

Color Calibration in ERS-210

Carl Axelsson
Jens Törner

October 2003

Examensarbete, 20 p, Institutionen för datavetenskap, Naturvetenskapliga
fakulteten; Lunds universitet.

Thesis for a diploma in computer science, 20 credits, Department of
Computer science, Faculty of Science; University of Lund, Sweden.

 2

Abstract

This report is a Master’s Thesis in Computer Science written at the Department
of Computer Science at University of Lund, Sweden. It deals with the color
calibration of the Sony ERS-210 robot, also known as Aibo, for use in a
RoboCup robotic soccer tournament environment. The results of this thesis are
intended to be a part of Team Sweden, the national Swedish effort in RoboCup,
but can also be used independently.

The thesis covers improvements and partial automatization of the current color
calibration process used by Team Sweden in RoboCup Sony Legged Robot
League.

Our work resulted in software called ColorCalibration that can be used to
calibrate the color tables of an ERS-210 robot. The software is written in Java
and can be acquired free of charge from the Department of Computer Science,
University of Lund.

Sammanfattning

Denna rapport är en magisteruppsats i datalogi skriven vid institutionen för
datalogi vid Lunds universitet. Den behandlar färgkalibrering av en Sony ERS-
210 robot, även känd under namnet ”Aibo”, för användning i RoboCup
fotbollsturnering för autonoma robotar. Resultatet av denna magisteruppsats är
tänkt att ingå i Team Sweden, det svenska laget i RoboCup, men kan även
användas separat.

Arbetet innefattar förbättring och delvis automatisering av befintlig
färgkalibreringsprocess använd av Team Sweden i RoboCup Sony Legged
Robot League.

Vårt arbete har resulterat i en programvara som vi kallat ColorCalibration. Den
kan användas för att kalibrera färgtabellerna i en ERS-210. Programvaran är
skriven i Java och kan fritt erhållas från institutionen för datalogi vid Lunds
universitet.

 3

Table of Contents

1. Introduction..5
1.1 The Aibo Robot..5
1.2 RoboCup...6
1.3 Team Sweden ...7
1.4 The importance of color calibration..8
1.5 Problem definition..8

2. The earlier software used for calibration9
2.1 Working with PamSim...9
2.2 Limitations..11
2.3 Input and output..12

3. The ColorCalibration Software.. 14
3.1 Working with ColorCalibration...14
3.2 Moving from C/C++ to Java..17
3.3 Backward Compatibility..18
3.4 New and Improved Calibration Tools...18

4. Segmentation ... 20
4.1 The drawbacks with different light settings ...20
4.2 Segmentation Methods...21

5. Automatization.. 26
5.1 Introduction ..26
5.2 Our Automatization method..27
5.3 Other methods for automatization...28

6. Conclusions.. 30
6.1 Conclusions ..30
6.2 Possible future developments..31

Appendix A: Dictionary... 33

Appendix B: The Sony ERS-210 Specifications........................... 34

 4

Appendix C: The RGB and YUV Color Spaces 35

Appendix D: Using the Java Native Interface.............................. 36
D1 Java Native Interface types..36
D2 A small example...38

Appendix E: ColorCalibration User Manual............................... 40

 5

Chapter 1

1. Introduction

This chapter gives a brief introduction to the Aibo robot, the RoboCup soccer
tournament initiative, Team Sweden and the importance of a good color
calibration. Finally the problem of our thesis is defined.

1.1 The Aibo Robot

There are several different models of the Aibo robot currently on the market.
Aibo is therefore not a robot but a whole series of robots developed and

manufactured by Sony. In this thesis we deal only with the
model called ERS-210, since it is the only1 one allowed in
the part of RoboCup known as Sony Legged Robot League,
abbreviated SLRL. When we refer to “Aibo” in this report
we mean the ERS-210 robot unless otherwise stated.

The hardware [6] senses of the Aibo robot are sophisticated
and resemble the senses of an animal or a human. It has
multiple touch sensors, hearing, sight and an accelerometer

to give it a sense of balance. It also has a built-in distance
sensor. It is possible to equip it with IEEE 802.11b wireless
network capabilities for communication. The ERS-210

Aibo is pictured in Figure 1.1.

The robot has multiple movable joints in the legs, the head, ears and tail, giving
the robot a total of 20 degrees of freedom. The core of the Aibo is a MIPS 64 bit
RISC processor clocked at 192 MHz. The processor powers Aperios, an object-
oriented, distributed operating system. The Aperios operating system can run
programs developed using Open-R, a software development kit supplied by

1 Recently, the Sony ERS-7 has been certified for RoboCup 2004 in Lisbon.

Figure 1.1. Aibo.

 6

Figure 1.2. The RoboCup SLRL field.

Sony. Programs are compiled using a version of the gcc compiler and then
transferred to a memory stick which is inserted into the Aibo robot that runs the
program on startup.

The vision capabilities of the Aibo are the primary source of information during
RoboCup game play, and are also our sole focus in this thesis. The CMOS
camera capability in the Aibo robot is somewhat limited with a maximum
resolution of 352 by 288 pixels. But for processor speed reasons a resolution of
only 88 by 72 pixels is used by TeamSweden in RoboCup game play. Images
used are in color in the YUV color space with a 21 bit color depth2.

1.2 RoboCup

RoboCup is an international effort to create a standard problem and forum in AI
robotics. The application is a soccer game for robots that necessarily deals with
robotics, control theory, path planning, real-time artificial intelligence and
machine learning. It was started in 1997 and the ultimate goal of the RoboCup
initiative is to beat the world champions in soccer with a team of humanoid
robots by 2050. Universities from all over the world compete in the five leagues
that are RoboCup; Simulation League, Small Size Robot League, Middle Size
Robot League, Sony Legged Robot League and Humanoid League.

2 5 bits Y, 8 bits U and 8 bit V = 21 bits color depth

 7

This report is only concerned with the Sony Legged Robot League (SLRL).

In SLRL the playing field measures 4.6 x 3.1 meters [2], and the robots orient
themselves using color coded landmarks along the outer lines of the playing
field, pictured in Figure 1.2. There are four robots in each team, and the robots
are wearing team colors; either dark blue or red. The ball is bright orange and
the goals are colored yellow and sky blue respectively. The playing field is
green and the lines and borders are all white. Games are played in two 10
minutes periods with a 10 minute break.

In RoboCup SLRL the robots are totally autonomous, and are not allowed to
communicate with anything outside the playing field. They are allowed to
communicate with each other via the wireless network. The referee is allowed to
communicate with all the participating robots to tell them about for example
penalties and when the game is over.

There are also three other tasks to compete in at RoboCup, known as technical
challenges. These changes each year and will not be discussed in this report.

1.3 Team Sweden

Team Sweden is the national team representing Sweden in RoboCup. It
currently has active members from University of Örebro, Blekinge Institute of
Technology, University of Lund and University of Murcia, Spain. The team has
participated in RoboCup SLRL since 1999. The four cornerstones of Team
Sweden are:

Scientific value: The software should illustrate its scientific approach to
autonomous robotics, and demonstrate its research lines in this field.

Generality: The software should embody general principles that are needed to
achieve autonomous robot operation, and can be reused in different robots
operating in different environments.

Effectiveness: The software should effectively address the specific challenges
present in the RoboCup domain in general, and in the legged robot league in
particular.

Robustness: The software should degrade smoothly in face of errors and
imprecision in perception and execution; in particular, the lower layers should
still provide some reasonable response even when higher layers can not
compute a reliable course of action.

 8

1.4 The importance of color calibration

In RoboCup the Aibo robots rely heavily on colors in order to find different
objects. For the robots to understand the concept of color, a color calibration is
needed, defining what color values are what colors. The problem with
calibrating is that a color may appear in many shades. For example if one put
bright light on an orange object some of it might look like yellow or even white.
But the robot must still recognize it as orange. Also if a red object is in front of
a yellow object, light reflected from the red object onto the yellow object will
most likely result in some pixels on the yellow object being recognized as
orange. Since the light setting is never the same at different sites, it is not
possible to use a standard calibration and get optimal results.

One way to get around this problem is to use another way of finding objects,
without the use of colors. Because of the hardware limitations of the Aibo robot
this might be unreasonably slow.

1.5 Problem definition

The goals of the project are the following:

• Improve the calibration process with respect to human-computer
interface aspects, compared with the original (PamSim) software;

• In particular decrease the workload of the user;
• Automatize, to the largest possible extent, the process of creating and

adjusting the color tables for an ERS-210 robot;
• Make the color calibration system platform independent;
• Facilitate upgrades of the segmentation software imported from the

robot and allow easy synchronization between the color calibration tool
and the actual software running on the robot.

 9

Figure 2.1. The PamSim application.

Chapter 2

2. The earlier software used for
calibration

2.1 Working with PamSim

The software used so far by Team Sweden for calibrating the Aibo robots is
called PamSimulation or PamSim for short. It is developed by Zbigniew Wasik
and Alessandro Saffiotti, both members of the Team Sweden. Pam stands for
Perceptual Anchoring Module and is the part of the code developed to run on
the Aibo system during RoboCup game play. It contains the color segmentation
among other things such as object recognition and other related functions. The
name refers to the fact that the PamSim software contains some code identical
to code from the Perceptual Anchoring Module. This is because of the

 10

importance of using the exact same segmentation routine on the robot as in the
calibration software.

The PamSim user interface consists of two main windows. One is the image and
segmentation window, the other is the color table window. In the image

window, shown in Figure 2.1, the user selects which pixels (e.g. color values) in
the image are of which of the nine (eleven if you count black and silver, but
they are never used) predefined colors. These pixel color values are stored in a
color table and, using a threshold for each color, segmentation can be done on
the image. This segmentation is displayed next to the actual image and is the
same segmentation the robot would have achieved. The user can easily
determine if the segmentation is good enough or not.

The other window (see Figure 2.2) shows a graphical representation of the color
table, shown to the left. The color domains are shown as boxes representing the
U and V values. The boxes may overlap each other resulting in a pixel actually
being of two (or more) colors. This problem is solved by giving the colors an
order of priority. Another problem is that the colors in a color space are rarely
represented by a square. But since the Aibo robots hardware deals with squarely
formed chunks of color space, this is the way PamSim does it too.

Figure 2.2. The PamSim color table window.

 11

Since the color table display is only two dimensional, the user has to select the
light intencity (Y-value) using a slider (in the range 0 – 31). One very useful
feature is the ability to click pixels in the image window and directly see where
in the color table they are located. This enables the user to quickly determine if
a selected pixel is part of a color value cluster or just a single color value. If it is
just a lone value, like the one circled in Figure 2.3a, it might be possible to
remove it from the color table without affecting the segmentation much (in
Figure 2.3b), but greatly reducing the color domain for that particular Y value,
Figure 2.3c.

2.2 Limitations

The current version of the PamSim software is limited to working with only 20
images at a time. This is a severe limitation since calibrating a new playing field
usually requires 100 images or more. The user has to build a color table in many
steps, making it hard to verify the segmentation as the calibration progresses.
Another limitation is the unnecessary number of buttons needed to be pressed
by the user during calibration. Typically the user first selects one of the
predefined colors, then selects one or many pixels in the image, then presses the
“Update CT” to add the color values to the color table, then presses “Check CT”
the see how many pixels were selected (e.g., were of the same color value as the
ones selected) and finally presses ”Segment” to calculate and display a new
segmentation. This also does not give the user the advantage of an overview,
e.g., all segmented images side by side to determine the quality of the color
table on the entire set of images. While this saves a lot of processing power and
makes it easy to unselect unwanted pixels, it also slows down the calibration
process significantly. This makes the process a very tedious one.

PamSim currently only runs on the Microsoft Windows platform, which is a big
disadvantage since the target platform for Team Sweden is Linux. Being able to
run on Linux, and possibly other platforms such as Apple’s Mac OS X, is
therefore one of the most important goals when developing the new calibration
software. This goal is a little harder to accomplish by the fact that PamSim is

 (a) (b) (c)

Figure 2.3. The circled color value (a) is removed from the color space (b)
resulting in a smalle color area (c)

 12

written using Borland C++ Builder and not ANSI C++, requiring a porting of
the source code to ANSI C++. After adding a few things to PamSim for the
RoboCup world championship 2003, held in Padova Italy, we stopped working
on improving PamSim and started writing new calibration software, this time in
Java.

One obvious disadvantage of using Java instead of C or C++, is that all the code
developed for the Aibo robot is in C++. And since the segmentation needs to be
accurately simulated in order to have a meaningful calibration, this posed one of
the biggest problems. The biggest advantage of switching to Java was the
platform independence. Another small concern with Java was the speed.

Since PamSim is targeted at a very narrow group of expert users, its illogical
user interface might not be a big disadvantage. The total lack of documentation,
online help or tool tips is also a disadvantage that might be overlooked. But the
main problem is that repeatedly used functions are not easily accessible.

2.3 Input and output

PamSim uses the PGM file format to load images. The PGM file format is
basically just a raw non-compressed bitmap format and is used by for example
the Image Observer program from the Open-R SDK tutorial. Team Sweden uses
this program to take pictures to base the calibration on. There are three PGM
files to an image, one Y, one U, and one V component.

As for saving the color tables, they are saved as C++ files, with the .cc
extension, in order to make them includable in a compilation. The color tables
are saved in the format shown in Figure 2.4.

 13

// Dog color tables
// Generated by ColorCalibration on Sat Sep 27 21:1 0:31 CEST
2003
// Threshold: 8, 4, 2, 3, 4, 5, 6, 7, 8, 0, 0,

#define TableSize 32

const unsigned char orange_generic[TableSize*4] =
{
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
 255, 0, 255, 0,
};

const unsigned char yellow_generic[TableSize*4] =
{…};

const unsigned char sblue_generic[TableSize*4] =
{…};

const unsigned char pink_generic[TableSize*4] =
{…};

const unsigned char green_generic[TableSize*4] =
{…};

const unsigned char red_generic[TableSize*4] =
{…};

const unsigned char dblue_generic[TableSize*4] =
{…};

const unsigned char white_generic[TableSize*4] =
{…};

const unsigned char carpet_generic[TableSize*4] =
{…};

const unsigned char black_generic[TableSize*4] =
{…};

const unsigned char silver_generic[TableSize*4] =
{…};

 Figure 2.4. Color Table save format. Only orange is fully shown.

 14

Chapter 3

3. The ColorCalibration Software

3.1 Working with ColorCalibration

PamSim was the initial color calibration software developed by Team Sweden
and our first approach was to make PamSim easier to use and to implement new
functions in order to make it more efficient. See Figure 3.1.

Our improvements of PamSim are the following:

• A larger RGB window;
• Six smaller RGB representations from the images loaded, ability to

change view from RGB to segmentation for the images;
• An easier way of adding color values to the color table;
• Instant segmentation;
• An undo function with channels for each color, giving the user the

ability to undo calibration steps for separate colors independently.

 15

Figure 3.1. PamSim after modifications.

For more information on the difficulties of using the original PamSim
application, see Chapter 2.1.

This led us to develop new software, named ColorCalibration. One of the most
important features for the software was platform independence. The software
needed to run on the Linux platform but a Microsoft Windows version, and
possibly one for Mac OS X, was also desirable.

To meet this requirement the software was developed using the Java language,
giving platform independence. The Java language is very suitable for graphical
interface programming and it is also possible to integrate modules in other
languages, i.e., C++.

The structure of the software was rebuilt in a more efficient and easy-to-
maintain way. A floating toolbox window, the ability to work on many images
in many windows at the same time and an index window showing thumbnails,
either in RGB or segmented, of all the images loaded, were some of the
features implemented to increase user friendliness. See Figure 3.2.

ColorCalibration software includes:

• Multiple windows for display of more than one image at a time;
• A scrollable window with smaller representations of all the images

loaded. The window is resizable so all images can be displayed at the

 16

Figure 3.2 ColorCalibration.

same time, if screen size allows. This gives the ability to show all
images as segmented to get an overview of how good the color table is;

• A toolbox window for easier and more efficient usage of the most
commonly used tools;

• A color table window for a practical overview of the color table and an
effective way of modifying the color table;

• An automatization process for part automatization of the color
calibration;

• The ability to use the native C/C++ segmentation code intended to run
on the Aibo robot. The robot hardware is emulated by ColorCalibration.

For description of all features please refer to the ColorCalibration User Manual
in Appendix E.

 17

3.2 Moving from C/C++ to Java

One of the more difficult problems with rewriting the software in Java is the
fact that the Java language is typically slower compared to C/C++. It is difficult
to benchmark the two against each other but Java is slower on average [11].

When tested on the Microsoft Windows platform the ColorCalibration was
slower than PamSim, probably due to the Java switch and a lot more
implemented features in ColorCalibration. But in our opinion it was fast enough
on a reasonably fast computer.

One of the more critical issues for speed is the segmentation. The
ColorCalibration software has the ability to load the native C/C++ segmentation
code that could be used in the Aibo robot. This will possibly increase the speed.

If changes in the Aibo robots segmentation code would be made, PamSim
could, with some small changes, use that code as its segmentation code. This is
more difficult to do in ColorCalibration because it is written in the Java
language. To make ColorCalibration useful in the future it has to be able to use
the Aibo robots segmentation code directly. A feature in ColorCalibration
therefore offers an option to use the native C/C++ Aibo robot segmentation
code directly instead of the Java segmentation code. This is done by using
wrapper code to convert between native Java and native C/C++ using JNI3. See
Figure 3.3.

Figure 3.3 The flow of data when native segmentation is used.

3 See Appendix D; Using the Java Native Interface.

 18

3.3 Backward Compatibility

The ColorCalibration software is backward compatible with PamSim. Old color
tables from PamSim are saved in the same way as in ColorCalibration. The
ColorCalibration software can therefore read all color tables and vice versa.
ColorCalibration can load the same PMG image files as PamSim uses. The new
KJI format is not supported by PamSim though.

3.4 New and Improved Calibration Tools

ColorCalibration is equipped with a partial automatization tool. The purpose of
this tool is to make the manual calibration easier. It does not fully automatize
the calibration; however, it extracts the most significant color values from the
segmentation of each image. The tool has two options, one that allows getting
the most significant color values from each of the loaded images, and one that
allows obtaining the most significant color values from all the loaded images.
The amount of significant color values chosen can be adjusted. The tool allows
the user to manually add color values that could be important but not too
common. For example, if an object is partly covered with a shadow, the darker
(shadowed) color value might be added to get the entire object. The darker area
could, on the other hand, be an object instead of a shadow and the color value
should not be added. This is left up to the user to decide.

The color table window in ColorCalibration has been derived from PamSim. It
has a similar layout but is improved with easier viewing and modifying of the
color table. Also added is a real time color reference to increase the view of
what colors are actually represented in the images and a color value intensity
scale. It is triggered by the “show pixels” check box and it shows the amount of
pixels in the entire set of images corresponding to a certain color value. The
higher intensity the darker the color will get for that color value. This feature is
very useful when tuning the color table. See Figure 3.4.

 19

Figure 3.4. Color Table window.

 20

Figure 4.1. Ball.

Figure 4.2. Shadow.

Chapter 4

4. Segmentation

Why are the light conditions so important for the Aibo robot? The robot must
have a very good sense of the environment surrounding it to effectively interpret
different objects. A human has a very sophisticated way of using her senses to
interpret objects and surroundings (visually with color and pattern recognition,
touching different objects and in some cases hearing or smelling), the Aibo
heavily relies on its visual observations. Another drawback for the Aibo robot is
that it only has one camera, resulting in no stereoscopic view. The information a
human can collect with her senses is often more than enough to get a clear view
of the surroundings. The robot only uses sight and it lacks the depth perception,
therefore all the information it can gather is crucial to find objects in its
environment, since the IR-based distance sensor is very unreliable. To be able to
differ between different light settings is therefore of great importance.

4.1 The drawbacks with different light settings

Different light set on an object can give different color
perceptions of the object. For example, if an orange ball,
shown in Figure 4.1, is submitted to a strong light source,
the top of the ball will be closer to yellow than orange.
The Aibo robot will then see an object with both yellow
and orange color in it.

The system is also very
sensitive to changes, for
example, if a shadow appears over an object. This
changees the appearance of the object even if it is of
the same color, and this could cause the Aibo to not
recognize the object.

 21

 (a) (b) (c)

Figure 4.3. Too high threshold, ball merges with goal (a), too low threshold, only part
of the ball is found (b). Optimal threshold (c).

4.2 Segmentation Methods

There are a few different methods to find objects with the help of pattern
recognition. The most common ones are threshold techniques, edge-based
methods and region-based methods.

Threshold techniques:
These techniques are based on the idea that pixels with almost the same color
(color value) lie within the same object. A threshold sets the margin for how
close the color values must be to one another. A big threshold would
encapsulate too many color values. This could lead to merging two distinct
objects. See Figure 4.3a. If on the other hand the threshold is set too low, only
part of the object is found. See Figure 4.3b. For an optimal threshold in this
case, see Figure 4.3c.

The threshold technique is very effective on images that blur at the edges of the
objects. It is very sensitive to light conditions though. This technique is used
most effectively in combination with other techniques.

Edge-based methods:
These methods are based on the assumption that the pixels on the border
surrounding a region differ drastically from the pixels outside the region,
finding the edges between regions. A threshold operation is used on a gradient
image to determine if an edge is found. When a pixel has been found to be on
the edge it must be connected with the other pixels on the edge. This will form a
boundary surrounding the region. A common simple technique is to take the
difference between two groups of pixels into a high-pass linear filter [10].

The two matrices of the filter combined will be used to find and enhance the
edges for all angles in the image. A high value on the constant c will enhance
the edges, but it also has a tendency to increase noise. To get a reasonable level
of noise, typically the value of c would be 1 or 2.

 22

Matrices of the filter:
 ���������� −−−

=
11

000

11

c

c

H horiz �����			
� −
−
−

=
101

0

101

ccHvert

An example of simple edge detection is illustrated in Figure 4.4 and 4.5.

7777777777777777777777777777777

7777777777777777777777777777777

6666666666666666666666666666666

9999999999666666666699999999996

8888888555555555555555588888885

5888888885555555555555888888855

4477777777777777777777777777744

4447777777777777777777777777444

3333366666666633333333666666333

3333333666666333333333666666333

2222222225555552222225555522222

2222222222555555222555555522222

1111111111144444444444444111111

1111111111114444444444441111111

0000000000000003333330000000000

0000000000000000000000000000000

Figure 4.4 Can you see the letter?

Figure 4.5 Clarifying view of the letter.

 23

Special edge detectors such as Canny [4] and Susan4 [5] are used for a more
advanced detection. Often the image is post-processed in combination with a
detector to get the best result. Edge-based methods are not sensitive to light and
are therefore highly reliable. The processes of edge-based methods are very
computationally expensive though, while the Aibo robots’ hardware is very
limited. Therefore Aibo robots have no use for this method as it is today. It
could be used in the calibration but it would require different segmentation in
the ColorCalibration and on the Aibo. This might change in the future as the
robots hardware improves.

Region-based methods:
The edge-based methods and the threshold techniques are based on differences
of pixel values. The region-based method tries to find regions with the same
color value. The Seed Region Growing (SRG) method is a region-based method
which will use a few pixels as start pixels to grow regions with the same color
values. These start pixels are called seeds and the regions they build will be
determined by a threshold value. The seed will first start to grow by checking its
closest neighboring pixels and determine if they have close enough color value
to be included in the region. The threshold value will determine how large range
of color values will be included in the region.

To automatically choose seeds is a difficult task, because the seed must be
representative for the region that should be grown, as in Figure 4.6a. If a bad
seed is chosen, the region it will grow will most likely be only a fragment of the
desired region, i.e., if a seed is chosen from a blurry edge of an object, the
growing region could contain only that seed or even worse, a not desired region,
as shown in Figure 4.6b.

This method is not very computationally expensive and is therefore very
suitable for the Aibo robots’ limited hardware capabilities.

4 Smallest Univalue Segment Assimilating Nucleus

(a) (b)

Figure 4.6. Growing from good seed (a), growing from bad seed (b).

 24

Segmentation on the Aibo
The robots use a color segmentation that integrates the threshold and the SRG
method. The threshold technique is used to generate a set of initial seeds. There
is a different set of seeds for all interesting colors. The SRG method is then used
on the initial seeds to grow the desired color regions. The SRG can be adjusted
for more than one seed in the same region. To be able to use the best qualities
from both methods the segmentation process improves the lighting conditions
because we use a conservative threshold and blurred edges because we use a
conservative homogeneity criterion in SRG. However we still inherit the
problem with a too high threshold merging objects (Figure 4.3a), and a too low
threshold not giving the entire object (Figure 4.3b) and also the sensitivity with
the seed pixels. To minimize these weaknesses, the Aibo uses more than one
pixel in each object in combination with a low threshold. This results in many
different segments, called blobs, in the same object. A blob does not have to
include only one seed. The blobs from the same object are then merged into one
region and build the object.

Figure 4.7 Merging blobs grown from multiple seeds into regions.

Blob A and blob B are two blobs with the same color grown from different
seeds belonging to the same region. After merging, blob A and B have become
region 1. However, the orange blobs A, B and D will never merge because of
the red blob C which lies in between. Example from [3] is shown in Figure 4.7.

How is a blob found? The original seed is compared to its 8 connected
neighbors. The neighboring pixels that satisfy the criterion of how close a color
value should be to be included with the original seed will be added to the blob.
This neighbor comparison step is repeated for every new pixel assigned to the
blob until the blob is completely bounded by the edge of the image or by pixels
that do not satisfy the criterion. The blob is now found. The algorithm has
originally appeared in [1].

 25

Figure 4.8 Segment building flow chart.

The final result from merging the blobs into regions could look as shown in
Figure 4.9.

The technique of merging color segmentation and the SRG method has proven
to be very successful in the RoboCup environment.

(a) (b)

Figure 4.9. The original image (a), and the segmentation (b).

 26

Chapter 5

5. Automatization

5.1 Introduction

The calibration of the Aibo robot is currently done by hand. The user must add
every color value manually to a color table by selecting a pixel with the desired
color value. The color table is the table consisting of all the color values the user
has chosen. When the calibration is done, the color table is used on the Aibo
robot. The Aibo robots will use it as a reference to find objects and guide it
through the surrounding environment. The output from the ColorCalibration
program is such a color table. The entire goal of the program is to make this
color table as good as possible. But the job to manually choose all the right
color values is very monotonous.

It is important that the user chooses a color value which is representative for the
color chosen. If the color value is poorly chosen, an object could appear in one
color on the first image and in another color or not at all on the next image. This
means it is not enough to just know one object and its color. The robot can not
automatically adjust the color value for different environment changes, for
example, stronger light or shadows. Changes like these will make it very
difficult to automatically predict the pixel with the most representative color
value.

A human finds an object mainly by recognizing patterns and shapes. The color
and texture of the object is then determined by using the human ability to
interpret the reflection of the light from an object. This can change the
appearance of the object’s real color. For example, if the color of an object is
known to be orange but the light of the surroundings makes it appear yellow, the
human brain would most likely interpret the color of the object as orange.

 27

The color surrounding an object could also make it appear in a slightly different
color. For example, if an orange object has a bright yellow object close to it, it
would appear more yellow. The Aibo must work in the same way, i.e., if the
color of an orange object changes to yellow, the robot must still interpret the
color of the object as orange. This is why it is so difficult to make an
automatization of the color calibration.

5.2 Our Automatization method

The purpose of the partial automatization of this process is to help the user with
the tiresome work of manually choosing all the color values. This
automatization will not completely remove the user’s role in the calibration.
Some parts of the calibration are too important to be made automatically. The
method is also intended to make the process of calibration as stable and
effective as possible, without removing the user’s influence on the process.

An object in an image consists of a set of pixels with the same region of color
values (a threshold value determines how far away the color values can be from
each other to be in the same region). An object can consist of many pixels with
exactly the same color value. If a color value represents many pixels in an
object that color value would most likely represent the color very well. This
color value may then be used as a seed to grow a segment of the object. More
details are provided in chapter 4.

The color table should include as few color values as possible and still be able
to find all the objects. The automatization in the ColorCalibration program is
therefore based on finding the color values that represent the largest amount of
pixels in an object. This will generate a histogram over the most significant
color values in the object. See Figure 5.1.

Figure 5.1 A histogram showing the frequencies for all color values of one color

 28

There are some problems with this approach though. The light on an object can
differ from image to image. Even if a color value is found that represents many
pixels in the object it might not represent a good color value for that object if
many images are considered. For example if a color value represents 40 pixels
in an object, but only in one of 50 images, that color value is not very
representative for that object. On the other hand it could be very important to
find the object on that specific image.

We have solved this problem in ColorCalibration by providing the user a
configuration screen. The user is able to take the most significant color values
from the segmented objects for each image one at a time, or to get the most
significant color values from the segmented objects for a whole set of images.
The user can also decide how many color values should be taken from each,
starting with the most significant color value.

To get color values from the segmented object for each image tends to generate
a lot of color values (depending on how many color values the user has chosen
to get), but on the other hand the object will be found on most images
containing the object. To obtain color values from the segmented object for a
whole set of images generates fewer color values, but very representative for all
images.

A drawback with our histogram method is that an initial seed must be chosen
for each color. This seed is the reference for the color. Only one seed is needed,
although more seeds could be useful for a more accurate automatization. The
user can also choose to load a color table from disk and use its color values as
seeds to automatize.

5.3 Other methods for automatization

• Random method: This method uses an initial seed as in the histogram
method, but instead of choosing the most significant color value it will
randomly find color values from the segmented object. This will lead to
color values with random significance, i.e., a color value could be added
to the color table only reflecting one pixel in all the images. When tested
this method added a very large number of color values to the color table,
including other objects with similar color values. This method is very
comprehensive but not very useful. It is not very stable because it will
generate more color values every time automatization is run. The
method is not implemented in ColorCalibration.

• Pattern recognition: This method is based on pattern recognition used to

find the objects. When an object is found the histogram method could be
used to add the right color values to the color table. The advantage with

 29

this method is that it does not need an initial seed, making it more
automatic than the histogram method. However the method is unstable.
If, for example, the process must differ between two objects with
different colors but of the same shape. The objects are found with the
pattern recognition but not their colors. This could be determined only if
the objects colors differ heavily.

The pattern recognition could have a problem with parts of objects
looking like other objects. For example, if a piece of ground with the
color dark green is identical to the shape of a dark blue object, then the
pattern recognition method might interpret the ground as the dark blue
object because of the similarity of the colors.

This method is very hard to implement. Making it good and stable
enough to find all types of objects is out of the scope of this thesis. It is
one of the most important features for future implementation, see 6.2.

 30

Chapter 6

6. Conclusions

6.1 Conclusions

The purpose of our thesis is to improve the calibration process for the ERS-210
Aibo robot. The current tool used by Team Sweden is unintuitive and hard to
use, making our first and foremost goal to produce easy-to-use, functional
software.

With new and ongoing research on the Aibo, the calibration process needs to be
able to adapt to new demands. The calibration method can therefore never be
considered fully developed; there will always be room for improvements. We
have tried to make the software for the calibration as easy to maintain as
possible and we hope this software will be helpful for Team Sweden in the
future.

The problem definition stated that the software should improve the calibration
process for the user and as far as possible automatize the color calibration. The
calibration process has improved in our opinion. It is now easier to get a good
overview of the work in progress. It is easier to correct mistakes and to maintain
control of the final result. An automatization of the calibration is implemented,
partially removing some of the manual work of calibrating the color tables.

One of the more important requirements for the software was platform
independence. This is achieved by using the Java language. If the Java Native
Interface is used, the software is no longer platform independent, but able to use
the exact same segmentation routines that the Aibo robot does. For future
development of the segmentation software on the robot, the JNI option is very
useful and the user always has the ability to use the native Java segmentation as
a backup.

 31

6.2 Possible future developments

The Aibo robot is constantly upgraded with faster and better hardware and
OPEN-R library routines. This must reflect the calibration software as well. The
segmentation process currently used is a color segmentation method that
integrates the threshold and the SRG method. A better way of doing the
segmentation would be to use an advanced edge detection method in
combination with a color recognition method. This would remove the difficult
problem caused by changes in light conditions. A more powerful pattern
recognition algorithm would also be very desirable, as it would partially remove
the need of a color calibration or could be used during the calibration itself. The
hardware in the Aibo robot is too limited at the moment though.

Pattern recognition could also be used to remove the need for seeds in our
automatization process.

A connection between the Aibo robot and the calibration software could also be
very useful. It would be possible to see the images from the Aibo camera and
use a created color table to display the segmentation in real-time. This would
speed up the calibration process significantly.

 32

References

[1] N. Ikonomakis, K. Plataniotis, A. Venetsanopoulos: User Interaction in
Region-Based Color Image Segmentation. VISUAL’99, LNCS 1614 pages 99-
106, Springer Verlag, 1999

[2] RoboCup Technical Committee: Sony Four Legged Robot Football League
Rule Book, 2003 http://www.robocup.org (Verified Oct 13th 2003)

[3] Z. Wasik, A. Saffiotti: Robust Color Segmentation for the RoboCup
Domain. Proc. of the Int. Conf. on Pattern Recognition (ICPR), volume 2, pages
651-654, 2002.

[4] J Canny: A Computational Approach to Edge Detection, IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), volume 8, no 6, 1986

[5] S. Smith: SUSAN - A New Approach to Low Level Image Processing,
Technical Report TR95SMS1c, Oxford University, 1995

[6] Sony Corporation: Entertainment Robot AIBO Operating Instructions, Sony
Corporation, 2000

[7] Web site of the Java language: http://java.sun.com (Verified Oct 1st 2003)

[8] The Operating Color Space:
http://www.canopus.com/US/pdf/Storm_comparison.pdf (Verified Oct 1st 2003)

[9] D. Farin: Praktikum Multimediatechnik. http://www.informatik.uni-
mannheim.de/informatik/pi4/stud/veranstaltungen/ss2003/multimedia/h261teil2.
pdf (Verified Oct 1st 2003)

[10] T. Pavlidis: Algorithms for Graphics and Image Processing. Springer
Verlag, 1982

[11] Linux Number Crunching: Benchmarking Compilers and Languages
http://www.coyotegulch.com/reviews/almabench.html (Verified Oct 11th 2003)

 33

Appendix A: Dictionary

Aibo Artificial Intelligence roBOt – Aibo is

a four legged robot manufactured by
Sony. Also, “Aibo” in Japanese means
companion. See appendix B.

ERS-210 See Aibo.
AI Artificial Intelligence.
Color Space A coordinate system with the different

axes representing different color
components, i.e., R, G and B, or Y, U
and V. See Appendix C.

Histogram A table presenting the frequency of an
occurrence, i.e., a value.

Calibrate Adjust something to fit a purpose or
environment.

RGB A way to represent colors by their
Red, Green and Blue components. See
Appendix C.

YUV Also known as YCbCr. Colors
represented by their overall brightness
(Y), the blue component (U) and the
red component (V). Used for example
in television. See Appendix C.

Color table A list with color values assigned to a
specific color.

IEEE 802.11 A standard for wireless network
communication.

Linux A UNIX-like operating system.
PAM Perceptual Anchoring Module – part

of the Team Sweden software for
Aibo.

ColorCalibration The calibration software that resulted
from this thesis work.

 34

Appendix B: The Sony ERS-210
Specifications

CPU 64-bit RISC by MIPS @ 192MHz
Main Memory 32 MB
Removable Media Sony Memory Stick
Movable parts Mouth: 1 degree of freedom

Head: 3 degrees of freedom
Leg: 3 degrees of freedom x 4 = 12
Ear: 1 degree of freedom x 2 = 2
Tail: 2 degrees of freedom

Total: 20 degrees of freedom

Input PC Card type II slot
Battery charger

Video 100k pixel CMOS image sensor
Audio Stereo microphone

Speaker
Sensors Thermometric sensor

Infrared distance sensor
Acceleration sensor (3-way)
Pressure sensor (head, chin, back and
paws)
Vibration sensor

Operable duration Approx. 1.5 hours fully charged
Dimensions 152 x 281 x 250 mm (w/h/d not

including ears or tail)
Mass Approx. 1.5 kg with battery

ref. [6]

 35

Appendix C: The RGB and YUV
Color Spaces

The Red, Green and Blue (RGB) standard is one of the most common color
space standards. The combination of these three colors can produce almost all
colors visual to the human eye.

Figure C.1a RGB Figure C.1b YUV

Instead of using three equally weighted color components like the RGB
standard, see Figure C.1a, the YUV uses one luminance/brightness component
Y and the U, V components as chrominance/color [8], as in Figure C.1b. The
YUV values are created from RGB. If the R, G and B components are weighted
and added together they will produce a Y component which represents the
overall brightness. The U component is created by taking the weighted R, G and
B components in Y and subtracts the B component. The V component is created
in the same way, except that in this case subtraction will be with the R
component instead of the B component.

Conversion (in 24 bit color depth) between RGB and YUV is easily done with
the following formula [9]:
 ����������

−
−
−���������� −−=����������
128

128

16

073.11

70.034.01

37.101

V

U

Y

B

G

R

 36

Table D.1. Primitive types in JNI and C/C++.

Appendix D: Using the Java Native
Interface

When we decided to use Java to develop ColorCalibration, one obvious obstacle
was the segmentation code. The segmentation code, a part of PAM, is a piece of
C++ code that is run on the Aibo robot and does the segmentation. This code is
present, with some very minor adjustments to make it run, in PamSim, and must
also be included in our program. One way to solve the problem is to translate
the C++ code to Java. But a translation can not be guaranteed to be exact, so
while it is a good solution it is sometimes not good enough. The other option
was to run the compiled C++ code directly from Java. Java offers support for
this via the Java Native Interface (JNI), but it is a bit awkward to use, and there
is not much documentation. We implemented both native Java segmentation and
the ability to use the JNI, keeping our software platform independent.

D1 Java Native Interface types

JNI is basically a set of wrappers to convert between native java
primitives/objects and native C/C++ primitives/objects. These can then be
converted or type casted. JNI defines eight primitive types [7]. See Table D.1.

Java primitive type Native C/C++ type Description
boolean jboolean Unsigned 8 bits
byte jbyte Signed 8 bits
char jchar Unsigned 16 bits
short jshort Signed 16 bits
int jint Signed 32 bits
long jlong Signed 64 bits
float jfloat 32 bits
double jdouble 64 bits

 37

Table D.2. Java reference types and their C/C++ counterparts.

Figure D.1. JNI dummy classes.

JNI also defines twelve other types in order to cover all the java reference types,
as shown in Table D.2.

Java reference type Native C/C++

reference type
Description

java.lang.Object jobject Java object instances
java.lang.Class jclass Java class instances
String jstring Strings
Array jarray Arrays
-boolean[] jbooleanArray Arrays of boolean
-byte[] jbyteArray Arrays of byte
-char[] jcharArray Arrays of char
-int[] jintArray Arrays of int
-long[] jlongArray Arrays of long
-float[] jfloatArray Arrays of float
-double[] jdoubleArray Arrays of double
java.lang.Throwable jthrowable Throwable objects

All reference types are subtypes of the jobject type. When used in the C++
programming language, the JNI introduces a set of dummy classes to express
the subtyping relationship among the various reference types, as shown in
Figure D.1.

 class _jobject {};
 class _jclass : public _jobject {};
 class _jthrowable : public _jobject {};
 class _jstring : public _jobject {};
 class _jarray : public _jobject {};
 class _jbooleanArray : public _jarray {};
 class _jbyteArray : public _jarray {};
 class _jcharArray : public _jarray {};
 class _jshortArray : public _jarray {};
 class _jintArray : public _jarray {};
 class _jlongArray : public _jarray {};
 class _jfloatArray : public _jarray {};
 class _jdoubleArray : public _jarray {};
 class _jobjectArray : public _jarray {};

 typedef _jobject *jobject;
 typedef _jclass *jclass;
 typedef _jthrowable *jthrowable;
 typedef _jstring *jstring;
 typedef _jarray *jarray;
 typedef _jbooleanArray *jbooleanArray;
 typedef _jbyteArray *jbyteArray;
 typedef _jcharArray *jcharArray;
 typedef _jshortArray *jshortArray;
 typedef _jintArray *jintArray;
 typedef _jlongArray *jlongArray;
 typedef _jfloatArray *jfloatArray;
 typedef _jdoubleArray *jdoubleArray;

 typedef _jobjectArray *jobjectArray;

 38

Figure D.2

With these types available it is easy to write one’s own wrappers to integrate the
native C/C++ code with the Java program. The platform independence is
however lost.

D2 A small example

In order to illustrate how to work with the JNI, here is a small “Hello World”
example.

First the native method is located using a System.loadLibrary call. Then the
native method needs to be declared using an abstract method. Finally the
method is called in the main method. See Figure D.2.

Java code “HelloWorld.java”
class HelloWorld {

 static {
 System.loadLibrary("Hello"); // load nativ e routines
 }

 private native void hello(); // the native met hod call

 public static void main(String[] args) {
 new HelloWorld().hello(); // call the nati ve method
 }
}

First the Java code is compiled. The Java header generator, javah, is then used
on the class file to generate a C header:

 javah –jni HelloWorld

This will generate a C header file containing the method prototype:

 JNIEXPORT void JNICALL
 Java_HelloWorld_hello (JNIEnv *, jobject);

C code with the same call parameters as in the method prototype is needed, as
shown in Figure D.3.

 39

Figure D.3

C code “hello.c”
#include <jni.h>
#include <stdio.h>
#include "HelloWorld.h"

JNIEXPORT void JNICALL
Java_HelloWorld_hello(JNIEnv *env, jobject obj)
{
 printf("Hello World!\n");
 return;
}

Finally, the C code is compiled into a system library (i.e. libHello.so on UNIX
systems and hello.dll on Microsoft Windows systems) and run within the java
program. The compiled C code should be placed in the system library path.

 40

Appendix E: ColorCalibration User
Manual

 41

ColorCalibration
Software for color calibration of Sony Aibo robots in a RoboCup environment

By
Jens Törner

Carl Axelsson

USER MANUAL

 42

Table of contents

1. Introduction 43

1.1 Quickstart 43

2. Working with ColorCalibration 45
 2.1 Toolbox 45
 2.2 Image window 46
 2.3 Menus 46

2.4 Image index 47
 2.5 Color tables 47
 2.6 Automatization 48
 2.7 Preferences 49

3. Working with files 50
 3.1 PGM file format 50
 3.2 KJI file format 50
 3.3 Color Table file format 50
 3.4 Converting PGM files to KJI files 50

4. Using native segmentation code 51
 4.1 Why use native code? 51
 4.2 Compiling the code to work with ColorCalibration 51

 43

1 Introduction

ColorCalibration is developed with a RoboCup
environment in mind but can be reconfigured for other
color calibration needs. It will let you calibrate a color
table for use with your Sony Aibo robot with little effort.
It provides powerful tools to view, modify and
automatize the calibration.

Previous experience with Sony Aibo robots, RoboCup
and Open-R programming is assumed throughout this
user manual.

If you are a first time user please browse through the
Quickstart section of this manual to get started as soon as
possible.

Thank you for choosing ColorCalibration.

1.1 Quickstart
Install the program files in a directory. Start up the
ColorCalibration program with:

java ColorCalibration

When the program is running, click the “Load” button in
the toolbox to open up the load file dialog. Select the
quickstart.kji image included in the ColorCalibration
distribution and click load. The image is loaded and
displayed as a thumbnail in the image index window at
the bottom of the screen. Single click on the image to
open it up in an image window. Your screen should now
look something like the screen pictured to the left.

Select some pixels from the ball by clicking on them in
the image window, and watch how the segment grows.
Select other colors from the toolbox and try to make the
segmented image as good as possible. If you make a
mistake, you can always click “Undo” to delete your last
selection. But remember that the undo function works
with channels, one for each color, so you have to be in
the right color in order to undo. There are twenty steps of
undo in each channel.

 44

When you are satisfied with the segmentation, click the
“Save CT” button in the toolbox to save your color table.
Just press ok when the program asks for suffix.

ColorCalibration is so much more, but you should now
have a general idea of how to calibrate your Aibo!

 45

2 Working with ColorCalibration

2.1 The Toolbox
Here you will find the most commonly used tools and
operations. The toolbox resides in a window of its own,
and can easily be placed anywhere on the screen you find
convenient.

Load – Opens the load image dialog which lets you select
and load one or more images from the hard drive or
directly from your Memory Stick reader. Images loaded
are displayed in the image index window on the bottom
of your screen.

Save CT – Opens the save color table dialog which lets
you specify a filename and path to save the color table.
You will be prompted for how to label the color table
arrays, just press ok to save it as “generic”. For more
information on the format color tables are saved in,
please see 3.3, Color Table file format.

Undo – Enables you to erase your last selected pixel from
your color table. Undo works with channels, so only
pixels selected in the color currently active is erased. To
undo a selection in another color, simply select that color
in the toolbox and press undo the desired number of
times. There are twenty steps of undo in each channel.
Please note that the results from undo will not be visible
until the image window is in focus. Undo effects all
images, not just the one(s) currently displayed.

Show Blobs – Checking this option displays all the
images in the index window as segmented. This is a great
way to get an overview of how good your color table is at
the moment. Please note that keeping this option checked
at all time might drastically reduce program performance.

Show In CT – Checking this option lets you click a pixel
in an image and see where in the color space it is located.
This is a powerful tool to find stray pixels in your color
table.

Color palette – Clicking on these selects which color you
are currently working with. The button is colored in the

 46

active color. This also affects which undo channel is
used.

Threshold – This slider shows the threshold value for the
current color. Just drag it to change the threshold.
Thresholds affect how many pixels will be included when
growing the segments. Thresholds are saved with the
color table.

2.2 Image window
The image window is the main working window. In this
window you click to select pixels (color values) to be
included in your color table. The small display to the
right in the window shows the segmented version of the
image. Clicking on the buttons with arrows displays the
next/previous image.

2.3 Menus
The menus contain many options not available anywhere
else in ColorCalibration. There are five main categories:
File, Color Table, Options, Window and Help.

File – Images – Load – Opens the load image dialog
which lets you select and load one or more images from
your hard drive or directly from your Memory Stick
reader. Images loaded are displayed as thumbnails in the
image index window on the bottom of your screen. Single
click on a thumbnail to open it up in a new window.

File – Color Table – Load – Opens the load color table
dialog which lets you load a previously saved color table.

File – Color Table – Save – Opens the save color table
dialog which lets you specify a filename and path to save
your color table. You will be prompted for how to label
the color table arrays, just press ok to save it as “generic”.
For more information on the format color tables are saved
in, please see 3.3, Color Table file format.

File – Preferences – Opens the preferences dialog. For
more information on preferences settings, please see 2.7,
Preferences.

File – Exit – Exits the program.

 47

Color Table – Modify – Opens the color table window.
This lets you see how the color values in your color table
are distributed in the color space. For more information
on how to work with the color table window, please see
2.5, Color Table.

Color Table – Reset – Resets the color table. Please be
careful with this function. You must undo for all the color
channels to get your color table back.

Options – Automatization – Opens the automatization
window. For more information on the automatization
process, please see 2.6, Automatization.

Window – Show Toolbox – Opens the toolbox window if
it is not already on open.

Window – Show Image Index – Opens a new image
index.

Help – Help – Shows this manual.

Help – About – Shows info about ColorCalibration.

2.4 Image index
The image index window shows small, thumbnail size,
versions of all images loaded. Images can be displayed as
regular images or segmented ones, based on the current
color table. Just check “Show Blobs” in the toolbox to
show segmented images. Please note that updating many
segmented images might drastically reduce program
performance.

2.5 Color table
The color table window shows how the color values in
the images loaded and in the current color table are
distributed in the YUV color space. There are 32 levels of
Y (light), which one is displayed is indicated by the
“light” slider. For each Y value, the U and V values in the
current color table are shown by a box in the color space
area. If the “show pixels” option is checked, all color
values that are actually in the images are also plotted in
each box, with darker colors representing a higher
density. Boxes showing the color value boundaries may
overlap each other, and in that case the color with the
highest priority takes precedence. The colors are ordered

 48

in the same order they are displayed in the toolbox
palette, with the default order being orange, yellow, sky
blue, pink, green, red, dark blue, white, carpet, black and
silver where orange has the highest priority. Priority rules
are the same for the “show pixels” option, in case of
overlapping.

When the mouse is moved around in the color space area
the color directly under the mouse pointer is displayed to
the right. Also displayed to the right are the actual U- and
V values for the color currently selected. The button
“Clear color” clears the color boundaries for the color
currently selected and only for the current Y (light) value.
At all times you need to press the “Update CT” buttons
for the changes to take effect.

Clicking the button “Close” closes the color table
window.

2.6 Automatization
The automatization window lets you specify whether to
run the automatization process with the current color
table or one loaded from disk. Clicking “Configure” lets
you specify how many color values to select during the
automatization and if you want to use local histograms
(e.g., one histogram for each image and color values are
selected from each) or global histograms (e.g., one
histogram for the entire set of images to select color
values from) or both. It also lets you specify how many
color values of each color you want to add to you color
table. Note that a low number of values are recommended
if using local histograms. With the global histograms a
larger number is probably better.

A good way to automatize the calibration is to run the
automatization first, getting a low number of color values
from each image and then run it again, getting a high
number of color values from all images. This will
generate color values for most objects.

Experiment to find values that work for your type of
playing field and light conditions.

The automatization process needs a large set of images to
be effective.

 49

2.7 Preferences
The preferences window lets you set your colors and their
names. It also lets you check/uncheck colors. Unchecking
a color makes ColorCalibration ignore the color for all
processes, e.g., segmentation and automatization.
However, you are still able to select pixels from an image
with an unchecked color; it just won’t show in the
segmentation.

Preferences also lets you specify a system library that
contains segmentation routines, if you want to use your
own segmentation routines. Just specify the name, and
make sure the systems library path environment variable
is set to where the segmentation library is located and
check the option “Use native” to use your own
segmentation routines. You can read more about native
segmentation routines in Chapter 4, Using native
segmentation code.

 50

3 Working with files

There are a few file formats you need to be familiar with,
to get the most out of ColorCalibration. Here is a short
description of the file formats.

3.1 PGM file format
The PGM file format is the format of the tutorial Open-R
program Image Capture. It is divided in three files; the
Y-, U- and V component. No compression

3.2 KJI file format
The KJI file format is, unlike PGM, a one file per image
format. It is a YUV format and bears a close resemblance
with the PGM format. No compression.

3.3 Color Table file format
The color tables are saved as C++ source code, giving
you the ability to just include one when you compile your
Open-R source code. Example:

#define TableSize 32

const unsigned char red_generic[TableSize*4]= {

 127, 127, 127, 127,
 …}

3.4 Converting PGM files to KJI files
To convert image files created for example by the Open-
R tutorial program Image Capture, a batch conversion
tool is included in the ColorCalibration distribution. It is
a stand-alone application that can be run either as a
command line application or with a graphical interface. It
is called FileConverter. To use FileConverter in
command line mode, just run it like a normal java
program with your Y images as parameters. Example:

 java FileConverter Yimg00.pgm Yimg01.pgm

To use FileConverter in a graphical environment, just run
it without any parameters and a file selection dialog is
displayed, letting you specify files to convert.

The files converted are saved in the same directory as the
PGM files.

 51

4 Using native segmentation code

ColorCalibration gives you the ability to run your own
segmentation routines, written, for example, in C or C++.

4.1 Why use native code?
Why use your own code when ColorCalibration provides
built-in, robust segmentation routines? The reason is
simple. Calibration is done in order to make the
segmentation optimal. If you are not using the same
segmentation on your Aibo robot then you can not be
sure the color table made with ColorCalibration is the
optimal one. This does not mean that using the built-in
segmentation is a bad idea. It is based on the latest
segmentation routines from Team Sweden used
successfully in RoboCup. But for serious Aibo
applications we strongly recommend using your own
routines.

4.2 Compiling the code to work with
ColorCalibration
In order to use your own segmentation routines in
ColorCalibration, you first need to compile your
segmentation code into a system library with a small
ColorCalibration wrapper included. A wrapper working
on Team Sweden’s segmentation routines is included in
the ColorCalibration distribution. Modify it to work with
your segmentation code and compile it. Example for
linux:

g++ -I/usr/java/jdk1.4/include -I/usr/java/jdk1.4/i nclude/linux -fPIC Segm.cc –c

g++ -shared -Wl,-soname,libMySegm.so -o libMySegm.s o Segm.o

Where Segm.cc is your segmentation routine with the
ColorCalibration wrapper included:

#include "AiboImage.cc"

 52

The wrapper contains three methods. You may not
change the input or return parameters of these methods.
But you may freely alter the methods to fit your
segmentation code.

/* set the image from Y-, U- and V-arrays */
jint Java_AiboImage_setImage(JNIEnv*, jobject, jint Array, jintArray, jintArray);

/* set the threshold from an array of thresholds */
jint Java_AiboImage_setThreshold(JNIEnv*, jobject, jintArray);

/* get the segmentation from array with colors inde xes matching color table */
jintArray Java_AiboImage_getSegmentation(JNIEnv*, j object, jintArray);

