
Knowledge-Based Reconfiguration of Automation Systems

Jacek Malec, Anders Nilsson, Klas Nilsson, Sławomir Nowaczyk

Abstract— This article describes the work in progress on
knowledge-based reconfiguration of a class of automation sys-
tems. The knowledge about manufacturing is represented in
a number of formalisms and gathered around an ontology
expressed in OWL, that allows generic reasoning in Description
Logic. In the same time multiple representations facilitate
efficient processing by a number of special-purpose reasoning
modules, specific for the application domain. At the final
stage of reconfiguration we exploit ontology-based rewriting,
simplifying creation of the final configuration files.

I. INTRODUCTION

Knowledge representation is one of the major topics

studied throughout the 50 years of artificial intelligence re-

search. A multitude of methods has been developed, ranging

from formal accounts, based on logical formalisms, through

semi-formal approaches, to ad-hoc methods applicable in

particular cases.

The semantic web project [1] aims to formalize large

portions of knowledge in a form which enhances interoper-

ability of usually distributed systems, and which introduces

provisions for a common understanding of basic terms. The

term ontology is normally used in this context to denote a

logical formalization of a particular domain of knowledge,

stored in a commonly understood format and accessible via

the world wide web or a similar mechanism.

Applicability area of this research is not limited to just

the world wide web. Below we present our work in a

project devoted to introducing limited elements of artificial

intelligence into production support (system integration). The

general aim of the project is to support engineers and make

the production engineering easier (and thus cheaper) in most

circumstances. The industrial robot systems available today

are only justifiable in enterprises with long or repeated

product series and with highly trained staff to program and

configure the robots. Small and medium enterprises (SMEs)

typically manufacture many different products in short series

and need to be able to reconfigure the manufacturing line

within a day or so, which is virtually impossible with

today robot systems. The project is expected to contribute

to remedying this situation.

The approach taken assumes multiple knowledge repre-

sentation formalisms coexisting in the system. Depending on

what kind of reasoning needs to be performed the appropriate

representation is chosen and a suitable reasoning engine

This work has been supported by the EU-project SIARAS Skill-Based

Inspection and Assembly for Reconfigurable Automation Systems (FP6 -
017146).

The authors are with Department of Computer Science, Lund Univer-
sity, Box 118, S–221 00 Lund. Sweden, [jacek, andersn, klas,

slawek]@cs.lth.se.

is used to reach conclusions. Distributedness and multiple

representations are the crucial factors allowing us to address

non-trivial reconfiguration tasks. Efficient transformations

between those representations are basic ingredient of the

solution. In particular, the mechanism of ontology-based

compilation is employed for creation of configurations, fa-

cilitating smooth transition from a generic process represen-

tation to device-specific code.

The paper is divided as follows. First we describe the

project and discuss the choices to be made. Then the current

system architecture is briefly presented, with focus on knowl-

edge representation formalisms used. Next the ontology-

based compilation is described in more detail. Finally we

briefly present related works and make some preliminary

conclusions.

II. SIARAS

SIARAS is an acronym of an EU-funded (FP6 - 017146)

STREP-project entitled Skill-Based Inspection and Assembly

for Reconfigurable Automation Systems. Its main goal is

to build an intelligent system, named provisionally the skill

server, capable of supporting automatic and semi-automatic

reconfiguration of a manufacturing processes.

The main objective of the design phase was to merge two,

somewhat opposed, views on the reconfiguration process:

the top-down, AI-based view and the bottom-up, engineering

one.

A. Top-down AI approach

The top-down approach describes the problem of reconfig-

uration as a (re)planning problem: given a new task (usually

expressed as a goal in AI), possibly being a modification of

the previous one, and given a set of skills available in the

system, understood as a description of the operations that

might be performed by the devices available to the user, find

such a sequence of operations that would ensure that the

task is correctly executed (find a plan such that the goal gets

achieved).

In order to achieve sufficient precision one needs to define

such terms as task, skill, operation and plan. In AI such

representation is usually a symbolic one (e.g., an appropriate

logic), formal and rather abstract: it does not specify the

details of operations being discussed. For example, a robot

would move(object1, frompoint, topoint) transforming a

state in which at(object1, frompoint) holds into a state in

which at(object1, topoint) holds. This level of abstraction is

definitely not interesting for a production engineer, therefore

one can foresee that a hierarchy of levels of abstraction will

need to be employed here. This in turn corresponds to the

Proceedings of the 3rd Annual
IEEE Conference on Automation Science and Engineering
Scottsdale, AZ, USA, Sept 22-25, 2007

SuRP-A05.5

1-4244-1154-8/07/$25.00 ©2007 IEEE. 170

notion of hierarchical planning, where one abstract operation

is further specialized into more concrete ones, possibly

passing a number of levels before the final, realizable plan

is created. In our trivial example one could imagine at least

the following levels of abstraction:

• move(obj1,pos1,pos2)

• Move end effector of the robot from location

(x, y, z, α, β, γ) to another location (x′, y′, z′, α′, β′, γ′)
along a collision-free trajectory f(x, y, z, t) (possibly

holding something; note cartesian/polar coordinates)

• Move end effector of the robot from location

(α1, . . . , α6) to another location (α′

1
, . . . , α′

6
) (note

robot coordinates)

All those levels need to be represented and manipulated

by the skill server. For that purpose the system needs a

set of representation formalisms allowing reasoning and

computations at each level of the hierarchy. This includes on

the lower levels, among others, kinematic models, dynamic

models, and collision-free path planning. One of the tech-

niques particularly suitable to be used here is Hierarchical

Task Network Planning [2].

We have defined a hierarchy representing knowledge about

skills (i.e., capabilities of devices actually or potentially

available for the end-user) and tasks (i.e., a generic repre-

sentation of the operations that might be requested from a

production system). On the topmost level, the task of the skill

server might be summarized as: identify available skills in the

production system at hand, identify the task to be executed

(as stated by the user), and find a plan that would orchestrate

skills so that this task is accomplished. That means that the

two hierarchies (of tasks and skills) should meet in some

point, which corresponds to the concrete task (plan), where

every single elementary subtask is realized by a concrete skill

available in the system.

This meeting of hierarchies allows us to reason about

parameters for concrete tasks, down to the level of actual

control programs. The task gets the parameters instantiated

by the values retrieved either from the skill description, at

a symbolic level, or from an attached database of control

programs, i.e., concrete realizations of the skills offered by

the particular device performing it.

Summarizing, the skill server expects a large knowledge

base with multiple representations for both skills and tasks,

a description of the concrete task to be realized (a product

description in some form, like CAD data and assembly

operations), a database of actual devices available, and an

efficient planning system. Its output is a specification of the

production process, either fulfilling the criteria set by the

user or explaining why they could not be met and suggesting

changes that would remedy the problem.

In the general case the complexity of such a solution is,

obviously, prohibitive. Therefore another approach needs to

be considered for addressing the reconfiguration problem.

B. Bottom-up Reparametrisation Approach

The assumption in this approach is that the skill server is

used only for reconfiguration of an existing, correct, properly

modeled production process. The system is not expected

to propose novel solutions, nor to search for alternative

possibilities of implementing the process. Rather, it will be

provided a complete description of a concrete, feasible and

correct production process. In particular, one should expect a

description of the task, i.e., what is produced, how (what are

the steps or states of the process, i.e. the subtasks) and how

each step (subtask) of the process contributes to the goal.

A suitable hybrid (discrete and continuous) representation

formalism needs to be used in this case.

Skills in this approach describe each device in terms of,

among other attributes, (sub)tasks they can realize — a

mapping to leaves in the task hierarchy should be, therefore,

straightforward. Some of the interesting problems are the

specification of boundary conditions between the elementary

tasks (success/failure distinction, conditions of merging two

tasks in series or in parallel, etc.) and, again, of a hierarchy

of skill descriptions, from abstract to concrete.

The skill server is expected to maintain the matching

between skills and tasks, temporal ordering of the skills,

and details about execution of each skill (a parameterized

description, possibly a control program as well).

The skill server may, thus, be queried in the following

manner: an engineer (a sufficiently knowledgeable user)

modifies the current process description in some way. It

might be a parameter change, an exchange of tasks, an

exchange of boundary conditions, etc. Then the functionality

of the skill server should be the following:

1) validity check of a process description (syntax, plau-

sibility);

2) modification of the current implementation of the pro-

cess, either reparametrisation or reconfiguration; or

3) description of the problems encountered;

4) description of recipes (e.g., possible design patterns to

employ);

5) suggesting solutions (depending on the vocabulary).

In step 2, after validating and accepting user input, the skill

server should be able to analyze the new process regarding:

feasibility (do the devices provide all the skills required

by the updated task), accuracy, reproducibility, robustness,

reliability, timing, power consumption, collision avoidance,

handling of error situations, cost, ... The steps 4 and 5 need

to be repeated until the final acceptance by the user or until

an apparent failure to deliver a solution.

C. Finding the Golden Middle

It seems that the top-down AI approach is computationally

infeasible except in very restricted cases, while the bottom-up

reparametrisation lacks generality, as it would mainly consist

of maintaining a database of possible parameter settings for a

number of devices and retrieving appropriate values (possibly

starting some simulations and running specific evaluation

algorithms) from the database, given appropriate query. The

main issue with this approach is guaranteeing scalability and

extensibility to new domains or to new kinds of devices. On

the other hand, such a database of specifics will be required

anyway in any reasonable solution to the problem.

SuRP-A05.5

171

Utility

External editor

(JGrafChart) Sequential Function Chart

Task description

(3
D

C
re

at
e)

V
is

u
al

is
at

io
n

S
im

u
la

ti
o
n

P
ro

te
g

e−
O

W
L

 A
P

I

Ontology

OWL

DBase
device
library

Skill
Server

Loop
Main

(Pellet)
reasoner
External

functions

Fig. 1. Current architecture of the skill server.

In order to make sure that we do not loose the larger

perspective while we aim at restricting ourselves to a feasible

problem, we can imagine a layered approach, with reconfig-

uration level in the bottom and replanning level on top of it,

the latter to be run only if necessary.

The main issue in such approach consists of deciding how

to split a request into reconfiguration and replanning, i.e.,

what part of the query may be solved at the constraint satis-

faction (reconfiguration) level and what requires replanning

to be run. To some extent this is related to the complexity of

reasoning required by a particular query: depending on how

much knowledge we expect to be provided explicitly by the

engineer (in the description of the current process) and how

much would be necessary to be deduced.

III. ARCHITECTURE

Figure 1 contains a sketch of the current status of the skill

server. The design is based on the assumption, expressed

in the following section, that the vocabulary elements used

by the server are: tasks, skills, devices, workpieces and

operations.

One can easily note that there are two strongly connected

components in this picture: the main loop of the skill server,

and a module named ontology. The ontology holds all the

generic knowledge of the system, knowledge about skills

(and tasks they are capable of performing, provided suitable

devices), about sensors and actuators that are involved in

performing skills (i.e., devices), the operations that may be

performed by instantiated skills (i.e. with a fixed device

associated with it), the workpieces involved in the production

process, etc.

The flow illustrated from top to bottom of the figure

corresponds to the intended mode of use of the skill server.

First, the current task has to be defined by a user (be it system

engineer or end-system-user), possibly using a suitable GUI.

In order to constrain the task descriptions to ones understood

by the skill server, the GUI has to consult the ontology in an

appropriate way. As a result, the actual task description is

created. It may be thought of as a data structure, subsequently

manipulated by the skill server.

Next comes the main loop of the skill server. It begins

with the user asking for a particular reparametrization or

reconfiguration of the current task. The server analyzes

whether the current set of operations is still a valid realization

of the task and, if not, it suggests changes. It employs both

generic reasoning, available via external reasoners attached

to the ontology, as well as via domain-dependent reasoning

modules, illustrated here as utility functions, attached to

the core server using well-defined protocol and interface. A

prototype based on those ideas has been already implemented

and is currently intensively tested. It has to be noted that even

visualization and simulation are realized as plug-ins.

Finally, a separate object on the image is the database, used

as that part of the ontology that contains the Device Library.

Formally, the device descriptions are elements (leafs) in the

ontology. It is expected that device library will form “virtual

parts” of the ontology, plugged-in as needed and as available.

The libraries could be distributed and maintained by device

manufacturers, who would put in there everything that is

necessary for a device to fit the common manufacturing

ontology and to be meaningfully used, and reparametrized,

by the skill server. Of course, appropriate maintenance tools

are expected to be created in the future.

IV. KNOWLEDGE REPRESENTATION

We have identified several types of (non-procedural)

knowledge the Skill Server will use: skills, devices, tasks,

workpieces, and environment. Most of them can be specified

on at least two levels of abstraction: simplified, generic

descriptions (like a generic “pickup skill”) and instantiated

ones (the operation of gripper G1 picking the windshield W1

in factory F). We do not exclude, however, a possibility of

additional, intermediate levels of abstraction in between.

In addition to those, there is a number of domain-specific

or device-specific procedures for calculating various aspects

(trajectory planner, device reparametrization procedures, etc.)

which, in some contexts, can also be treated as knowledge.

In general, however, Skill Server treats them as black boxes.

We have decided to center knowledge representation

around the concepts of devices (physical objects provided by

their manufacturers) and skills, while task descriptions exist

only during problem solving sessions, as dynamic structures.

Tasks can be seen as (arguably, quite complex) combinations

of skills and therefore there is no need to have them explicit

in the vocabulary.

The static part of the knowledge is represented in an

ontology: a data structure storing all the necessary rela-

tions between the terms used. Quite often ontologies are

used for classification purposes. In the skill server case the

classification is done when objects (devices) are introduced

in the structure, therefore we can as well refer to it as

plain taxonomy. The ontology forms a distributed system

SuRP-A05.5

172

containing a quite complicated skill structure and libraries

of devices (leafs of the taxonomy).

We have chosen the open source tool Protégé [3] for

ontology creation and manipulation. In particular, Protégé

allows one to use reasoners adapted to the complexity

of the employed representation and offers a multitude of

visualization modes.

In the approach we have chosen, the ontology is used for

reasoning about skills matching particular tasks (after some

initial re-parametrisation) and about devices offering those

skills (under certain conditions). A pure ontology may be

used for retrieval, pattern matching and simple classification,

while other forms of reasoning, like planning, optimizations,

consistency checks, etc., need to be done by more powerful

reasoners, either general-purpose ones or those specialized

to a particular application domain. The generic tools that

have been tested by us so far are Racer [4], Fact++[5],

Algernon and Pellet. They differ in their reasoning power

and efficiency, offering a possibility of choosing different

reasoners depending on the questions asked, thus providing

additional flexibility and adaptability.

We are also developing tools for storing and retrieving

knowledge in appropriate data structures, so that the ontology

can be easily extended by the system providers, while it may

benefit from distributedness, letting some parts be completed

and stored at the device manufacturer’s site. Yet another set

of requirements is put on the reasoning process by the list

of optimization tasks that may be requested by the user. Due

to their computational complexity, and to their specificity to

particular devices, they cannot be implemented in a general-

purpose manner but rather require their specific reasoning

blocks fitting the structure of the server as utility functions.

V. ONTOLOGY-BASED COMPILATION

One of the final stages of skill server computations is

the creation of appropriate configuration files for the devices

used to perform the task. One of the problems to be faced

when (re)configuring a production system is how to deal

with the different peripherals that are used in the task.

There are many different kinds of peripherals ranging from

simple on/off sensors to advanced vision systems and all

possible kinds of robot grippers. Different peripherals have

different characteristics (size, weight, speed, payload) and are

interfaced (mechanically, electrically, and communication)

in different ways with the robots. Communication is often

not standardized, and done on a quite low level. If the data

describing a peripheral was available in a structured format,

it would perhaps be possible to automatically generate the

peripheral configuration for a specific robot model.

Then there is a problem which specific peripheral model to

choose for a task. This depends on the constraints associated

with the specific task; speed, accuracy, payload, and so on.

Also here would a structured peripheral description be of

help. A reasoning system could then try to find the best

match from the given constraints.

The idea then is to use the ontology developed for skill

taxonomy also for robot peripherals, such as grippers, using

OWL abstract grammar

OWL parsing grammar

JastAdd aspects
JastAdd aspects

OWL compilerRobotics Ontology

(OWL)

Gripper

Description

Generated

gripper description

compiler

Hand-written source code for OWL compiler

input to

input to

puts

constraints

on

Database

Generated

interface classes

Skill server

Possible outputs from

descr. language compiler

JastAdd aspects
Generated

JastAdd aspects

Generated descr. language compiler source

Generated

grammars
Generated

grammars

Fig. 2. Using OWL ontology to generate compiler for robotic grippers.

a standardized language. In the prototype we use OWL [6],

but any ontology language could be used. This ontology

then serves as specification language for peripherals, and

is rather well-suited for automatic processing using either

standard XML tools or tailor-made tools. However, a com-

mon problem with such specialized description languages

is that developed tools are very tightly connected to a

specific version of a specific description language. Tools

made for gripper descriptions typically cannot easily be

used for computer vision system descriptions. Changes in

a description language will also imply changes in the tools.

As is not uncommon, such problems become easier to

solve by moving up to the next abstraction level. By im-

plementing a meta-compiler, a compiler for OWL that, as

its output, generates a compiler for the description language

specified in OWL, the abstraction level is raised. Instead

of having to handle the dependencies between description

language and tools manually, there is now one single speci-

fication for both the description language and the generation

of tools. The fact that these description languages are XML-

based helps in that the parsing syntax is given beforehand.

The general steps are depicted in Figure 2. A compiler

for ontologies expressed in OWL is implemented using

JastAdd [7] and a suitable parser generator. Given an OWL

ontology as input, this compiler will then automatically gen-

erate the description of a compiler for the given description

language. The automatically generated compiler can then

be used to parse and analyze a description, and generate

various forms of output depending on how the compiler was

specified. Interface classes to sensors and actuators, or entries

in skill server databases are just a few examples of what is

possible to achieve.

The automatically generated code sometimes needs some

additional hand-crafted code for a specific description lan-

SuRP-A05.5

173

Gripper

+hasSkill: GripperSkill

GripperSki l l

VaccuumGripper MagnetGr ipper AdhesionGripperFingerGr ipper PincerGripper

Elast icFingerGripper JointFingerGripper

AngleGripper Paral le lGr ipper

CircularParal lelGripper LineParal le lGripper GeneralParal le lGr ipper

OWL_Thing

Open Close DetectHold ing

CloseClaws

AdjustCurrentToGrip

AdjustVacuumToGrip

CloseFingers

AdjustCurrentToRelease

OpenFingers

AdjustVacuumToRelease

OpenClaws

Fig. 3. Part of the robotic gripper model hierarchy.

guage. But it is still a far better situation than when the

fundamental compiler description needs to be adapted after

each change in the description language specification.

A. Prototype implementation

A prototype implementation of the OWL meta-compiler

is currently being developed as a part of the SIARAS skill-

server. As a realistic example on a non-trivial description

language (the complete robot ontology being developed

within the SIARAS project is far to large and complex to

show here), consider a type hierarchy of robotic grippers,

see Figure 3. Robotic grippers can be divided into four

different categories based on gripping principle used; vacuum

grippers, magnetic grippers, finger grippers, pincer grippers,

and adhesion grippers. For finger- and pincer grippers, a

more fine-grained division is needed because of functional

differences with different mechanical solutions.

An OWL representation of the gripper model, as shown

in Figure 3, serves as input to the OWL compiler. Even

though it is rather hard to read for humans, as most XML

syntax, it is quite easy to write a parser for OWL descriptions

since a simple grammar only consists of the following two

productions (in JastAdd syntax):

Element ::= Attribute* Element*;

Attribute ::= <STRING_LITERAL>;

Using the JastAdd tools, it is then easy to analyze the AST
returned by the parser, and then generate a new abstract
grammar from the AST.

Gripper : Thing ::= GripperSkill;

MagnetGripper : Gripper ::= ;

VacuumGripper : Gripper ::= ;

FingerGripper : Gripper ::= ;

JointFingerGripper : FingerGripper ::= ;

ElasticFingerGripper : FingerGripper ::= ;

PincerGripper : Gripper ::= ;

AngleGripper : PincerGripper ::= ;

ParallelGripper : PincerGripper ::= ;

AdhesionGripper : PincerGripper ::= ;

CircularParallelGripper : ParallelGripper ::=;

LineParallelGripper : ParallelGripper ::= ;

GeneralParallelGripper : ParallelGripper ::= ;

GripperSkill : Thing ::= ;

Open : GripperSkill ::= ;

OpenFingers : Open ::= ;

AdjustCurrentToGrip : Open ::= ;

OpenClaws : Open ::= ;

AdjustVacuumToRelease : Open ::= ;

Close : GripperSkill ::= ;

CloseFingers : Close ::= ;

AdjustCurrentToRelease : Close ::= ;

AdjustVacuumToGrip : Close ::= ;

CloseClaws : Close ::= ;

DetectHolding : GripperSkill ::= ;

B. Outlook

The current prototype, consisting of less than 400 lines of

JastAdd code, can analyze a non-trivial OWL document and

then generate a JastAdd abstract grammar for the description

language as described by the OWL document. Regardless

of which changes are done in the OWL-based specification,

both the abstract and concrete grammars for the description

language can be automatically generated.

In order to comprise a fully usable compiler for description

languages for peripheral devices, some manually written

code, here in the form of JastAdd aspects, is surely needed.

If the language specification changes, there is a possibility

that one has to make changes to this code also. However,

there is a large difference between having to make minor

changes in compact aspects, and changing the fundamental

grammar descriptions in the compiler.

The described gripper-compiler is just one example of

a tool to handle equipment interfaces. Many more end-

effectors (for welding, glueing, grinding, and so on) exist,

and there are many other types of external equipment (such

as fixtures, feeders, and conveyors). Furthermore, interfacing

in a robot work-cell involves more than the equipment, so

in total there are at least the following items to cope with in

terms of data interpretation:

• External equipment and their interfaces

• Control services

• Human operations

• Interaction devices

• Workpiece data and models

• Task descriptions and robot languages

• Model data for production processes

• Production or robot skill strategies

Up to now, there have been different standardization efforts

in each of these areas. Most modern standards are XML

based, which is sometimes referred to as being generic and

SuRP-A05.5

174

fully portable. However, having XML-based standards in

each of the eight areas according to the items above does

not really solve the problem; if these standards are based

on different taxonomies, the data integration and coherence

between different items remains a problem. That is, the

different standards (despite being expressed in XML) are

based on different terms, and the information integration still

requires extensive engineering efforts.

By relating different standards to a common ontology, and

using compilation in several stages as described above, we

expect that the generation of configuration data in a robotized

system can be much more generic. Clearly it will be a

substantial effort to model all interfaces and devices, but if

compiler technology can provide the means to interpret and

relate terminologies from different areas, it should advance

the state of the art not only in the area of reconfigurable

systems but in the more generic plug-and-produce robot

systems (www.smerobot.org) as well.

VI. RELATED WORKS

The organization that made discussions on semantic web

and, in particular, on ontologies, popularized has an exten-

sive library of published documents at the W3Consortium’s

Semantic Web site [1]. In particular, the specifications of

the most popular KR formalisms, like OWL [6] or DAML-

OIL [8], together with available tools for using those for-

malisms, are available there. One of the recent textbooks on

knowledge representation, offering a very good overview of

the field, is [9].

Production planning is usually considered (within the field

of AI) to be a part of the automatic planning domain.

However, besides the classical manufacturability analysis,

reported recently in [2], there is very little documented

research on knowledge-based, automated production plan-

ning for non-trivial applications. An interesting recent result,

documenting state of the art, is presented in [10].

Only very recently there is a growing interest in using on-

tologies and, more generally, “semantic web technologies”,

in factory automation [11]. However, there is an extensive

research aimed at supporting the engineering activities in

production design by providing modeling languages and

tools allowing formal, automatic analysis of the discussed

process. Most of those formalisms and tools are domain-

dependent, with a small number of exceptions explicitly

stating goal of being general-purpose, like e.g. the Sensor

Modeling Language which offers a rich sensor ontology

(http://www.sensorml.org). A dual enterprise is the

unified robot modeling language, (URML), from the Univer-

sity of Karlsruhe. Unfortunately, it does not fit our work too

well, since URML does not provide representation facilities

for the dynamic aspects of robot performance.

Finally, an important attempt to formalize the language for

speaking about production processes has been done at NIST,

which created the Process Specification Language [12]. The

language and some of the associated tools are serving as

a reference point for the ontology being developed within

SIARAS.

Similar to ours, scalable, extensible architectures for in-

telligent automation have been proposed very recently, al-

though in different contexts: either as agent-based distributed

systems [13] or as object-oriented middleware systems [14],

[15].

VII. CONCLUSIONS

In this paper we have presented the ongoing work on

knowledge-based automatic reconfiguration system for robo-

tized work-cells. Although offering advantages of limited

domain, adaptive manufacturing systems are still way too

complex to be amenable to completely automatic analysis.

Therefore, a combination of automatic reasoning, domain-

dependent non-formalisable computations, and user consul-

tation are expected to coexist in the final system.

Knowledge representation in SIARAS is built around the

concept of ontology, which, together with the pluggable,

special-purpose reasoning modules, form the core of the

skill-server. Late processing stages include ontology-based

compilation for configuration purposes. The system is cur-

rently in its prototyping phase, with a demonstrator expected

by the end of the year.

REFERENCES

[1] W3C, “Semantic web,” 2001, http://www.w3.org/2001/sw/.
[2] M. Ghallab, D. Nau, and P. Traverso, Automated Planning, Theory

and Practice. Morgan-Kaufman, 2004.
[3] M. Musen et al., “The Protégé ontology editor and knowledge acqui-

sition system,” 2006, http://protege.stanford.edu.
[4] V. Haarslev and R. Möller, “Racer: A core inference engine for

the semantic web,” Available at http://www.franz.com/products/racer/,
2002.

[5] I. Horrocks, “FaCT and iFaCT,” in Proc. Int. Workshop on Description

Logics DL’99, P. Lambrix et al., Eds., 1999, pp. 133–135.
[6] W3C, “Web ontology language (OWL),” 2004,

http://www.w3.org/2004/OWL/.
[7] T. Ekman and G. Hedin, “Rewritable Reference Attributed Grammars,”

in Proceedings of the 18th European Conference on Object-Oriented

Computing (ECOOP) 2004, ser. LNCS, no. 3086, 2004.
[8] D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F.

Patel-Schneider, “OIL: An ontology infrastructure for the semantic
web,” IEEE Intelligent Systems, vol. 16, no. 2, pp. 38–45, 2001.

[9] R. J. Brachman and H. J. Levesque, Knowledge Representation and

Reasoning. Morgan Kaufmann Publishers, 2004.
[10] B. J. Clement, E. H. Durfee, and A. C. Barrett, “Abstract reasoning for

planning and coordination,” Journal of Artificial Intelligence Research,
vol. 28, pp. 453–515, 2007.

[11] J. L. M. Lastra and I. M. Delamer, “Semantic web services in factory
automation: Fundamental insights and research roadmap,” IEEE Trans.

Ind. Informatics, vol. 2, pp. 1–11, 2006.
[12] M. Grüninger and C. Menzel, “The Process Specification Language

(PSL), theory and applications,” AI Magazine, vol. 24, no. 3, pp. 63–
74, 2003.

[13] W. Binder, I. Constantinescu, B. Faltings, K. Haller, and C. Türker,
“A multiagent system for the reliable execution of automatically com-
posed ad-hoc processes,” Autonomous Agents Multi-Agent Systems,
vol. 12, pp. 219–237, 2006.

[14] V. V. Vyatkin, J. H. Christensen, and J. L. M. Lastra, “OOONEIDA:
An open, object-oriented knowledge economy for intelligent industrial
automation,” IEEE Trans. Ind. Informatics, vol. 1, pp. 4–16, 2005.

[15] I. M. Delamer and J. L. M. Lastra, “Service-oriented architecture for
distributed publish/subscribe middleware in electronics production,”
IEEE Trans. Ind. Informatics, vol. 2, pp. 281–294, 2006.

SuRP-A05.5

175

