
Relative Relevance of Subsets of Agent’s
Knowledge

Sławomir Nowaczyk and Jacek Malec∗

Department of Computer Science
Lund University

October 7, 2008

Abstract

We study agents situated in partially observable environments, who do
not have the resources to create conformant plans. Instead,they create con-
ditional plans which are partial, and learn from experienceto choose the
best of them for execution. Our agent employs an incomplete symbolic de-
duction system based on Active Logic and Situation Calculusfor reasoning
about actions and their consequences. An Inductive Logic Programming al-
gorithm generalises observations and deduced knowledge inorder to distin-
guish “bad” plans early, before agent’s computational resources are wasted
on considering them.

In this paper we present experiments which show that in orderfor learn-
ing to be successful, an agent’s knowledge needs to be filtered. We argue that
this filtering nicely matches the intuitive notion of “knowledge relevance”.
We also present a heuristic scheme, combining several natural rules, which
can be used to automatically determine which formulae should be used for
learning.

1 Introduction

Rational, autonomous agents able to survive and to achieve their goals in dynamic,
only partially observable environments are the ultimate goal of AI since its begin-
ning. Quite a lot has already been done towards achieving that dream, but dynamic
environments still remain a big challenge for autonomous systems. In particular,
nontrivial environments that are only partially observable pose demands which are
beyond the current state of the art, possibly except when dedicated solutions are
developed for narrow domains.

One of the major ways of coping with uncertainty and lack of knowledge about
current situation is to exploit previous experience. Experience may be gathered

∗This work has been partially supported by the EU-project SIARAS, Skill-Based Inspection and
Assembly for Reconfigurable Automation Systems (FP6 - 017146).

1

in many ways: by memorising, by being organised in some mental models, by
creating appropriate probability distributions over possible courses of events, to
name just a few approaches to learning.

All realistic agents necessarily have limited resources, both mental (CPU power,
memory size) and physical (limited repertoire of possible actions). In our research
we are interested in developing rational, situated agents that are aware of their own
limitations and can take them into account [2]. To facilitate this, we use Active
Logic [7] for knowledge representation, which characterises reasoning as an ongo-
ing process, instead of focusing on a fixed point of entailment relation.

Due to limited resources and to the necessity of remaining responsive in a
dynamic world, situated agents cannot be expected to createcomplete plans for
achieving their goals. They need to consciously alternate between reasoning, act-
ing and observing their environment, or even do all those things in parallel. We
aim to achieve this by making the agent create short conditional partial plans and
execute them, learning more about its surroundings throughout the process.

In our approach, the agent continuously reasons about the world, enriching its
knowledge using both observations and deduction. In order to generalise its expe-
rience, due to resource limitations, it needs to select onlythemost relevantsubset
of its own knowledge for learning, as it is not practical to expect ILP algorithms to
be able to find useful generalisations among vast amounts of unrelated knowledge.

An important obstacle is the lack of satisfactory objectivemeasure of knowl-
edge relevance. Typically, the most interesting insights from the logical perspec-
tive come fromequivalencerelation, where one can say that two sets of formulae
denote exactly the same models. This level of abstraction, however, is not quite
sufficient for us, since it does not capture the qualities we are interested in: two
theories equivalent in the semantic sense can differ greatly in how easy it is to
generalise from them and to learn new concepts.

A primary goal of this work is to explore how the agent can automatically
choose some parts of its knowledge base in such a way as to maximise the quality
of learning. Within the bounded computational resources the agent possesses, it
is not feasible to generalise blindly. The generalisation process is inherently diffi-
cult, with very high branching factor and therefore limiting input data is of crucial
importance for realistic agents.

This field of study has seen a lot of interest in the past years,but the major prob-
lem has often been lack of formal model as to what “relevance”formally means.
Throughout this paper we would like to argue that themost relevantknowledge can
be defined as the one which leads to the best learning results.

The paper is divided as follows. First, we briefly describe the domains used in
our experiments. Then we present the agent architecture, followed by a discussion
of knowledge relevance, which underlies the rest of this work. Afterwards we de-
scribe each of the agent’s modules, with focus put on learning. Finally, we present
the experimental results, followed by a discussion of related work. The paper ends
with some preliminary conclusions.

2

2 Experimental Domains

In the experiments we have used two domains: the game of Wumpus [22] and a
chess ending. The Wumpus game is very simple, easy to understand, and people
have no problems playing it effectively as soon as they learnthe rules. For artificial
agents, however, even such a simple game remains a serious challenge.

The game is played on a square board. There are two characters, the player
and the Wumpus. The player can, in each turn, move to any neighbouring square,
while the Wumpus does not move at all. Position of the monsteris not known to
the player, he only knows that it hides somewhere on the board. As Wumpus is
a smelly beast, the player can immediately notice if the creature is in the vicinity.
The goal of the game is to find out the exact location of the monster, by moving
throughout the board and observing on which squares does it smell. At the same
time, if the player enters the square occupied by the beast, he gets eaten and loses
the game.

Our second domain, which we call Chess, is a modified version of “king and
rook vs king and knight” chess ending. Since we are interested in partially un-
known environments, we assume for the sake of experimentation that the agent
does not know how the opponent’s king is allowed to move —a priori any move
is legal. The agent will need to use learning to discover whatkinds of moves are
actually possible.

The goal of our research is somewhat akin to theGeneral Game Playing Com-
petition [9]: our agent is given some declarative knowledge about thedomain and
is supposed to act rationally from the very beginning, whilebecoming more and
more proficient as it gathers more experience.

3 Agent Architecture

The architecture of our agent (see Fig. 1) consists of four main functional modules.
Each of them is responsible for a different part of agent’s rationality, but the overall
intelligence is only achievable by the interactions among them all.

The Deductormodule is the one responsible for symbolic reasoning. It uses
a logical formalism based on combination of Active Logic andSituation Calculus
(as introduced in [17]) in order to figure out consequences ofthe agent’s current
beliefs. Based on the domain knowledge and previous observations, it analyses
possible actions and predicts what will be the effect of their execution.

The second module isPlanner, which generates partial, conditional plans ap-
plicable in the agent’s current situation. In the reported experiments, our planner
was a simple one, generating pre-arranged plans only (all imaginable plans for the
Wumpus domain, and some arbitrary set of “interesting” plans for Chess).

The third main module,Actor, oversees Deductor’s reasoning process and eval-
uates plans that Planner has come up with, trying to find out which is the most
useful one to perform. For this paper, Actor, renamed more appropriately toPlan

3

about plans

LEARNER

DEDUCTOR

PLAN

PLANNER

BELIEFS

plans

situation−specific
generic

EVALUATION

plan

quality

about worldbeliefs

about plans

beliefs

hypotheses

Figure 1: Architecture of the system.

Evaluator, waits until Deductor terminates and only executes plans after this hap-
pens, but in general it is Actor’s responsibility to balanceacting and deliberation.

Finally, theLearnermodule analyses the agent’s past experience and induces
rules for estimating quality of plans. Results of learning process are used both by
Deductor and by Actor. In particular, since the plans Deductor reasons about are
partial (i.e. they do not — most of the time — lead all the way tothe goal), it can
be very difficult to estimate whether a particular plan is a step in the right direction
or not. Machine learning techniques is one way in which this could be achieved.

In general, the ultimate goal of this architecture is to allow putting together
state-of-the-art solutions from several different areas of Artificial Intelligence. De-
spite multiple effortsthe vast majority of AI research is being done in specialised
subfields and it is our belief that neither of these subfieldsalonecan give us truly
intelligent, rational agents. Our architecture, which to the best of our knowledge is
novel, may be one way to integrate them.

4 Relevance Estimation

Estimating the relevance of a particular formula to the agent’s task at hand is a
very difficult problem, one which cannot be solved in general. In practice, how-
ever, there are certain regularities and conventions whichhuman experts use when
encoding domain knowledge for the agent, and it is our beliefthat some of those
conventions can be exploited by the agent.

The basic assumption is that human experts who create agent’s initial knowl-
edge base do it in such a way as to maximise its usefulness to the agent (modulo

4

mistakes and ignorance, of course). Humans can often reasonably easily deter-
mine which parts of the knowledge base are most relevant for solving particular
problems, and this is often reflected in the encoded knowledge in many ways. The
ability to extract such hints would be very valuable to any rational agent.

We have considered several qualities which can be used as hints that a particular
piece of knowledge is “good”. We discuss and rationalise them below on a rather
abstract level, while in section 8 we will show how we have implement them.

Derived from observations. For logic-based rational agents, there are typi-
cally few observations (both because the cost of acquiring them is often high, and
because it is well known that they are expensive to reason about), so it is unlikely
that they are irrelevant. It is a wise idea, therefore, to tryto keep them in the train-
ing knowledge whenever possible. Also, it is almost universally the case that the
right decisions for an agentdo depend on the acquired observations.

It is also important to notice that quite often not the raw observations them-
selves, but rather their aggregations with the rest of the agent’s knowledge, form the
most desirable input (i.e.WumpusPosition should be used rather thanSmells;
CanMove rather thenPosition).

Consistency between plans. When looking at possible plans within a given
situation and analysing their expected outcomes, often similar formulae occur in
many cases. Those sometimes encode exactly the same knowledge, and sometimes
a different (even opposite) one. For example, it is possiblethat Wumpus(a2)
would be known from executing some branch of planp1, and¬Wumpus(a2)
would be known from executing some branch of planp2.

For the logical sentences most relevant for current problem, one can find mul-
tiple situations where the same knowledge holds across the wide spectrum of plans
being considered. Having such consistency sufficiently often is one hint that the
given class of formulae is actually correlated with agent’sactions.

Of course, interesting formulae are not always like this, for many situations the
values of any given predicateneed tovary, which corresponds to the case where the
real value is not known and the agent is actively exploring different possibilities. It
is important that both ends of the spectrum are represented sufficiently.

Inheritance chains. We assume that the initial domain knowledge is chosen in
such a way as to maximise agent’s performance, therefore onewould expect that
thefinal result of reasoning process is likely to be the most important one. One way
to capture this would be to assume that the more difficult somesentence is to infer
(measured, e.g., as the number of steps needed to deduce it),the more relevant it
is. This corresponds to the idea that such formula “contains” more knowledge than
easier ones.

This, however, would be overly susceptible to some irrelevant knowledge being
present in the expert’s description of the domain. On the other hand, we have
noticed in the reasoning traces of our agent a related and interesting pattern. It is
quite often the case that the deduction tree of some formulaeis rather degenerate:
it contains a singly branch which is very long, while all the others are very short

5

ones. We call such tree achain. The middle sentences in such chains are very often
boring indeed, with the end ones containing everything of interest.

Similarities between plan branches. When looking at conditional plans, there
is usually a number of branches which correspond to different possible observa-
tions that can be made during execution. Looking for regularities between such
branches can provide interesting insight into which parts of the agent’s knowledge
base are the most relevant to choosing the best plan.

Axioms are boring. Rather obviously, learning from the domain axioms is
typically not the best idea. It is important to take advantage of the results of rea-
soning the agent has performed, and often there are aggregations available which
express desired properties in ways much cleaner than by barebone axioms alone.

One exception here, however, is the case when some axioms arenever used in
the deduction. If a human expert provides a number of formulae which are useless
for reasoning, then the agent can reasonably expect them to play a role in learning.

Explore time differences. Given that our agent reasons using Active Logic, we
have one more important clue as to interdependences betweenpieces of knowledge:
the differences in step numbers of when particular formulaehave been deduced.

One common pattern of reasoning is confined to a short time interval, with
sentences inferred in the previous time step being used in the current one, and so
on. On the other hand, sometimes an older formula is used in conjunction with
the newest one, and we believe that this hints at something interesting. When the
old knowledge is relevant to the current situation, it is more likely that the same
knowledge will be useful again in the future.

Another interesting idea would be to assume that things deduced earlier are
likely to begenericknowledge, therefore if they are applicable now, they will be
applicable again. At the same time, a large percentage of themost recently inferred
formulae will be specific ones, fitting current situation butnot useful anywhere else.

Smarter rules of inference. A large appeal of Active Logic is its powerful
mechanism of adding domain-specific extensions to the well established sets of in-
ference rules. Typical examples make use of timestamps and observation functions,
but it is also possible to specify, among other thing, that some rules of inference are
more likely to lead to relevant sentences (for example,modus ponensis interesting
while negation introductionis boring).

Limited in number. On a more technical side, having too many formulae
presented to ILP algorithm, even if most of them are “good”, means that it will
fail to learn anything useful anyway (or, at the very least, that the generalisation
process will be very fragile).

When search for solution is not able to meaningfully analysemajority of the hy-
pothesis space, the resulting knowledge will be pretty muchrandom set of clauses
which fit learning examples to some minimal degree. With the number of degrees
of freedom that ILP algorithms have, such results are typically completely useless.

Covering of the domain. The above qualities mostly analyse sentences in sep-
aration, but it is important to also look at the bigger picture. An important issue is
that a large portion of both initial and current knowledge base “contributes”, one

6

way or another, to the learning process. The assumption throughout this paper is
that the domain knowledge is basically expected to be useful, so whichever knowl-
edge we decide to present to PROGOL, it should have at least some chance of
being influenced by all parts of it.

There are many possible definitions of what “influence” mightmean, but the
most obvious one is to track which formulae were used to deduce the set we are
interested in (akin a very basic truth-maintenance system). Of course the fact that
sentenceβ is deduced fromα does not necessarily mean that therationale for
includingα in domain description has also been captured byβ, but it at least lack
one negative indication.

Finally, an important decision is whether to consider each formula separately,
or rather cluster them in some way. We have decided to clustersentences according
to the predicates they contain. It can happen, for example, that Neighbourhood

relation between two squares is interesting and important for learning, while the
same relation between two others is irrelevant. There is a serious risk, however,
of significantly distorting the domain knowledge, to the degree where the resulting
hypothesis will generalise very badly. We have decided to forfeit some of this ex-
pressiveness and we only make decisions as to which predicates are to be included
in the training knowledge (i.e. if we decide thatNeighbourhood is relevant, then
all formulae containingNeighbourhood will be used for learning).

We feel the need to stress that our work here is of heuristic nature (in the collo-
quial sense of the word) and that the rules we present can be easily fooled. It is not
our aim, however, to present a bulletproof system, but rather to explore the natural
clues left by human experts.

5 Deductor

Deductor performs logical inference and directly reasons about the agent’s knowl-
edge. In particular, it is the module which analyses both current state of the world
and how it will change as a result of performing a particular action. To this end,
the agent uses a variant of Active Logic [20], augmented withsome ideas from
Situation Calculus [21].

Active Logic is a reasoning formalism which, unlike classical logic, concerns
the processof performing inferences, not just the final extension of theentail-
ment relation. In particular, instead of classical notion of theoremhood, AL has
i-theorems, i.e. formulae which can be provenin i steps. This allows an agent to
reason aboutdifficulty of proving something, to retract knowledge found inappro-
priate and to resolve contradictions in a meaningful way, aswell as makes the agent
aware of the passage time and its own non-omniscience. An in-depth description
of Active Logic, and especially its way of handling time, canbe found in [20].

In order to properly represent actions we have decided to augment Active Logic
with some concepts from Situation Calculus. In particular,in order to have the

7

agent reason about changing world, every formula is indexedwith current situa-
tion. Furthermore, since the agent needs to reason about effects of executing var-
ious plans, we additionally index formulae with the plan theagent is considering.
Details of this approach can be found in [17].

In the experiments reported in this paper, we consider plansof length one and
two only. In order to make plan evaluation more meaningful, we allow those plans
not only to be simple (sequential) but alsoconditional, i.e. to have branches where
actions depend on agent’s observations. We expect that suchconditional plans will
be, in many domains, much easier to classify as either good orbad ones.

6 Planner and Actor

The Actor module is an overseer of Deductor and works as a controller of the
agent as a whole. In its ultimate form, it is expected to do three main things. First,
it guides the reasoning process by making it focus on the plans most likely to be
useful. Second, it decides when enough time has been spent ondeliberation and
no further interesting results are likely to be obtained. Third, it makes decisions to
execute a particular plan from Deductor’s repertoire.

In this paper we focus more on the interactions between learning and deduction,
so both Planner and Actor have been significantly simplified.Planner does not use
any heuristics and simply creates all possible plans, although we aim to use existing
planners to efficiently create only the “reasonable” plans.Also, Deductor uses an
incomplete reasoner which always terminates, therefore Actor does not need to
decidewhento begin plan execution — it simply lets Deductor infer everything
it can about each of the available plans and chooses the best one based on all the
available information.

7 Learner

The ultimate goal of the learning module is to provide Actor with knowledge nec-
essary to choose the best plan for execution and to stop deliberation when too much
time has been spent on it without any new interesting insights.

A step in this direction is to learn how to detect “bad” plans early, so that
Deductor does not waste time deliberating about them. We have defined bad plans
to be those which can kill the agent (in the Wumpus domain), and those that lead
to losing the rook (in the Chess domain).

In the experiments reported here, we assume that the agent has perfect knowl-
edge about which plans (training examples) are bad ones. This is a justified as-
sumption for Chess domain, where the opponent does not make trivial mistakes
and whenever it is possible for him to capture the rook, he will do so. In Wum-
pus, the distinction is not so clear — it is possible that the agent will get lucky and
not die even though it executes a dangerous plan, simply because the beast is in a
favourable position.

8

4 8 12 16 20 24 28 32 36 40
Number of examples

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

Relevant Predicates Only
Full Knowledge Base
Without mode declarations

Figure 2: Results of learning in Wumpus domain.

We have made some preliminary tests in a moresimulation-likeenvironment,
where an agent executes a plan and observes its actual effects only. Even though
the learning algorithm we used allows for the possibility ofnoisy data, we have
found that rather insufficient for our needs. Thus, the experiments we report here
do not contain any noise — we required Deductor toprovewhether a plan is safe
or not before it was used as a training example.

8 Results of the experiments

In a previous paper [18] we have presented the results where the agent learns to
distinguish bad plans early. We have shown that PROGOL is able to find the cor-
rect definition from as few as 30 randomly-chosen examples. Such a definition
allows the agent to save up to 70% of its reasoning time. In order to obtain such
results, however, we had to provide additional domain knowledge specifically for
the purpose of learning.

This extra knowledge consisted of two parts. The first were socalled mode
declarations, which serve to reduce the hypothesis search space by limiting types
of predicate arguments, as well as by specifying which ones are input and which
are output arguments and whether variables or constants should be used. This
part is mostly mechanical, and although we envision some interesting issues with
possibility of automating it, we do not focus on it here.

The other part is what inspired us to the work reported here. It turned out

9

4 8 12 16 20 24 28 32 36 40
Number of examples

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

Relevant Predicates Only
Full Knowledge Base
Without mode declarations

Figure 3: Results of learning in Chess domain.

that PROGOL was unable to perform meaningful generalisation because it was
giventoo muchknowledge. Therefore, in order to obtain good learning results, we
needed to specify which parts of the knowledge base are the most relevantones.

The results of learning we have achieved can be seen in Figures 2 and 3, for
WumpusandChessdomains, respectively. It can be easily seen that selectingthe
right subset of the whole knowledge base can be very beneficial. However, in the
reported work this had to be done by hand.

As explained in section 4, there is a number of guidelines theagent could use
to automatically determine which predicates are the most relevant. In order to
check those assumptions, we have implemented a system for evaluating subsets of
knowledge according to those guidelines.

We start with qualities that can be evaluated on a per-formulae basis, i.e., those
where for each formula we can estimate to what degree it can beconsidered a
“good” one. One of the most successful formalisms for dealing with this class of
problems, in particular one allowing for systematic aggregation of several indepen-
dent criteria, is thefuzzy setsapproach. We have decided to use it in this work.

Derived from observations. For every formula, we count the number ofob-
servationsin its complete deduction tree and calculate the membershipvalue ac-
cording to the function presented in Figure 4.

Consistency between plans. For every atomic formula (i.e. in the form
Predicate(args)) we look at all the other plans in the same situation, and de-
termine the ratio of those which containPredicate(args) to those which con-

10

0 1 2 5
Nr of observations

0

0.75
1

V
al

ue

Figure 4: Membership function “Derived from observations”.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ratio of differences between plans

0 0.1

1

V
al

ue

Figure 5: Membership function “Consistency between plans”.

tain¬Predicate(args). We then calculate the membership value according to the
function presented in Figure 5.

Inheritance chains. For every formula we analyse its deduction tree and check
whether it is achain (very unbalanced tree). If yes, we calculate the ratio of for-
mula’s position in it to the total length of the chain. We calculate the membership
value according to the function presented in Figure 6.

Axioms are boring. For every axiom, we count the number of other formulae
which are inferred from it, both directly and indirectly. Wecalculate the member-
ship value according to the function presented in Figure 7.

Explore time differences. For every formula, we check the timestamp of the
oldest of the sentences it was inferred from, excluding initial domain axioms, and
subtract it from the timestamp of the formula itself. We calculate the membership
value according to function presented in Figure 8.

To restate, we are interested in figuring out which predicates should be pre-
sented to the learning algorithm. To this end we evaluate allsubsets of predicates
and choose the best one. For any set of predicates, we start the evaluation by creat-
ing the set of all formulae in the knowledge base which contain only the predicates
from this set.

For each criterion, then, we calculate the average estimate(value of member-
ship function) of a sentence in this set. This tells us to whatdegree does the current

0 1
Position in chain

0

1

V
al

ue

Figure 6: Membership function “Inheritance chains”.

11

0 2 8 10
Nr of observations

0

0.5

1

V
al

ue

Figure 7: Membership function “Axioms are boring.”

0 4 10 15
Timestamp difference

0

0.5

1

V
al

ue

Figure 8: Membership function “Explore time differences.”

set of predicates fulfill each of the qualities we have identified. In order to ag-
gregate all five of them into one number we have used theproduct t-norm. Even
though its properties do not match the problem perfectly, using anything more
complex is not justified given how approximate are the parameters we use.

The seventh quality,limited in number, did not really fit the fuzzy set ap-
proach. Besides, we have decided to use it as a normalising factor, since different
sets of predicates can result in vastly different numbers offormulae being eval-
uated. Again, we have decided upon the simplest scheme wherewe divide the
aggregate fuzzy membership value by the number of formulae.We call this value
usefulnessof a predicate set.

At this point we are able to evaluate any predicate set, although this cannot yet
be used as the final measure, since the optimum value is alwaysachieved by a set
of cardinality equal exactly one1. The measure works quite well for separately es-
timating how good each predicate is all by itself. It is very rarely the case, however,
that a single predicate would be good for learning — there is almost always a need
for having several different predicates.

The final step is to use thecovering of the domain idea to arrive at a set of
predicates which aretogethermost likely to provide good learning results. In-
tuitively, we aim at adding predicates with high individualusefulnessas long as
they are reasonably independent of each other (i.e. as long as they originate from
different “parts” of agent’s knowledge).

Therefore, we calculatecoverageof a set of formulaeA as the ratio of all
formulae in the knowledge base which appear in the deductiontree of at least
one formula fromA. We arrive at our finalrelevancescore by multiplying the
usefulnessof a predicate set by itscoverage.

We have implemented the above scoring method in a domain-independent way

1For any two predicatesp1 andp2, theusefulnessof the set{p1, p2} always lies somewhere in
between the usefulness forp1 and forp2.

12

in our agent. We have run it on both theWumpus domain and on theChess

domain. As we hoped, the sets of predicates with the highest calculatedrelevance,
in both domains, turned out to be the ones which lead to good learning results.

It is not obvious how general our results are, since two example domains is too
few to reach definitive conclusions. It is enough, however, to suggest that our ideas
have merit.

9 Related work

We present an overview of work done on the border of planning and learning,
relevant to the approach we have adopted here.

The first to mention is [5], which presented results establishing conceptual sim-
ilarities between explanation-based learning and reinforcement learning. In partic-
ular, they discussed how Explanation-Based Learning can beused to learn action
strategies and provided important theoretical results concerning its applicability to
this aim.

A lot of work has been done in learning about what actions to take in a particu-
lar situation. E.g. [10] showed important theoretical results about PAC-learnability
of action strategies in various models. In [16] author discussed a more practical
approach to learning Event Calculus programs using Theory Completion. He used
extraction-case abduction and the ALECTO system to simultaneously learn two
mutually related predicates (Initiates andTerminates) from positive-only ob-
servations. Recently, [13] developed a system which learnslow-level actions and
plans from goal hierarchies and action examples provided byexperts, within the
SOAR architecture. Yet another fresh work close to this approach is documented
in [14], whereteleoreactive logic programs, possibly even recursive ones, are used
for representing the action part of an agent. On top of it a learning mechanism,
quite similar to ILP, is employed for improving the existingaction programs.

In order to handle large search space [6] used relational abstractions to sub-
stantially reduce cardinality of search space. Still, thisnew space is subjected to
reinforcement learning, not to a symbolic planning system.A similar idea, but
with relational representation being learned via behaviour cloning techniques, is
presented in [15].

Outside the domain of planning, there is a lot of important research being done
in the learning paradigm. [4] showed several ideas about howto learn interesting
facts about the world instead of predefined concepts. A similar result related to
planning has been presented in [8], where the system learns domain-dependent
control knowledge, beneficial in planning tasks.

From another point of view, [11, 12] presented a framework for learning done
“specifically for the purpose of reasoning with the learned knowledge,” an inter-
esting early attempt to move away from thelearning to classifyparadigm, which
dominates the field of machine learning.

Yet another approach focuses on (deductive) planning, taking into account in-

13

completeness of agent’s knowledge and uncertainty about the world. Conditional
plans, generalised policies, conformant plans, universalplans are the terms used by
various researchers [3, 19, 23, 1] to denote in principle thesame idea: generating a
plan which is “prepared” for all possible reactions of the environment. We are not
aware of research that would attempt to integrate learning into this approach.

10 Conclusions

We are developing an architecture for rational agents that combine planning, de-
ductive reasoning, inductive learning and time-awarenessin order to operate suc-
cessfully in dynamic environments. Our agent creates conditional partial plans,
reasons about their consequences using an extension of Active Logic with Situa-
tion Calculus features, and employs ILP learning to generalise past experience in
order to distinguish good plans from bad ones.

In this paper we report on our experiments with using PROGOL learning al-
gorithm to identify bad plans early, in order to save agent the (wasteful) effort of
deliberating about them. We analyse how the quality of learning depends on the
amount of additional, domain-specific knowledge provided by the user.

We argue that an important part of this additional knowledgecorresponds, to
some degree, to the intuitive notion ofrelevant knowledge. We claim that our
architecture, and in particular the learning part of it, canprovide interesting ways
to formalise the notion of “relevance”.

We also propose a simple scheme for automatic evaluation of such relevance,
which usesfuzzy setsto aggregate results from several criteria expressed as natural
rules. We show that good results can be obtained on our two example domains.

The research presented here can be continued in many different directions. The
most obvious one is to improve the learning algorithm, by making it aware of the
actual meaning and origins of its input data. By exploring the difference between
fluentsandnon-fluents, for example, the hypothesis can better match different sit-
uations. Similarly, before learning begins it is too early to commit to a subset of
relevant predicates — an ILP algorithm which would take relevance estimations as
input and use them toguidethe generalisation search would be useful.

The exact limits of applicability of the measures we proposehere are still to be
evaluated, but we show that they are useful, and we are convinced that theoretical
discussions touch a very important and difficult topic, therefore we believe they
will be interesting for other researchers.

Finally, the architecture we are presenting here is still evolving and the func-
tionality of every module will be expanded in the future.

References
[1] Piergiorgio Bertoli, Alessandro Cimatti, and Paolo Traverso. Interleaving execution and plan-

ning for nondeterministic, partially observable domains.In European Conference on Artificial
Intelligence, pages 657–661, 2004.

14

[2] W. Chong, M. O’Donovan-Anderson, Y. Okamoto, and D. Perlis. Seven days in the life of a
robotic agent. InGSFC/JPL Workshop on Radical Agent Concepts, 2002.

[3] Alessandro Cimatti, Marco Roveri, and Piergiorgio Bertoli. Conformant planning via symbolic
model checking and heuristic search.Artificial Intelligence, 159(1-2):127–206, 2004.

[4] Simon Colton and Stephen Muggleton. ILP for mathematical discovery. In13th International
Conference on Inductive Logic Programming, 2003.

[5] Thomas G. Dietterich and Nicholas S. Flann. Explanation-based learning and reinforcement
learning: A unified view. InInternational Conference on Machine Learning, pages 176–184,
1995.

[6] Saso Džeroski, Luc De Raedt, and Kurt Driessens. Relational reinforcement learning.Machine
Learning, 43(1/2):7–52, 2001.

[7] Jennifer Elgot-Drapkin, Sarit Kraus, Michael Miller, Madhura Nirkhe, and Donald Perlis. Ac-
tive logics: A unified formal approach to episodic reasoning. Technical report, University of
Maryland, 1999.

[8] Alan Fern, SungWook Yoon, and Robert Givan. Learning domain-specific control knowledge
from random walks. InInternational Conference on Automated Planning and Scheduling,
2004.

[9] Michael Genesereth, Nathaniel Love, and Barney Pell. General game playing: Overview of the
aaai competition.AI Magazine, 26(2):62–72, 2005.

[10] Roni Khardon. Learning to take actions.Machine Learning, 35(1):57–90, 1999.

[11] Roni Khardon and Dan Roth. Learning to reason with a restricted view. InWorkshop on
Computational Learning Theory, 1995.

[12] Roni Khardon and Dan Roth. Learning to reason.Journal of the ACM, 44(5):697–725, 1997.

[13] Tolga Könik and John E. Laird. Learning goal hierarchies from structured observations and
expert annotations.Machine Learning, 64:263–287, 2006.

[14] Pat Langley and Dongkyu Choi. Learning recursive control programs from problem solving.
Journal of Machine Learning Research, 7:493–518, 2006.

[15] Eduardo F. Morales. Relational state abstractions forreinforcement learning. InICML-04
Workshop on Relational Reinforcement Learning, 2004.

[16] Stephen Moyle. Using theory completion to learn a robotnavigation control program. InILP,
2002.

[17] Sławomir Nowaczyk. Partial planning for situated agents based on active logic. InWorkshop
on Logics for Resource Bounded Agents, ESSLLI 2006, 2006.

[18] Sławomir Nowaczyk and Jacek Malec. Learning to evaluate conditional partial plans. 2007.
Submitted to Conference on Artificial Intelligence and SoftComputing, ASC 2007, Palma de
Mallorca, Spain, August 2007.

[19] Ronald P. A. Petrick and Fahiem Bacchus. Extending the knowledge-based approach to plan-
ning with incomplete information and sensing. InInternational Conference on Automated
Planning and Scheduling, pages 2–11, 2004.

[20] Khemdut Purang, Darsana Purushothaman, David Traum, Carl Andersen, and Donald Perlis.
Practical reasoning and plan execution with active logic. In John Bell, editor,Proceedings of
the IJCAI-99 Workshop on Practical Reasoning and Rationality, pages 30–38, 1999.

[21] Raymond Reiter.Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. The MIT Press, 2001.

[22] Stuart Russell and Peter Norvig.Artificial Intelligence: A Modern Approach. Prentice Hall
Series in AI, 2nd edition, 2003.

[23] W. van der Hoek and M. Wooldridge. Tractable multiagentplanning for epistemic goals. In
Proceedings of the First International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS), 2002.

15

