Relative Relevance of Subsets of Agent’s
Knowledge

Stawomir Nowaczyk and Jacek Malec
Department of Computer Science
Lund University

October 7, 2008

Abstract

We study agents situated in partially observable environtsjavho do
not have the resources to create conformant plans. Insteadcreate con-
ditional plans which are partial, and learn from experiet@ehoose the
best of them for execution. Our agent employs an incompigtenslic de-
duction system based on Active Logic and Situation Calctduseasoning
about actions and their consequences. An Inductive Logigr@mming al-
gorithm generalises observations and deduced knowledgler to distin-
guish “bad” plans early, before agent’s computational ueses are wasted
on considering them.

In this paper we present experiments which show that in doddearn-
ing to be successful, an agent’s knowledge needs to be dilteve argue that
this filtering nicely matches the intuitive notion of “knosdge relevance”.
We also present a heuristic scheme, combining severalalatues, which
can be used to automatically determine which formulae shbalused for
learning.

1 Introduction

Rational, autonomous agents able to survive and to actieiregoals in dynamic,
only partially observable environments are the ultimatal @b Al since its begin-
ning. Quite a lot has already been done towards achieviriglitekam, but dynamic
environments still remain a big challenge for autonomogtesys. In particular,
nontrivial environments that are only partially obsereapbse demands which are
beyond the current state of the art, possibly except wheicaked solutions are
developed for narrow domains.

One of the major ways of coping with uncertainty and lack aikledge about
current situation is to exploit previous experience. Eigrare may be gathered

*This work has been partially supported by the EU-projectFSAS, Skill-Based Inspection and
Assembly for Reconfigurable Automation Systems (FP6 - 06y.14

in many ways: by memorising, by being organised in some rmemntaels, by
creating appropriate probability distributions over phbles courses of events, to
name just a few approaches to learning.

All realistic agents necessarily have limited resourceth) mental (CPU power,
memory size) and physical (limited repertoire of possilaéons). In our research
we are interested in developing rational, situated agéatsare aware of their own
limitations and can take them into account [2]. To faciétahis, we use Active
Logic [7] for knowledge representation, which characesiseasoning as an ongo-
ing process, instead of focusing on a fixed point of entailmelation.

Due to limited resources and to the necessity of remainiggaesive in a
dynamic world, situated agents cannot be expected to coeaplete plans for
achieving their goals. They need to consciously alternate/den reasoning, act-
ing and observing their environment, or even do all thosegthiin parallel. We
aim to achieve this by making the agent create short comditipartial plans and
execute them, learning more about its surroundings thrawigihe process.

In our approach, the agent continuously reasons about thd vemriching its
knowledge using both observations and deduction. In oalgeneralise its expe-
rience, due to resource limitations, it needs to select thrdynost relevansubset
of its own knowledge for learning, as it is not practical tpegt ILP algorithms to
be able to find useful generalisations among vast amountsrefaied knowledge.

An important obstacle is the lack of satisfactory objectiveasure of knowl-
edge relevance. Typically, the most interesting insighisfthe logical perspec-
tive come fromequivalencerelation, where one can say that two sets of formulae
denote exactly the same models. This level of abstractiowetier, is not quite
sufficient for us, since it does not capture the qualities veeiaterested in: two
theories equivalent in the semantic sense can differ gréathow easy it is to
generalise from them and to learn new concepts.

A primary goal of this work is to explore how the agent can adbcally
choose some parts of its knowledge base in such a way as tonisaxthe quality
of learning. Within the bounded computational resourcesathpent possesses, it
is not feasible to generalise blindly. The generalisaticocess is inherently diffi-
cult, with very high branching factor and therefore limitimput data is of crucial
importance for realistic agents.

This field of study has seen alot of interest in the past y&atthe major prob-
lem has often been lack of formal model as to what “relevaricghally means.
Throughout this paper we would like to argue thatithest relevanknowledge can
be defined as the one which leads to the best learning results.

The paper is divided as follows. First, we briefly describe domains used in
our experiments. Then we present the agent architectuleywés by a discussion
of knowledge relevance, which underlies the rest of thiskwaéfterwards we de-
scribe each of the agent’s modules, with focus put on legrriimally, we present
the experimental results, followed by a discussion of eelatork. The paper ends
with some preliminary conclusions.

2 Experimental Domains

In the experiments we have used two domains: the game of Waifi22] and a
chess ending. The Wumpus game is very simple, easy to uaddrsind people
have no problems playing it effectively as soon as they ldemules. For artificial
agents, however, even such a simple game remains a seriliengle.

The game is played on a square board. There are two charattenslayer
and the Wumpus. The player can, in each turn, move to any beiging square,
while the Wumpus does not move at all. Position of the moristapt known to
the player, he only knows that it hides somewhere on the boasdWumpus is
a smelly beast, the player can immediately notice if thetareds in the vicinity.
The goal of the game is to find out the exact location of the neosnby moving
throughout the board and observing on which squares doeteit.sAt the same
time, if the player enters the square occupied by the beagiets eaten and loses
the game.

Our second domain, which we call Chess, is a modified versiékimg and
rook vs king and knight” chess ending. Since we are intedesteartially un-
known environments, we assume for the sake of experiment#tiat the agent
does not know how the opponent’s king is allowed to movepriori any move
is legal. The agent will need to use learning to discover vidrads of moves are
actually possible.

The goal of our research is somewhat akin to@eneral Game Playing Com-
petition[9]: our agent is given some declarative knowledge aboutitimeain and
is supposed to act rationally from the very beginning, whidggoming more and
more proficient as it gathers more experience.

3 Agent Architecture

The architecture of our agent (see Fig. 1) consists of foun fuactional modules.
Each of them is responsible for a different part of agentisnality, but the overall
intelligence is only achievable by the interactions amdvagrt all.

The Deductormodule is the one responsible for symbolic reasoning. Is use
a logical formalism based on combination of Active Logic &ituation Calculus
(as introduced in [17]) in order to figure out consequenceh®fagent’s current
beliefs. Based on the domain knowledge and previous olismmga it analyses
possible actions and predicts what will be the effect ofrtegecution.

The second module Blanner, which generates partial, conditional plans ap-
plicable in the agent’s current situation. In the reportggdegiments, our planner
was a simple one, generating pre-arranged plans only (aflimable plans for the
Wumpus domain, and some arbitrary set of “interesting” pliam Chess).

The third main moduleictor, oversees Deductor’s reasoning process and eval-
uates plans that Planner has come up with, trying to find outtwis the most
useful one to perform. For this paper, Actor, renamed mopecggiately toPlan

DEDUCTOR PLANNER

BELIEFS

LEARNER <] beliefs 7
= about plans /
. //
plan beliefs about world
. eneric
quality situation—specifig
BLAN hypotheses
about plans
EVALUATION

T

Figure 1: Architecture of the system.

Evaluator, waits until Deductor terminates and only executes plates #fis hap-
pens, but in general it is Actor’s responsibility to balaacting and deliberation.

Finally, theLearnermodule analyses the agent’s past experience and induces
rules for estimating quality of plans. Results of learnimggess are used both by
Deductor and by Actor. In particular, since the plans Dealutasons about are
partial (i.e. they do not — most of the time — lead all the wayite goal), it can
be very difficult to estimate whether a particular plan isegpsh the right direction
or not. Machine learning techniques is one way in which thigd be achieved.

In general, the ultimate goal of this architecture is towalloutting together
state-of-the-art solutions from several different ardasroficial Intelligence. De-
spite multiple effortsthe vast majority of Al research isrgedone in specialised
subfields and it is our belief that neither of these subfialdaecan give us truly
intelligent, rational agents. Our architecture, whichite best of our knowledge is
novel, may be one way to integrate them.

4 Relevance Estimation

Estimating the relevance of a particular formula to the #gedask at hand is a
very difficult problem, one which cannot be solved in genetalpractice, how-
ever, there are certain regularities and conventions wihnichan experts use when
encoding domain knowledge for the agent, and it is our bétiaf some of those
conventions can be exploited by the agent.

The basic assumption is that human experts who create ageitil knowl-
edge base do it in such a way as to maximise its usefulnesg tagémt hodulo

mistakes and ignorance, of course). Humans can often rablyoaasily deter-
mine which parts of the knowledge base are most relevantdieing particular
problems, and this is often reflected in the encoded knowl@ughany ways. The
ability to extract such hints would be very valuable to artjoraal agent.

We have considered several qualities which can be usedtasliimt a particular
piece of knowledge is “good”. We discuss and rationalisenthelow on a rather
abstract level, while in section 8 we will show how we have lenpent them.

Derived from observations. For logic-based rational agents, there are typi-
cally few observations (both because the cost of acquitiegitis often high, and
because it is well known that they are expensive to reasoutpl®w it is unlikely
that they are irrelevant. It is a wise idea, therefore, tddrigeep them in the train-
ing knowledge whenever possible. Also, it is almost uniallysthe case that the
right decisions for an agedb depend on the acquired observations.

It is also important to notice that quite often not the raweskations them-
selves, but rather their aggregations with the rest of teatgknowledge, form the
most desirable input (i.8V umpusPosition should be used rather th&mells;
CanM ove rather thenPosition).

Consistency between plans. When looking at possible plans within a given
situation and analysing their expected outcomes, oftemaiformulae occur in
many cases. Those sometimes encode exactly the same kgewded sometimes
a different (even opposite) one. For example, it is possitée W umpus(a2)
would be known from executing some branch of plan and -Wumpus(a2)
would be known from executing some branch of pt&n

For the logical sentences most relevant for current proptera can find mul-
tiple situations where the same knowledge holds acrossittespectrum of plans
being considered. Having such consistency sufficientlgrofs one hint that the
given class of formulae is actually correlated with ageatsons.

Of course, interesting formulae are not always like thispfiany situations the
values of any given predicateed tovary, which corresponds to the case where the
real value is not known and the agent is actively exploririgedint possibilities. It
is important that both ends of the spectrum are representédiantly.

Inheritance chains. We assume that the initial domain knowledge is chosen in
such a way as to maximise agent’s performance, thereforevookl expect that
thefinal result of reasoning process is likely to be the most impoxaes. One way
to capture this would be to assume that the more difficult seeméence is to infer
(measured, e.g., as the number of steps needed to dedube ithore relevant it
is. This corresponds to the idea that such formula “contair@e knowledge than
easier ones.

This, however, would be overly susceptible to some irrelekaowledge being
present in the expert’s description of the domain. On therottand, we have
noticed in the reasoning traces of our agent a related aatksiing pattern. It is
quite often the case that the deduction tree of some fornisilegher degenerate:
it contains a singly branch which is very long, while all thibers are very short

ones. We call such treechain The middle sentences in such chains are very often
boring indeed, with the end ones containing everything wfrast.

Similaritiesbetween plan branches. When looking at conditional plans, there
is usually a number of branches which correspond to diffepessible observa-
tions that can be made during execution. Looking for regtigar between such
branches can provide interesting insight into which parth® agent’'s knowledge
base are the most relevant to choosing the best plan.

Axioms are boring. Rather obviously, learning from the domain axioms is
typically not the best idea. It is important to take advaatafthe results of rea-
soning the agent has performed, and often there are aggmgalailable which
express desired properties in ways much cleaner than bipdra@eaxioms alone.

One exception here, however, is the case when some axiomswaeused in
the deduction. If a human expert provides a number of forenwlaich are useless
for reasoning, then the agent can reasonably expect thelayt@ pole in learning.

Exploretimedifferences. Given that our agent reasons using Active Logic, we
have one more important clue as to interdependences bepisms of knowledge:
the differences in step humbers of when particular formbkaes been deduced.

One common pattern of reasoning is confined to a short tineeviak, with
sentences inferred in the previous time step being useckinutrent one, and so
on. On the other hand, sometimes an older formula is usednjumction with
the newest one, and we believe that this hints at somethtegesting. When the
old knowledge is relevant to the current situation, it is enbkely that the same
knowledge will be useful again in the future.

Another interesting idea would be to assume that things ckEtlearlier are
likely to be genericknowledge, therefore if they are applicable now, they wdl b
applicable again. Atthe same time, a large percentage ofttst recently inferred
formulae will be specific ones, fitting current situation bat useful anywhere else.

Smarter rules of inference. A large appeal of Active Logic is its powerful
mechanism of adding domain-specific extensions to the wtlbéished sets of in-
ference rules. Typical examples make use of timestampstasahation functions,
but it is also possible to specify, among other thing, thatsoules of inference are
more likely to lead to relevant sentences (for exampledus ponens interesting
while negation introductions boring).

Limited in number. On a more technical side, having too many formulae
presented to ILP algorithm, even if most of them are “good&ams that it will
fail to learn anything useful anyway (or, at the very lealsttthe generalisation
process will be very fragile).

When search for solution is not able to meaningfully anaigsgority of the hy-
pothesis space, the resulting knowledge will be pretty maadkdom set of clauses
which fit learning examples to some minimal degree. With theaiber of degrees
of freedom that ILP algorithms have, such results are tyilgicampletely useless.

Covering of thedomain. The above qualities mostly analyse sentences in sep-
aration, but it is important to also look at the bigger pietuAn important issue is
that a large portion of both initial and current knowledgsdécontributes”, one

6

way or another, to the learning process. The assumptiomghaut this paper is
that the domain knowledge is basically expected to be ussdulhichever knowl-
edge we decide to present to PROGOL, it should have at least shance of
being influenced by all parts of it.

There are many possible definitions of what “influence” migtgan, but the
most obvious one is to track which formulae were used to dedoe set we are
interested in (akin a very basic truth-maintenance systéhgourse the fact that
sentencel is deduced fromn does not necessarily mean that tia¢ionale for
including o in domain description has also been capturegplput it at least lack
one negative indication.

Finally, an important decision is whether to consider eacmtila separately,
or rather cluster them in some way. We have decided to clastegences according
to the predicates they contain. It can happen, for examipé N eighbourhood
relation between two squares is interesting and impor@nkearning, while the
same relation between two others is irrelevant. There igiauserisk, however,
of significantly distorting the domain knowledge, to the @gwhere the resulting
hypothesis will generalise very badly. We have decided tieifiosome of this ex-
pressiveness and we only make decisions as to which prediags to be included
in the training knowledge (i.e. if we decide th&lieighbourhood is relevant, then
all formulae containingVeighbourhood will be used for learning).

We feel the need to stress that our work here is of heuristiradin the collo-
quial sense of the word) and that the rules we present carnsiig fesled. It is not
our aim, however, to present a bulletproof system, but rathexplore the natural
clues left by human experts.

5 Deductor

Deductor performs logical inference and directly reasdrmitithe agent’'s knowl-
edge. In particular, it is the module which analyses botherrstate of the world
and how it will change as a result of performing a particuletice. To this end,
the agent uses a variant of Active Logic [20], augmented witine ideas from
Situation Calculus [21].

Active Logic is a reasoning formalism which, unlike clasgiogic, concerns
the processof performing inferences, not just the final extension of #meail-
ment relation. In particular, instead of classical notidrth@oremhood, AL has
i-theoremsi.e. formulae which can be provem: steps This allows an agent to
reason aboutlifficulty of proving something, to retract knowledge found inappro-
priate and to resolve contradictions in a meaningful wayelsas makes the agent
aware of the passage time and its own non-omniscience. Aepth description
of Active Logic, and especially its way of handling time, daafound in [20].

In order to properly represent actions we have decided tmangActive Logic
with some concepts from Situation Calculus. In particularorder to have the

agent reason about changing world, every formula is indeéid current situa-
tion. Furthermore, since the agent needs to reason abeat®fff executing var-
ious plans, we additionally index formulae with the plan #uent is considering.
Details of this approach can be found in [17].

In the experiments reported in this paper, we consider platength one and
two only. In order to make plan evaluation more meaningfud,alow those plans
not only to be simple (sequential) but alsenditional i.e. to have branches where
actions depend on agent’s observations. We expect thatsuclitional plans will
be, in many domains, much easier to classify as either gobdaones.

6 Planner and Actor

The Actor module is an overseer of Deductor and works as aaltant of the
agent as a whole. In its ultimate form, it is expected to dedimain things. First,
it guides the reasoning process by making it focus on thespiaost likely to be
useful. Second, it decides when enough time has been speldliberation and
no further interesting results are likely to be obtainedird;hit makes decisions to
execute a particular plan from Deductor’s repertoire.

In this paper we focus more on the interactions betweenilggeand deduction,
so both Planner and Actor have been significantly simplifiddnner does not use
any heuristics and simply creates all possible plans, adtheve aim to use existing
planners to efficiently create only the “reasonable” plakiso, Deductor uses an
incomplete reasoner which always terminates, therefor®rAdoes not need to
decidewhento begin plan execution — it simply lets Deductor infer evbnyg
it can about each of the available plans and chooses the hediased on all the
available information.

7 Learner

The ultimate goal of the learning module is to provide Actdathvknowledge nec-
essary to choose the best plan for execution and to stopedatibn when too much
time has been spent on it without any new interesting insight

A step in this direction is to learn how to detect “bad” plarslg so that
Deductor does not waste time deliberating about them. We tafined bad plans
to be those which can kill the agent (in the Wumpus domainj,those that lead
to losing the rook (in the Chess domain).

In the experiments reported here, we assume that the agepehact knowl-
edge about which plans (training examples) are bad ones it justified as-
sumption for Chess domain, where the opponent does not mialkd mistakes
and whenever it is possible for him to capture the rook, hédwalso. In Wum-
pus, the distinction is not so clear — it is possible that tiera will get lucky and
not die even though it executes a dangerous plan, simplyubedhe beast is in a
favourable position.

0.95

0.9

0.85

o
0
\

Accuracy
o
~
[(6)]
|

0.7
0.65
0.6 '
/ / - - — Without mode declarations
0557 — — Full Knowledge Base -
, —— Relevant Predicates Only
0.5 \ \ T \ \ T T \

I
4 8 12 16 20 24 28 32 36 40
Number of examples

Figure 2: Results of learning in Wumpus domain.

We have made some preliminary tests in a maineulation-likeenvironment,
where an agent executes a plan and observes its actuakedfdgt Even though
the learning algorithm we used allows for the possibilitynofsy data, we have
found that rather insufficient for our needs. Thus, the érpamts we report here
do not contain any noise — we required Deductoptovewhether a plan is safe
or not before it was used as a training example.

8 Resultsof the experiments

In a previous paper [18] we have presented the results wheragent learns to
distinguish bad plans early. We have shown that PROGOL &s tabfiind the cor-
rect definition from as few as 30 randomly-chosen examplagch @ definition
allows the agent to save up to 70% of its reasoning time. lerai@ obtain such
results, however, we had to provide additional domain kedgé specifically for
the purpose of learning.

This extra knowledge consisted of two parts. The first wereal®d mode
declarations which serve to reduce the hypothesis search space byrlgrtitpes
of predicate arguments, as well as by specifying which onesngut and which
are output arguments and whether variables or constantddsbe used. This
part is mostly mechanical, and although we envision soneesting issues with
possibility of automating it, we do not focus on it here.

The other part is what inspired us to the work reported hetdurhed out

0.95

0.9 L

0.85 - - — Without mode declarations -
— — Full Knowledge Base

0.8 - — Relevant Predicates Only |

Accuracy
o
~
[(6)]
|

o
]
\

S —— o —
/

0.65 -~ -

0.6 -

0.55 i’ S - = Tk

. / . —l

0.5 L£: \ T \ \

7
\ \ \ \ \
4 8 12 16 20 24 28 32 36 40

Number of examples

Figure 3: Results of learning in Chess domain.

that PROGOL was unable to perform meaningful generalisdbecause it was
giventoo muchknowledge. Therefore, in order to obtain good learninglteswe
needed to specify which parts of the knowledge base are tsereievantones.

The results of learning we have achieved can be seen in BiQuamnd 3, for
Wumpusand Chessdomains, respectively. It can be easily seen that selettiag
right subset of the whole knowledge base can be very berefidtavever, in the
reported work this had to be done by hand.

As explained in section 4, there is a number of guidelinesatfent could use
to automatically determine which predicates are the mdsvaat. In order to
check those assumptions, we have implemented a systemaioiaéing subsets of
knowledge according to those guidelines.

We start with qualities that can be evaluated on a per-fambhbsis, i.e., those
where for each formula we can estimate to what degree it carobsidered a
“good” one. One of the most successful formalisms for dealiith this class of
problems, in particular one allowing for systematic aggtem of several indepen-
dent criteria, is théuzzy setspproach. We have decided to use it in this work.

Derived from observations. For every formula, we count the numberaid-
servationsin its complete deduction tree and calculate the memberstiye ac-
cording to the function presented in Figure 4.

Consistency between plans. For every atomic formula (i.e. in the form
Predicate(args)) we look at all the other plans in the same situation, and de-
termine the ratio of those which contattredicate(args) to those which con-

10

Value
o
by
al =
Ll

0 T T 1
1 2 5
Nr of observations

Figure 4: Membership function “Derived from observatians”

1
09 j T T T T T T T T T 1

0 01 02 03 04 05 06 07 08 09 1
Ratio of differences between plans

Value

Figure 5: Membership function “Consistency between plans”

tain —Predicate(args). We then calculate the membership value according to the
function presented in Figure 5.

Inheritance chains. For every formula we analyse its deduction tree and check
whether it is achain (very unbalanced tree). If yes, we calculate the ratio of for
mula’s position in it to the total length of the chain. We cdéte the membership
value according to the function presented in Figure 6.

Axioms are boring. For every axiom, we count the number of other formulae
which are inferred from it, both directly and indirectly. Walculate the member-
ship value according to the function presented in Figure 7.

Explore time differences. For every formula, we check the timestamp of the
oldest of the sentences it was inferred from, excludingahdtomain axioms, and
subtract it from the timestamp of the formula itself. We cédte the membership
value according to function presented in Figure 8.

To restate, we are interested in figuring out which predgcateould be pre-
sented to the learning algorithm. To this end we evaluatsuddtets of predicates
and choose the best one. For any set of predicates, we statdhuation by creat-
ing the set of all formulae in the knowledge base which conaily the predicates
from this set.

For each criterion, then, we calculate the average estitmatee of member-
ship function) of a sentence in this set. This tells us to vdegiree does the current

Value

Position in chain

Figure 6: Membership function “Inheritance chains”.

11

0.5

Value

Nr of observations

Figure 7: Membership function “Axioms are boring.”

1

0.5

Value

0 T I ™
0 4 10 15
Timestamp difference

Figure 8: Membership function “Explore time differences.”

set of predicates fulfill each of the qualities we have idiextti In order to ag-
gregate all five of them into one number we have usedptbduct t-norm Even
though its properties do not match the problem perfectlingugnything more
complex is not justified given how approximate are the pataraave use.

The seventh qualitlimited in number, did not really fit the fuzzy set ap-
proach. Besides, we have decided to use it as a normalisitgy faince different
sets of predicates can result in vastly different numberfwhulae being eval-
uated. Again, we have decided upon the simplest scheme wieedivide the
aggregate fuzzy membership value by the number of formieecall this value
usefulnessf a predicate set.

At this point we are able to evaluate any predicate set, afthahis cannot yet
be used as the final measure, since the optimum value is aleiysved by a set
of cardinality equal exactly ode The measure works quite well for separately es-
timating how good each predicate is all by itself. It is veayaly the case, however,
that a single predicate would be good for learning — therénimsat always a need
for having several different predicates.

The final step is to use theovering of the domain idea to arrive at a set of
predicates which aréogethermost likely to provide good learning results. In-
tuitively, we aim at adding predicates with high individusdefulnessas long as
they are reasonably independent of each other (i.e. as Btigeg originate from
different “parts” of agent’s knowledge).

Therefore, we calculateoverageof a set of formulaed as the ratio of all
formulae in the knowledge base which appear in the dedudtem of at least
one formula fromA. We arrive at our finatelevancescore by multiplying the
usefulnessf a predicate set by itsoverage

We have implemented the above scoring method in a domaapamient way

For any two predicateg; andp., the usefulnesf the set{p, p»} always lies somewhere in
between the usefulness for and forps.

12

in our agent. We have run it on both thBumpus domain and on th&'hess
domain. As we hoped, the sets of predicates with the higladstilatedrelevance
in both domains, turned out to be the ones which lead to gadileg results.

It is not obvious how general our results are, since two examgmains is too
few to reach definitive conclusions. It is enough, howewesuggest that our ideas
have merit.

9 Reated work

We present an overview of work done on the border of plannimg laarning,
relevant to the approach we have adopted here.

The first to mention is [5], which presented results esthlrig conceptual sim-
ilarities between explanation-based learning and reteiment learning. In partic-
ular, they discussed how Explanation-Based Learning carsbd to learn action
strategies and provided important theoretical resulteeonng its applicability to
this aim.

A lot of work has been done in learning about what actionske i a particu-
lar situation. E.g. [10] showed important theoretical tessabout PAC-learnability
of action strategies in various models. In [16] author désed a more practical
approach to learning Event Calculus programs using Theorggletion. He used
extraction-case abduction and the ALECTO system to simetiasly learn two
mutually related predicatedwitiates andTerminates) from positive-only ob-
servations. Recently, [13] developed a system which Ielamdevel actions and
plans from goal hierarchies and action examples providedxmerts, within the
SOAR architecture. Yet another fresh work close to this epgin is documented
in [14], whereteleoreactive logic programpossibly even recursive ones, are used
for representing the action part of an agent. On top of it anieg mechanism,
quite similar to ILP, is employed for improving the existiagtion programs.

In order to handle large search space [6] used relationafaaiions to sub-
stantially reduce cardinality of search space. Still, tiésv space is subjected to
reinforcement learning, not to a symbolic planning systensimilar idea, but
with relational representation being learned via behavidoning techniques, is
presented in [15].

Outside the domain of planning, there is a lot of importaseegch being done
in the learning paradigm. [4] showed several ideas aboutthdearn interesting
facts about the world instead of predefined concepts. A aimndsult related to
planning has been presented in [8], where the system leamsid-dependent
control knowledge, beneficial in planning tasks.

From another point of view, [11, 12] presented a frameworkdarning done
“specifically for the purpose of reasoning with the learnedwledge,” an inter-
esting early attempt to move away from tlearning to classifyparadigm, which
dominates the field of machine learning.

Yet another approach focuses on (deductive) planningadakito account in-

13

completeness of agent’s knowledge and uncertainty abeuwtnld. Conditional
plans, generalised policies, conformant plans, univgisals are the terms used by
various researchers [3, 19, 23, 1] to denote in principlesimee idea: generating a
plan which is “prepared” for all possible reactions of theimnment. We are not
aware of research that would attempt to integrate learmtwthis approach.

10 Conclusions

We are developing an architecture for rational agents thiatbine planning, de-
ductive reasoning, inductive learning and time-awareinressder to operate suc-
cessfully in dynamic environments. Our agent creates tiondl partial plans,
reasons about their consequences using an extension eEAgigic with Situa-
tion Calculus features, and employs ILP learning to gersrgdast experience in
order to distinguish good plans from bad ones.

In this paper we report on our experiments with using PROG<ring al-
gorithm to identify bad plans early, in order to save ageat(thasteful) effort of
deliberating about them. We analyse how the quality of liearaepends on the
amount of additional, domain-specific knowledge providgdhe user.

We argue that an important part of this additional knowledgeesponds, to
some degree, to the intuitive notion mflevant knowledge We claim that our
architecture, and in particular the learning part of it, paovide interesting ways
to formalise the notion of “relevance”.

We also propose a simple scheme for automatic evaluationabf elevance,
which useduzzy set$o aggregate results from several criteria expressed asahat
rules. We show that good results can be obtained on our twogadomains.

The research presented here can be continued in many diftérections. The
most obvious one is to improve the learning algorithm, by imgkt aware of the
actual meaning and origins of its input data. By exploring difference between
fluentsand non-fluentsfor example, the hypothesis can better match different sit
uations. Similarly, before learning begins it is too eadycommit to a subset of
relevant predicates — an ILP algorithm which would takevahee estimations as
input and use them tguidethe generalisation search would be useful.

The exact limits of applicability of the measures we propose are still to be
evaluated, but we show that they are useful, and we are amwithat theoretical
discussions touch a very important and difficult topic, ¢fere we believe they
will be interesting for other researchers.

Finally, the architecture we are presenting here is stilvarg and the func-
tionality of every module will be expanded in the future.

References

[1] Piergiorgio Bertoli, Alessandro Cimatti, and Paolo Vieeso. Interleaving execution and plan-
ning for nondeterministic, partially observable domailmsEuropean Conference on Artificial
Intelligence pages 657-661, 2004.

14

(2]
(3]
(4]
(5]

(6]
(7]

(8]

(9]

[10]
[11]

[12]
[13]

[14]
[15]
[16]
[17]

[18]

[19]

[20]

[21]
[22]

(23]

W. Chong, M. O’Donovan-Anderson, Y. Okamoto, and D. BerlSeven days in the life of a
robotic agent. InGSFC/JPL Workshop on Radical Agent Concep@92.

Alessandro Cimatti, Marco Roveri, and Piergiorgio BdirtConformant planning via symbolic
model checking and heuristic searcktificial Intelligence 159(1-2):127-206, 2004.

Simon Colton and Stephen Muggleton. ILP for mathematicscovery. In13th International
Conference on Inductive Logic Programm;jra03.

Thomas G. Dietterich and Nicholas S. Flann. Explanatiesed learning and reinforcement
learning: A unified view. Innternational Conference on Machine Learnjngpges 176-184,
1995.

Saso DZeroski, Luc De Raedt, and Kurt Driessens. Relatireinforcement learninddachine
Learning 43(1/2):7-52, 2001.

Jennifer Elgot-Drapkin, Sarit Kraus, Michael Miller,adhura Nirkhe, and Donald Perlis. Ac-
tive logics: A unified formal approach to episodic reasonifigchnical report, University of
Maryland, 1999.

Alan Fern, SungWook Yoon, and Robert Givan. Learning donwspecific control knowledge
from random walks. Irinternational Conference on Automated Planning and Scligiu
2004.

Michael Genesereth, Nathaniel Love, and Barney Pelhe®a game playing: Overview of the
aaai competitionAl Magazineg 26(2):62—-72, 2005.

Roni Khardon. Learning to take actiorglachine Learning35(1):57-90, 1999.

Roni Khardon and Dan Roth. Learning to reason with arietetl view. InWorkshop on
Computational Learning Theoy995.

Roni Khardon and Dan Roth. Learning to reasdournal of the ACM44(5):697—725, 1997.

Tolga Kdnik and John E. Laird. Learning goal hieragshfrom structured observations and
expert annotationdMachine Learning64:263-287, 2006.

Pat Langley and Dongkyu Choi. Learning recursive aarprograms from problem solving.
Journal of Machine Learning Research493-518, 2006.

Eduardo F. Morales. Relational state abstractiongdégrforcement learning. IHCML-04
Workshop on Relational Reinforcement Learnipg04.

Stephen Moyle. Using theory completion to learn a ratmtigation control program. IiLP,
2002.

Stawomir Nowaczyk. Partial planning for situated aigeimased on active logic. Mlorkshop
on Logics for Resource Bounded Agents, ESSLLI 220@6.

Stawomir Nowaczyk and Jacek Malec. Learning to evauanditional partial plans. 2007.
Submitted to Conference on Artificial Intelligence and Sodimputing, ASC 2007, Palma de
Mallorca, Spain, August 2007.

Ronald P. A. Petrick and Fahiem Bacchus. Extending ttemedge-based approach to plan-
ning with incomplete information and sensing. limternational Conference on Automated
Planning and Schedulingrages 2—-11, 2004.

Khemdut Purang, Darsana Purushothaman, David Trawm,Ahdersen, and Donald Perlis.
Practical reasoning and plan execution with active logicJdhn Bell, editorProceedings of
the IJCAI-99 Workshop on Practical Reasoning and Ratiangtiages 30-38, 1999.
Raymond ReiterKnowledge in Action: Logical Foundations for Specifyingldmplementing
Dynamical SystemsThe MIT Press, 2001.

Stuart Russell and Peter Norvidhrtificial Intelligence: A Modern ApproachPrentice Hall
Series in Al, 2nd edition, 2003.

W. van der Hoek and M. Wooldridge. Tractable multiagpl@nning for epistemic goals. In
Proceedings of the First International Conference on Aaotanus Agents and Multiagent Sys-
tems (AAMAS)2002.

15

