
Expert System for Error Analysis
Rule Based Reasoning Applied on Log Information

and Dump Reports from Mobile Phones

Daniel Gustavsson & Daniel Molin

June 14, 2010

Introduction

This short article reflects the work of de-
veloping a rule-based expert system for ST-
Ericsson in Lund, Sweden.

During the development of mobile plat-
forms, it is important to continuously test
the product to ensure functionality and
quality. For this purpose ST-Ericsson has
developed an automatic test application
called JATT (Java Automated Test Tool).
It outputs different files, for example logs
and reports, which have to be manually an-
alyzed if a test failed. Depending on the
problem this can be quiet hard and some-
times require that an expert gets involved.
To help the user find and analyze the er-
rors automatically, a rule-based expert sys-
tem has been developed. We call it ADLA,
which stands for Automatic Dump and Log
Analyzer.

Rule engine

The initial plan, to write the entire expert
system from scratch, was quickly discarded.
It would probably have consumed most of
the project time and thereby also affected
the number of features and competence of
the final system. Because of this, it was in-
stead decided to use a third-party rule en-
gine, which is the reasoning part of an ex-

pert system. The reasoning is performed
by combining simple rules and facts. The
rules describe what condition must be met
for its consequence to be executed. This way
a complex result can be achieved through
several small steps.

Drools1 is an open-source rule engine de-
veloped in Java by JBoss Community, which
is run by Red Hat. It was adapted to fit our
requirements and now plays a significant role
in the reasoning part of our expert system,
ADLA.

Problems

Here are some problems we faced during the
development; the first one was how to iden-
tify the result. When the rule engine is done
reasoning, it is time to decide what facts
should be in the result presented to the user.
The problem is to separate the interesting
facts from the other facts used when reason-
ing.

Another problem was how to manage
without a user in the automatic system. The
system can not ask the user questions, e.g.
when errors occur, without interrupting the
entire system. The problem gets even harder
since we want to avoid the use of log files for
presenting errors to the user. This is because
the purpose of the system is to analyze files
so the user does not have to.

1http://www.jboss.org/drools/drools-expert.html (verified 2010-06-09)

1



Result

ADLA is separated into a reasoning part
and an interactive part. This way the result
can be viewed without running the reason-
ing part every time.

We designed the interactive part based
on the JUNG2 framework, where the result
from the reasoning and the paths taken to
reach it are displayed as a graph, see fig-
ure 1. This way the users themselves can
identify the interesting parts and also get
the reasoning behind them. The graph was
also the solution for presenting errors to the
user. Each error found is connected to the
rule where it originated.

To aid the users in identifying the result
a number of features have been added. The
nodes can be right-clicked to bring up ad-
ditional information about them. Below the

graph the different node types are explained.
The area is dynamically updated to always
show the node types currently used in the
graph, helping the user to interpret it.

To avoid having too many nodes clutter-
ing the graph, making it harder to overview
for the user, only the important nodes are
shown by default. With the checkbox ”Show
all nodes”, the user has the ability to tog-
gle all nodes on. This is useful to find out
if some specific fact was present in ADLA,
even though it was not important.

Conclusion

ADLA makes it easier for the users to iden-
tify errors from the automatic tests run
by JATT. This also decrease the workload
on the experts and makes knowledge more
available to all co-workers.

Figure 1: The graphical part of ADLA. All nodes in the graph, facts and rules, are
connected to each other with arrows to visualize the flow in the system. An arrow
pointing from a rule means it created the fact, if the arrow is red it was updated
instead. An arrow pointing to a rule means it required the fact to run.

2Java Universal Network/Graph, http://jung.sourceforge.net (verified 2010-06-11)

2


