
Master’s thesis, 30 credits

Expert System for Error Analysis

Rule Based Reasoning Applied on Log Information
and Dump Reports from Mobile Phones

Daniel Gustavsson
Daniel Molin

June 15, 2010

Abstract

We have developed an expert system called ADLA, which stands for Automatic
Dump and Log Analyzer. It uses rules to perform an analysis on test reports,
log files and dump files that are generated when ST-Ericsson runs tests on their
mobile platforms. In addition to the requested knowledge already written as
rules, more can be added to further increase the competence of the system.

The analysis is completely automatic and is started by the test tool after the
test has been performed. The result is generated as a graph of rules and facts,
used to reach the conclusions. ADLA has a graphical part, which displays the
graph and allows the user to interact with it. The advantage with this is that
one can see how the conclusions were reached, and that many details of the facts
and rules are directly available to the user.

Preface

ADLA is the name of the expert system we have built. It is separated into two
parts where the first handles the reasoning and the second displays the graphical
representation of the result. The whole development process is described in
chapters 4 through 6. Below we go through the full outline of this report and
give a short summary of our respective contributions.

Report Outline

The problem we tried to solve for ST-Ericsson is presented together with our
goals for the project in chapter 1. Our research about expert systems and its
components is shown in chapter 2. In chapter 3, an overview of the systems
surrounding ADLA is found, which tells how the test tool JATT communicates
with ADLA and how the rule engine Drools is integrated.

Chapter 4 reflects the work with constructing ADLA’s reasoning part. This
includes how the system gets its input, how the data is handled internally and
how a result is produced. The result is saved to a graph that the visual part
of ADLA reads. This part is described in chapter 5 and includes the graphical
user interface and the framework JUNG that is used for drawing. The main
problems and solutions are gone through in chapter 6. This chapter can be
skipped if the reader is not interested in the details.

Chapter 7 summarizes the features in ADLA and what happens when it runs.
Our conclusion, containing evaluation of goals together with suggestions for
future work, is presented in chapter 8. The appendix Manual and Guidelines is
intended as an introduction manual for ST-Ericsson and describes some typical
use cases and helpful tips.

Contributions

This part is a requirement from LTH and summarizes overall our respective
focuses. Daniel Gustavsson has focused on the graph structure, error handling
and researching JUNG. Daniel Molin has focused on graphical features, rule
design and researching Drools.

iii

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 ST-Ericsson . 1
1.1.2 Problem Description . 1

1.2 Aims and Goals . 2
1.3 Target Audiences . 2
1.4 Boundaries . 2

2 Information Gathering and Preparation 4
2.1 What is an Expert System? . 4
2.2 Forward and Backward Chaining 5
2.3 Third-Party Rule Engine . 6
2.4 JSR-94: Java Rule Engine API 8
2.5 Regular Expressions . 8

3 Architectural Overview 11
3.1 JATT - Java Automated Test Tool 12

3.1.1 Result Directory . 12
3.1.2 Connection with ADLA 14

3.2 Drools . 14
3.2.1 Information Flow in Drools 14
3.2.2 Rule Files and Rule Syntax 15
3.2.3 Using Drools in Eclipse 15
3.2.4 Drools Logger and Audit View 16

3.3 Use Cases . 16

4 Constructing ADLA 17
4.1 Input . 17
4.2 Holding Information in Nodes . 18
4.3 Tracking Rule Execution . 19
4.4 Conclusions and Decisions . 20

4.4.1 Identifying the Results . 20
4.4.2 Prioritizing the Result . 21
4.4.3 Graphical Solution . 21
4.4.4 Passed or Failed Test Job 22

4.5 Handling Errors . 23
4.5.1 Presenting Errors with the Result 23
4.5.2 Categorizing the Errors 24

iv

CONTENTS

5 Visualizing ADLA 26
5.1 Reasons for the Visualization . 26
5.2 JUNG - Java Universal Network/Graph 27
5.3 User Interface . 27

5.3.1 Presenting the Graph . 27
5.3.2 Information Window . 30
5.3.3 Test Job Status Indicator 32

5.4 Map for System Overview . 32

6 Problems and Solutions 34
6.1 Keeping Track of New File Contents between Reruns 34
6.2 Filling in the cameFrom Lists . 35

6.2.1 First Attempt - Java Varargs 35
6.2.2 Second Attempt - The Drools Object 36
6.2.3 Third Attempt - Event Listeners 37

6.3 Presenting Why-Chains . 38
6.4 Representing Non-Existent Objects 39

7 Result 41
7.1 ADLA Program Flow . 41
7.2 ADLA Features . 43

8 Conclusion 44
8.1 Work Strategy . 44
8.2 Aims and Goals Evaluation . 45
8.3 Future Work . 46

Bibliography 47

A Manual and Guidelines 48
A.1 Use Cases . 48

A.1.1 Set Up ADLA to Run Through JATT 48
A.1.2 Running ADLA as a Stand-Alone Application 48
A.1.3 Viewing the Result . 49
A.1.4 Adding a New Rule . 49
A.1.5 Adding a New Area of Competence 49
A.1.6 Removing a Rule . 50

A.2 Remove Rule When ADLA is Running 50
A.3 Add New Node Types . 50

Index 51

v

Abbreviations

ADLA Automatic Dump and Log Analyzer, this is the system we have
developed.

CTS Compatibility Test Suite. Android CTS is an open-source test
harness that tests compliance with the Android compatibility
definition.

DRL Drools Rule Language, format used for the rules. DRL files are
the files containing the rules.

JATT Java Automatic Test Tool, computer software developed by
ST-Ericsson for testing mobile phones.

JDTS Java Device Test Suite, test suite from Sun which ST-Ericsson
uses to perform Java ME quality tests on mobile phones.

JSR Java Specification Request, describes a specification for the Java
platform.

JUNG Java Universal Network/Graph, a framework we use to visualize
graphs.

OPA Open Platform API, a proprietary mobile platform API from
ST-Ericsson.

TCK Technology Compatibility Kit, suite of tests which checks compli-
ance with a JSR.

XSLT Extensible Stylesheet Language Transformations, used for trans-
forming XML documents into other XML documents, e.g.
XHTML.

vi

Chapter 1

Introduction

1.1 Background

This project was made at Lund University, Faculty of Engineering (LTH), de-
partment of Computer Science. It involves developing an expert system for
ST-Ericsson, intended for error analysis. Examiner is associate professor Jacek
Malec at the department of Computer Science. The work was carried out at
ST-Ericsson in Lund, Sweden.

1.1.1 ST-Ericsson

ST-Ericsson develops mobile platforms used in many of today’s mobile phones.
The headquarters is located in Geneva, Switzerland and they are established
in more than 20 countries. ST-Ericsson was formed in 2009 as a joint venture
between STMicroelectronics and Ericsson, and has about 8,000 employees.

Our contact at ST-Ericsson, Pernilla Lundström, handled the first introduction
for the project. During the work, Pascal Collberg and Magnus Karlsson were
our supervisors.

1.1.2 Problem Description

As a step in development, the mobile platform needs to be tested. For this
purpose ST-Ericsson runs different test suites to verify the platform. These are
automatically run by their test software JATT. The result consists of numerous
files containing data from the tests. Because JATT only performs a basic anal-
ysis on the files, they often need to be read manually to identify the problem
if a test failed. Depending on the problem, this can be more or less complex
and sometimes require a great deal of expertise. ST-Ericsson requested an ex-
pert system to automatically detect the most common problems and thereby
decrease the work required from the users. This is especially helpful to new
co-workers because many novice questions can be avoided. With an expert sys-
tem, the experts can gradually update the knowledge base with new problems,
to increase its area of competence.

1

CHAPTER 1. INTRODUCTION

1.2 Aims and Goals

The list below summarizes the requirements from the initial project description
and a complementary meeting with ST-Ericsson. In the meeting it was also
discussed that the system could be either an integral part of JATT or a stand-
alone system. Its output should be in XML format to be able to automatically
transform it into a web page later, using XSLT.

• Design simple input interface between expert system and outside world.

• Implement expert system for memory leak detection and dump report
analysis.

• With help from Java developers design output format for the expert sys-
tem.

• It must be easy to add new knowledge to the expert system, e.g. new
dump failure reasons.

• It must be possible to add new areas of competence to the system, e.g.
device log analysis.

• The results from the expert system shall be displayed on a web page.

• Should be able to read the result from test suites.

• Should be able to read reg-dumps.

• Should be able to explain the error codes from OPA.

1.3 Target Audiences

ADLA’s main target audience is the developers who need to run tests on the
platform in mobile phones with JATT, one of ST-Ericsson’s test tools. The
people who develop JATT itself are also included because they are the ones
who will be writing rules and further develop the expert system, henceforth
called rule developers. The users that do not make any changes in the system
are simply called users.

At the end of the project, we were informed about another user group, which
runs JATT as a part of another test tool. These users are only interested in if
the test job was successful or not, unlike the developers who also want to know
why a test failed.

1.4 Boundaries

One clear limitation is that the idea of writing our own rule engine (a ma-
jor component of an expert system) was discarded. Instead, we explored the
possibility of using a third-party rule engine and adapt it to our needs.

2

CHAPTER 1. INTRODUCTION

Initially, ADLA only needs to be able to handle benchmark data from the sim-
ulator Moses and selected data from previous JATT runs.

We can assume that the formats of the input files will not change. This includes
for example, all test suite reports and the JATT log.

In a meeting with ST-Ericsson, we chose which test suites to include in the
project and to prioritize them. The list shows the test suites we limited ourselves
to, and each number represents its priority:

• Benchmark (1)

• TCK (1)

• JDTS (1)

• Android CTS (2)

• Atlet (3)

• LabView (4)

3

Chapter 2

Information Gathering and
Preparation

This chapter describes the most important parts of the information gathering
process, before and during the project. This theoretical research is the basis
for the entire work. Also, the possibility of using a third-party rule engine is
explored.

2.1 What is an Expert System?

Expert systems is a branch of artificial intelligence. According to Professor Ed-
ward Feigenbaum of Stanford University [Giarratono and Riley, 1998, pp. 1-2]
an expert system is:

an intelligent computer program that uses knowledge and inference
procedures to solve problems that are difficult enough to require
significant human expertise for their solutions.

Giarratono and Riley continue by listing some advantages of using an expert
system [pp. 4-5]. For this project, the most important ones are increased avail-
ability, multiple expertise, and explanation. The first one matters to us because
one of our goals was to decrease the workload on the experts by making their
expertise on error analysis more available to their co-workers. With the ability
to gather expertise from several experts in the same system, the knowledge may
exceed that of a single expert. By also combining it with solutions for common
errors, new co-workers can get up to speed more quickly. Because the expert
system can be made to explain the reasoning that led to a conclusion, it can
be seen as a source of education. The authors also mean that a system capable
of explaining itself increases the confidence that the correct decision has been
made by the system.

The knowledge in an expert system is usually represented by a set of rules.
The rules operate on facts, which are kept in the working memory while the

4

CHAPTER 2. INFORMATION GATHERING AND PREPARATION

expert system is running. Every rule has two parts, the condition part and the
consequence part. This can be thought of as an if-then-statement where the
consequence is executed if the condition is satisfied.

The inference engine uses a pattern matcher to decide which rules are satisfied
by the facts and thereby eligible for execution. Because many rules can be
satisfied simultaneously the inference engine produces a prioritized list, called
the Agenda, on which conflict resolution is applied to decide which rule gets
to execute. When a rule is running, it may modify the working memory by
inserting, updating and removing facts, and thereby change which rules are
satisfied by the pattern matcher. All these parts, shown in figure 2.1, of the
expert system are usually called the rule engine.

Inference engine

Pattern
matcher

Working
memory

Agenda

Knowledge
base

Figure 2.1: The parts of an expert system referred to as the rule engine.

Apart from the rule engine, an expert system can, according to [Giarratono and
Riley, 1998, pp. 23-24], also contain an explanation facility, which explains the
reasoning of the system to the user. There may also be a knowledge acquisition
facility, which provides a way to enter knowledge into the system without coding
it explicitly.

The inference engine can use different algorithms for its pattern matcher. The
simplest method is to just go through the rules sequentially and look for matches.
This is of course very slow so more efficient algorithms have been developed, for
example Rete, Treat and OPS5. Every algorithm has its strength and weak-
nesses. As we will see later, Rete and its variants are among the most popular.

2.2 Forward and Backward Chaining

An expert system can operate in two different ways: forward chaining, which is
data driven, and backward chaining, which is goal driven. If the system is data
driven one just adds the data to the working memory and sees what result the
system will produce. For goal driven systems, one has to have a list of hypothesis
for the system to prove. The only goals and sub-goals the system can confirm
are the ones in the hypothesis list. This means that backward chaining systems
are more suitable for problem checking where one has a theory about what is
wrong and forward chaining when one does not know what outcome to expect.

5

CHAPTER 2. INFORMATION GATHERING AND PREPARATION

Ultimately, the data decides which technique to use as [Giarratono and Riley,
1998, p. 147] explains by describing the data as trees:

A good application for forward chaining occurs if the tree is wide
and not very deep. This is because forward chaining facilitates a
breadth-first search. That is, forward chaining is good if the search
for conclusions proceeds level by level. In contrast, backward chain-
ing facilitates a depth-first search. A good tree for depth-first search
is narrow and deep.

Some expert systems use both forward and backward chaining at the same
time. These kinds of systems have both forward and backward engines, with
specific rules for each one. By using hybrid rules that use both engines, better
performance can be achieved.

In our case, it is important to get all the sub-results and it is also impractical to
maintain a list of hypotheses. In addition, we anticipate our tree-structure to be
more wide than deep because the number of steps needed to reach a conclusion
is expected to be few. Because of this, the focus will be on forward-chaining
systems and hybrids.

2.3 Third-Party Rule Engine

In the early stages of the project we agreed with ST-Ericsson that it would be
too time-consuming to develop an entire expert system from scratch, especially
the rule engine. There are many benefits of using a third-party rule engine, for
example, they are well tested, they use well-known and fast algorithms, and they
are continually improved. Developing a similar application would consume most
of the project time and affect both the amount of knowledge and the number
of features in the final system. These were the main reasons for choosing a
third-party rule engine.

We thought it was desirable that the system should be based on open-source.
The reasons were for example, to get an insight into the system and the source
code, be able to freely extend the program, and not being dependent on propri-
etary software. We looked at a large number of rule engines, and systems with
similar capabilities, to find a suitable option. Because we had not yet decided if
ADLA should be a part of JATT or a stand alone system, we preferred systems
written in Java to simplify a potential integration. After the first elimination
round the systems in table 2.1 looked the most promising.

To weed out unsuitable systems we formulated a number of criteria. As already
discussed in section [2.2 Forward and Backward Chaining], a forward chaining
system was more likely to fit our needs. As a consequence, Euler and InfoSapient
were eliminated. The reason they were on the list at all, was that we did not
want to remove them until we were sure to find alternatives.

6

C
H

A
P

T
E

R
2.

IN
F

O
R

M
A

T
IO

N
G

A
T

H
E

R
IN

G
A

N
D

P
R

E
P

A
R

A
T

IO
N

Name License Impl. language Rule language Chaining Algorithm
CLIPSa Public domain C Lisp-like Forward Rete
Droolsb ASL (Apache) Java Drools Rule Language Forward ReteOO
Eulerc W3C Software License Java, C#, Prolog, etc. ? Backward ?

InfoSapientd CPL 1.0 Java ? Backward ?
Jenae HP (BSD style) Java RDF as XML Both Multiple
Jeopsf LGPL Java ? Forward Modified Rete
Jessg Proprietary Java Jess Rule Language Both Enhanced Rete

SweetRulesh LGPL Java Multiple Both Multiple

Table 2.1: A selection of third-party rule engines we have tried.

ahttp://clipsrules.sourceforge.net/WhatIsCLIPS.html (verified 2010-06-02)
bhttp://downloads.jboss.com/drools/docs/5.0.1.26597.FINAL/drools-expert/html single/index.html (verified 2010-06-02)
chttp://www.agfa.com/w3c/euler (verified 2010-06-02)
dhttp://info-sapient.sourceforge.net/White Paper/BusinessProcessRules.pdf (verified 2010-06-02)
ehttp://jena.sourceforge.net (verified 2010-06-02)
fhttp://www.cin.ufpe.br/˜jeops/manual (verified 2010-06-02)
ghttp://www.jessrules.com (verified 2010-06-02)
hhttp://sweetrules.semwebcentral.org (verified 2010-06-02)

7

CHAPTER 2. INFORMATION GATHERING AND PREPARATION

When we tried to run SweetRules we discovered that it required a large amount
of third-party software (about 10 different). Not only that, but many of them
were way outdated and no longer actively developed, which made us exclude it
from the list.

Despite the fact that CLIPS probably is the most well known system, we had a
hard time trying to write rules because the syntax is Lisp-like. Even though it
is possible for us to learn, it takes time. Because all the rule developers would
have had to go through the same time-consuming learning process, we wanted
a more familiar syntax. Because Jess syntax is the same as that of CLIPS, it
presents the same problem to us. In addition, Jess costs money and does not
have any striking advantages to justify a price tag (in our opinion), even though
the source code is provided, which is rare for proprietary software.

Of the three remaining systems, Drools felt like the better choice compared to
the other two, Jena and Jeops. It has a good manual and the rule syntax is easy
to learn if one already knows Java. Drools also integrates with Eclipse, which is
an advantage because this is what ST-Ericsson uses to develop JATT. For more
information about Drools, see section [3.2 Drools].

2.4 JSR-94: Java Rule Engine API

JSR-94 is a standard to provide basic rule engine operations through a Java
API. One of its goals is to simplify the process when one wants to change the
rule engine in an application. Unfortunately, because the standard does not
specify the rule language one would still have to rewrite all the rules, which is
a major part of an expert system. In addition, it is very limiting as the whole
API of the chosen rule engine cannot be used, but only the basic functionality
specified by JSR-94. [Toussaint, 2003, p. 9]

In theory it would be an advantage, in our case, to use the standard because
it would be easier for ST-Ericsson to change the rule engine in the future, if a
better option has been developed. However, in practice the drawbacks outweigh
the advantages; the work needed to change the rule engine would be more or
less the same. Therefore, we would rather use the extra functionality the rule
engines provide, than the limited set specified by the standard.

2.5 Regular Expressions

Regular expressions can be used in many ways, and are described by [Goyvaerts
and Levithan, 2009, p. 1] as:

[...] a specific kind of text pattern that you can use with many mod-
ern applications and programming languages. You can use them
to verify whether input fits into the text pattern, to find text that
matches the pattern within a larger body of text, to replace text
matching the pattern with other text or rearranged bits of the matched
text, to split a block of text into a list of subtexts, and to shoot your-
self in the foot.

8

CHAPTER 2. INFORMATION GATHERING AND PREPARATION

As the authors indicate regular expressions are a very powerful tool for finding
and manipulating data, but can also be a great source of trouble if one is not
careful when writing patterns. Standard Java provides support through the
classes in the java.util.regex package and uses a Perl-style of regular expres-
sions, which is the most popular style [Goyvaerts and Levithan, 2009, p. 3]. In
Java one uses the Pattern class to compile regular expression. The pattern is
then used to create a Matcher that can match Strings against the pattern. The
syntax for the patterns can be found on the Pattern page in the Java Platform
API Specification1.

One example of how we use regular expressions in ADLA is to extract stack
prints of Java exceptions from different log files. Below is a slightly modified
example of an exception, specially triggered for this occasion. We have modified
the package names for the JUNG-classes to make them fit on the page.

The example exception

Exception in thread "AWT-EventQueue-0" java.lang.RuntimeException: java.lang.Exception
at com.stericsson.jatt.adla.map.MapVertex.toString(MapVertex.java:70)
at jung.decorators.ToStringLabeller.transform(ToStringLabeller.java:33)
at jung.decorators.ToStringLabeller.transform(ToStringLabeller.java:27)
at jung.renderers.BasicRenderer.renderVertexLabel(BasicRenderer.java:75)
at jung.renderers.BasicRenderer.render(BasicRenderer.java:60)
at jung.BasicVisualizationServer.renderGraph(BasicVisualizationServer.java:367)
at jung.BasicVisualizationServer.paintComponent(BasicVisualizationServer.java:321)
at javax.swing.JComponent.paint(Unknown Source)
at javax.swing.JComponent.paintToOffscreen(Unknown Source)
at javax.swing.BufferStrategyPaintManager.paint(Unknown Source)
at javax.swing.RepaintManager.paint(Unknown Source)
at javax.swing.JComponent._paintImmediately(Unknown Source)
at javax.swing.JComponent.paintImmediately(Unknown Source)
at javax.swing.RepaintManager.paintDirtyRegions(Unknown Source)
at javax.swing.RepaintManager.paintDirtyRegions(Unknown Source)
at javax.swing.RepaintManager.seqPaintDirtyRegions(Unknown Source)
at javax.swing.SystemEventQueueUtilities$ComponentWorkRequest.run(Unknown Source)
at java.awt.event.InvocationEvent.dispatch(Unknown Source)
at java.awt.EventQueue.dispatchEvent(Unknown Source)
at java.awt.EventDispatchThread.pumpOneEventForFilters(Unknown Source)
at java.awt.EventDispatchThread.pumpEventsForFilter(Unknown Source)
at java.awt.EventDispatchThread.pumpEventsForHierarchy(Unknown Source)
at java.awt.EventDispatchThread.pumpEvents(Unknown Source)
at java.awt.EventDispatchThread.pumpEvents(Unknown Source)
at java.awt.EventDispatchThread.run(Unknown Source)

Caused by: java.lang.Exception
at com.stericsson.jatt.adla.map.MapVertex.toString(MapVertex.java:68)
... 24 more

The patterns used

Pattern p1 = Pattern.compile(".*java\\.\\S+\\.\\S*Exception.*");

Pattern p2 = Pattern.compile(
"((\\t\\.{3} \\d+ more)|" + // ... 3 more
"(\\tat)|" + // at
"(Caused by\\:)).*"); // Caused by:

1http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html (verified 2010-06-02)

9

CHAPTER 2. INFORMATION GATHERING AND PREPARATION

When extracting an exception like the one in the example, we begin by looking
for a match with the pattern p1 that will match the first row in each exception.
After that, we use pattern p2 on the rows following until it no longer matches.
This is done by calling p2.matcher(line).matches() for every row.

The first pattern looks for a row that contains the word java, followed by a dot
and then a sequence of non-whitespace characters, and after that another dot
followed by a word ending with Exception. For this to work it requires that
the exception class is located in the java package hierarchy, and that the class
name ends with Exception, which is the case for all standard Java exceptions.

The second pattern is a bit more complicated because it has three parts sepa-
rated by or-operators to be able to match any of the three other types of rows.
The first part matches the last row in the example that starts with three dots,
the second matches all rows starting with at, and the last part is for the Caused
by row. \\t indicates that the line must start with a tab. \\.{3} is short for
\\.\\.\\., which is simply the three dots. \\d+ means one or more digits.

10

Chapter 3

Architectural Overview

JATT
ADLA

Drools

expert system

rule engine

JATT's result
directory

User

Rule filesDRL

Input

Output

Call

Request a test

Get result

Figure 3.1: Overview of ADLA and surrounding systems.

ADLA is the name of the system we have constructed and stands for Automatic
Dump and Log Analyzer. It is an expert system that analyzes the files output
from JATT to find errors.

Figure 3.1 shows how the user requests a test of a mobile phone to be performed
by JATT. After JATT has executed the test and output the result to its result
directory, it calls ADLA. ADLA is supposed to analyze the files in the result
directory to identify errors. The result of the analysis is put in the directory and
will be available to the user via JATT’s web page. A more detailed explanation
of JATT is found below, in section [3.1 JATT - Java Automated Test Tool].

While building ADLA we decided to use the third-party rule engine Drools for
the reasoning part. This means Drools will be integrated into ADLA to provide
a rule engine. Drools uses rules from the rule files for its reasoning on the input.
In section [3.2 Drools] later in this chapter, we describe how Drools is adapted
to fit our needs.

11

CHAPTER 3. ARCHITECTURAL OVERVIEW

3.1 JATT - Java Automated Test Tool

JATT is a tool that automates testing of the Java platform in mobile phones.
The software is developed by ST-Ericsson and consists of, a database to store
test jobs and test results, and a web page for scheduling test jobs and viewing
results. A number of JATT clients, with attached mobile phones, poll the
database for test jobs and execute them. JATT is also accessible through other
test tools where JATT’s is only one of many sub-results. This means that for
some users the entire result from JATT will be represented by a green or red
indicator, which translates into success or failure. These users will delegate the
troubleshooting to the developer team in case of failure. Because the fault is not
always a problem some delegations will be unnecessary, i.e. some minor faults
that can safely be ignored still cause the test to fail.

Each test job consists of a number of tasks that describe how the test is per-
formed. A typical test job starts by flashing the phone with software and booting
it up. Then the test is copied and executed, and finally the results are collected.
Depending on which kind of test the phone is supposed to perform the tasks
will be different. The content of the test job is chosen on the JATT web page
when the test is submitted to the database. After waiting for its turn the job is
retrieved by a JATT client, which executes it. The result is then stored in the
database and is available through the web page.

There are different types of test jobs that run either a benchmark application or
another test suite. Each test suite is a collection of tests, which checks some part
of the Java implementation in the mobile phone. For example, there are several
TCK (Technology Compatibility Kit) suites, each of which checks compliance
with a specific JSR (Java Specification Request), e.g. functions and API calls.
Another suite is called JDTS1 from Sun, which according to their web page is
used to ”[...] evaluate, validate, and verify the quality of implementations of the
Connected Limited Device Configuration (CLDC) and the Mobile Information
Device Profile (MIDP) on a particular device”. The results from these suites
are reports that list all the performed tests and whether they were successful or
not.

For benchmarks the result is performance values, e.g. the number of frames per
second the phone can render a specific scene. To run the benchmark applications
during the development of ADLA, we used a simulator called Moses. The other
test suites would have required an actual mobile phone, which we did not have
the possibility to use. Instead, data from earlier saved runs was used for testing
these suites.

3.1.1 Result Directory

Together with the reports from test suites and benchmarks, the result from
a test job also consists of various logs and in some cases dump files. All of
these files in JATT’s result directory are packed by JATT in a zip-file, which is
available on the web page. The directory’s content largely depends on what test
job JATT has executed and which of the tasks were successful. The contents of

1Java Device Test Suite, http://java.sun.com/products/javadevice (verified 2010-05-18)

12

CHAPTER 3. ARCHITECTURAL OVERVIEW

these files are the main input to ADLA. Below we describe some of the more
important ones.

Request.xml

This XML file contains all the tasks for the test job that will be executed in
sequential order by JATT. Each task has attributes, e.g. paths to test programs
and a time out value. The time out specifies the maximum amount of time the
task is allowed to run, if it is exceeded the task is terminated by JATT to avoid
deadlocks.

Depending on the tasks specified, different tests or activities are performed
on the phone. Some common tasks include flashing the phone with a specific
firmware, installing a MIDlet, collecting test data and uninstalling the MIDlet.
A MIDlet is a type of Java application for mobile phones.

JATT log

This text file is the complete log from JATT. It includes information about what
tasks have been run, all exceptions thrown in JATT and various other messages
about what occurred during the run.

Core Dump

This dump file is produced by the phone in case of a serious software crash. The
file is about 150 MB large and the only thing directly readable is a small text
header. The rest of the file consists of memory dumps printed in hex. Because
of this, the program chkArm is used to produce a more readable dump report
from the core dump.

Phone log

As the name suggests, this log file is produced on the mobile phone. One file
for every CPU is created and it contains debug data of everything the processor
does.

Benchmark result file

There are special kinds of MIDlets that test the mobiles performance i.e. bench-
marks. The results are printed to a simple XML file as the name of the sub-test
and a value. The value could for example be the number of frames per second
(fps) when rendering a complex scene on the phone, or the number of triangles
drawn in a second.

Reports

In addition to the files mentioned above there are various test suites that produce
different types of reports. Some test suite, called TCK, tests a specific API to
ensure compliance with the specification for the mobile platform. Others like
JDTS tests quality and benchmarks test performance. The reports are not
standardized, which means an individual parser must be designed for each one
of them.

13

CHAPTER 3. ARCHITECTURAL OVERVIEW

3.1.2 Connection with ADLA

ADLA can be run in two different ways, which means it has two entry points.
The first way is as a stand-alone application using the method RunExpert-
system.main() and the second is as an integrated part of JATT, using Expert-
system.execute(). Both entry points set up some variables like, TEST JOB -
NAME and TEST JOB DIR before calling Expertsystem.launch(), which initial-
izes Drools and starts reasoning. The difference is that when running from
JATT the object testJobContext provides the mentioned variables as opposed
to running stand-alone where they have to be manually specified.

3.2 Drools

Drools is an open-source rule engine written in Java by the JBoss Community
(JBoss by Red Hat). The purpose of this section is to describe Drools and its
features, to make it easier to understand how it is used by ADLA. It is based on
the Drools manual [JBoss Community, 2009], which is recommended for further
reading.

The inference engine in Drools uses a modified version of the Rete algorithm,
called ReteOO. According to the manual, this is ”an enhanced and optimized
implementation of the Rete algorithm for object oriented systems”.

3.2.1 Information Flow in Drools

Drools is delivered in a number of JAR files containing classes to be used directly
in the application, or it can also be built from the source code. Drools can be
used in many different ways depending on the application. The following reflects
how it is used in each run of ADLA, step by step.

The first thing to do is to set up a KnowledgeBase, which is described in the
manual as a repository for all knowledge definitions. The rules are inserted
from a KnowledgeBuilder that is used to compile them. Drools also has the
capability to compile them only once, instead of at each run, to save time when
initializing Drools. If so, one has to remember to compile the rules when they
are changed, which is why we do not use it. The KnowledgeBuilder can handle
many different kinds of data formats, where the DRL files we are using is one
example. The next thing is to create a StatefulKnowledgeSession from the
KnowledgeBase. When it has been created, simply call fireAllRules() to
start reasoning.

The rule engine will now begin executing the rules in the KnowledgeBase. First
the rules and the facts will be matched by the inference engine to determine
which rules can be executed. Then the class Agenda will choose what order
to execute them. All facts are kept in the WorkingMemory and each change of
them triggers another match of the rules and facts. When no more rules can be
executed (or if an Exception is thrown) fireAllRules() will return.

14

CHAPTER 3. ARCHITECTURAL OVERVIEW

3.2.2 Rule Files and Rule Syntax

The rules are written in DRL files, which are just regular text files. It is also
possible to input rules in other formats, e.g. XML, but we think it is easier to
read the DRL format. Every DRL file can contain any number of rules so several
related rules can be grouped together. Each rule starts with the keyword rule
followed by the name of the rule and ends with the keyword end. Between, the
two keywords when and then are found.

The when-part is the condition part, which describes what objects and conditions
must be met for the rule to execute. For example, if the rule requires a Banana
object that has its String attribute status set to "ripe", it is written as:
Banana(status == "ripe"). It is important to realize that all objects used by
Drools are just ordinary Java objects without any sort of modifications. To use
the banana object in the consequence part it has to be assigned to a variable:
$b : Banana(status == "ripe"). Note that none of the lines in this part ends
with semicolon. If no conditions are given, the rule will always be executed and
the keyword when can be left out.

When the rule gets executed the code in the consequence part, below the then
keyword, is run. This part consists of regular Java code with a few additions,
like the keywords insert, update and remove. For example, to eat the ripe
banana from the previous example the rule can be written as:

1 rule "Eat ripe banana"
2 when
3 $b : Banana(status == "ripe")
4 then
5 $b.setStatus("eaten");
6 update($b);
7 end

3.2.3 Using Drools in Eclipse

If one uses Eclipse (http://www.eclipse.org (verified 2010-06-10)) to develop
applications, we recommend downloading Drools directly to Eclipse 3.4. This
adds support for Drools perspective, a number of views and the Drools runtime.
This also adds syntax highlighting of rules in DRL files, and the ability to create
Drools projects. With Drools projects one gets a number of benefits, like syntax
checking while editing DRL files and the ability to debug rules in the same way
as regular Java code. The new views lets one inspect for example the working
memory and the agenda, while debugging.

To install Drools in Eclipse, go to the ”Software Updates” dialog in Eclipse,
choose the ”Available software” tab and click ”Add site”. Insert the link to
”Drools 5.0 Eclipse Workbench for 3.4”2, choose the component ”JBoss Drools
Core” and hit install. After rebooting Eclipse, create a new ”Drools Project”
and when asked about ”Drools Runtime” click on ”Configure Workspace Set-

2Currently http://downloads.jboss.com/drools/updatesite3.4 (verified 2010-05-12)

15

CHAPTER 3. ARCHITECTURAL OVERVIEW

tings”. Click ”Add” and ”Create a new Drools 5 Runtime” and choose a new
location for the Drools Runtime. To instead convert an ordinary Java project,
simply right-click on it and choose ”Convert to Drools Project”.

3.2.4 Drools Logger and Audit View

Drools has a built-in logger, KnowledgeRuntimeLogger, which takes the State-
fulKnowledgeSession as an argument. Numerous events, e.g. for rules and
objects, are logged to an XML file. The events for rules include creations,
cancellations and executions of activations. For objects the events are insert,
update and remove.

The output log file is very hard to read, which is why Drools includes the Audit
view in Eclipse. Once one has located the button to open the log, in the upper
right corner of the view, it shows all the events in chronological order. The
events are displayed as a tree structure with descriptive icons for each type.
If an object or activation is selected, its creation event will be highlighted, as
shown in figure 3.2.

Figure 3.2: Shows the Audit view for a small example. The green highlight
shows the origin of the object in the selected event.

3.3 Use Cases

To ensure a suitable architectural design we have come up with a few typical
use cases that the user of the system will want to perform. Through the whole
development process we have tried to update the steps in each one of them to
see that they still are easy to perform. The steps for each one are described in
[A.1 Use Cases].

• Set Up ADLA to Run Through JATT

• Running ADLA stand-alone

• Adding a new rule

• Adding a new area of competence

• Removing a rule

16

Chapter 4

Constructing ADLA

This chapter describes how the reasoning part of ADLA is built. This includes
many of the necessary features built around and on top of Drools to extend
the functionality of ADLA beyond Drools’ standard capabilities. The chap-
ter is roughly organized according to the information flow and includes how
information in ADLA is input, stored, tracked and output.

4.1 Input

The purpose of the input is to form facts that can take part in reaching con-
clusions in the system. These conclusions can represent for example answers to
questions or various decisions, but can also be a part in further reasoning. The
input to ADLA is essential; if the quality of the input is poor, it will be reflected
in the output. In practice, this usually means that too little or only insignificant
information was present in the system when the reasoning was performed. This
could lead to the system reaching the wrong conclusion, in the same way as a
human expert would.

ADLA is designed to get its input in two ways. The first way is that JATT
can send objects as arguments when it calls ADLA as mentioned in subsection
[3.1.2 Connection with ADLA]. The benefit of this is that no files have to parsed;
everything is already neatly contained in Java-objects and can be used as facts
almost directly. The only processing needed is to encapsulate them in objects
that ADLA can handle. The disadvantage with this method is that ADLA
must be called from JATT and cannot be started separately. The other way for
ADLA to get input is to read the files in JATT’s result directory, described in
subsection [3.1.1 Result Directory]. This can be done either as a start-up step,
or later when the input is needed. This method is necessary with most of the
facts because they are not available directly from JATT. In addition, this makes
it possible to run ADLA separately using data from any previous JATT run,
which helps to ensure identical data is used when developing rules.

At the moment, ADLA almost exclusively gets its input from JATT’s result
directory. The reason for this is that the simulator we use while running JATT

17

CHAPTER 4. CONSTRUCTING ADLA

only supports benchmark tests. For other test suites like TCK and JDTS, data
from previous JATT runs that were conducted on real hardware, must be used.
This data must come from the result directory since the data from JATT is only
available when the test job is running.

If the input is gathered from JATT’s result directory, it is collected as text and
must be parsed to the correct data format to be useful in the rules. When the
data is parsed, it is stored in nodes, which are used as facts in the rule engine.
Because only small parts inside the files are useful, regular expressions are used
to extract interesting parts (see section [2.5 Regular Expressions]). As long as
the file formats stay the same, any data can be collected. One drawback is that
if the format changes one does not always notice, which could lead to a lack of
facts and bad conclusions. As stated in section [1.4 Boundaries], we will assume
that the formats do not change.

One final problem with the input arises when JATT is forced to rerun some
part of the test job that has not passed. The files in the result directory are
updated in different ways and the challenge is to retrieve only the data from
the last run, the new information. This will be discussed in-depth in section
[6.1 Keeping Track of New File Contents between Reruns].

4.2 Holding Information in Nodes

A node in ADLA is simply a Java object which holds information that the rule
engine needs when reasoning, i.e. facts. Although Drools can use objects of
all classes as facts, we had to restrict these to a limited set. This is necessary
because, as shown later, we need certain common attributes in all objects used
while reasoning to be able to track the execution. The real gain of this will be
revealed in section [4.3 Tracking Rule Execution]. Objects of the types in the
restricted set are referred to as nodes, which in practice are objects from the
inheritance hierarchy of the base class Node. If the object can not simply extend
the Node class, it can be encapsulated in a new class in the Node hierarchy. This
means objects of all classes can still be used as facts, as supported by Drools,
with a little bit of extra work.

The information stored in nodes can both be raw input from the files or re-
fined through reasoning. Every type of node holds a more or less unique set of
information, so many of the Node classes need to be specially designed for its
purpose. Some examples of nodes are:

• Request - represents the file Request.xml that defines the test job with
list of tasks.

• Task - holds information about each task like its arguments and time out.

• ErrorNode - used as a wrapper for ErrorNodeExceptions, which the rule
developers create when reporting errors in ADLA.

• TestSummary - summarizes the results from benchmarks and test suites.

• JavaException - holds the extracted information about a Java exception
from a particular file.

18

CHAPTER 4. CONSTRUCTING ADLA

In many cases, only something similar to a common variable needs to be stored,
i.e. a name and value. For this purpose, the class GeneralNode has been created,
which holds a String name and a value of the type Object. The advantage is
that no specially designed class for storing simple information has to be created.
This speeds up the development process. A disadvantage is that GeneralNodes
only can be separated by their name attribute and not by class, which can lead
to conflicts if one forgets that the particular name already is in use. Also, like
every object, it is faster to check the class than an attribute, which can make
the system a bit slower than if different classes would have been used.

4.3 Tracking Rule Execution

The internal structure of an expert system can be thought of as a pile of rules
and a cloud of facts, which will be combined and executed automatically by the
rule engine. One problem with this is that there is no direct way to determine
how a certain conclusion was reached, which becomes very frustrating if one
suspects the result to be erroneous. In addition, we totally agree with [Norvig,
1992, p. 531] in his statement:

A system that can explain its solutions to the user in understandable
terms will be trusted more.

Because there can be many ways to reach a certain conclusion in the system,
we have to keep track of which rules are run and what objects are inserted or
updated. As illustrated in figure 4.1, the problem with tracking the flow is that
the only way of knowing which of all the possible ways through the rules and
objects the system has taken is to track it while running. It is not possible to
unambiguously determine this afterwards.

For the solution we needed common attributes for every node. One of the
attributes is a list called cameFrom that stores a reference to the rule that
inserted it into Drool’s working memory, with the keyword insert. Now we
can keep track of in which rules all the objects were inserted, but we still do
not know which objects triggered each rule. For this purpose we also represent
all rule executions as nodes, called rule nodes. This way the rule nodes will
also possess cameFrom lists that will hold references to each object that was
required to trigger the rule. One example of how the cameFrom list is used
is shown in figure 4.1 and details on how the list is filled in can be found in
section [6.2 Filling in the cameFrom Lists]. It is important to realize that in the
same way that nodes represent objects, not classes, rule nodes represent rule
executions and not the rule itself. So, if a rule is executed several times each
execution will be represented by a separate rule node.

When an object is updated, e.g. when its attributes are changed, one lets Drools
know by using the keyword update. Since an update can be just as important
as an insert, we need to keep track of them too. A reference to every rule that
updated an object node is stored in that node’s updatedBy list. The references
are stored in a similar way to that of the cameFrom list, but the list is empty
for all rule nodes (rules cannot be updated). If the cameFrom and updatedBy

19

CHAPTER 4. CONSTRUCTING ADLA

Rule 1 Rule 2

Node 1 Node 2 Node 3

Node 4

List cameFrom = {
 Node 1
}

List cameFrom = {} List cameFrom = {} List cameFrom = {}

List cameFrom = {
 Node 2,
 Node 3
}

List cameFrom = {
 Rule 1 or Rule 2?
}

Figure 4.1: Shows the principle of how the nodes’ cameFrom lists are used and
the problem of tracking the flow in the system. One cannot unambiguously
determine if Node 4 came from Rule 1 or Rule 2, if this was not logged when
the node was created. The list cameFrom is a common attribute to nodes
and rule nodes that stores references to where they came from. Arrows
pointing at a rule node show that the rule required the object at the tail,
and arrows pointing from a rule node shows objects that the rule created.

lists are followed back from a conclusion to its sources, it will form a chain of
rules and nodes. All the nodes in the chain have contributed to the conclusion,
directly or indirectly. A chain from a certain point in the system, back to its
sources, is henceforth referred to as a why-chain. In practice, the why-chains
are usually intertwined with each other and will form a graph. More about this
in chapter [5 Visualizing ADLA].

4.4 Conclusions and Decisions

At the beginning of the project it was required that the results from ADLA,
its conclusions and decisions, should be printed in prioritized order as XML.
Further into the project this was changed, mainly because of the complexity of
the conclusions from ADLA, as we will see in this section.

4.4.1 Identifying the Results

The first and biggest problem during the development has been to identify the
results of the system, or in other words, how to separate facts from conclusions.
The rule engine does not differentiate between facts and conclusions. This
means that it is impossible to know if an object produced by a rule is supposed
to be a conclusion or just be used for further reasoning by other rules. It could
sometimes be a conclusion and sometimes not, depending on the combination
of objects in the working memory and the kind of test job JATT has run.

20

CHAPTER 4. CONSTRUCTING ADLA

Also, ADLA is supposed to find errors in multiple areas, so the problem gets
even more complex because one never knows which objects hold the different
results. Some of the results ADLA is supposed to produce are for example:
decision about rerun for the test job, result from the test suite, information
about failed tasks, core dumps and Java exceptions. If the system instead had
one area of responsibility, e.g. to decide if the test job needed a rerun, finding
the result would have been easier since it is stored in one specific object.

4.4.2 Prioritizing the Result

Even if all the results could have been identified, the prioritization would still
be impossible to do automatically in the system. For example, the priorities for
each conclusion could be kept in a list, but such a list would quickly become
unmaintainable. This is because the prioritization can change depending on
what other objects are in the system, but also because they continuously change
when rules are rewritten or added. If the prioritization instead is performed by
the users, when the result is finished, they will only need to prioritize the actual
result and not all possible combinations.

4.4.3 Graphical Solution

An acceptable solution, where the system identifies the result, was never found.
Instead, we were forced to involve the user to identify the result, the important
information and to prioritize it. This was done with a graphical representation
which shows the full picture of the system by finding all the leafs of facts and
then follow them like why-chains. Such a graph had already been made for
the function for asking the system how it reached a conclusion. The graph was
extended to show all the why-chains in the system and new tools were added
to be able to identify the results and decisions. Some of the tools described
in section [5.3 User Interface] include colored nodes with explanations, node
information window and the possibility to move the nodes in the graph.

In this way, the users can fairly easily disregard parts of the system that looks
uninteresting. Another benefit is that it is easier to see the bindings between
facts and rules compared to the non-graphical solution first used. The disad-
vantages are that the person has to have good knowledge about the structure
of rules and objects in the system. Important information is embedded in the
way the nodes are related to each other, through the connections between them.
Information is also hidden on first sight, as it is stored in the nodes. Figure 4.2
shows the problem of knowing in which node the result is stored; if the users do
not know where to start looking, they have to guess by trial and error.

All nodes have something to tell, even the very existence of an object is often
important. This makes it hard to decide which to show in the result, so instead
all nodes are shown and the users can decide which are interesting. Together
with ST-Ericsson we decided to skip the XML requirement and go for the new
graphical solution. The real gain with this is that instead of using a separate
function to find out how the system has reasoned, it is presented together with
the result. This way every node gets more authority because it is possible
to follow the path it came from. Sometimes the path even describes a node

21

CHAPTER 4. CONSTRUCTING ADLA

Figure 4.2: Shows the graphical result for the users to investigate. Due to
the many nodes, finding the result one is looking for can be hard. Inex-
perienced users may have to resort to trial and error. The prioritization
is done indirectly, as all humans do, when the users look at the graph and
decide which nodes to investigate and in what order.

better than the node itself. With a non-graphical solution, this type of indirect
information would have been harder to relay.

4.4.4 Passed or Failed Test Job

There is still the issue with users who are only interested in if the test job was
successful or not. The main reason is that JATT needs to be called from their
test program and the result must only be passed or failed. This is not possible
with the above solution because the users have to be involved to identify the
result. On the other hand, the reasons for a failed test and its justification need
not be provided. To find a solution for this scenario we made a supplementary
function. It checks that a result for the test job has been produced, that it is
valid and that all tests in the suite were successful; otherwise the test job is
marked as failed. In addition, if the tests in the test suite were passed but other
errors were found the test job will be marked as failed. Simply put, we use the
fact that every test job is supposed to return some kind of result (what else is
the point of running it).

A problem is that the test job result sometimes contains minor faults, which
should usually be ignored. Initially it is important that no such test job is
allowed to pass because the errors could go through without notice. This means

22

CHAPTER 4. CONSTRUCTING ADLA

it is better to let the test fail if there is some kind of uncertainty. The idea is
that a detected problem, which is not an issue, needs to be handled in a rule to
be circumvented.

4.5 Handling Errors

When we talk about errors in this section, we mean all kinds of Java exceptions,
but also errors the rule developer has created for different reasons. The error
handling in ADLA requires a special design due to the automatic nature of the
system, as the intended way to run ADLA is as a step in JATT’s execution.
This presents a problem because no user is able to interact in case of an error.
To make the problem even harder we want to avoid the use of log files for
presenting errors to the user. This is because the very reason to build ADLA
is to analyze log files so the user does not have to. The simplest solution would
be to make ADLA totally quiet so no errors would be reported. The drawback
would be that the user could be fooled into thinking everything went well, and
the system would not be improved to avoid the errors. A more sophisticated
way is required.

4.5.1 Presenting Errors with the Result

We wanted to present the errors together with the result because it can be
affected by some kinds of errors. For example, if an error occurs so a fact is not
added, a worst-case scenario could be that the system will come to the wrong
conclusion. To pinpoint which parts of the system that are affected by a specific
error it is important to be able to bind the errors to their sources. Because the
same type of error may occur multiple times at different places, one needs to
be able to distinguish between them to know which is most important. If one,
for example, tries to read the same non-existing file in numerous locations the
same error will be generated every time. If the errors are not bound they have
to be more specific and contain enough information for the user to locate their
sources. This puts unnecessary work on the rule developers to describe each
error, so they are uniquely identifiable. If they instead are automatically bound
to the rule that caused the error, one gets valuable information about its origin
that sometimes says more than the actual description.

To accomplish this, the class ErrorNode is introduced to represent errors and
behaves like any other node. The ErrorNodes are drawn in a different color to
distinguish them from other nodes, more about this in subsection [5.3.1 Pre-
senting the Graph]. In practice, an ErrorNode is merely a container for an
ErrorNodeException, which is the actual error. This class extends Exception,
which makes it possible to use it with Java’s error handling facilities: throw,
try, catch, etc. It holds a description of the error, a label that is used when
the node is drawn and optionally a reference to another Java exception. This
reference is set when the ErrorNodeException is created in response to another
exception. Because it is optional the rule developer can create an error even
though Java does not interpret it as an exception, e.g. if a report contains
unreasonable, but correctly formatted, data.

23

CHAPTER 4. CONSTRUCTING ADLA

ErrorNodes also have an attribute called problem. This can be set to false
if ADLA on further reasoning finds the error irrelevant, for example when a
specific error in some situation should not make the test job fail. The reason for
not simply removing the ErrorNode is that it could be relevant to other rules.

4.5.2 Categorizing the Errors

The error handling is divided into three groups depending on where in the
system the error originated, see figure 4.3. The first one consists of errors that
occur outside the rule engine, e.g. output from ADLA could not be saved, no
rule files were found, or there were syntax errors in the rules. Because the rule
engine has not yet started, no result will be produced. This and the nature of
the errors that occur at this point makes it impossible, or at least inappropriate,
to present them in the graph. Instead we have chosen to print the errors, with
the prefix ADLA, to the JATT log to avoid creating additional log files.

The second group includes all errors triggered from the rules that are explicitly
handled, i.e. when an ErrorNodeExceptions is created. The idea is that all
Java exceptions should be caught and if they still need to be reported to the user
an ErrorNodeException should be thrown instead. The errors can of course
be handled like in standard Java if they do not need to be reported. It is also
possible to throw an ErrorNodeException even if it is not in response to a Java
exception.

The last group includes all errors triggered from rules that are not handled, i.e.
exceptions one forgot to catch. The only difference between this group and the
second is that no label or custom description is assigned by the rule developers,
which means they only contain the standard label ”Unhandled error” and the
regular exception text. This makes them less descriptive, which is why they
should be avoided. Both exceptions from the second and third group are caught
and transformed into ErrorNodes outside the rule engine as shown in figure
4.3. Once the exception is handled, the rule engine continues with the next
rule, which means the rule that threw the exception will not be executed again,
unless it is rescheduled.

24

CHAPTER 4. CONSTRUCTING ADLA

public void execute() {
 StatefulKnowledgeSession ksession;
 try {
 ksession = initExpertSystem();
 } catch(Exception e) {
 logger.info("[ADLA] Unable to inititalize expert system");
 return;
 }

 while(true) {
 try {
 ksession.fireAllRules(); // The rule engine executes rules
 break;
 } catch(ConsequenceException e) {
 ErrorNodeException err;
 if(e.getCause() instanceof ErrorNodeException)
 err = ((ErrorNodeException)e.getCause());
 else
 err = new ErrorNodeException("Unhandled error", "An unexpected error was caught", e.getCause());
 ksession.insert(new ErrorNode(err));
 }
 }
}

rule "Parse TestSuit report"
 when
 $ts : TestSuite()
 then
 $ts.parse();
 if($ts.totalTests != $ts.passedTest + $ts.failedTests)
 throw new ErrorNodeException("Sanity check failed", "The total sum is not equal to the parts");
 update($ts);
end

public class TestSuite {
 public int totalTests;
 public int passedTest;
 public int failedTests;

 public void parse() throws Exception {
 FileReader fr;
 try {
 fr = new FileReader("reportFile.dat");
 } catch(FileNotFoundException e) {
 throw new ErrorNodeException("TestSuite error", "The report file was not found", e);
 }
 totalTests = fr.read();
 passedTest = fr.read(); // Whoops, throws IOException
 failedTests = fr.read();
 }
}

A

Main.java

Rule.drl

TestSuite.java

B

C

D

Figure 4.3: Shows the principle of how the error handling works. In the
while loop the rule engine is started with the method fireAllRules, which
does not return until the rule engine is finished. If an exception is thrown
in a rule or a method it calls, it is caught in the while loop and handled.
When fireAllRules is called again it continues with the next rule. Label A
shows an example from group 1, how an error message is written to the
JATT log. Labels B and C are examples of group 2 errors and show how
the user can report errors from rules, with or without an attached Java
exception. Label D is a group 3 example, where an exception is not handled
and results in an unhandled error.

25

Chapter 5

Visualizing ADLA

This chapter describes the graphical part of ADLA, which is designed as an
applet. It is separated from the reasoning part, both in this report and in the
code. The reasoning part produces an XML file, containing graph data, which
will be stored in JATT’s result directory. This file should not be confused with
the withdrawn requirement of XML output, previously discussed. Whenever
the users want to look at the result they visit the JATT web page where our
applet retrieves the file and displays it as a graph.

5.1 Reasons for the Visualization

The main reason was to present how ADLA reasoned, to clarify why it reached
a certain conclusion. We refer to this as a why-chain and it tells what rules
were executed and what facts were used and created by the rules to reach the
conclusion. Facts that do not contribute to a conclusion are not included in that
conclusion’s why-chain. One of the reasons for using an expert system is that
the reasoning behind a result is generally not trivial. This is why the ability to
explain how it was reached is especially important to us. The explanation had
to be graphical as described in section [6.3 Presenting Why-Chains].

As mentioned in section [4.4 Conclusions and Decisions] we also needed a clearer
way to present the results from ADLA than the originally intended XML output.
We concluded that the only reasonable solution for the problem of identifying
and prioritizing the result is to let the user decide after each run. This was done
by extending the graphical solution for the why-chains to include the result as
well.

Finally, it would be helpful to find out if some specific fact was present in ADLA,
even though it did not contribute to a conclusion (not included in a why-chain).
This is useful when expanding the system with new facts and rules.

26

CHAPTER 5. VISUALIZING ADLA

5.2 JUNG - Java Universal Network/Graph

As stated on its web page (http://jung.sourceforge.net (verified 2010-05-20)),
JUNG is a framework written in Java used for ”modeling, analysis, and visual-
ization of data that can be represented as graphs”. It is delivered in JAR files
that contain classes, which are used directly in the application. JUNG is freely
available under the BSD license. We use it to visualize the graphs that ADLA
output.

To use JUNG, one first chooses a suitable graph type, in our case a Directed-
SparseMultigraph. After that, simply insert the vertices and edges into the
graph. In JUNG it is possible to define custom Vertex and Edge classes,
which can hold data that becomes available at certain events. Next, select a
layout that controls how the nodes are placed when rendered. For our pur-
pose the ISOMLayout looked the best. Finally everything is rendered on a
VisualizationViewer, which is a JPanel.

JUNG lets one interact with the graph in various ways, for example to zoom
and move around. To allow for a better view of a certain part of the graph, the
vertices can also be moved around, either one at a time or in groups.

In JUNG various listeners can be set up to catch different events in the graph,
e.g. when the mouse is clicked. A reference to the clicked item is provided,
for example one of the Vertex objects. Different transformations are also sup-
ported, which lets one change the appearances of the items in the graph. We
use them to change the color and shape for different node types, and the color
of certain edges. On JUNG’s web page both example graphs and a manual can
be found.

5.3 User Interface

Figure 5.1 shows the main view of the user interface for a failed Sun TCK test
job. This test job is specially chosen because it includes many of the typical
elements we want to describe here. Unless otherwise noted, it will be used for
all the examples in this section.

5.3.1 Presenting the Graph

The largest part of the user interface is the graph panel where the why-chains
and results are presented. Each node represents either an object or a rule
execution.

Arrows

The nodes in the graph are connected to each other with arrows. The flow
begins in the nodes with no incoming arrows (in most cases a rule node) and
continues in the direction of the arrows, alternating between object nodes and
rule nodes. Because of how the rule engine works two rule nodes, or two object
nodes, cannot be connected to each other. The simple reason is that objects
cannot create other objects and a rule cannot force another rule to run.

27

CHAPTER 5. VISUALIZING ADLA

Figure 5.1: The main view of the user interface. Label A shows the status
indicator, which displays the status of the test job. Label B marks the
graph panel used for drawing the graph that contains the result and the
why-chains. Label C is the info panel, which displays the explanation of
the nodes currently found in the graph panel. Label D shows a checkbox
used to toggle the graph panel between displaying only important nodes
and all nodes.

Figure 5.2 shows an example of the different arrows used in the graph. An arrow
pointing at a rule node means that the object node at the tail was required to
trigger the rule, which is described by the condition part of the rule (when). In
the opposite case, where an arrow is pointing away from a rule node, it means
the rule (in the then-part) has created the object at the arrow’s head. If the
arrow instead is light red, the node at its head was updated during the rule
execution.

Figure 5.2: Shows the different types of arrows used in the graph. Label
A is an example of an arrow where the rule creates an object. Label B
marks an arrow where the object gets updated by the rule. Label C shows
an arrow where the object JavaException is required to trigger the rule.

28

CHAPTER 5. VISUALIZING ADLA

Node Types

To make the graph easier to understand we assign different shapes and colors to
the nodes, depending on their types. If the shape is a circle the node represents
an object, if the node is a rectangle it represents a rule execution. The nodes
are referred to as object nodes and rule nodes, respectively. In figure 5.3, the six
different types currently defined in the system are presented; new types can be
added as needed, see [A.3 Add New Node Types]. Beginning from the left, the
light green node represents an ordinary object and is the standard appearance
if an object does not meet any other criteria. The dark green node is for objects
from the specific class GeneralNode. A yellow node indicates that the object’s
conclusion attribute is set, which means some important information is likely
to be available. The blue rectangle represents a rule execution, which means
that the specific rule with the same name has been run. Some rule nodes have
a number after its name; this is the rule’s salience, i.e. its priority. Finally, the
two red nodes signify ErrorNodes. The difference between them is that an error
represented by a light red node was flagged as not being a problem and could
be ignored.

Figure 5.3: All the node types currently defined in the system. The circles
represent object nodes as opposed to the rectangle, which identifies the
rule node.

Show All Nodes

In figure 5.4 the checkbox ”Show all nodes” has been checked. If one compares
it to figure 5.1, the difference is that the graph now also shows the nodes that
are considered not important. For a node to be important at least one of the
following criteria must be fulfilled:

• The node’s conclusion attribute has been set and the node is also a leaf
in the graph. For a node to be considered a leaf it must not have been
used to trigger a rule that created an object.

• The node is an ErrorNode that has been marked as being a problem.

• The node’s alwaysDisplay attribute has been set to true.

• The node is included in another important node’s why-chain, i.e. the node
has contributed to an important node.

The reason for using the function that removes non-important nodes is to avoid
having them clutter the graph, making it harder to overview. The ability to
toggle them back on is useful to find out if some specific fact was present in
ADLA, even though it was not marked as important. This is especially helpful
when expanding the system with new facts and rules and one wants to make
sure a certain object has been inserted.

29

CHAPTER 5. VISUALIZING ADLA

Figure 5.4: The main view of the user interface with all nodes from Drools’
working memory visible.

Rule executions that do not insert or update any objects will never be shown in
the graph, not even when ”Show all nodes” is checked. This could for example
happen when a rule inserts objects inside an if-statement, only the executions
that actually performs the insertion are shown. One reason for this is that,
we figured, such rules have not produced anything that can be used by other
rules or led to a conclusion. Another reason is to minimize the number of nodes
shown in the graph as much as possible, or the graph would get too crowded.
To see a summary of all the rules that have been executed one can look in the
file ruleTimes.txt, which lists all rules and their execution times.

5.3.2 Information Window

To be able to easily present information stored in the nodes, the ability to right-
click on them has been added. This brings up a window, showing node-specific
information. The window size adjusts itself to the displayed contents.

Node Information

For object nodes, the rule developer has the ability to decide the contents of the
window by overriding the method getNodeInfo in the Node classes. Because
it should return an HTML formatted String, tables and other formatting can
also be used besides regular text. If the method is not overridden the standard
attribute conclusion, which is common to all object nodes, is shown. An
example of the information window for an object node is shown in figure 5.5.

30

CHAPTER 5. VISUALIZING ADLA

Figure 5.5: The node information window for the object node
RunTCKHarnessTask. This particular node is a Task and contains that task’s
different arguments from the request.xml file, e.g. the time out. One can
also see that the task status is set to ”not run”, which means that the task
for some reason was not performed.

Rule Information

For rule nodes the contents of the window is standardized to include common
attributes and the code for the rule, see figure 5.6. AgendaGroup indicates which
layer the rule belongs to and can currently be either ”layer1” or ”layer2”. A
salience of zero means no special priority was assigned to this rule. It is often
hard to locate in which of the rule files a specific rule is defined, which is why the
path is shown as the attribute ruleFileName. The executionTime is presented
for each rule node to make it possible to identify potential performance issues.
A full summary of all rules run and their execution times are printed to the file
ruleTimes.txt.

To make the rule easier to read, each line of the rule code is numbered. The
initial reason for the numbering was to enable users to more easily find a cer-
tain line pointed out by an exception’s stack print, in an ErrorNode. Because
Drools translates every rule into a separate Java file, which is then compiled,
we thought it could be solved by numbering each rule individually as shown
in figure 5.6. Unfortunately, we discovered that the line numbers specified do
not correspond to neither the absolute line numbers of the rule file, nor to the
individual numbering shown in the figure. After some testing we found out that
it was hard to predict how many lines the when-part of the rule will occupy in
the Java file, after Drools’ translation. If a way to calculate the row number
where the then-part starts could be found, the problem would have been solved.

31

CHAPTER 5. VISUALIZING ADLA

Figure 5.6: The node information window for the rule node Parse
HarnessTest result.

5.3.3 Test Job Status Indicator

The status indicator reflects the result of the test job for those users who only
need to know if the test job passed or failed, see subsection [4.4.4 Passed or
Failed Test Job]. In the current solution the status can be passed, failed, error
or not set, where any result besides passed would be considered a failure. The
results passed or failed is collected from the test suite report, but even if the
tests in the suite passed, it is still possible to get an error from ADLA if some
other problem was discovered.

5.4 Map for System Overview

When the amount of rules and objects grew, and some rules needed a priority
to work as intended, we realized that if there would be more than one rule
developer, this could become a problem. To write a new rule one has to know
what other rules exist, and what objects they are using, to be able to use them
as originally intended. If the rule developer does not understand how an object
is used or if a new rule gets the wrong priority, the intended system execution
could be jeopardized.

To solve this we constructed a map that dynamically shows all rules and objects
currently used in the system, and how they are connected to each other. This
is similar to how the why-chain graph was done, except all possible connections
are displayed, even to objects inside for example if-statements. This way the
rule developer could get an overview of the system and get an understanding of
how it is intended to be used.

Initially we thought the map was very practical and used it a lot, but as ADLA
got more complex several limitations made it problematic to show the real

32

CHAPTER 5. VISUALIZING ADLA

picture of the system. For example, the inheritance structure used, e.g. by
HarnessTest, made the map display the wrong objects. In addition, if methods
are called from the rules, the function has no possibility to analyze them.

To sum up, the map program is a good idea in theory, but limitations in the
implementation made it misleading. Mainly because lack of time we have de-
cided to exclude the function for the time being. Figure 5.7 shows an example
of what the part already implemented looks like.

The map is run as a stand-alone program through the class RunMap in com.steri-
csson.jatt.adla.map. Before running, specify the path to the rule directory by
setting the variable RULE DIR. Also, make sure all packages that contain nodes
are included in the call to initNodeClasses, in the MapGraph.generateMap-
Graph method.

Figure 5.7: The map that intended to give the rule developers an overview
of the rules and object nodes in the system.

33

Chapter 6

Problems and Solutions

6.1 Keeping Track of New File Contents between
Reruns

When some of the tests in the test suite have failed, JATT will sometimes try to
rerun the failed parts. This means the files in the result directory are updated
with the data from the last run. The challenge is to only retrieve the new
information so the new result is not contaminated by earlier produced data.

For some files, e.g. the JATT log, the new data is appended to the end of the
file without any delimiter. To extract the new data from this kind of files we
keep track of their sizes and assume the bytes appended after the last recorded
file size is the new data. If the sizes are the same, the file is treated as only
containing old information and is excluded. Other files, like the phone logs, are
just created with new names and will therefore only contain new information.
Because their names are not previously recorded, they are all treated as new
files. A suggestion to handle these two types of files has been implemented in
the class FileSizeOverview, but unfortunately the code is untested because
the simulator does not support execution of test suites, which is required for
testing. The class writes down the file sizes it finds in FileSizesOverview.txt
and stores it in JATT’s result directory. The file is then read and updated
with new file sizes on each rerun. To use this functionality a method called
getDataSinceLastRerun is available in the class.

An initially unnoticed problem was a third type of file where the old data is just
overwritten with new. With the previous solution, strange errors would have
been likely to arise because the files would have been treated as one of the other
types. This drawback combined with the fact that it could not be tested, made
us decide to skip the feature. Nevertheless, a theoretical solution could be to
include the file attribute ”last changed” to decide if the file is new or not. It
would then be possible to detect if the file had been replaced.

One thing to note is that some files, e.g. request.xml, are not supposed to be
covered by this functionality, because they are required for every rerun and are

34

CHAPTER 6. PROBLEMS AND SOLUTIONS

never modified. The part of the functionality that is implemented therefore
needs to be explicitly told which files in the result directory that should be
monitored. This means that if the developer does not use the methods provided,
everything will behave as normal. For the functionality to work ADLA must be
called by JATT between each rerun, or else the old files would not be recorded
properly.

6.2 Filling in the cameFrom Lists

During the project different techniques have been used for filling in the cameFrom
lists. The lists are used for binding each node to the rule that created it, and
for binding each rule to the nodes it depends on for its execution, see section
[4.3 Tracking Rule Execution].

The main reason for changing how the lists are filled in was to make it as easy
as possible for the rule developers to write rules. Since the first attempt our
goal has been to make it less intrusive, i.e. get rid of all unnecessary steps when
writing rules. Ideally, the user should never have to think about this function,
everything should be handled automatically behind the scenes.

6.2.1 First Attempt - Java Varargs

In the first solution, the user had to manually pass a reference to each object
used in the rule, whenever a node was created and inserted. These objects were
inserted directly into the node’s cameFrom list. Not only that, but the name of
the rule was also required as an argument to the constructor. An example is
shown below in the rule named ”First attempt”:

1 rule "First attempt"
2 when
3 $t : Task()
4 $r : Request()
5 JattLog() // Will not be connected
6 then
7 // some use of $t and $r
8 insert(new Node(arguments, "First attempt", $t, $r));
9 end

The first thing to notice is that every object used in the condition part (when)
of the rule needs to be assigned a variable in order to be passed to the Node con-
structor, e.g. $t and $r. The constructor receives the objects as varargs, which
means any number of objects can be passed. Node in the example refers to any
class in the Node hierarchy, and arguments refers to the specific arguments of
those classes’ constructors. The object JattLog is not used in the consequence
part of the rule; it is only a condition for the rule to execute. Normally, in
standard Drools, it would have been correct not to assign it to a variable. How-
ever, with this solution it is required to pass the JattLog object to the node’s
constructor, in the same way as for the Task and Request objects, and therefore

35

CHAPTER 6. PROBLEMS AND SOLUTIONS

it must be assigned to a variable as well. In the example, someone has made
an error and forgotten to pass it, which means it will not be shown as having
triggered this rule. This could be very misleading when viewing the graph.

The worse thing with this solution is the lack of feedback when passing the
objects, there is no way to know if some objects are forgotten. The reason for
this is that one must be able to pass any number of objects, so the program can
not just count them to make sure they are all there. At least an error is given
if the rule name is missing, but there is no check if the name is correct or not.

Pros

• No nodes are affected if any references are forgotten, just the edges
between them. In other words, the reasoning part is not affected,
just the graphical representation.

Cons

• The user must remember to pass the objects and the rule name to
every new Node inserted.

• No feedback is given if an object is forgotten.

It was soon obvious that a new solution was needed; even though we ourselves
were the developers we kept making mistakes and ended up with strange errors
in the graph. It would be foolish to think that someone else would have a better
chance of succeeding.

6.2.2 Second Attempt - The Drools Object

We tried hard to find a better solution, but found no alternative by continuing
to enhance the class structure. The key to the new solution came unexpectedly
from the minor annoyance of being forced to write the rule name in multiple
places within the same rule, as required in the first solution. We figured it
would have been strange if one could not, at least, get the name of the currently
executing rule, to at least improve that part. Therefore, instead of trying to
enhance our own structure we changed focus and examined Drools’ manual
and API. The method drools.getRule().getName() was found in the Drools
manual [JBoss Community, 2009, 4.8.3. The Right Hand Side] and the built-in
object drools was examined in the debugger. This way we also found that
references to the objects in the rules were accessible through the same object
with the method drools.getTuple().getFactHandles(). The rule writing
was hugely improved; now the only mandatory argument to the Node constructor
was the drools object.

36

CHAPTER 6. PROBLEMS AND SOLUTIONS

1 rule "Second attempt"
2 when
3 $t : Task()
4 $r : Request()
5 JattLog() // Is connected
6 then
7 // some use of $t and $r
8 insert(new Node(arguments, drools));
9 end

It was no longer necessary to assign JattLog to a variable; it would be con-
nected anyway. This was a significant step towards our goal of eliminating all
unnecessary steps in the process of writing rules. The only thing one had to
remember was to pass the drools object to the constructor, and if it is forgotten
a compiler error message would inform of it.

Pros

• Feedback in the form of a compiler error if one forgets to pass the
required drools object.

• Always the same one object that needs to be passed.

• No need to assign objects to variables any more if they are not actu-
ally used in the rule.

Cons

• One still needs to pass the drools object, which is an extra step in
the rule writing.

At this point we thought we had found the best possible solution. We were no
longer actively searching for an alternative, but progress in another part of the
code revealed an even simpler solution.

6.2.3 Third Attempt - Event Listeners

During the development of the error handling functionality we needed a way
to keep track of which rule was executing when an exception was thrown. If
the technique with the drools object from the second attempt had been used it
would have required drools to be passed to any method that needed to throw an
exception. This would have been very impractical. To find a better solution we
investigated the source code for the built-in Drools logger, because we knew from
the manual that it logged all the rule executions to a file. For more information
about the Drools Logger, see subsection [3.2.4 Drools Logger and Audit View].
It was discovered that it used several internal event listeners. For example,
AgendaEventListener is called on activation-related events, including before
and after a rule is executed. WorkingMemoryEventListener is called when
objects are inserted, updated and retracted. We combined these two listeners to
a logger for both error handling and rule tracking called ExecutingRuleLogger.

37

CHAPTER 6. PROBLEMS AND SOLUTIONS

One should keep in mind that there is a cameFrom list in both rule nodes
and object nodes. The lists in the rule nodes are filled in when the method
beforeActivationFired is triggered, whenever a rule is about to run. All of
the objects required for triggering the rule are inserted into the cameFrom list
of the rule node. A reference to the rule is also saved for later and used when
filling in the cameFrom list in the object nodes. This is done in the method
objectInserted and the saved reference is added to the cameFrom list of the
inserted node.

This change improved the rule example even more:

1 rule "Third attempt"
2 when
3 $t : Task()
4 $r : Request()
5 JattLog() // Is connected
6 then
7 // some use of $t and $r
8 insert(new Node(arguments));
9 end

Pros

• Nothing extra is required, only the regular arguments.

Cons

• None

In this third attempt, we have actually reached our goal to not introduce new
steps to the user when writing rules. Drools’ standard syntax is used without
any additional requirements.

6.3 Presenting Why-Chains

A why-chain shows which rules and objects have contributed to reach a certain
node. Our main goal was to make the overview of the why-chain as good as
possible, and at the same time easy to generate. At this point we saw the
why-chains as trees and tried to print them as such. Figure 6.2 shows a small
sample of this, but also the main problem with this non-graphical solution. The
object JattLog is printed twice and it is impossible to see if it is supposed to
be the same object or another object with the same name. In this case it is the
same object, which means it got two parents and therefore why-chains can not
be thought of as tree-structures. This also demonstrates the problem that the
entire structure underneath JattLog, in this case the rule Look for JattLog,
will be printed twice. One can easily see that the non-graphical solution will be
impossible to overview and extremely hard to interpret as the number of nodes
grows.

38

CHAPTER 6. PROBLEMS AND SOLUTIONS

We needed a better way to present the why-chains, which both allowed non-
tree structures and offered a good overview of the why-chain. The solution was
to print it in a graphical form as shown in figure 6.1. It is now obvious that
JattLog is one single object, which is required by two rules, as illustrated by
the arrows. If two nodes with the same name are present it means two different
objects have been created. In the same way, if more than one rule node with
the same name is present the rule has been triggered multiple times.

Figure 6.1: Graphical representation
of the why-chain.

JavaException
 Look for JavaException in JattLog tasks
 FlashTask
 Find tasks
 JattLog
 Look for JattLog
 Request
 Look for request.xml
 JattLog
 Look for JattLog

Figure 6.2: The arrow shows the
problem with a non-graphical rep-
resentation of the why-chain.

6.4 Representing Non-Existent Objects

One problem when developing ADLA was how to represent objects that do not
exist. For example, we have a rule that needs to be triggered if the object
TestSummary does not, and will not, exist. This could happen if the test report
is missing. A naive solution could be to just put not TestSummary() as the
rule’s condition. The problem then is that the rule could be executed before
the TestSummary is produced. One must somehow make sure that everything
that could lead to a TestSummary being produced is executed first. This can be
done in numerous ways, choose the most suitable for the particular problem.

• With the keyword salience it is possible to prioritize the rules in Drools.
Of all the rules considered for execution, the one with the highest priority
will be executed. The standard salience for the rules is 0. To make a rule
execute after another simply assign it a lower salience (negative numbers
are allowed). The advantage with this method is the simplicity. The
disadvantage is that if it is used too much it is hard to overview all the
rules with modified priorities and it may be risky to add or adjust them.
This was among other things the problem that should have been alleviated
by the Map functionality, see section [5.4 Map for System Overview].

• Critical objects can be inserted into the working memory before the rule
engine starts. This way, if an object does not exist, one knows for sure

39

CHAPTER 6. PROBLEMS AND SOLUTIONS

that it will not appear later. This of course assumes that there are no
rules that create it.

• The rule that creates the critical object can insert another object instead,
if the critical object should not be created. This object symbolizes the
non-existence of the critical object. In the example above one would for
example introduce the object NotTestSummary to symbolize that the ob-
ject TestSummary had not been created. A variant of this is to let the rule
always create a special object to signal that it has been run.

• In Drools rules can be grouped into so-called agenda-groups. The rules in
a group can only be executed if that group has focus. In this way layers of
rules can be created, which are executed one at a time. If one knows that
a critical object only could have been created on a previous layer, the rule
can presume that if it does not exist, it will not be created.

• A similar problem occurs if one wants to execute several rules on the same
object and want to make sure they are executed in the correct order. This
can be done with some of the techniques above, but a better solution is
to introduce an attribute in the object that keeps track of what state the
object is in. This is used as a condition in the rules, and the attribute is
also updated by the rules. This method requires slightly more work than
prioritization, but is more robust.

We have prepared ADLA to use two agenda-groups, as described above. The
rule attribute agenda-group can be either ”layer1” or ”layer2”, where layer1 is
run first. If the attribute is not set to either of them ADLA will not run, but
leaves a message with what rule, in which rule file has the invalid agenda-group.
We call them layers to signal that they will be executed in order, the second
starts when the first one is finished. This is like running two separate rule bases,
but on the same working memory. This is useful for example when one wants to
ignore an error under special circumstances. The rule that suppresses the error
is placed in the second layer to make sure it does not affect the other reasoning,
and that the information it bases the decision on is complete. Adding new
layers is very easy; simply add it to the agenda groups list, found in our class
Globals. The layers will receive focus and be executed in order, starting with
the first one in the list.

40

Chapter 7

Result

The result of the project is ADLA; a system written in Java to analyze logs and
dump files from automated tests on mobile phones. The analysis is performed
with a third-party rule engine called Drools. ADLA can be run both as a stand-
alone application, to be able to reevaluate previously generated results, and as
an integrated part of JATT.

ADLA contains two separate parts, one for the automatic reasoning and another
to graphically present the results. Graph data is transferred between them by
means of an XML file, which is stored in JATT’s result directory. The graphical
part of ADLA is an applet for viewing and interacting with the result. The
applet uses JUNG, a third-party framework to draw graphs.

The focus of the project has changed from creating a complete knowledge-filled
expert system, tailored to ST-Ericsson’s needs, to become more of a demonstra-
tion of an expert system’s potential and a foundation for further development.
The main reason for this has been the problem of finding relevant expert knowl-
edge to insert into ADLA. Another contributory factor is how fast the different
mobile platforms are changing. Some of the test suites that were used when we
started the project are now more or less obsolete, while others have been added.
This shows how important it is to keep the knowledge up to date.

7.1 ADLA Program Flow

Figure 7.1 shows the program flow between ADLA’s major components. The
standard way to run is through JATT with the method execute, illustrated by
the arrow between JATT and ADLA. The alternative way is as a stand-alone
program through RunExpertsystem.

When ADLA has been started it initializes the rule engine Drools, which reads
the rules from the rule files and starts the analysis. As a first step in the
analysis, files in JATT’s result directory are parsed and inserted as facts in
Drools’ working memory. Drools continues to reason by combining the rules
with the facts until no more rules can be executed. When the reasoning is

41

CHAPTER 7. RESULT

RunExpertsystem

ADLA
(expert system)

ADLA
(applet)

JATT

main() start()

XML

DRL Rule files
JATT's result directory

Drools JUNG

GraphApplet

execute()

Figure 7.1: Program flow between ADLA’s major components.

done ADLA produces an XML file containing graph data. All files produced by
ADLA are stored in a sub-folder in the result directory. For viewing the result
the file is opened by the graphical part of ADLA. This part uses the framework
JUNG to visualize and make it possible for the user to interact with the result.

The map is stand-alone developer tool separated from the other parts of ADLA.
It intends to give the rule developers an overview of all the rules and objects
in the system and how they are connected. This becomes more important as
the system grows. As seen in figure 7.2 the map functionality uses a small part
of Drools to parse the rules. Together with ADLA’s source code it is able to
connect objects and rules and show them as a graph using the JUNG framework.
The map is discussed in section [5.4 Map for System Overview].

RunMap

ADLA
(map)

main()

DRL Rule files

Drools
JUNG

java

DrlParser

ADLA's
source code

Figure 7.2: Program flow for the map program.

42

CHAPTER 7. RESULT

7.2 ADLA Features

Here is a selection of features in ADLA:

• The following test suites are supported: JDTS, Atlet, LabView, Sun TCK,
IBM TCK, Nokia TCK, Gatling TCK and Benchmarks.

• Task objects are created from request.xml, so that errors and activities
can be bound to them.

• Each exception found in the JATT log is bound to the task run when it
occurred.

• The JATT log is used to find failed tasks and to determine an individual
status for each task to one of the following: NOT SET, RUN, TIMED OUT,
NOT RUN or CRASHED.

• Core dumps are automatically translated into HTML reports using chkArm,
ST-Ericsson’s standard application.

• The header from the core dump file is displayed if no translations could
be made by chkArm. If the report is available the ”Decoded error” from
chkArm, containing explanations of error codes, is used.

• Special exception type, ErrorNodeException, is provided to simplify error
reporting in rules.

• Special status for the test suite result is available to be able to run JATT
and ADLA as a step in other test software. The status can be NOT SET,
PASSED, ERROR or FAILED.

• A summary of all rules executed and how long they took to run is generated
to the file ruleTimes.txt. This makes it possible to identify rules with
performance issues.

• Partial support for handling reruns of the test suites with output to the
same result directory [6.1 Keeping Track of New File Contents between
Reruns].

• The result is drawn as a graph with the possibility to see how the result
was reached.

• Dynamically updated explanation for each node type currently used in the
graph.

• Possibility to switch between nodes marked as important and all nodes
that were present in Drools’ working memory.

• Extra information about nodes is presented by a simple right-click. For
rule nodes both rule code and its attributes are shown. For object nodes
the message can be customized by the rule developer.

• A map that can visualize all objects and rules used in the system and how
they are connected to each other.

43

Chapter 8

Conclusion

The quality of an expert system largely depends on the knowledge in it. There-
fore, it is important that the person with the best knowledge for each area
of competence formulates the knowledge; one does not ask a lawyer questions
about surgery, one asks the best surgeon available. Because we are no surgeons
our focus was to find experts with suitable knowledge, but even with help from
our supervisors we had no luck.

Some knowledge was still needed in order to design the features we wanted. So
instead we started to look for more common problems by going through a large
amount of result directories from old test jobs, to find suitable knowledge. Many
of the errors found were too complex for us to understand, others turned out to
be rare bugs that will not appear again, or bugs that already had been fixed. It
turned out that finding knowledge was one of the hardest things in the entire
project! Our focus was changed to designing a system with great extensibility
and features rather than one filled with knowledge.

8.1 Work Strategy

It has been our ambition through the entire work process to be as agile as
possible. We have never hesitated to make huge changes that affected the entire
system, as long as it benefits the users or the code structure. The advantage
with this strategy is that workarounds and other code patching are minimized
in favor of renewed designs, which should improve the code quality. Many of
the examples in chapter [6 Problems and Solutions] have changed successively
through the work process.

Having a good design of the code is extra important in this project compared
to others. This is because some of the users will change and add both code and
rules in their everyday use of the system. When adding new areas of competence
having a good design is especially important.

44

CHAPTER 8. CONCLUSION

8.2 Aims and Goals Evaluation

The list of aims and goals in the introduction has changed many times during
the project, in discussions with ST-Ericsson. For example, it was agreed to skip
the requirement of XML formatted output in favor of the graphical solution.
The following reflects the requirement list from section [1.2 Aims and Goals]:

• Because the rules are written directly in Eclipse there was no need for us
to design an input interface.

• During a meeting with one of the experts developing chkArm we were
informed that the team behind the program already had decided against
some features (dump report analysis) we had intended to include in ADLA.
Besides, they would actually have been better placed directly in chkArm.
The memory leak detection is a part of the dump report analysis since it
is in the dump reports potential memory leaks are found. The detection
would have had to be a small expert system itself. Instead, it was agreed
to include either the dump header from the core dump file, or the decoded
header from the dump report.

• The output format from the reasoning part has changed to be graph data,
which can be viewed in the graphical part of ADLA. This part is designed
as an applet to also meet the requirement of displaying the result on a
web page.

• To make sure it is easy to add new knowledge to ADLA the use case
in [A.1.4 Adding a New Rule] was used and checked periodically with
ST-Ericsson.

• Of course it is possible to add new areas of competence to ADLA; each step
is documented in the use case [A.1.5 Adding a New Area of Competence].

• An applet is provided for displaying the result on a web page.

• All test suites, regardless of their priorities, listed in section [1.4 Bound-
aries] can be read by ADLA, except for Android CTS. This is because no
example of a failed Android test could be provided in order for us to write
a parser.

• As already pointed out, it was agreed that a specific part of the dump
report was enough to cover ST-Ericsson’s needs.

• ADLA automatically runs chkArm, which makes the translations from the
error codes to their assigned names.

The cancelled requirements above have one thing in common, they are all about
core dumps and dump report analysis. The dump report is generated from the
core dump by the program chkArm, which has previously been started manually
using a script. We translated the script to fit in ADLA, so the report is now
generated automatically and included in the result when a core dump file is
detected.

45

CHAPTER 8. CONCLUSION

According to the expert we have talked to, dump analysis is the last resort to
locate the cause of a dump. If the error is repeatable, a much better choice is
to use a debugger like Trace32. Core dumps are an unusual outcome of tests
run through JATT, so when the required time to create a working analysis was
discovered, ST-Ericsson did not want us to waste time on it. Instead we agreed
that the header part of the dump report was enough to cover their needs at the
moment. If the features are still wanted in the future it is possible to extend
ADLA with the needed knowledge, the expertise is available.

To compensate for the items cancelled we focused more on other types of errors
and functionalities to improve the user experience. For example, we built a
graphic explanation to the result and created an exception handler. For more
examples see section [7.2 ADLA Features].

8.3 Future Work

Knowledge to put in the system has constantly been in short supply throughout
the whole project. Much more work has to be put into finding expert knowledge
and useful common knowledge suitable for ADLA.

The core dump functionality must be completed with a timer for timeout. This
is because it uses the external program chkArm, which sometimes freezes mys-
teriously when run through Java.

Target limits for the benchmark suites have not been available, so at the moment
no benchmark tests will fail as a consequence of a performance value not being
good enough.

46

Bibliography

Joseph Giarratono and Gary Riley. Expert Systems Principles and Program-
ming. PWS Publishing Company, third edition, 1998. ISBN 0-534-95053-1.

Jan Goyvaerts and Steven Levithan. Regular Expressions Cookbook. O’Reilly
Media, Inc., 2009. ISBN 978-0-596-52068-7.

JBoss Community. Drools Expert User Guide, 5.0 final edition, May 2009.
http://www.jboss.org/drools/documentation.html
(manual verified 2010-06-02).

Peter Norvig. Paradigms of Artificial Intelligence Programming: Case Studies
in Common Lisp. Morgan Kaufmann Publishers, Inc., 1992. ISBN 1-55860-
191-0.

Alex Toussaint. Java Rule Engine API JSR-94. BEA Systems Inc, 1.0 edition,
September 2003. JCP final review (doc/jsr94 spec.pdf) included in the zip file
from http://jcp.org/aboutJava/communityprocess/final/jsr094/index.html
(verified 2010-05-25).

47

Appendix A

Manual and Guidelines

A.1 Use Cases

These use cases describe the steps needed to perform some typical tasks in
ADLA. This only reflects how the system behaved at the time of delivery.

A.1.1 Set Up ADLA to Run Through JATT

ADLA is built as an Eclipse plugin to be able to start ADLA from JATT. The ac-
tivator AdlaActivator is located in com.stericsson.jatt.adla.internal. This class
uses ExpertSystem from com.stericsson.jatt.adla.expertsystem and the JATT
entry point is the method execute.

1. Create a new instance of ExpertSystem, which takes the path to the rule
directory as an argument.

2. Call execute, which takes an ITestJobContext as an argument.

3. ADLA should be called after JATT has finished running the test job.

A.1.2 Running ADLA as a Stand-Alone Application

The class RunExpertsystem in package com.stericsson.jatt.adla.expertsystem
starts ADLA without JATT, which is useful when re-running old test jobs.

1. Set Globals.TEST JOB NAME to the test job name, e.g. ”DbTestJob-61”.

2. Set Globals.TEST JOB DIR to the path of the result directory (where the
JATT log is located), e.g. new File("C:\\testdata\\DbTestJob-61").

3. Execute the class RunExpertsystem.

4. Now the reasoning part of ADLA has created a file called output.xml in
the ADLA subdirectory of the result directory.

5. To view the result, follow the steps in [A.1.3 Viewing the Result].

48

APPENDIX A. MANUAL AND GUIDELINES

A.1.3 Viewing the Result

The class GraphApplet in package com.stericsson.jatt.adla.applet starts the
graphical part of ADLA, which is used to view the result.

1. Set the file variable to the path of the output.xml file created by the
reasoning part of ADLA. It can be found in the ADLA subdirectory of
the result directory.

2. Run the applet.

A.1.4 Adding a New Rule

When you want to add knowledge to ADLA, it has to be formulated in a rule. To
do this the right way you must overview the rules and objects in order to locate
which are likely to be affected by the new rule. You may find the map helpful
(but do not trust it too much), see section [5.4 Map for System Overview].

1. Find a suitable rule file for the rule to be placed in, or create a new.

2. Make sure the objects that the rule will interact with exist, or you will
have to create them.

3. Write the rule. See [3.2.2 Rule Files and Rule Syntax] for some basic
syntax.

4. Decide which layer is best suited for the rule and set the attribute agenda-
group.

5. If the rule needs to be prioritized set the attribute salience.

6. Run ADLA in stand-alone mode to try the new rule on a previously run
test job where the outcome can be predicted.

A.1.5 Adding a New Area of Competence

1. Create the classes needed for the new area of competence. Make sure they
all extend Node or one of its sub-classes. Place them in the most suitable
package, either basenodes, nodes or parsers. Choose the basenodes
package if the class is used to store parsed information directly from the
input files, parsers if the class is used to parse a test suite or else place it
in nodes.

2. Override the method toString to control the label in the graph. The
default is the name of the class.

3. Override the method getNodeInfo to control the extra information dis-
played when right-clicking the node in the graph. The String returned is
formatted as HTML and the default is to print the conclusion attribute.
The heading is added later and should not be included, also the attribute
alwaysDisplay is printed if it is set.

4. Write the rules needed to describe the knowledge, see [A.1.4 Adding a
New Rule].

49

APPENDIX A. MANUAL AND GUIDELINES

A.1.6 Removing a Rule

When removing a rule you must make sure that all dependencies are checked so
other rules are not left unreachable. Even a small change in a rule can trigger
a chain reaction so other rules are not executed. You may find the map helpful
(but do not trust it too much), see section [5.4 Map for System Overview].

1. Find the rule in one of the rule files.

2. Identify which objects are inserted, updated and removed (also in called
methods) and make sure you do not break anything.

3. Delete the rule.

A.2 Remove Rule When ADLA is Running

In some situations it may be useful to remove a rule while the system is running.
When you, in a rule, update the same object that is required for triggering the
rule, you may end up in an infinite loop. This is because when an object is
updated a new pattern match is performed, which will detect that the rule’s
condition part is true and the rule will be executed again.

To avoid this problem Drools has the rule attribute no-loop, which prevents a
rule from rescheduling itself. However, if two rules keep activating each other
this does not help. We have provided a method that removes the rule from the
knowledge base, which means it cannot be reactivated until ADLA is restarted.
The method is placed in the class RuleUtils and is called removeThisRule. It
takes the object drools as an argument and is intended to be called directly in
the rule. This way you are sure that the rule is not executed again.

A.3 Add New Node Types

The node types control the shape and color of the nodes when they are drawn.
They are defined in the class VertexType in the package com.stericsson.jatt.ad-
la.graph. To add a new node type, simply add a new line in the types vector.
The first argument to the VertexType is the id, which can be set to anything
because it is only used as an identifier internally in the graph file. The second
argument is the label text that is printed on the nodeInfo-panel in the applet.
\n is recognized so you can decide where the newline should be. The third
argument is the color of the node and should be written as a regular hex coded
RGB string, e.g. ”FF8080” for light red. The fourth argument specifies the
shape of the node and at the moment only ”Rectangle” and ”Ellipse2D” are
recognized. More shapes can be added in the class VertexType in the package
com.stericsson.jatt.adla.applet. The last two arguments specify the width and
height of the shape, in pixels. Finally you need to decide when to use the new
node type, which is done in the method getNodeVertexType. The method is
called once for every node in the graph and should return the id of the type you
want to use for that particular node.

50

Index

ADLA, 11
program flow, 41

agenda-group, 40
audit view, 16

backward chaining, 5

cameFrom, 19, 35
core dump, 13

DRL, 15
Drools, 14
Drools logger, 16

Eclipse, 15
error group, 24
error handling, 23
ErrorNode, 23, 29
ErrorNodeException, 23
ExecutingRuleLogger, 37
expert system, 4

FileSizeOverview, 34
forward chaining, 5

GeneralNode, 19, 29
graph, 20

arrows, 27

inference engine, 5
information window, 30
input, 17

JATT, 12
JDTS, 12
JSR-94, 8
JUNG, 27

map for system overview, 32

node, 18
node types, 29

object nodes, 29, 30

pattern matcher, 5

result directory, 12
rule, 4

condition part, 5
consequence part, 5
files, 15
priority, 39
syntax, 15
then-part, 15
when-part, 15

rule engine, 5
rule node, 19, 31
rule nodes, 29

salience, 39
status indicator, 32

task, 12
TCK, 12
test job, 12
test suite, 12

updatedBy, 19

why-chain, 20, 26, 38

51

	Introduction
	Background
	ST-Ericsson
	Problem Description

	Aims and Goals
	Target Audiences
	Boundaries

	Information Gathering and Preparation
	What is an Expert System?
	Forward and Backward Chaining
	Third-Party Rule Engine
	JSR-94: Java Rule Engine API
	Regular Expressions

	Architectural Overview
	JATT - Java Automated Test Tool
	Result Directory
	Connection with ADLA

	Drools
	Information Flow in Drools
	Rule Files and Rule Syntax
	Using Drools in Eclipse
	Drools Logger and Audit View

	Use Cases

	Constructing ADLA
	Input
	Holding Information in Nodes
	Tracking Rule Execution
	Conclusions and Decisions
	Identifying the Results
	Prioritizing the Result
	Graphical Solution
	Passed or Failed Test Job

	Handling Errors
	Presenting Errors with the Result
	Categorizing the Errors

	Visualizing ADLA
	Reasons for the Visualization
	JUNG - Java Universal Network/Graph
	User Interface
	Presenting the Graph
	Information Window
	Test Job Status Indicator

	Map for System Overview

	Problems and Solutions
	Keeping Track of New File Contents between Reruns
	Filling in the cameFrom Lists
	First Attempt - Java Varargs
	Second Attempt - The Drools Object
	Third Attempt - Event Listeners

	Presenting Why-Chains
	Representing Non-Existent Objects

	Result
	ADLA Program Flow
	ADLA Features

	Conclusion
	Work Strategy
	Aims and Goals Evaluation
	Future Work

	Bibliography
	Manual and Guidelines
	Use Cases
	Set Up ADLA to Run Through JATT
	Running ADLA as a Stand-Alone Application
	Viewing the Result
	Adding a New Rule
	Adding a New Area of Competence
	Removing a Rule

	Remove Rule When ADLA is Running
	Add New Node Types

	Index

