Static Experiment 2 shows that a dynamic scripting player with parameters 
from Learning Experiment 3 can adapt to other tactics than the standard game AI. 
However, the dynamic scripting agent is not as successful as it was against the 
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Figure 14: This graph shows the progression of each of the learning experiments alongside each 
other. The reference test is also included.
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standard game AI.
Below  is  a  graph  showing  a  comparison  between  the  best  learning 

experiment,  the  static  agent  versus  the  standard  game  AI,  and  the  reference 
experiment. Since there is no progression data for the static experiment it will be 
displayed as a horizontal line.
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Figure 15: This graph shows a comparison between Learning Experiment 3, Static Experiment 1,  
and the Reference Experiment.

Interval 1 Interval 2 Interval 3 Interval 4
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Comparison of Experiments

Learning Experiment 3
Static Experiment 1
Reference Experiment

Generation interval

W
in

 ra
tio



5. Discussion

The exact results  are of course highly game specific  and depend much on the 
game, my implementation of the rules in the rule base, and the implementation of 
the combat  procedure itself.  As such,  this  thesis  will  serve not  primarily  as  a 
description  of  how  to  implement  dynamic  scripting  in  a  strategy  game,  but 
perhaps to indicate some of the things one must have in mind when trying and as 
proof that dynamic scripting can be used for this purpose. The results answer the 
two questions which this thesis aims to cover:

1. Is  it  possible  for  an  AI  player  to  learn  successful  combat  tactics  in  a 
computer strategy game through use of dynamic scripting?

The answer is yes, it is possible. This question is most readily answered by the 
third  learning  experiment,  in  which  the  agents  clearly  learned  tactics  that 
outmatched the standard AI.

2. Is  it  possible  to  use  the  results  of  dynamic  scripting training against  a 
particular  opponent   to  create  a  static  AI which  is  far  superior  to  said 
opponent?

The answer is again yes, it is possible. This is clear when comparing the results of 
the static scripted AI facing the standard game AI with the results of the reference 
experiment. The static scripted AI won around 90% of the battles, whereas the 
random scripted AI won less than half.

One thing that is interesting is that the static AI performed notably better 
against the standard game AI than the best dynamic scripting agent did in its last 
generations, even though the first is derived from the latter.

5.1. Implementation weaknesses

The remainder distribution from the weight update function can often lead to a 
situation  where  two  rules  that  should  have  equal  weight  will  not,  and  in 
combination with ordering the script by weight this means that one of them will 
be  placed  before  the  other  in  the  script.  This  is  expected  with  the  current 
implementation, but in conjunction with the fact that the remainder was iteratively 
distributed it meant that rules with low index in the rule base would at times take 
precedence  in  the  execution  order.  This  is  an  unwanted  feature  and  should 
probably have been remedied with random remainder distribution.

Another possible problem is that most rules are applicable only to a subset 

24



of the possible combat situations that will  arise naturally in the game. For the 
thesis  itself  I  do not  believe  this  was  a  problem,  since  the  test  area  and unit 
composition was such that almost all rules were activated at least at some point 
during the testing. For more general use, however, the implications of this need to 
be considered.

Finally, one thing that could be a problem is the fact that the rule base I used 
did not fully cover all  actions that can be taken by the units in the game. For 
example, maybe a certain special ability of a unit might not have been activated 
by any rule in the rule base. The reason for this limit was lack of time, and I had to 
prioritize implementation according to their expected relevance in a fight. I can 
not without further testing determine the impact a larger rule base would have on 
the learning speed or effectiveness.

5.2. Improvements

There  are  several  improvements  available  to  enhance  the  dynamic  scripting 
method, such as penalty balancing and history fallback [Spronck2004b]. Penalty 
balancing is a method for increasing the speed and effectiveness of the adaptation 
process by optimising the value of Pmax compared to Rmax, in order for the rule base 
to recover better from states where rules have been unjustly rewarded over the last 
generations. History fallback means storing each state of the rule base and falling 
back on previously successful versions when the current rule base seems to be 
stuck and performance is poor. 

Another  way  to  increase  the  stability  and  adaptive  ability  of  dynamic 
scripting is letting the rule base learn the best ordering of rules instead of using a 
simple weight ordering [Timuri2007]. This is accomplished by using a relation-
weights table that keeps track of two values for each pair of rules, representing the 
two ways to order those rules. A high value for a certain pair in a certain order 
means that those two rules have a beneficial effect on the battle in that specific 
order. This table can then be used both to influence the probability of choosing a 
particular rule in the script generation and for the internal ordering of the rules in 
the script.
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6. Conclusions

This thesis has taken the dynamic scripting method and adapted it to the specific 
situation  of  having  a  commanding  agent  in  a  strategy  game  learning  combat 
tactics using different units on the battlefield to different ends. One thing that I 
find appealing is that the method was very straightforward to implement, and it 
did not require extensive testing and tweaking to get it working properly. In fact, 
it worked fairly well right off the bat. Furthermore, the whole concept of using 
small building blocks to construct complex behaviours is something I think will 
appeal to game developers in general, since the rule base, once it exists, does not 
generally need much alteration, apart from additions when new units and abilities 
are  entered  into  the  game.  The  rule  base  can  also  be  used  for  other  learning 
methods, or perhaps to simply script the wanted behaviour manually.

Initially I was sceptical to whether it could be used as an off line learning 
technique in the manner we can see in the static scripting experiments above, and 
indeed there is no guarantee that it has come up with the best possible tactic. It 
has, however, using very simple statistical methods, produced a static AI clearly 
superior  to  the  standard  game  AI  and  according  to  Static  Experiment  2  an 
opponent which is to some extent difficult to beat. This static AI can be retrained 
quickly.  In  fact,  all  the  tests  needed  for  the  agents  in  the  static  scripting 
experiments were completed over one night, using five computers running tests 
side by side.

6.1. The future

I believe the results of my experiments, while overall very positive, are not good 
enough to convince game developers in this genre to use it as an on line learning 
technique. Much work can be done, both with testing different sets of parameters 
for the dynamic scripting algorithm and with trying the improvements I bring up 
in the “Discussion” chapter.

However, considering all of the work around dynamic scripting, including 
methods for generating the actual rule base automatically  [Ponsen2006], I think 
we may not be far from seeing the first examples of games with self-generated 
adaptive AI, using minimal human input throughout the creation process.
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Appendix A – The rule base

Following is a list with of the behaviours I programmed and used in the dynamic 
scripting  rule  base.  The  exact  meaning  of  the  rules  might  be  hard  to  extract 
without  having  played  the  game,  and  additionally  there  may  be  minor 
inconsistencies in the rule descriptions.

Legend

Heli = Any helicopter
HHeli = Heavy attack helicopter
MHeli = Medium attack helicopter
SHeli = Scout helicopter
AA = Any anti-air vehicle
HAA = Heavy anti-air vehicle
MAA = Medium anti-air vehicle
Inf = Any infantry unit
InfSq = Infantry squad
ATInf = Anti tank infantry squad
Tank = Any tank
HTank = Heavy tank
MTank = Medium tank
Transport = Infantry transport vehicle
RepTank = Repair tank

PP = Perimeter Point. These are strategic points located on the battlefield, and 
capturing and holding them gives a bonus to the player.

'+' means it is owned by me
'-' means it is owned by the enemy
'!' means not, e.g. !+HHeli means “I don't have a heavy attack helicopter”.

Rules

1. IF +Heli AND -MAA THEN kill MAA
2. IF +MHeli AND -HHeli THEN MHeli attack HHeli
3. IF +Heli AND -HAA THEN kill HAA
4. IF +Heli AND -InfSq THEN kill InfSq
5. IF +Heli AND -MHeli THEN kill MHeli
6. IF +HHeli AND -Inf AND Inf in buildings THEN HHeli attack building
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7. IF +MHeli AND -MHeli THEN launch sidewinders on MHeli and attack 
MHeli

8. IF +Tank AND -HHeli THEN kill HHeli
9. IF +Tank AND -ATInf THEN kill ATInf
10. IF +Transport AND -HHeli THEN kill HHeli
11. IF +Transport AND -ATInf THEN kill ATInf
12. IF +MTank AND -Inf THEN Pop WP Shell on Inf and attack Inf
13. IF +Inf AND -Transport THEN kill Transport
14. IF +Inf AND -MAA THEN kill MAA
15. IF +Inf AND -MTank THEN kill MTank
16. IF +Inf AND -SHeli THEN kill Sheli
17. IF +InfSq AND -Inf THEN Use Grenade Launcher on Inf and attack Inf
18. IF +RepTank AND RepTank below 70% health THEN Field repair 

RepTank
19. IF +RepTank AND RepTank below 50% health THEN Emergency repair 

RepTank
20. IF +RepTank AND +Tank AND Tank below 50% health THEN 

Emergency repair Tank
21. IF +RepTank AND +Tank AND Tank below 100% health THEN Repair 

Tank
22. IF +RepTank AND (MAA OR HAA) AND AA below 50% health THEN 

Emergency repair AA
23. IF +RepTank AND (MAA OR HAA) AND AA below 100% health THEN 

Repair AA
24. IF -RepTank AND -Tank THEN kill RepTank
25. IF (-HAA OR -MAA) AND -RepTank THEN kill RepTank
26. IF -few and weak land units THEN kill weakest land units first
27. IF true THEN Move all units around every 5 seconds
28. IF true THEN Move all units around every 15 seconds
29. IF true THEN Move all units around every 30 seconds
30. IF Holding Command point THEN place one unit on each PP (fortify)
31. IF not holding each PP THEN spread out evenly to PPs
32. IF true THEN Move all to one PP but send a weak unit to each other PP
33. IF no friendly unit present in PP closest to attacker THEN move all units 

toward the PP closest to the attacker
34. IF enemy PP empty THEN move unit to empty enemy PP
35. IF +Inf AND Inf close to building THEN move Inf to buildings
36. IF +Inf AND Inf close to forest THEN move Inf to Forest
37. IF +Inf AND Inf under artillery/TA fire THEN Pop sprint and move away
38. IF +Inf THEN Spread Inf out
39. IF +Inf AND -Sniper THEN Fall back with infantry
40. IF +Inf AND -Tank AND tanks incoming THEN Pop sprint and run “out of 

the way”
41. IF +Inf AND Inf unit more than 30% casualties THEN refill squad
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42. IF +Inf AND Inf unit more than 60% casualties THEN refill squad
43. IF +Tank AND -HHeli THEN Pop smoke screen and stand still
44. IF +Tank AND -HHeli AND +AA THEN Move Tanks to AA
45. IF +Tank AND -ATInf THEN Run over the ATInf
46. IF +Tank AND -ATInf THEN Pop smoke screen and stand still
47. IF +Tank AND -ATInf THEN Flee from ATInf
48. IF +Tank AND -InfSq THEN Run over the InfSq
49. IF +Heli AND -HAA THEN Pull back all helicopters
50. IF +Heli AND -MAA THEN Pull back all helicopters
51. IF +HHeli AND !-Vehicles THEN HHeli scout around area
52. IF +MHeli AND !-Heli THEN MHeli scout around area
53. IF +SHeli THEN SHeli scout around area
54. IF +HAA AND (-HHeli OR -MHeli) THEN Move HAA towards 

helicopters
55. IF (+HAA OR +MAA) AND !-Heli THEN Fall back with AA
56. IF (+HAA OR +MAA) AND !-Heli THEN Move AA to the front
57. IF +Unit AND Unit under attack but cannot see any enemies THEN 

approach hidden enemy
58. IF +Sniper AND +Sniper THEN Sniper attack Sniper
59. IF +Inf AND -Sniper THEN kill Sniper
60. IF +HTank AND -HTank THEN Heavy tanks kill HTank
61. IF false THEN No action (empty rule)
62. IF false THEN No action
63. IF false THEN No action
64. IF false THEN No action
65. IF false THEN No action
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Appendix B – The Static AI

These are the rules the static AI used, ordered from highest priority to lowest. See 
the legend in Appendix A for explanations of abbreviations and special characters.

Rules

1. IF +Inf AND -MTank THEN kill MTank
2. IF +MTank AND -Inf THEN Pop WP Shell on Inf and attack inf
3. IF -few and weak land units THEN kill weakest land units first
4. IF +RepTank AND +Tank and below 100% health THEN Repair Tank
5. IF +Inf AND Inf unit more than 30% casualties THEN refill squad
6. IF +HAA AND (-HHeli OR -MHeli) THEN Move HAA towards 

helicopters
7. IF true THEN Move all units around every 30 seconds
8. IF +InfSq AND -Inf THEN Use Grenade Launcher on Inf and attack Inf
9. IF +Inf AND -Transport THEN kill Transport
10. IF enemy PP empty THEN move unit to empty enemy PP
11. IF +Inf AND Inf close to building THEN move Inf to buildings
12. IF +Transport AND -ATInf THEN kill ATInf
13. IF +RepTank AND (MAA OR HAA) AND AA below 50% health THEN 

Emergency repair AA
14. IF +RepTank AND (MAA OR HAA) AND AA below 100% health THEN 

Repair AA
15. IF (+HAA OR +MAA) AND !-Heli THEN Fall back with AA
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