Color Calibration in ERS-210

Carl Axelsson
Jens Torner

October 2003

Examensarbete, 20 p, Institutionen for datavetgndiaturvetenskapliga
fakulteten; Lunds universitet.

Thesis for a diploma in computer science, 20 cse@liepartment of
Computer science, Faculty of Science; Universitizarfid, Sweden.

Abstract

This report is a Master’s Thesis in Computer Saendtten at the Department
of Computer Science at University of Lund, Swededeals with the color
calibration of the Sony ERS-210 robot, also knowmi\#o, for use in a
RoboCup robotic soccer tournament environment.rékalts of this thesis are
intended to be a part of Team Sweden, the natlBwaldish effort in RoboCup,
but can also be used independently.

The thesis covers improvements and partial autaaiain of the current color
calibration process used by Team Sweden in Rob&ouy Legged Robot
League.

Our work resulted in software called ColorCalibsatthat can be used to
calibrate the color tables of an ERS-210 robot. 3dfevare is written in Java
and can be acquired free of charge from the Departimf Computer Science,
University of Lund.

Sammanfattning

Denna rapport ar en magisteruppsats i datalogiesknvid institutionen for
datalogi vid Lunds universitet. Den behandlar fatgkering av en Sony ERS-
210 robot, aven kand under namnet "Aibo”, for ardriing i RoboCup
fotbollsturnering for autonoma robotar. Resultatetienna magisteruppsats ar
tankt att inga i Team Sweden, det svenska lagebbRup, men kan aven
anvandas separat.

Arbetet innefattar forbattring och delvis automatisg av befintlig
fargkalibreringsprocess anvand av Team Sweden oQop Sony Legged
Robot League.

Vart arbete har resulterat i en programvara sokaNat ColorCalibration. Den
kan anvandas for att kalibrera fargtabellernaEB$-210. Programvaran ar
skriven i Java och kan fritt erhallas fran instiaen for datalogi vid Lunds
universitet.

Table of Contents

R 0 {0 T [o 1T o S 5
0 A I U= Y1 o o T o] T | S 5
V22 o] oo 1 @1 U | o R RROTRPR 6
1.3 TEAM SWEAEN ..ottt e e et e st e st ee e e s e sn b enmmmm e 7
1.4 The importance of color calibration.........ccccccuveveeiiiiiein s 8
1.5 Problem definition. ...t e e 8

2. The earlier software used for calibrationcccccceveeeeriinnnee. 9
2.1 Working With PamSim..........ccueviiiiimomeen et 9
2.2 LIMITAtIONS ...eveiieeiee et e e ee e e e e e s e ae e eeemmmmme e 11
2R B [o] o WY =Yg o I o U1 o 1) SO PP 12

3. The ColorCalibration Software............ccccmuvvvieeeieeeiiiiiiieeeeen. 14
3.1 Working with ColorCalibration.............cec i 14
3.2 MoViNg from C/C++ 10 JAVA....ceeiiiieiiecmreee e eseeie e 7.1
3.3 Backward Compatibilityccooiiimmeeeiie e 18
3.4 New and Improved Calibration TOOIS.......cceeeeeeeiiiiiiieeniiiee e 18

4, SEgMENTALIONccviiiiieie e e et et e e e e e s eeeeeeeeans 20
4.1 The drawbacks with different light settings............cccccee v 20
4.2 Segmentation MethOdS...........oviiiiieeeecc e 21

I ANU | (o]0 F= Ui 14= 1 4[] o PP 26
Lo 00 R [] To [T 1T o PR 26
5.2 Our Automatization method............oooceeeeec i, 7.2
5.3 Other methods for automatization...........cccceeeiiiieeeniniieeee e, 28

6. CONCIUSIONS.....uuiiiiiiiiiiiiieiieeie e s eeemeseseere e e e e eeeereereeereaeaaeaaaaaaaaaeas 30
6.1 CONCIUSIONS ...ttt eemmmee et e et e et ae e e s mnmnme e 30
6.2 Possible future developments..........cccee e 31.

APPENIX A: DICLIONAIY ...cvviiieeiiiiiiiiiieeisemmeieeae e e e e esssraeeeeeee e e eas 33

Appendix B: The Sony ERS-210 Specifications..........ccccccee..... 34

Appendix C: The RGB and YUV Color Spacescccccceeeeennnn. 35

Appendix D: Using the Java Native Interface.....c...ccccccovnuneeen. 36
D1 Java Native INterface typesSooiiieeiiiiiieeie e 36
D2 A small @XamPIecccoiiiiiiiiiiii e e s 38

Appendix E: ColorCalibration User Manual..........c.....ccceeenneee. 40

Chapter 1

1. Introduction

This chapter gives a brief introduction to the Ailbbot, the RoboCup soccer
tournament initiative, Team Sweden and the impadasf a good color
calibration. Finally the problem of our thesis &fided.

1.1 The Aibo Robot

There are several different models of the Aibo talwrently on the market.
Aibo is therefore no& robot but a whole series of robots developed and
manufactured by Sony. In this thesis we deal ontk e
model called ERS-210, since it is the drdye allowed in
the part of RoboCup known as Sony Legged Robotleag
abbreviated SLRL. When we refer to “Aibo” in thesport
we mean the ERS-210 robot unless otherwise stated.

The hardware [6] senses of the Aibo robot are sbighied
and resemble the senses of an animal or a huntaas It
multiple touch sensors, hearing, sight and an acoceleter

_ _ to give it a sense of balance. It also has a huilistance
Figure 1.1. Aibo. gangor, It is possible to equip it with IEEE 80 Idireless
network capabilities for communication. The ERS-210
Aibo is pictured in Figure 1.1.

The robot has multiple movable joints in the lebe, head, ears and tail, giving
the robot a total of 20 degrees of freedom. The obthe Aibo is a MIPS 64 bit
RISC processor clocked at 192 MHz. The processeepoAperios, an object-
oriented, distributed operating system. The Apesjesrating system can run
programs developed using Open-R, a software denadopkit supplied by

! Recently, the Sony ERS-7 has been certified fdsxd@up 2004 in Lisbon.

Sony. Programs are compiled using a version ofjtitecompiler and then
transferred to a memory stick which is inserted thie Aibo robot that runs the
program on startup.

The vision capabilities of the Aibo are the primaource of information during
RoboCup game play, and are also our sole focussrthiesis. The CMOS
camera capability in the Aibo robot is somewhaitieh with a maximum
resolution of 352 by 288 pixels. But for processoeed reasons a resolution of
only 88 by 72 pixels is used by TeamSweden in Raipogame play. Images
used are in color in the YUV color space with ab&Icolor depth.

1.2 RoboCup

RoboCup is an international effort to create adaath problem and forum in Al
robotics. The application is a soccer game for tobuat necessarily deals with
robotics, control theory, path planning, real-tiaréficial intelligence and
machine learning. It was started in 1997 and tlismate goal of the RoboCup
initiative is to beat the world champions in soosh a team of humanoid
robots by 2050. Universities from all over the wiocbmpete in the five leagues
that are RoboCup; Simulation League, Small SizeoRbbague, Middle Size
Robot League, Sony Legged Robot League and Huméaeaigue.

Figure 1.2. The RoboCup SLRL field.

%5 bits Y, 8 bits U and 8 bit VV = 21 bits color dep

This report is only concerned with the Sony LegBethot League (SLRL).

In SLRL the playing field measures 4.6 x 3.1 mef2}sand the robots orient
themselves using color coded landmarks along tker ines of the playing
field, pictured in Figure 1.2. There are four rabimt each team, and the robots
are wearing team colors; either dark blue or rdak Ball is bright orange and
the goals are colored yellow and sky blue respelstii he playing field is
green and the lines and borders are all white. Gareplayed in two 10
minutes periods with a 10 minute break.

In RoboCup SLRL the robots are totally autonomamsl are not allowed to
communicate with anything outside the playing fiditley are allowed to
communicate with each other via the wireless nekwblne referee is allowed to
communicate with all the participating robots t tteem about for example
penalties and when the game is over.

There are also three other tasks to compete imlad®up, known as technical
challenges. These changes each year and will ndisbessed in this report.

1.3 Team Sweden

Team Sweden is the national team representing SwadgoboCup. It
currently has active members from University oflidog Blekinge Institute of
Technology, University of Lund and University of kg, Spain. The team has
participated in RoboCup SLRL since 1999. The faarnerstones of Team
Sweden are:

Scientific value The software should illustrate its scientific apgch to
autonomous robotics, and demonstrate its resei@mehih this field.

Generality: The software should embody general principles dheneeded to
achieve autonomous robot operation, and can beddodifferent robots
operating in different environments.

Effectiveness The software should effectively address the dgechallenges
present in the RoboCup domain in general, andanggged robot league in
particular.

RobustnessThe software should degrade smoothly in facer@ire and
imprecision in perception and execution; in patacuthe lower layers should
still provide some reasonable response even wighehlayers can not
compute a reliable course of action.

1.4 The importance of color calibration

In RoboCup the Aibo robots rely heavily on colarorder to find different
objects. For the robots to understand the condeglor, a color calibration is
needed, defining what color values are what colbing. problem with
calibrating is that a color may appear in many ska&or example if one put
bright light on an orange object some of it migiaK like yellow or even white.
But the robot must still recognize it as orangesAf a red object is in front of
a yellow object, light reflected from the red olijento the yellow object will
most likely result in some pixels on the yellowextijbeing recognized as
orange. Since the light setting is never the sanddfarent sites, it is not
possible to use a standard calibration and getnaptiesults.

One way to get around this problem is to use amathg of finding objects,
without the use of colors. Because of the hardwaniéations of the Aibo robot
this might be unreasonably slow.

1.5 Problem definition

The goals of the project are the following:

* Improve the calibration process with respect to amroomputer
interface aspects, compared with the original (RemhSoftware;

* In particular decrease the workload of the user;

* Automatize, to the largest possible extent, the@ss of creating and
adjusting the color tables for an ERS-210 robot;

* Make the color calibration system platform indepantcl

* Facilitate upgrades of the segmentation softwapomed from the
robot and allow easy synchronization between thar calibration tool
and the actual software running on the robot.

Chapter 2

2. The earlier software used for
calibration

2.1 Working with PamSim

The software used so far by Team Sweden for cdilifyy¢ghe Aibo robots is
called PamSimulation or PamSim for short. It iseleped by Zbigniew Wasik
and Alessandro Saffiotti, both members of the T&weden. Pam stands for
Perceptual Anchoring Module and is the part ofdbde developed to run on
the Aibo system during RoboCup game play. It corsténe color segmentation
among other things such as object recognition @mer oelated functions. The
name refers to the fact that the PamSim softwanéagts some code identical
to code from the Perceptual Anchoring Module. Thisecause of the

W® vision calibration - Team Sweden __ =1ofx(
File ColorTable Options Help.
 FIGE Picture) Threshald: Labaled Image
Orange la—
Yellow [+
SBlue [+
Pink [5
Green l?—
Ped [&
DBlue [+
White [
Carpet [&
EHT‘EICK ID— Segment |
Sitbver [0
Prujecﬁun it |
S Author: Zhigniew Wasik (T) AASS, Orebro University
| v

Figure 2.1. The PamSim application.

importance of using the exact same segmentatidineoan the robot as in the
calibration software.

The PamSim user interface consists of two main ewsd One is the image and
segmentation window, the other is the color taliledaw. In the image

#® Color Table modification | ;ig.lﬁj
Load Reset About
\ﬂ;l [l M
= 255,755 a | Edit
Eulm-zl Resat |
Umin IF Ymin I?D—

Update i
Umax |2g-| Vmax Igg

% [Tmal FME [

r—Dptimize

1 FRi lm FHz |29,904

_l Make new table |
Frobe:
L i
| 00 o
I[ij _I Sl of Save | X Cloze |
9]
- l21 : Author Zbigniew Wasik & Alessandro Saffict

[rark, Light

[(C) AASS, Orebro Lniversity ~

Figure 2.2. The PamSim color table window.

window, shown in Figure 2.1, the user selects whigkels (e.g. color values) in
the image are of which of the nine (eleven if yourtt black and silver, but
they are never used) predefined colors. These potel values are stored in a
color table and, using a threshold for each calegmentation can be done on
the image. This segmentation is displayed nexteécattual image and is the
same segmentation the robot would have achievezlusér can easily
determine if the segmentation is good enough ar not

The other window (see Figure 2.2) shows a grapégaksentation of the color
table, shown to the left. The color domains arenshas boxes representing the
U and V values. The boxes may overlap each otlseittneg in a pixel actually
being of two (or more) colors. This problem is sahby giving the colors an
order of priority. Another problem is that the aglan a color space are rarely
represented by a square. But since the Aibo rdiardware deals with squarely
formed chunks of color space, this is the way Pam®ies it too.

10

Since the color table display is only two dimensipthe user has to select the
light intencity (Y-value) using a slider (in thenge 0 — 31). One very useful
feature is the ability to click pixels in the imag@dow and directly see where
in the color table they are located. This enalileauser to quickly determine if
a selected pixel is part of a color value clustgust a single color value. If it is
just a lone value, like the one circled in Figurgda? it might be possible to
remove it from the color table without affecting teegmentation much (in
Figure 2.3b), but greatly reducing the color donfairthat particular Y value,
Figure 2.3c.

@ (b) (©)

Figure 2.3. The circled color value (a) is removeftom the color space (b)
resulting in a smalle color area (c)

2.2 Limitations

The current version of the PamSim software is Bohito working with only 20
images at a time. This is a severe limitation scadérating a new playing field
usually requires 100 images or more. The userdibaitd a color table in many
steps, making it hard to verify the segmentatiothascalibration progresses.
Another limitation is the unnecessary number ofdng needed to be pressed
by the user during calibration. Typically the uBest selects one of the
predefined colors, then selects one or many pirelse image, then presses the
“Update CT” to add the color values to the coldre¢athen presses “Check CT”
the see how many pixels were selected (e.g., wereesame color value as the
ones selected) and finally presses "Segment” twutatke and display a new
segmentation. This also does not give the useadliantage of an overview,
e.g., all segmented images side by side to deterthmquality of the color
table on the entire set of images. While this saves of processing power and
makes it easy to unselect unwanted pixels, it slees down the calibration
process significantly. This makes the process wteglious one.

PamSim currently only runs on the Microsoft Windguatform, which is a big
disadvantage since the target platform for Teamdswaes Linux. Being able to
run on Linux, and possibly other platforms suci\pple’s Mac OS X, is
therefore one of the most important goals when ldgugg the new calibration
software. This goal is a little harder to accomniplyy the fact that PamSim is

11

written using Borland C++ Builder and not ANSI C+equiring a porting of
the source code to ANSI C++. After adding a fewmgjsito PamSim for the
RoboCup world championship 2003, held in Padouy, ltee stopped working
on improving PamSim and started writing new catibrasoftware, this time in
Java.

One obvious disadvantage of using Java insteadasf@++, is that all the code
developed for the Aibo robot is in C++. And sinbe segmentation needs to be
accurately simulated in order to have a meaningdiibration, this posed one of
the biggest problems. The biggest advantage o€kinig to Java was the
platform independence. Another small concern watfedwas the speed.

Since PamSim is targeted at a very narrow growgxpért users, its illogical
user interface might not be a big disadvantage .totat lack of documentation,
online help or tool tips is also a disadvantage ight be overlooked. But the
main problem is that repeatedly used functionshateeasily accessible.

2.3 Input and output

PamSim uses the PGM file format to load images.AG# file format is
basically just a raw non-compressed bitmap formdtia used by for example
thelmage Observeprogram from the Open-R SDK tutorial. Team Swedsss
this program to take pictures to base the calibnadtn. There are three PGM
files to an image, one Y, one U, and one V comptnen

As for saving the color tables, they are saved-as files, with the .cc

extension, in order to make them includable in mgkation. The color tables
are saved in the format shown in Figure 2.4.

12

/I Dog color tables

/I Generated by ColorCalibration on Sat Sep 27 21:1 0:31 CEST
2003

/I Threshold: 8, 4, 2, 3,4,5,6,7,8,0,0,

#define TableSize 32
const unsigned char orange_generic[TableSize*4] =

255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
255, 0, 255, 0,
h
const unsigned char yellow_generic[TableSize*4] =

const unsigned char sblue_generic[TableSize*4] =

const unsigned char pink_generic[TableSize*4] =

const unsigned char green_generic[TableSize*4] =

const unsigned char red_generic[TableSize*4] =

const unsigned char dblue_generic[TableSize*4] =

const unsigned char white_generic[TableSize*4] =

const unsigned char carpet_generic[TableSize*4] =

const unsigned char black_generic[TableSize*4] =

const unsigned char silver_generic[TableSize*4] =

Figure 2.4. Color Table saverinat. only orange is fully shown.

13

Chapter 3

3. The ColorCalibration Software

3.1 Working with ColorCalibration

PamSim was the initial color calibration softwaeveloped by Team Sweden
and our first approach was to make PamSim easigdand to implement new

functions in order to make it more efficient. Seguife 3.1.

Our improvements of PamSim are the following:

A larger RGB window;

Six smaller RGB representations from the imagedddaability to
change view from RGB to segmentation for the images

An easier way of adding color values to the ccdde;

Instant segmentation;

An undo function with channels for each color, giythe user the
ability to undo calibration steps for separate colodependently.

14

™ vision calibration - Team Sweden

File ColorTable Options Help

1~ RGB Pacture [Labled Image

Threshold:
Orange (g
“Yellow
‘SBlue
Pink
Green
Red
DBlue
YWhite
Carpet

Black [0
Sikar [0 Quit |
o | s

_chk el —|Ll i Projecion
,ij i.l RGB/Blch

T

Figure 3.1. PamSim after modifications.

For more information on the difficulties of usirfgetoriginal PamSim
application, see Chapter 2.1.

This led us to develop new software, named Colalo@zlon. One of the most
important features for the software was platforgejpendence. The software
needed to run on the Linux platform but a Micros@fhdows version, and
possibly one for Mac OS X, was also desirable.

To meet this requirement the software was develoget) the Java language,
giving platform independence. The Java languagerg suitable for graphical
interface programming and it is also possible tegrate modules in other
languages, i.e., C++.

The structure of the software was rebuilt in a nmedfieient and easy-to-
maintain way. A floating toolbox window, the abyjlito work on many images
in many windows at the same time and an index winsloowing thumbnails,
either in RGB or segmented, of all the images Idadere some of the
features implemented to increase user friendlir®ss.Figure 3.2.

ColorCalibration software includes:
* Multiple windows for display of more than one imagjea time;

» A scrollable window with smaller representationstbthe images
loaded. The window is resizable so all images @adisplayed at the

15

same time, if screen size allows. This gives thktyabo show all
images as segmented to get an overview of how tieodolor table is;

* Atoolbox window for easier and more efficient usad the most
commonly used tools;

» A color table window for a practical overview ogtleolor table and an
effective way of modifying the color table;

* An automatization process for part automatizatibine color
calibration;

* The ability to use the native C/C++ segmentaticthecatended to run
on the Aibo robot. The robot hardware is emulatge@blorCalibration.

< Color Calibration
File Color Table Options Window Help

;lglﬁl|

o
=)
-

T

Undo

™ Show Bloks
I show IncT

SREEEEECEREIN-

Al None

Orange ellow
Name of PAN liorar

E=T Fink

Green Red

DElue White:

Threshold

-dﬂ = fmﬁaﬂﬂ -
—JLET 0 A

Figure 3.2 ColorCalibration.

For description of all features please refer toGloérCalibration User Manual
in Appendix E.

16

3.2 Moving from C/C++to Java

One of the more difficult problems with rewritiniget software in Java is the
fact that the Java language is typically slower parad to C/C++. It is difficult
to benchmark the two against each other but Jaslauger on average [11].

When tested on the Microsoft Windows platform treda@Calibration was
slower than PamSim, probably due to the Java switcha lot more
implemented features in ColorCalibration. But irr opinion it was fast enough
on a reasonably fast computer.

One of the more critical issues for speed is tiggnsmtation. The
ColorCalibration software has the ability to loaé hative C/C++ segmentation
code that could be used in the Aibo robot. Thi$ poksibly increase the speed.

If changes in the Aibo robots segmentation codeldvba made, PamSim
could, with some small changes, use that codes aggmentation code. This is
more difficult to do in ColorCalibration becausésitvritten in the Java
language. To make ColorCalibration useful in thteife it has to be able to use
the Aibo robots segmentation code directly. A feain ColorCalibration
therefore offers an option to use the native C/@ibe robot segmentation
code directly instead of the Java segmentation.chis is done by using
wrapper code to convert between native Java angen@tC++ using JNI See
Figure 3.3.

ColorCalibratio .
e image data

threshold

h\.'l e \.'d k.":1| or "-'L'IJ L1es
Java program

seglmentation

Albolmage.c Wrapper

Segment.c

Mative segmentation

Figure 3.3 The flow of data when native segmentatiois used.

% See Appendix D; Using the Java Native Interface.

17

3.3 Backward Compatibility

The ColorCalibration software is backward compativlth PamSim. Old color
tables from PamSim are saved in the same way @slorCalibration. The
ColorCalibration software can therefore read albctables and vice versa.
ColorCalibration can load the same PMG image fle®amSim uses. The new
KJI format isnot supported by PamSim though.

3.4 New and Improved Calibration Tools

ColorCalibration is equipped with a partial autoretion tool. The purpose of
this tool is to make the manual calibration easietoes not fully automatize
the calibration; however, it extracts the most gigant color values from the
segmentation of each image. The tool has two optiome that allows getting
the most significant color values from each oflttedled images, and one that
allows obtaining the most significant color valdiesn all the loaded images.
The amount of significant color values chosen caadjusted. The tool allows
the user to manually add color values that couldrp®rtant but not too
common. For example, if an object is partly covesdti a shadow, the darker
(shadowed) color value might be added to get thieeepbject. The darker area
could, on the other hand, be an object insteadsbbalow and the color value
should not be added. This is left up to the uselettde.

The color table window in ColorCalibration has beemived from PamSim. It
has a similar layout but is improved with easiewing and modifying of the
color table. Also added is a real time color reafieeeto increase the view of
what colors are actually represented in the imagesa color value intensity
scale. It is triggered by the “show pixels” chedxland it shows the amount of
pixels in the entire set of images corresponding ¢ertain color value. The
higher intensity the darker the color will get tbat color value. This feature is
very useful when tuning the color table. See Figude

18

Z. Color Table

Figure 3.4. Color Table window.

19

Chapter 4

4. Segmentation

Why are the light conditions so important for thié@robot? The robot must
have a very good sense of the environment surragritito effectively interpret
different objects. A human has a very sophisticatay of using her senses to
interpret objects and surroundings (visually witthoc and pattern recognition,
touching different objects and in some cases hganirsmelling), the Aibo
heavily relies on its visual observations. Anottieawback for the Aibo robot is
that it only has one camera, resulting in no strepic view. The information a
human can collect with her senses is often mome ¢éim@ugh to get a clear view
of the surroundings. The robot only uses sightiatatks the depth perception,
therefore all the information it can gather is ¢alito find objects in its
environment, since the IR-based distance sens@rysunreliable. To be able to
differ between different light settings is therefaf great importance.

4.1 The drawbacks with different light settings

Different light set on an object can give differeotor
perceptions of the object. For example, if an geanall,
shown in Figure 4.1, is submitted to a strong |ggirce,
the top of the ball will be closer to yellow tharange.
The Aibo robot will then see an object with bothlye
and orange color in it.

"R

L‘ The system is also very Figure 4.1. Ball.
' sensitive to changes, for
R example, if a shadow appears over an object. This
‘ ‘ changees the appearance of the object even ibit is
; the same color, and this could cause the Aibo to no
E—

recognize the object.
Figure 4.2. Shadow.

20

4.2 Segmentation Methods

There are a few different methods to find objedth whe help of pattern
recognition. The most common ones are thresholthiques, edge-based
methods and region-based methods.

Threshold techniques:

These techniques are based on the idea that pikelsimost the same color
(color value) lie within the same object. A threlshsets the margin for how
close the color values must be to one anothergAhseshold would
encapsulate too many color values. This could teaderging two distinct
objects. See Figure 4.3a. If on the other handhtteshold is set too low, only
part of the object is found. See Figure 4.3b. Fooptimal threshold in this
case, see Figure 4.3c.

The threshold technique is very effective on imapasblur at the edges of the
objects. It is very sensitive to light conditioh®tigh. This technique is used
most effectively in combination with other techrégu

@ (b) (©

Figure 4.3. Too high threshold, ball merges with gal (a), too low threshold, only part
of the ball is found (b). Optimal threshold (c).

Edge-based methods:

These methods are based on the assumption thgilxéie on the border
surrounding a region differ drastically from theqds outside the region,
finding the edges between regions. A thresholdaiper is used on a gradient
image to determine if an edge is found. When alias been found to be on
the edge it must be connected with the other pixelthe edge. This will form a
boundary surrounding the region. A common simpdarnéue is to take the
difference between two groups of pixels into a khpgiss linear filter [10].

The two matrices of the filter combined will be dge find and enhance the
edges for all angles in the image. A high valughenconstant will enhance

the edges, but it also has a tendency to increzse.nro get a reasonable level
of noise, typically the value aefwould be 1 or 2.

21

Matrices of the filter:
H horiz = |:

-1
Y
-1

1 0
c O
1 0

An example of simple edge detection is illustratedligure 4.4 and 4.5.

-c -1
Hvert

-1

00 0OOOOOOOOOOOOOOOOOOOODOOOOSOOODDO
0 00OOOOOOOS 333333 0O0O0O0OO0ODO0OO0ODO0ODO0DO0DO0DO0O0O0O0
1 1111114 4 4 4 4 4 4 4 4 44 4111111111111
1 1 11114 4 4 4 4 4 4 4 4 4 4 4 4 411111111111
22 2225555555 22256555565 2222222222

22 22 25565552222 22555555 222222222
3 3 3 6 6 6 6 6 63 33 3 3 3 3 33 6 6 6 6 6 6 3 3 3 3 3 3 3
3 3 3 6 6 6 6 6 63 3 3 3 3 3 3 36 6 6 6 6 6 6 6 6 3 3 3 3 3
4 4 4 v 7 7 7 77 77 77777 7777777 77 777 4 4 4
4 4 7 v 7 777777 77777 7777777 777777 4 4
55 8 88 88 8 8555555555555 %5 8888 8 8 8 8 5
5 8 8 88 88 8555555555555 5%55 588 8 8 8 8 8
6 99 99 99 9 9 9 9 6 6 6 6 6 6 66 6 6 99 99 9 9 9 9 9 9
6 6
7777777777 7777777777777 7770777777
7777777777777 777777777 7770777777

Figure 4.4 Can you see the letter?

Figure 4.5 Clarifying view of the letter.

22

Special edge detectors such as Canny [4] and $[&are used for a more
advanced detection. Often the image is post-predesscombination with a
detector to get the best result. Edge-based metredsot sensitive to light and
are therefore highly reliable. The processes oéduttgsed methods are very
computationally expensive though, while the Aibbats’ hardware is very
limited. Therefore Aibo robots have no use for thisthod as it is today. It
could be used in the calibration but it would requdifferent segmentation in
the ColorCalibration and on the Aibo. This mighange in the future as the
robots hardware improves.

Region-based methods:

The edge-based methods and the threshold techrageidssed on differences
of pixel values. The region-based method triesnd fegions with the same
color value. The Seed Region Growing (SRG) metkariegion-based method
which will use a few pixels as start pixels to gnegions with the same color
values. These start pixels are called seeds amedgiens they build will be
determined by a threshold value. The seed wilt itart to grow by checking its
closest neighboring pixels and determine if theyehaose enough color value
to be included in the region. The threshold valiledetermine how large range
of color values will be included in the region.

To automatically choose seeds is a difficult tdmcause the seed must be
representative for the region that should be grasnn Figure 4.6a. If a bad
seed is chosen, the region it will grow will makely be only a fragment of the
desired region, i.e., if a seed is chosen fromuarpedge of an object, the
growing region could contain only that seed or ewense, a not desired region,
as shown in Figure 4.6b.

i

@) (b)

Figure 4.6. Growing from good seed (a), growing frm bad seed (b).

This method is not very computationally expensive & therefore very
suitable for the Aibo robots’ limited hardware chijhities.

* Smallest Univalue Segment Assimilating Nucleus

23

Segmentation on the Aibo

The robots use a color segmentation that integthethreshold and the SRG
method. The threshold technique is used to genarsg of initial seeds. There
is a different set of seeds for all interestingoesl The SRG method is then used
on the initial seeds to grow the desired colorargi The SRG can be adjusted
for more than one seed in the same region. To leet@lnise the best qualities
from both methods the segmentation process imprbeekghting conditions
because we use a conservative threshold and bledges because we use a
conservative homogeneity criterion in SRG. Howewerstill inherit the
problem with a too high threshold merging objeEigre 4.3a), and a too low
threshold not giving the entire object (Figure 4.8bd also the sensitivity with
the seed pixels. To minimize these weaknesseg\iblreuses more than one
pixel in each object in combination with a low téineld. This results in many
different segments, called blobs, in the same abfeblob does not have to
include only one seed. The blobs from the samecbbye then merged into one
region and build the object.

imitial seeds

Figure 4.7 Merging blobs grown from multiple seed#to regions.

Blob A and blob B are two blobs with the same cgliawn from different

seeds belonging to the same region. After merditodp, A and B have become
region 1. However, the orange blobs A, B and D nélver merge because of
the red blob C which lies in between. Example f{8iris shown in Figure 4.7.

How is a blob found? The original seed is compéaoeits 8 connected
neighbors. The neighboring pixels that satisfydheerion of how close a color
value should be to be included with the originadswill be added to the blob.
This neighbor comparison step is repeated for enew pixel assigned to the
blob until the blob is completely bounded by thgedf the image or by pixels
that do not satisfy the criterion. The blob is niownd. The algorithm has
originally appeared in [1].

24

Helect next seed

pixel
w
The & neighbors
of the seed pivel are
called new neighbors
Compare n;:.v neighhors Sﬂtisfj_.fingg;im}l;
to the seed pivel with the |4 are assigned to the
criterion tegion and are the
new neichhors

w
If any neighbor pixels True
compared satisfy the
ctiterion

False

Figure 4.8 Segment building flow chart.

The final result from merging the blobs into regaould look as shown in
Figure 4.9.

o

(a) (b)
Figure 4.9. The original image (a), and the segmeation (b).

The technique of merging color segmentation andsiR& method has proven
to be very successful in the RoboCup environment.

25

Chapter 5

5. Automatization

5.1 Introduction

The calibration of the Aibo robot is currently ddmghand. The user must add
every color value manually to a color table by sttgy a pixel with the desired
color value. The color table is the table consgstifiall the color values the user
has chosen. When the calibration is done, the ¢alde is used on the Aibo
robot. The Aibo robots will use it as a refererméinid objects and guide it
through the surrounding environment. The outputftbe ColorCalibration
program is such a color table. The entire goahefgrogram is to make this
color table as good as possible. But the job touakychoose all the right

color values is very monotonous.

It is important that the user chooses a color valhieh is representative for the
color chosen. If the color value is poorly chossempbject could appear in one
color on the firstimage and in another color or atcall on the next image. This
means it is not enough to just know one objectiencblor. The robot can not
automatically adjust the color value for differemvironment changes, for
example, stronger light or shadows. Changes ligedlwill make it very

difficult to automatically predict the pixel witlh¢ most representative color
value.

A human finds an object mainly by recognizing patseand shapes. The color
and texture of the object is then determined bggiie human ability to
interpret the reflection of the light from an olijethis can change the
appearance of the object’s real color. For exanifilee color of an object is
known to be orange but the light of the surroundingakes it appear yellow, the
human brain would most likely interpret the colbtiee object as orange.

26

The color surrounding an object could also malkggear in a slightly different
color. For example, if an orange object has a bgghow object close to it, it
would appear more yellow. The Aibo must work in fzene way, i.e., if the
color of an orange object changes to yellow, th®tanust still interpret the
color of the object as orange. This is why it idfféicult to make an
automatization of the color calibration.

5.2 Our Automatization method

The purpose of the partial automatization of thicpss is to help the user with
the tiresome work of manually choosing all the cot@lues. This
automatization will not completely remove the usedle in the calibration.
Some parts of the calibration are too importarte¢anade automatically. The
method is also intended to make the process difredibn as stable and
effective as possible, without removing the userflsience on the process.

An object in an image consists of a set of pixatk Whe same region of color
values (a threshold value determines how far awaycblor values can be from
each other to be in the same region). An objectoasist of many pixels with
exactly the same color value. If a color value espnts many pixels in an
object that color value would most likely represira color very well. This
color value may then be used as a seed to grograes# of the object. More
details are provided in chapter 4.

The color table should include as few color valagpossible and still be able
to find all the objects. The automatization in @a&orCalibration program is
therefore based on finding the color values thattagent the largest amount of
pixels in an object. This will generate a histograwver the most significant
color values in the object. See Figure 5.1.

Color Value

Figure 5.1 A histogram showing the frequencies faall color values of one color

27

There are some problems with this approach tholigé.light on an object can
differ from image to image. Even if a color valsgound that represents many
pixels in the object it might not represent a gootbr value for that object if
many images are considered. For example if a ealoie represents 40 pixels
in an object, but only in one of 50 images, thabrcwalue is not very
representative for that object. On the other haoduld be very important to
find the object on that specific image.

We have solved this problem in ColorCalibrationpogviding the user a
configuration screen. The user is able to takentbst significant color values
from the segmented objects for each image ondiraea or to get the most
significant color values from the segmented objémts whole set of images.
The user can also decide how many color valuesldg@utaken from each,
starting with the most significant color value.

To get color values from the segmented objectd@haemage tends to generate
a lot of color values (depending on how many cellues the user has chosen
to get), but on the other hand the object will taenfd on most images
containing the object. To obtain color values fritva segmented object for a
whole set of images generates fewer color valugsydry representative for all
images.

A drawback with our histogram method is that atiahseed must be chosen
for each color. This seed is the reference forctiler. Only one seed is needed,
although more seeds could be useful for a moreratzautomatization. The
user can also choose to load a color table frokatsl use its color values as
seeds to automatize.

5.3 Other methods for automatization

* Random methodfhis method uses an initial seed as in the hiatogr
method, but instead of choosing the most significator value it will
randomly find color values from the segmented abjEkis will lead to
color values with random significance, i.e., a cofalue could be added
to the color table only reflecting one pixel in e images. When tested
this method added a very large number of coloresto the color table,
including other objects with similar color valudsis method is very
comprehensive but not very useful. It is not vaapke because it will
generate more color values every time automatasioun. The
method is not implemented in ColorCalibration.

« Pattern recognitionThis method is based on pattern recognition used t

find the objects. When an object is found the Igisgion method could be
used to add the right color values to the cololetabhe advantage with

28

this method is that it does not need an initiabseaking it more
automatic than the histogram method. However thihoaeis unstable.
If, for example, the process must differ betweea tlsjects with
different colors but of the same shape. The obgetfound with the
pattern recognition but not their colors. This cbloé determined only if
the objects colors differ heauvily.

The pattern recognition could have a problem wéhgof objects
looking like other objects. For example, if a pieéground with the
color dark green is identical to the shape of & théwe object, then the
pattern recognition method might interpret the gabas the dark blue
object because of the similarity of the colors.

This method is very hard to implement. Making ibdand stable

enough to find all types of objects is out of tkege of this thesis. It is
one of the most important features for future impdatation, see 6.2.

29

Chapter 6

6. Conclusions

6.1 Conclusions

The purpose of our thesis is to improve the caiibmgprocess for the ERS-210
Aibo robot. The current tool used by Team Swedamistuitive and hard to
use, making our first and foremost goal to prodes&sy-to-use, functional
software.

With new and ongoing research on the Aibo, thebeation process needs to be
able to adapt to new demands. The calibration ndeto therefore never be
considered fully developed; there will always bermofor improvements. We
have tried to make the software for the calibraisreasy to maintain as
possible and we hope this software will be helfdulTeam Sweden in the
future.

The problem definition stated that the softwareudthamprove the calibration
process for the user and as far as possible auatihé color calibration. The
calibration process has improved in our opiniolis llow easier to get a good
overview of the work in progress. It is easier dorect mistakes and to maintain
control of the final result. An automatization bétcalibration is implemented,
partially removing some of the manual work of cediing the color tables.

One of the more important requirements for thevwsrie was platform
independence. This is achieved by using the Janpubge. If the Java Native
Interface is used, the software is no longer ptatfmmdependent, but able to use
the exact same segmentation routines that the rdibot does. For future
development of the segmentation software on thetréle JNI option is very
useful and the user always has the ability to heenative Java segmentation as
a backup.

30

6.2 Possible future developments

The Aibo robot is constantly upgraded with fasted hetter hardware and
OPEN-R library routines. This must reflect the loation software as well. The
segmentation process currently used is a color set@ition method that
integrates the threshold and the SRG method. Abetty of doing the
segmentation would be to use an advanced edgetidatewethod in
combination with a color recognition method. Thisuld remove the difficult
problem caused by changes in light conditions. Aexpmwerful pattern
recognition algorithm would also be very desirabkejt would partially remove
the need of a color calibration or could be usethduhe calibration itself. The
hardware in the Aibo robot is too limited at thememnt though.

Pattern recognition could also be used to remoeaéed for seeds in our
automatization process.

A connection between the Aibo robot and the cdlibresoftware could also be
very useful. It would be possible to see the imdgas the Aibo camera and
use a created color table to display the segmentatireal-time. This would
speed up the calibration process significantly.

31

References

[1] N. Ikonomakis, K. Plataniotis, A. VenetsanopmailUser Interaction in
Region-Based Color Image Segmentation. VISUAL'9NAS 1614 pages 99-
106, Springer Verlag, 1999

[2] RoboCup Technical Committee: Sony Four Leggebdd Football League
Rule Book, 2003 http://www.robocup.org (Verified tQ&" 2003)

[3] Z. Wasik, A. Saffiotti: Robust Color Segmentatifor the RoboCup
Domain. Proc. of the Int. Conf. on Pattern RecagnifICPR), volume 2, pages
651-654, 2002.

[4] J Canny: A Computational Approach to Edge Didex; IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMOlume 8, no 6, 1986

[5] S. Smith: SUSAN - A New Approach to Low Levehdge Processing,
Technical Report TR95SMS1c, Oxford University, 1995

[6] Sony Corporation: Entertainment Robot AIBO Cgierg Instructions, Sony
Corporation, 2000

[7] Web site of the Java language: http://java.som. (Verified Oct ¥ 2003)

[8] The Operating Color Space:
http://www.canopus.com/US/pdf/Storm_comparison (Mifrified Oct £ 2003)

[9] D. Farin: Praktikum Multimediatechnik. http:Awwv.informatik.uni-
mannheim.de/informatik/pi4/stud/veranstaltungerd®82multimedia/h261teil2.
pdf (Verified Oct £2003)

[10] T. Pavlidis: Algorithms for Graphics and Imagecessing. Springer
Verlag, 1982

[11] Linux Number Crunching: Benchmarking Compilared Languages
http://www.coyotegulch.com/reviews/almabench.htwerfied Oct 11" 2003)

32

Appendix A: Dictionary

Aibo Artificial Intelligence roBOt — Aibo is
a four legged robot manufactured by
Sony. Also, “Aibo” in Japanese means
companion. See appendix B.

ERS-210 See Aibo.

Al Artificial Intelligence.

Color Space A coordinate system with the different
axes representing different color
components, i.e., R,Gand B,orY, U
and V. See Appendix C.

Histogram A table presenting the frequency ofjan
occurrence, i.e., a value.

Calibrate Adjust something to fit a purpose of
environment.

RGB A way to represent colors by their
Red, Green and Blue components. See
Appendix C.

YUV Also known as YCbCr. Colors
represented by their overall brightness
(Y), the blue component (U) and the
red component (V). Used for example
in television. See Appendix C.

Color table A list with color values assigned to a
specific color.

IEEE 802.11 A standard for wireless network
communication.

Linux A UNIX-like operating system.

PAM Perceptual Anchoring Module — part

of the Team Sweden software for
Aibo.

ColorCalibration

The calibration software that ke
from this thesis work.

33

Appendix B: The Sony ERS-210

Specifications

CPU

64-bit RISC by MIPS @ 192MHz

Main Memory

32 MB

Removable Media

Sony Memory Stick

Movable parts

Mouth: 1 degree of freedom
Head: 3 degrees of freedom
Leg: 3 degrees of freedom x 4 = 12
Ear: 1 degree of freedomx 2 =2
Tail: 2 degrees of freedom

Total: 20 degrees of freedom

Input PC Card type Il slot
Battery charger
Video 100k pixel CMOS image sensor
Audio Stereo microphone
Speaker
Sensors Thermometric sensor

Infrared distance sensor
Acceleration sensor (3-way)
Pressure sensor (head, chin, back a
paws)

Vibration sensor

Operable duration

Approx. 1.5 hours fully charged

Dimensions 152 x 281 x 250 mm (w/h/d not
including ears or tail)

Mass Approx. 1.5 kg with battery

ref. [6]

34

Appendix C: The RGB and YUV
Color Spaces

The Red, Green and Blue (RGB) standard is oneeoffrtbst common color
space standards. The combination of these threesochn produce almost all
colors visual to the human eye.

Red Lununance
Luminace
Blue Fed Clrominatice
Creen Blue Chromitiatice
Figure C.1a RGB Figure CbIYuv

Instead of using three equally weighted color congmas like the RGB
standard, see Figure C.1a, the YUV uses one luro@fanghtness component
Y and the U, V components as chrominance/colorg8jn Figure C.1b. The
YUV values are created from RGB. If the R, G anddBponents are weighted
and added together they will produce a Y compondrith represents the
overall brightness. The U component is createdhking the weighted R, G and
B components in Y and subtracts the B componerd.\ hbomponent is created
in the same way, except that in this case subbmaetill be with the R
component instead of the B component.

Conversion (in 24 bit color depth) between RGB #ht/ is easily done with
the following formula [9]:

R 1 0 137 ' Y-16
G|=|1 -034 -070|U-128
B 1 173 0 VvV -128

35

Appendix D: Using the Java Native
Interface

When we decided to use Java to develop ColorCélioreone obvious obstacle
was the segmentation code. The segmentation cqaet af PAM, is a piece of
C++ code that is run on the Aibo robot and doess#iggmentation. This code is
present, with some very minor adjustments to makeni, in PamSim, and must
also be included in our program. One way to sdieegdroblem is to translate
the C++ code to Java. But a translation can ngiz@anteed to be exact, so
while it is a good solution it is sometimes not d@mough. The other option
was to run the compiled C++ code directly from Ja\awa offers support for
this via the Java Native Interface (JNI), but iaibit awkward to use, and there
is not much documentation. We implemented bothveatava segmentation and
the ability to use the JNI, keeping our softwar@fokm independent.

D1 Java Native Interface types

JNI is basically a set of wrappers to convert betweative java
primitives/objects and native C/C++ primitives/atie These can then be
converted or type casted. JNI defines eight pnmitypes [7]. See Table D.1.

Java primitive type Native C/C++ type Description
boolean jboolean Unsigned 8 bits
byte joyte Signed 8 bits
char jchar Unsigned 16 bits
short jshort Signed 16 bits
int jint Signed 32 bits
long jlong Signed 64 bits
float jfloat 32 bits

double jdouble 64 bits

Table D.1. Primitive types in JNI and C/C++.

36

JNI also defines twelve other types in order toec@ll the java reference types,

as shown in Table D.2.

Java reference type Native C/C++ Description

reference type
java.lang.Object jobject Java object instanceg
java.lang.Class jclass Java class instances
String jstring Strings
Array jarray Arrays
-boolean]] jbooleanArray Arrays of boolean
-byte(] jbyteArray Arrays of byte
-char[] jcharArray Arrays of char
-int[] jintArray Arrays of int
-long(] jlongArray Arrays of long
-float[] jfloatArray Arrays of float
-double[] jdoubleArray Arrays of double
java.lang.Throwable jthrowable Throwable objects

Table D.2. Java reference types and their C/C++ coterparts.

All reference types are subtypes of the jobjecetyfyhen used in the C++
programming language, the JNI introduces a setiofrdy classes to express
the subtyping relationship among the various refesgypes, as shown in
Figure D.1.

class _jobject {};

class _jclass : public _jobject {};

class _jthrowable : public _jobject {};
class _jstring : public _jobject {};
class _jarray : public _jobject {};

class _jbooleanArray : public _jarray {};
class _jbyteArray : public _jarray {};
class _jcharArray : public _jarray {};
class _jshortArray : public _jarray {};
class _jintArray : public _jarray {};
class _jlongArray : public _jarray {};
class _jfloatArray : public _jarray {};
class _jdoubleArray : public _jarray {};
class _jobjectArray : public _jarray {};

typedef _jobject *jobject;

typedef _jclass *class;

typedef _jthrowable *jthrowable;
typedef _jstring *jstring;

typedef _jarray *jarray;

typedef _jbooleanArray *jbooleanArray;
typedef _jbyteArray *jbyteArray;
typedef _jcharArray *jcharArray;
typedef _jshortArray *jshortArray;
typedef _jintArray *jintArray;

typedef _jlongArray *jlongArray;
typedef _jfloatArray *jfloatArray;
typedef _jdoubleArray *jdoubleArray;

typedef _jobjectArray *jobjectArray;

Figure D.1. JNI dummy classes.

3/

With these types available it is easy to write sr@in wrappers to integrate the
native C/C++ code with the Java program. The ptatfmdependence is
however lost.

D2 A small example

In order to illustrate how to work with the JNI,reas a small “Hello World”
example.

First the native method is located usin§ystem.loadLibrargall. Then the
native method needs to be declared using an abststbod. Finally the
method is called in themainmethod. See Figure D.2.

Java code ‘HelloWorld.javd

class Helloworld {

static {

System.loadLibrary("Hello"); // load nativ e routines
}
private native void hello(); // the native met hod call

public static void main(String[] args) {
new HelloWorld().hello(); // call the nati ve method

}
}

Figure D.2
First the Java code is compiled. The Java headwrgtrjavah, is then used
on the class file to generate a C header:
javah —jni HelloWorld
This will generate a C header file containing thethnod prototype:

JNIEXPORT void JNICALL
Java_HelloWorld_hello (JNIEnv *, jobject);

C code with the same call parameters as in theadgdlototype is needed, as
shown in Figure D.3.

38

C code “hello.c”

#include <jni.h>
#include <stdio.h>
#include "HelloWorld.h"

JNIEXPORT void JNICALL
Java_HelloWorld_hello(JNIEnv *env, jobject obj)

printf("Hello World\n");
return;

}

Figure D.3

Finally, the C code is compiled into a system lijpr@.e.libHello.soon UNIX
systems antello.dll on Microsoft Windows systems) and run within theg
program. The compiled C code should be placedarsyistem library path.

39

Appendix E: ColorCalibration User
Manual

40

ColorCalibration

Software for color calibration of Sony Aibo robd@tsa RoboCup environment

By
Jens Torner
Carl Axelsson

USER MANUAL

41

Table of contents

1. Introduction
1.1 Quickstart

2. Working with ColorCalibration
2.1 Toolbox
2.2 Image window
2.3 Menus
2.4 Image index
2.5 Color tables
2.6 Automatization
2.7 Preferences

3. Working with files
3.1 PGM file format
3.2 KJI file format
3.3 Color Table file format

3.4 Converting PGM files to KJI files

4. Using native segmentation code
4.1 Why use native code?

4.2 Compiling the code to work with ColorCalibrati

42

43
43

45
45
46
46
47
47
48
49

50
50
50

50
50

51
51
51

1 Introduction

ColorCalibration is developed with a RoboCup
environment in mind but can be reconfigured foreoth
color calibration needs. It will let you calibratecolor
table for use with your Sony Aibo robot with litedfort.
It provides powerful tools to view, modify and
automatize the calibration.

Previous experience with Sony Aibo robots, RoboCup
and Open-R programming is assumed throughout this
user manual.

If you are a first time user please browse throtingh
Quickstart section of this manual to get startedoams as
possible.

Thank you for choosing ColorCalibration.

1.1 Quickstart
Install the program files in a directory. Startthp
ColorCalibration program with:

java ColorCalibration

When the program is running, click the “Load” buitia
the toolbox to open up the load file dialog. Setbet
quickstart.kjiimage included in the ColorCalibration
distribution and click load. The image is loaded an
| displayed as a thumbnail in the image index winddw
the bottom of the screen. Single click on the imtage
open it up in an image window. Your screen showol n
look something like the screen pictured to the left

Select some pixels from the ball by clicking onnthie

the image window, and watch how the segment grows.
Select other colors from the toolbox and try to entie
segmented image as good as possible. If you make a
mistake, you can always click “Undo” to delete ytast
selection. But remember that the undo function work
with channels, one for each color, so you haveestmb
the right color in order to undo. There are twestgps of
undo in each channel.

43

When you are satisfied with the segmentation, dhek
“Save CT” button in the toolbox to save your cdkble.
Just press ok when the program asks for suffix.

ColorCalibration is so much more, but you should/no
have a general idea of how to calibrate your Aibo!

44

Lo

2 Working with ColorCalibration

=101 %]

Uncla

SaveCT

- o

SElue

[~ Show Blobs
[~ Show In CT

Fink

Green

Red

CElue

White

Carpet

Silver

2.1 The Toolbox

Here you will find the most commonly used tools and
operations. The toolbox resides in a window obits,
and can easily be placed anywhere on the screefingu
convenient.

Load — Opens the load image dialog which lets you select
and load one or more images from the hard drive or
directly from your Memory Stick reader. Images lead

are displayed in the image index window on thedyott

of your screen.

Save CT- Opens the save color table dialog which lets
you specify a filename and path to save the calolet
You will be prompted for how to label the color @b
arrays, just press ok to save it as “generic”.rhore
information on the format color tables are saved in
please see 3.&8olor Table file format.

Undo— Enables you to erase your last selected pixel from
your color table. Undo works with channels, so only
pixels selected in the color currently active issed. To
undo a selection in another color, simply seleat tdolor

in the toolbox and press undo the desired number of
times. There are twenty steps of undo in each alann
Please note that the results from undo will notibile

until the image window is in focus. Undo effects al
images, not just the one(s) currently displayed.

Show Blobs- Checking this option displays all the

images in the index window as segmented. Thigjieat
way to get an overview of how good your color tablat
the moment. Please note that keeping this optieclsdd
at all time might drastically reduce program pariance.

Show In CT— Checking this option lets you click a pixel
in an image and see where in the color spacddtéated.
This is a powerful tool to find stray pixels in yoeolor
table.

Color palette— Clicking on these selects which color you
are currently working with. The button is coloredhe

45

active color. This also affects which undo chansel
used.

R Threshold—This slider shows the threshold value for the
] J‘ current color. Just drag it to change the threshold
prrrrrrrin Thresholds affect how many pixels will be includelden

growing the segments. Thresholds are saved with the
color table.

2.2 Image window

The image window is the main working window. Insthi
window you click to select pixels (color values}i®
included in your color table. The small displaythe
right in the window shows the segmented versiamhef
image. Clicking on the buttons with arrows displdys
next/previous image.

2.3 Menus

The menus contain many options not available anysvhe
else in ColorCalibration. There are five main catess:
File, Color Table, Options, Window and Help.

4 Color Calibration

File Color Table Options Window Help

£ Color Calibration File — Images — Load- Opens the load image dialog
[Fie ColorTablo ptians Wi which lets you select and load one or more images f

ﬂl your hard drive or directly from your Memory Stick

—— reader. Images loaded are displayed as thumbnahei
. image index window on the bottom of your screeng®

- click on a thumbnail to open it up in a new window.

File — Color Table — Load- Opens the load color table
dialog which lets you load a previously saved ctddie.

4. Color Calibration
File Color Table Ophions W

File — Color Table — Save Opens the save color table
dialog which lets you specify a filename and patkadve
your color table. You will be prompted for how tbkl
the color table arrays, just press ok to save ‘igaseric”.
For more information on the format color tables saeed
in, please see 3.8olor Table file format

Preferences
Exit

File — Preferences- Opens the preferences dialog. For
more information on preferences settings, pleas@se
Preferences

File — Exit — Exits the program.

46

Color Table — Modify— Opens the color table window.

iy Colarlisa BT This lets you see how the color values in your ctable
|] are distributed in the color space. For more infatian
Modiy l on how to work with the color table window, please
feset 2.5,Color Table

Color Table — Reset Resets the color table. Please be
careful with this function. You must undo for dlktcolor
channels to get your color table back.

ption LN Options — Automatizatior- Opens the automatization
e window. For more information on the automatization
= — | process, please see 2M&itomatization

Window — Show Toolbox Opens the toolbox window if
it is not already on open.

Window — Show Image Index Opens a new image
index.

Help — Help —Shows this manual.

Help — About— Shows info about ColorCalibration.

2.4 Image index

The image index window shows small, thumbnail size,
versions of all images loaded. Images can be disgdlas
regular images or segmented ones, based on trenturr
color table. Just check “Show Blobs” in the tooltiox
show segmented images. Please note that updatimg ma
segmented images might drastically reduce program
performance.

2.5 Color table
= The color table window shows how the color values i

it
|

= the images loaded and in the current color talde ar

JRC e
distributed in the YUV color space. There are 32ls of
(] . V c e. Th
r Y (light), which one is displayed is indicated Imet
I _ “light” slider. For each Y value, the U and V vadue the

current color table are shown by a box in the csjfce
_-| area. If the “show pixels” option is checked, allar
values that are actually in the images are alstbgolon
each box, with darker colors representing a higher
density. Boxes showing the color value boundariag m
overlap each other, and in that case the color tvith
highest priority takes precedence. The colors atered

47

£ Automatization
Select automatization

[l Using currert color takle

1~ Using color table on disk

~10jx]

Configure

Start |

g Automatization Conl

|7 Add colors for image set

J— Orange 2
J— ellow 2
J— SBlue 2
J— Pink 2
J— Green 2
J— Red 2
J— DBlue 2
J— White 2
Ji Carpet 2
J— Black 0
J— Silver 0

=10l x|

in the same order they are displayed in the toolbox
palette, with the default order being orange, yellsky
blue, pink, green, red, dark blue, white, carpktcband
silver where orange has the highest priority. Rgioules
are the same for the “show pixels” option, in cake
overlapping.

When the mouse is moved around in the color sp&aae a
the color directly under the mouse pointer is digpt to
the right. Also displayed to the right are the attu- and
V values for the color currently selected. The dutt
“Clear color” clears the color boundaries for tioéoc
currently selected and only for the current Y (tiglalue.
At all times you need to press the “Update CT” toist

for the changes to take effect.

Clicking the button “Close” closes the color table
window.

2.6 Automatization

The automatization window lets you specify whetioer
run the automatization process with the currenarcol
table or one loaded from disk. Clicking “Configulets
you specify how many color values to select duting
automatization and if you want to use local hishogs
(e.g., one histogram for each image and color wadue
selected from each) or global histograms (e.g., one
histogram for the entire set of images to seleldrco
values from) or both. It also lets you specify hoany
color values of each color you want to add to yoloic
table. Note that a low number of values are reconueae
if using local histograms. With the global histagsa
larger number is probably better.

A good way to automatize the calibration is to tiue
automatization first, getting a low number of colatues
from each image and then run it again, gettingga hi
number of color values from all images. This will
generate color values for most objects.

Experiment to find values that work for your typfe o
playing field and light conditions.

The automatization process needs a large set ga®
be effective.

48

2
S
g

a<Adada<a; g
¥

All i None

Select

Select
SBiue Select

Pink Select

Green Select

Redl Select

DBlue Select

hite Select

Carpet Select

[Black Select

[Sitver Select

Detautt Defautt

Name of PAN liarary:

Ok

mySegm ¥ Use native
| Cancel |

Apply

=loix|

2.7 Preferences

The preferences window lets you set your colorsthant
names. It also lets you check/uncheck colors. Utkihg
a color makes ColorCalibration ignore the colordtr
processes, e.g., segmentation and automatization.
However, you are still able to select pixels fromimage
with an unchecked color; it just won’t show in the
segmentation.

Preferences also lets you specify a system lilitealy
contains segmentation routines, if you want toyse
own segmentation routines. Just specify the nantk, a
make sure the systems library path environmenabbei
is set to where the segmentation library is located
check the option “Use native” to use your own
segmentation routines. You can read more aboutenati
segmentation routines in ChaptetJing native
segmentation code

49

3 Working with files

There are a few file formats you need to be famidh,
to get the most out of ColorCalibration. Here shart
description of the file formats.

3.1 PGM file format

The PGM file format is the format of the tutorighén-R
programimage Capturelt is divided in three files; the
Y-, U- and V component. No compression

3.2 KJI file format

The KJI file format is, unlike PGM, a one file parage
format. It is a YUV format and bears a close redamie
with the PGM format. No compression.

3.3 Color Table file format

The color tables are saved as C++ source codegivi
you the ability to just include one when you coragibur
Open-R source code. Example:

#define TableSize 32

const unsigned char red_generic[TableSize*4]= {
127,127, 127, 127,

!

3.4 Converting PGM files to KJI files

To convert image files created for example by tiper®
R tutorial programimage Capturea batch conversion
tool is included in the ColorCalibration distribani. It is

a stand-alone application that can be run either as
command line application or with a graphical irded. It
is calledFileConverter To use FileConverter in
command line mode, just run it like a normal java
program with your Y images as parameters. Example:

java FileConverter Yimg00.pgm YimgOl.pgm

To use FileConverter in a graphical environmerst, jun
it without any parameters and a file selectionaljas
displayed, letting you specify files to convert.

The files converted are saved in the same direcisthe
PGM files.

50

4 Using native segmentation code

ColorCalibration gives you the ability to run yoawn
segmentation routines, written, for example, infCeo+.

4.1 Why use native code?

Why use your own code when ColorCalibration proside
built-in, robust segmentation routines? The reason
simple. Calibration is done in order to make the
segmentation optimal. If you are not using the same
segmentation on your Aibo robot then you can not be
sure the color table made with ColorCalibratiothis
optimal one. This does not mean that using the-buil
segmentation is a bad idea. It is based on thstlate
segmentation routines from Team Sweden used
successfully in RoboCup. But for serious Aibo
applications we strongly recommend using your own
routines.

4.2 Compiling the code to work with

ColorCalibration

In order to use your own segmentation routines in
ColorCalibration, you first need to compile your
segmentation code into a system library with a kmal
ColorCalibration wrapper included. A wrapper woikin
on Team Sweden’s segmentation routines is included
the ColorCalibration distribution. Modify it to wiomwith
your segmentation code and compile it. Example for

linux:
g++ -l/usr/javaljdkl.4/include -l/usr/java/jdk1.4/i nclude/linux -fPIC Segm.cc —c
g++ -shared -WI,-soname,libMySegm.so -o libMySegm.s 0 Segm.o

WhereSegm.cas your segmentation routine with the
ColorCalibration wrapper included:

#include "Aibolmage.cc"”

51

The wrapper contains three methods. You may not
change the input or return parameters of theseausth
But you may freely alter the methods to fit your
segmentation code.

/* set the image from Y-, U- and V-arrays */

jint Java_Aibolmage_setimage(JNIEnv*, jobject, jint Array, jintArray, jintArray);
/* set the threshold from an array of thresholds */

jint Java_Aibolmage_setThreshold(IJNIEnv*, jobject, jintArray);

* get the segmentation from array with colors inde xes matching color table */
jintArray Java_Aibolmage_getSegmentation(JNIEnv*, j object, jintArray);

52

