
Partitioning Based Algorithms for some
Colouring Problems

Ola Angelsmark1 and Johan Thapper2

1 Department of Computer Science
Box 118, Lund University
S-221 00 Lund, Sweden

olaan@cs.lth.se
2 Department of Mathematics

Linköpings Universitet
S-581 83 Linköping, Sweden

jotha@mai.liu.se

Abstract. We discuss four variants of the graph colouring problem, and
present algorithms for solving them. The problems are k-Colourability,
Max Ind k-COL, Max Val k-COL, and, finally, Max k-COL, which
is the unweighted case of the Max k-Cut problem. The algorithms are
based on the idea of partitioning the domain of the problems into disjoint
subsets, and then considering all possible instances were the variables are
restricted to values from these partitions. If a pair of variables have been
restricted to different partitions, then the constraint between them is
always satisfied since the only allowed constraint is disequality.

1 Introduction

The graph colouring problem is probably one of the most well-studied graph
problem. While it is conceptually easy to understand— colour the vertices of a
graph such that if there is an edge between two vertices, then they must have
different colours — it is NP-complete for more than two colours [15]. It has been
studied for a long time, and was actually the 12th problem in the list of NP-
complete problems presented in Karp [18]. One reason for studying this problem
is, of course, that it regularly appears as a natural problem in a wide range
of areas, such as register allocation in compiler construction [8], and frequency
assignment in mobile communication [14].

The graph colouring problem is nicely formulated as a constraint satisfaction
problem; it is the (very) restricted CSP in which we only allow the constraint
disequality, i.e. given two vertices of a graph, the only requirement we can have
is that they have different colours if there is an edge between them.

In this paper, we will discuss a number of different versions of the graph
colouring problem. Our results are based on an idea which was first formalised in
Angelsmark & Jonsson [2]. This method, which is called the partitioning method,
works by partitioning the domain of the problem into a number of (disjoint)
subsets, and then solving a number of restricted instances in order to find a

solution. The idea is of course not restricted to the problems we discuss in this
paper; in [2] it was used to construct an algorithm for #CSP (i.e. the problem
of counting the solutions to a CSP) and it turned out to be very successful when
applied to the problem of counting graph colourings.

Problems where the only allowed constraint is disequality have the property
that once a pair of variables have been restricted to assume values from differ-
ent partitions they cannot be assigned a common value in any solution to this
instance and thus the constraint between them, if there was one, ’disappears.’
Consequently, we can consider those variables that have been assigned the same
partition in isolation, thereby reducing the problem to one with a smaller do-
main. We can also introduce a hierarchy of partitions— the instance arising from
the partition can be partitioned further— and at the bottom level we can apply
an algorithm specialised for solving problems with small domains. Of course, any
improvement in this specialised algorithm will also improve the overall algorithm.

The first problem we look at is the k-colouring problem, where the aim is to
decide if it is possible to colour a given graph using at most k colours. As was
mentioned earlier, this problem is NP-complete for k > 2. Interestingly enough,
for k > 6, the fastest algorithm for this problem is the general, exponential
space algorithm for Chromatic Number; the original version by Lawler [20]
has a running time of O

(
(1 + 3

√
3)n
)
∈ O (2.4423n). This was later improved to

O (2.4151n) by Eppstein [12], and, recently, to O (2.4023n) by Byskov [5].
The algorithm we present for this problem uses polynomial space, and while

it is not faster than the Chromatic Number algorithm, it is faster than the cur-
rently fastest polynomial space algorithm, which is due to Feder & Motwani [13],
and has a running time of O

((
min

(
k/2, 2φk

))n), where φk is given by

1
k + 1

k−1∑
i=0

(
1 +

i(
k
2

)) log2(k − i).

Asymptotically, 2φk is bounded from above by k/e, where e ≈ 2.7182 as usual.
In contrast, the algorithm we propose runs O (αn

k), k > 6, where n is the number
of vertices in the graph and

αk =

 i− 2 + β5 if 2i < k ≤ 2i + 2i−2

i− 1 + β3 if 2i + 2i−2 < k ≤ 2i + 2i−1

i− 1 + β4 if 2i + 2i−1 < k ≤ 2i+1

for i ≥ 2, assuming we can solve 3-, 4-, and 5-colourability in O (βn
3) ,O (βn

4),
and O (βn

5) time, respectively. See Table 1 for a comparison. (Throughout the
paper, we will omit polynomial factors in time and space complexities.)

Max Ind (d, 2)-CSP is, basically, the problem of finding a satisfiable subin-
stance of the original problem which contains as many variables as possible (we
let (d, l)-CSP denote a CSP where the domain has size at most d, and the con-
straints have arity l.) A subinstance is here a subset of the variables, together
with the constraints which only involve these variables. (For example, if we have
the variables x, y in the subset, then the constraint R(x, y) would be included,

Table 1. Comparison between our k-colouring algorithm and that of Feder & Motwani.

k = 6 k = 7 k = 8 k = 9 k = 10

F & M [13] 2.8277n 3.2125n 3.5956n 3.9775n 4.3581n

New result 2.3290n 2.7505n 2.7505n 3.1021n 3.1021n

but the constraint R′(x, y, z) would not, since z is not in the subset.) Max Ind
(d, 2)-CSP is, in some sense, dual to the classical Max CSP in that it does not
maximise the number of satisfied constraints, but instead tries to maximise the
number of variables that are assigned values without violating any constraints.

The colouring version of this problem is called the Maximum Induced k-
Colourable Subgraph, or Max Ind k-COL for short. Using the partitioning
method, we arrive at an algorithm which has a running time of O (αn

k), where

αk =
{

i− 1 + β3 if 2i < k ≤ 2i + 2i−1

i + β2 if 2i + 2i−1 < k ≤ 2i+1

with β2 = 1.4460, β3 = 1.7388 and i ≥ 1. We get the values of β2 and β3 are by
applying the Maximum Independent Set algorithm from Robson [21] to the
microstructure of the instances witg domain sizes 2 and 3 (see [4].)

Next, we consider the Max Value problem, which (somewhat simplified) is
the problem of maximising the sum of the variable values. We first construct a
specialised algorithm for the Max Value 3-Colouring problem, which runs
in O (1.6181n) time, and end up with a running time of O (αn

k), where

αk =
{

i− 1 + β3 if 2i < k ≤ 2i + 2i−1

i + 1 if 2i + 2i−1 < k ≤ 2i+1

with β3 = 1.6180 and i ≥ 1, for the general Max Value k-Colouring problem.
For our final problem we consider the Maximum k-Colourable Subgraph,

or Max k-COL, problem. This is also known as the unweighted case of the well-
known Max k-CUT problem. The currently fastest algorithm for this problem
is the O

(
kωn/3

)
time algorithm presented in Williams [22], which utilises expo-

nential space. Here, ω ∈ R is the exponent in matrix multiplication over a ring,
and has been shown to be less than 2.376 [9].

Using cases k = 2 and k = 3 from [22], we apply the partitioning method to
get an algorithm for Max k-COL with a running time of O (αn

k), where

αk =
{

i− 1 + β3 if 2i < k ≤ 2i + 2i−1

i + β2 if 2i + 2i−1 < k ≤ 2i+1

for i ≥ 1, assuming we can solve for domain sizes 2 and 3 in O (βn
2) and O (βn

3)
time. The underlying algorithms uses exponential space, and this will also be
the case for our algorithm. However, since we only use the algorithms for k = 2
and k = 3, we only need the space required for these. For larger values of k, this
is considerably less than the O

(
kn/3

)
required by the algorithm from [22].

This result also holds for the counting problem #Max k-COL, by simply
replacing the underlying algorithms with their counting versions.

2 Preliminaries

A (d, l)-constraint satisfaction problem ((d, l)-CSP) is a triple (X, D,C) where

– X is a finite set of variables,
– D a finite set of domain values, with |D| = d, and
– C is a set of constraints {c1, c2, . . . , ck}.

Each constraint ci ∈ C is a structure R(xi1 , . . . , xij) where j ≤ l, xi1 , . . . , xij ∈ X
and R ⊆ Dj . A solution to a CSP instances is a function f : X → D s.t. for
each constraint R(xi1 , . . . , xij

) ∈ C, (f(xi1 , . . . , f(xij
))) ∈ R. Given a (d, l)-CSP,

the basic computational problem is to decide whether it has a solution or not—
to determine if it is satisfiable. If the function does not assign values to every
variable, but only a subset of them, it will be referred to as a partial solution,
provided no constraints are violated by these assignments.

The special case (2, 2)-CSP is equivalent to 2-Satisfiability, or 2-SAT.
An instance of 2-SAT, a 2-SAT formula, consists of the conjunction of a set of
clauses, where each clause is the disjunction of (at most) 2 literals. (A literal is
either a variable or its negation.) We will be interested in weighted instances of
2-SAT, and define them as follows:

Definition 1 (Dahllöf et al. [10]). Let Γ be a 2-SAT formula and let L be
the set of all literals for all variables occurring in Γ . Given a weight vector w,
and a solution M to Γ , we define the weight W (M) of M as

W (M) =
∑

{l∈L | l is true in M}

w(l)

Dahllöf et al. [10] presents an algorithm for counting the number of maximum
weighted solutions to 2-SAT instances. This algorithm has a running time of
O (1.2561n), and it can easily be modified to return one of the solutions. We will
denote this modified algorithm 2 -SATw .

A graph G consists of a set V (G) of vertices, and a set E(G) of edges, where
each element of E(G) is an unordered pair of vertices. The size of a graph,
denoted |G| is the number of vertices. The neighbourhood of a vertex v ∈ V (G)
is the set of all vertices adjacent to v, v itself excluded, denoted NG(v); NG(v) =
{w ∈ V (G) | (v, w) ∈ E(G)}. The degree degG(v) of a vertex v is the size of
its neighbourhood, |NG(v)| (note that we do not consider graphs which allow
’self-loops,’ i.e. edges of the form {v, v}.) When G is obvious from the context,
it can be omitted as a subscript. If we pick a subset S of the vertices of a
graph together with the edges between them (but no other edges), then we get
the subgraph of G induced by S, G(S). G(S) has vertex set S and edge set
{(v, u) | v, u ∈ S, (v, u) ∈ E(G)}. If the induced subgraph has empty edge set,
then it forms an independent set.

Definition 2 (Jégou [16]). Given a binary CSP Θ = (X, D,C), i.e. a CSP
with binary constraints, the microstructure of Θ is an undirected graph G defined
as follows:

1. For each variable x ∈ X, and domain value a ∈ D, there is a vertex x[a] in
G.

2. There is an edge (x[a], y[b]) ∈ E(G) iff (a, b) violates the constraint between
x and y, i.e. if xRy and (a, b) 6∈ R.

We assume there is exactly one constraint between any pair of variables; any
variables without explicit constraints are assumed to be constrained by the uni-
versal constraint which allows all values.

For readers familiar with the original formulation, the graph given by this con-
struction is actually the complement of the one given in Jégou [16]. This is
mostly a matter of convenience; the algorithms we present are easier formulated
in terms of independent sets than maximum cliques.

3 Partitioning and Colouring Problems

We now present the method behind the algorithms for the colouring problems
in this paper. We begin by defining what a partitioning is, and briefly discuss
the partitioning based method for construction algorithms, before investigating
how it applies to colouring problems.

Definition 3. A partitioning P = {P1, P2, . . . , Pm} of a domain D is a division
of D into m disjoint subsets such that

⋃
P = D. A k-partition is an element of

P with k elements. Given a partitioning P , we let σ(P, k) denote the number of
k-partitions in P . Since the actual elements in the subset Pi ∈ P is often less
interesting than their number, we let the multiset [|P1|, . . . , |Pm|] represent P .

As an example of how the partitioning method could be used to construct
an algorithm for solving CSPs, consider the following: An algorithm for solving
(4, 2)-CSPs has a running time of O (1n1+n2 · αn3 · βn4), where ni is the number
of variables with domain size i. Thus for problems with domains of sizes 1 and
2 it is polynomial (recall that we have omitted polynomial factors), for domain
size 3 it runs in O (αn), and for domain size 4, it runs in O (βn).

Using this algorithm, we want to solve, say, a (7, 2)-CSP. First, we split the
domain of each variable into one part with 3 elements and one part with 4
elements. So if the original domain is {1, 2, 3, 4, 5, 6, 7}, we could, for example,
use the partitioning P1 = {1, 2, 3, 4} and P2 = {5, 6, 7}. Next, we consider each
possible way of restricting the variables to only take values from one of these
partitions. With n variables in the original problem we get k variables restricted
to P1 and n− k restricted to P2, and thus get a total running time of

O

(
n∑

k=0

αk · βn−k

)
= O ((α + β)n) .

When we apply this to colouring problems, we exploit the fact that if two vari-
ables are assigned different partitions, then any constraint between them is triv-
ially satisfied.

Let Θ = (X, D,C) and Θ′ = (X ′, D′, C ′) be two CSPs with the property
that given solutions f to Θ and f ′ to Θ′, they can be combined to get a solution
to Θ∪ = (X ∪ X ′, D ∪ D′, C ∪ C ′) (possibly modulo renaming of the variables
and domain values.) Conversely, the two subinstances Θ and Θ′ correspond to
a partitioning of Θ∪; the partitioning is [|D|, |D′|], and the variables in X are
mapped to D, while those in X ′ are mapped to D′.

We will let Col(k, n) denote an arbitrary instance of a problem with domain
size k and n variables which can be partitioned in this way.

Theorem 1 (Angelsmark [1]). Let A1, . . . , Am be algorithms for the problems
Col(k1, n), . . . , Col(km, n), respectively, with running times in O (αn). Given a
partitioning P = {P1, . . . , Pp} of the set {1, . . . , k} such that for any partition
Pi, we have an algorithm for solving problems with this domain size, i.e. |Pi| ∈
{k1, k2 . . . , km}, there exists a partitioning based algorithm for solving Col(k, n)
which has a running time of

O ((|P | − 1 + α)n) .

We note that the running time given by Theorem 1 is largely dependent on
the number of partitions and less so on the running times of the algorithms for
the different partitions. Consequently, in order to minimise the running times, we
want to use as few partitions as possible. First, note that if we have an algorithm
for Col(k, n), then we can of course get an algorithm for Col(2k, n′) by using the
partitioning [k, k]. The idea here is to use a recursive partitioning to build the
Col(k, n)-algorithm bottom up; to get an algorithm for Col(4k, n), we first create
an algorithm for domains of size 2k from a Col(k, n) algorithm together with
the partitioning [k, k], provided we have an algorithm for Col(k, n). If this is not
the case, then we have to construct one by using the partitioning [dk/2e, bk/2c],
etc. Whether this partitioning is optimal is still an open question.

In general, given algorithms for instances with domain sizes k1, . . . , km, with
running times O

(
βn

ki

)
, i ∈ {1, . . . ,m}, if it is faster to use the available al-

gorithm for size ki than using the partitioning [dki/2e, bki/2c], i.e. T ([ki]) <
T ([dki/2e, bki/2c]), then there exists a partitioning based algorithm for solving
for domain size k which has a running time of O (αn

k), where αk is the solution
to the following recurrence:

αk =
{

βk if k ∈ {k1, . . . , km}
1 + αdk/2e otherwise.

Solving this equation is straightforward, albeit tedious, thus we will omit this
part of the proofs.

4 k-Colouring Algorithm

We will now show how the partitioning method applies to the problem of finding
a k-colouring of a graph. This being the first of the problems, we will describe
it in more detail than the remaining problems. For a further discussion of the
method, see Angelsmark [1]. Formally, we define the problem as follows:

Table 2. The fastest polynomial space algorithms for k-colouring, k < 7.

k Time Reference

3 O (1.3289n) Eppstein [11]
4 O (1.7504n) Byskov [5]
5 O (2.1020n) Byskov & Eppstein [7]
6 O (2.3289n) Byskov [5]

Definition 4. Let G be an arbitrary graph and k a natural number. The k-
Colouring problem consists of finding a function f : V (G) → {1, . . . , k} which
assigns ‘colours’ to the vertices in such a way that for v, w ∈ V (G), f(v) 6= f(w)
if {v, w} ∈ E(G), i.e. adjacent vertices are given different colours.

Before we can apply Theorem 1, we need to show that the k-colouring prob-
lem is a Col(k, n) problem. To see this, note that if the vertices of a graph G are
partitioned into two disjoint subsets, S1, S2, and the subgraphs induced by these
can be coloured using the colours {1, . . . , k1}, and {k1 + 1, . . . , k2}, respectively,
then G can be coloured using the colours {1, . . . , k2}, since any assignment made
by the colourings of S1 and S2 will also be allowed in G.

Once we know that Theorem 1 is applicable, it is straightforward to get
an algorithm for the problem, shown in Algorithm 1. The running time of the
algorithm is of course the one given in Theorem 1.

Theorem 2. Algorithm 1 correctly solves the k-colouring problem.

Proof. Let P be a partitioning of the domain values as given in Theorem 1, i.e.,
for any partition Pi ∈ P , there exists an algorithm A|Pi| for determining |Pi|-
colourability of graphs with n variables in O (αn) time. Next, let G be a graph
and f an arbitrary total function from V (G) to P — i.e. a function which assigns
the vertices to partitions.

Lines 3 to 6 work as follows: The vertices restricted to partition Pi induces
a subgraph, and we can determine |Pi|-colourability of this subgraph in O (αn)
time. Obviously, if we have two of these induced subgraphs, and we know that
we can colour them using, say, k1 and k2 colours, respectively, then we can colour
the union of them using k1 + k2 colours. So, by induction, the variable a will,
once all of the induced subgraph have been examined, be true iff the graph is
k-colourable. Repeating this for all total functions ensures that we will examine
all possible restrictions of vertices to partitions. ut

Algorithm 1 only determines the existence of a k-colouring (returning “yes” if
one exists), but it is of course straightforward to change it to return an explicit
colouring.

In the literature, we find a number of different algorithms for determining k-
colourability of a graph. Table 2 contains the currently fastest polynomial space
algorithms for k ≤ 6. For k > 6, the most efficient polynomial space algorithm
for k-colouring is the O ((k/ck)n) time algorithm by Feder & Motwani [13]. We

Algorithm 1 Partitioning based k-Colouring algorithm.
k -COL (G, P)

1. for each total function f : V (G) → P do
2. a := true
3. for each Pi ∈ P do
4. G′ := G|{v ∈ V (G) | f(v) = Pi}
5. a := a ∧A|Pi|(G

′)
6. end for
7. if a then
8. return “yes”
9. end for

10. return “no”

will not get an improvement over the bounds in Table 2 from the partitioning
method, but we do get a way of constructing algorithms for any k > 6, which is
faster than O ((k/ck)n).

As we noted earlier, the number of partitions has a large impact on the
running time of the algorithm. For example, if we want an algorithm for, say,
8-colouring, it is tempting to use the partitioning [2, 2, 2, 2], since 2-colouring is
polynomial. This, however, gives a running time ofO (4n), while if we use the par-
titioning [4, 4], we get a running time of O (((2− 1) + 1.7504)n) = O (2.7504n),
which is an enormous improvement. Using the partitioning [3, 3] we get a 6-
colouring algorithm with the same running time as in [5],O ((2− 1 + 1.3289)n) =
O (2.3289n).

Now let βn
i , i ∈ {3, 4, 5} denote the running times of the 3-, 4- and 5-colouring

algorithms in Table 2.

Theorem 3. If we can solve 3-, 4-, 5-Colouring in O (βn
i) time, for i =

3, 4, 5, respectively, then there exists a partitioning based algorithm for solving
k-Colouring, k > 6, which has a running time of O (αn

k), where

αk =

 i− 2 + β5 if 2i < k ≤ 2i + 2i−2

i− 1 + β3 if 2i + 2i−2 < k ≤ 2i + 2i−1

i− 1 + β4 if 2i + 2i−1 < k ≤ 2i+1

for i ≥ 2.

Proof. Using the partitioning [bk/2c, dk/2e] recursively, together with the colour-
ing algorithms above, a partitioning based algorithm will have a running time
of O (αn

k), where αk is given by the solution to the following recurrence:

αk =
{

βk if k ∈ {3, 4, 5}
1 + αdk/2e otherwise

Solving the equation gives the result. ut

Thus if we wish to determine 14-colourability of a graph, we start with the
pre-existing algorithms for 3- and 4- colourability, and let them be parts of a

7-colourability algorithm which uses the partitioning [3, 4]. From this we get
an algorithm for 14-colourability which works with the partitioning [7, 7]. The
running time, given by Theorem 3, is then O ((2 + β4)n) ≈ O (3.7504n)

5 Max Ind k-Colouring Algorithm

The general Max Ind (d, 2)-CSP is defined as follows:

Definition 5 (Jonsson & Liberatore [17]). Let Θ = (X, D,C) be an instance
of (d, l)-CSP. The Max Ind (d, l)-CSP problem consists of finding a maximal
subset X ′ ⊆ X such that Θ|X ′ is satisfiable.

Here, Θ|X ′ = (X ′, D, C ′) is the subinstance of Θ induced by X ′, i.e. the CSP we
get when we restrict Θ to the variables in X ′ and the constraints which involve
only variables from X ′, viz.,

C ′ := {c ∈ C | c(x1, x2, . . . , xl) ∈ C, x1, . . . , xl ∈ X ′}.

When we restrict this problem to colourings, we get the Max Ind k-COL
problem, which is the problem of assigning colours to as many vertices as possible
without having neighbours of the same colours. Unlike the k-colouring problem,
not every vertex is necessarily assigned a colour.

Definition 6. Given a graph G and a natural number k, the Max Ind k-COL
problem is to find a subset S ⊆ V (G) such that the induced subgraph G(S) is
k-colourable and |S| is maximised.

The problem is still NP-complete even under this restriction (see Jonsson
& Liberatore [17]). Theorem 1 is of course applicable to this problem, and it
has been shown that Max Ind 2-COL and Max Ind 3-COL can be solved
in O

(
1.20252n

)
= O (1.4460n) and O

(
1.20253n

)
= O (1.7388n) time, respec-

tively [4], thus we can combine this with the following theorem to get an algo-
rithm for Max Ind k-COL.

Theorem 4. Given that we can solve Max Ind 2-COL and Max Ind 3-COL
in time O (βn

2) and O (βn
3), respectively, there exists a partitioning based algo-

rithm for solving Max Ind k-COL which has a running time of O (αn
k), where

αk =
{

i− 1 + β3 if 2i < k ≤ 2i + 2i−1

i + β2 if 2i + 2i−1 < k ≤ 2i+1

for i ≥ 1.

Proof. We use the partitioning [bk/2c, dk/2e] recursively, and we get from The-
orem 1 that a partitioning based algorithm will have a running time of O (αn

k),
where αk is given by the following recurrence:

αk =

β2 if k = 2
β3 if k = 3
1 + αdk/2e otherwise

Solving the equation gives the result. ut

Algorithm 2 Algorithm for Max Value 2-COL

MaxVal 2 -COL (Θ,w)

1. Let G be the microstructure of Θ.
2. m := 0
3. if G is 2-colourable then
4. Let f : V (G) → {1, 2} be a 2-colouring of G
5. for each connected component c of G do
6. m := m+

max
v∈c

0@ X
f(v)=1

w(v),
X

f(v)=2

w(v)

1A
7. end for
8. end if
9. return m

6 Max Value k-Colouring

The Max Value problem for CSPs has been studied in, e.g. Angelsmark et
al. [3], and is formally defined as follows:

Definition 7 (Angelsmark et al. [3]). Let Θ = (X, D,C) be an instance
of (d, l)-CSP, where D = {a1, a2, . . . , ad} ⊆ R, X = {x1, x2, . . . , xn}. Given a
real vector w = (w1, . . . , wn) ∈ Rn, the Max Value problem for Θ consists in
finding a solution f : X → D which maximises

n∑
i=1

wi · f(xi)

The colouring version of the Max Value problem, the Max Value k-COL
problem, is defined as follows:

Definition 8. Given a graph G, with |V (G)| = n, a real vector of weights w =
(w1, . . . , wn) ∈ Rn and a natural number k, the Max Value k-COL problem
consists in finding a function f : V (G) → {1, . . . , k}, with f(v) 6= f(v′) if
(v, v′) ∈ E(G), such that∑

v∈V (G)

wv · f(v)

is maximised.

For clarity, we let (Θ,w), where Θ = (X, D,C), denote an instance of Max
Value 2-COL. Now let G be the microstructure graph of Θ, and, for x ∈ X, let
η(x) be the number of constraints x is involved in (in the microstructure, this
corresponds to deg(x[i])− 1.)

Theorem 5. There exists an algorithm for solving the Max Value 2-COL
problem which runs in polynomial time.

Proof. We show that Algorithm 2 correctly solves the Max Value 2-COL
problem.

First of all, we note that if the microstructure graph is not 2-colourable, then
the Max Value 2-COL instance has the trivial solution 0, since there are no
colourings, and this is what the algorithm returns.

Next we observe that if a 2-colouring exists, then for each of the connected
component in G, there are exactly two possible colourings. Consequently, since
we can choose the colour with largest weight for each connected component in
isolation, when the algorithm reaches line 9, m will contain the weight of the
maximum solution. ut

In order to successfully apply the partitioning method here, we need to take
care of odd-sized colourings, and thus we need an algorithm for the Max Value
3-COL problem.

In the analysis of this algorithm, we encounter a recursion on the form T (n) =∑k
i=1 T (n − ri) + p(n), where p(n) is a polynomial in n, and ri ∈ N+. These

equations satisfy T (n) ∈ O (τ(r1, . . . , rk)n), where τ(r1, . . . , rk) is the largest
real-valued root to 1−

∑k
i=1 x−ri (see Kullmann [19].) Note that this bound does

not depend on neither p(n) nor the boundary conditions T (1) = b1, . . . , T (k) =
bk. We call τ the work factor.

First, some additional definitions: A variable having three possible domain
values we call a 3-variable, and a variable having two possible values will be called
a 2-variable. The size of an instance is defined as m(Θ) = n2 + 2n3, where ni

denotes the number of i-variables in Θ. Consequently, the size of an instance can
be decreased by either removing a 2-variable or eliminating one of the possible
values for a 3-variable, turning it into a 2-variable.

Given a variable x with three possible values, {d1, d2, d3}, ordered in such
a way that w(x, d1) > w(x, d2) > w(x, d3), let δ(x) := (c1, c2, c3) where ci =
degG(x[di]), G being the microstructure graph. If x is a 2-variable then, similarly,
we define δ(v) := (c1, c2). The maximal weight of a variable x, i.e. the domain
value d for which w(x, d) is maximal, will be denoted xmax.

Since the only allowed constraint is disequality, it is never the case that a
3-variable has two unconstrained values — for example, if x[d1] had an edge to
y[d1], but x[d2] and x[d3] had no edges to y, this would mean that vertices y[d2]
and y[d3] had already been removed, and thus we could propagate y[d1], the only
possible value for y.

Lemma 1. If there is a variable x with δ(x) = (≥ 3, ·, ·), we can reduce the
instance with a work factor of τ(4, 2).

Proof. If xmax is chosen, then we remove x together with its two external neigh-
bours, thus reducing the size of the instance by (at least) 4. The only reason not
to choose xmax is, of course, that one of its external neighbours has alread been
chosen, reducing the size of the instance by 2. ut

Algorithm 3 Algorithm for Max Value 3-COL.
MaxVal 3 -COL (G,w)

1. if at any time, the domain of a variable becomes empty,
this branch can be pruned.

2. Apply Lemma 2, keeping track of eliminated variables.
3. if Lemma 1 applies then
4. return the maximum of the branches described in Lemma 1
5. else
6. Let Γw be the weighted 2-SAT instance corresponding to G.
7. return 2 -SATw (Γw)
8. endif

After applying the reduction in this lemma, it is holds that no variable x
has xmax with degree greater than 2. This means that either the neighbours of
xmax are the other possible values of x, leaving x unconstrained, or one of the
other values has been eliminated, and there are only two possible values for x.
We can apply the following lemma to get rid of all of the cases of unconstrained
variables, and what we have left is an instance of weighted 2-SAT.

Lemma 2 (Angelsmark & Thapper [4]). For any instance Θ, we can find
an instance Θ′ with the same optimal solution as Θ, with size smaller than or
equal to that of Θ and to which none of the following cases apply.

1. There is a 2-variable x for which δ(x) = (2,≥ 1).
2. There is a variable x for which the maximal weight is unconstrained.

Thus, we get the following theorem:

Theorem 6. Max Value 3-COL can be solved by a deterministic algorithm
in time O (1.6181n).

Proof. Algorithm 3 has, apart from the call to 2 -SATw , a work factor of τ(4, 2) ≤
1.2721. Since we used m(Θ) = n2 + 2n3 as the measure of size, the size of an
instance is 2n. Consequently, the algorithm has a running time of

O
(
(max(1.2721, 1.2561))2n

)
i.e. O (1.6181n). ut

Since we are only considering colourings, we can apply Theorem 1 and get:

Theorem 7. If we can solve Max Value 2-COL in polynomial time, and Max
Value 3-COL in O (βn

3) time, respectively, then there exists a partitioning based
algorithm for solving Max Value k-COL which has a running time of O (αn

k),
where

αk =
{

i− 1 + β3 if 2i < k ≤ 2i + 2i−1

i + 1 if 2i + 2i−1 < k ≤ 2i+1

and i ≥ 1.

Proof. Again, we recursively use the partitioning [bk/2c, dk/2e], and from The-
orem 1 we get an algorithm which will have a running time of O (αn

k), where αk

is given by the solution to the following recurrence:

αk =

1 if k = 2
β3 if k = 3
1 + αdk/2e otherwise

Solving the equation gives the result. ut

7 Max k-COL and #Max k-COL Algorithms

Max CSP is probably one of the most widely studied optimisation problems
for CSPs. Williams [22] presents an impressive algorithm for this problem, the
first to run in provably less than O (dn) time, as well as the counting version of
this problem, i.e. the problem of finding how many solutions there are, usually
denoted #Max CSP. Formally, we define the problem as follows:

Definition 9. Given an instance Θ = (X, D,C) of (d, 2)-CSP, the Max (d, 2)-
CSP problem is to find an assignment f : X → D which satisfies the maximum
number of constraints.

If we restrict Max CSP to colouring problems, we get the Maximum k-
Colourable Subgraph problem, or Max k-COL— also known as the un-
weighted case of the Max k-CUT problem. Note the difference to the Max Ind
k-COL problem; there, we were dealing with an induced subgraph.

Definition 10. Given a graph G and a natural number k, the Max k-COL
problem is to find a subset E′ of E(G) such that the graph (V (G), E′) is k-
colourable and |E′| maximised. The problem of determining the number of such
subsets is denoted #Max k-COL.

Williams [22] shows that Max k-COL can be solved in O
(
kωn/3

)
time, where

ω < 2.376, but we can improve this bound using the partitioning method:

Theorem 8. Given that we can solve Max 2-COL and Max 3-COL (#Max
2-COL and #Max 3-COL) in time O (βn

2) and O (βn
3), respectively, there exists

a partitioning based algorithm for solving Max k-COL (#Max k-COL) which
has a running time of O (αn

k), where

αk =
{

i− 1 + β3 if 2i < k ≤ 2i + 2i−1

i + β2 if 2i + 2i−1 < k ≤ 2i+1

for i ≥ 1. Furthermore, the space requirement is equal to that of the most de-
manding of the given algorithms.

Proof. Again, we use the partitioning [bk/2c, dk/2e] recursively. From Theo-
rem 1, we know that a partitioning based algorithm will have a running time of
O (αn

k), where αk is given by the solution to the following recurrence:

αk =

β2 if k = 2
β3 if k = 3
1 + αdk/2e otherwise

Solving the equation gives the time complexity stated in the theorem.
As for the space complexity, the algorithms for Max 2-COL and Max 3-

COL are applied in sequence, and thus their space requirement remains un-
changed. ut

Combining this theorem with the algorithms for Max 2-COL (#Max 2-
COL) and Max 3-COL (#Max 3-COL) with running times of O (1.7315n)
and O (2.3872n), respectively, utilising O

(
2n/3

)
and O

(
3n/3

)
space, gives an

algorithm for the general Max k-COL (#Max k-COL) problem.

8 Acknowledgements

Johan Thapper is supported by the Programme for Interdisciplinary Mathemat-
ics at the Department of Mathematics, Linköpings universitet.

The authors would like to thank Peter Jonsson for interesting and fruitful
discussions during the writing of this paper, and the anonymous reviewers for
insightful comments.

References

1. Ola Angelsmark. Constructing Algorithms for Constraint Satisfaction and Re-
lated Problems. PhD thesis, Department of Computer and Information Science,
Linköpings Universitet, Sweden, 2005.

2. Ola Angelsmark and Peter Jonsson. Improved algorithms for counting solutions in
constraint satisfaction problems. In Francesca Rossi, editor, Principles and Prac-
tice of Constraint Programming, 9th International Conference (CP-2003), Kinsale,
Ireland, September 29 - October 3, 2003, Proceedings, volume 2833 of Lecture Notes
in Computer Science, pages 81–95. Springer–Verlag, 2003.

3. Ola Angelsmark, Peter Jonsson, and Johan Thapper. Two methods for construct-
ing new CSP algorithms from old. Unpublished manuscript, 2004.

4. Ola Angelsmark and Johan Thapper. A microstructure based approach to con-
straint satisfaction optimisation problems. In Ingrid Russell and Zdravko Markov,
editors, Recent Advances in Artificial Intelligience. Proceedings of the Eighteenth
International Florida Artificial Intelligence Research Society Conference (FLAIRS-
2005), 15-17 May, 2005, Clearwater Beach, Florida, USA, pages 155–160. AAAI
Press, 2005.

5. Jesper Makholm Byskov. Enumerating maximal independent sets with applications
to graph colouring. Operations Research Letters, 32(6):547–556, November 2004.

6. Jesper Makholm Byskov. Exact Algorithms for Graph Colouring and Exact Satis-
fiability. PhD thesis, Basic Research In Computer Science (BRICS), Department
of Computer Science, University of Aarhus, Denmark, August 2004.

7. Jesper Makholm Byskov and David Eppstein. An algorithm for enumerating max-
imal bipartite subgraphs. Unpublished manuscript (see also [6]), 2004.

8. Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E.
Hopkins, and Peter W. Markstein. Register allocation via coloring. Computer
Languages, 6:47–57, 1981.

9. Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic
progressions. Journal of Symbolic Computation, 9(3):251–280, 1990.

10. Vilhelm Dahllöf, Peter Jonsson, and Magnus Wahlström. Counting models for
2SAT and 3SAT formulae. Theoretical Computer Science, 332(1–3):265–291, Febru-
ary 2005.

11. David Eppstein. Improved algorithms for 3-coloring, 3-edge-coloring, and con-
straint satisfaction. In Proceedings of the Twelfth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA-2001), January 7-9, 2001, Washington, DC, USA,
pages 329–337. ACM/SIAM, 2001.

12. David Eppstein. Small maximal independent sets and faster exact graph coloring.
Journal of Graph Algorithms and Applications, 7(2):131–140, 2003.

13. Tomás Feder and Rajeev Motwani. Worst-case time bounds for coloring and sat-
isfiability problems. Journal of Algorithms, 45(2):192–201, November 2002.

14. Andreas Gamst. Some lower bounds for a class of frequency assignment problems.
IEEE Transactions on Vehicular Technology, 35(1):8–14, 1986.

15. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

16. Philippe Jégou. Decomposition of domains based on the micro-structure of finite
constraint-satisfaction problems. In Proceedings of the 11th (US) National Confer-
ence on Artificial Intelligence (AAAI-93), pages 731–736, Washington DC, USA,
July 1993. American Association for Artificial Intelligence (AAAI).

17. Peter Jonsson and Paolo Liberatore. On the complexity of finding satisfiable subin-
stances in constraint satisfaction. Technical Report TR99-038, Electronic Collo-
quium on Computational Complexity, 1999.

18. Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.
Miller and James W. Thatcher, editors, Complexity of Computer Computations,
pages 85–103. Plenum Press, 1972.

19. Oliver Kullmann. New methods for 3-SAT decision and worst-case analysis. The-
oretical Computer Science, 223(1–2):1–72, 1999.

20. Eugene L. Lawler. A note on the complexity of the chromatic number problem.
Information Processing Letters, 5(3):66–67, August 1976.

21. Mike Robson. Finding a maximum independent set in time O(2n/4). Technical
report, LaBRI, Université Bordeaux I, 2001.

22. Ryan Williams. A new algorithm for optimal constraint satisfaction and its im-
plications. In Josep Dı́az, Juhani Karhumäki, Arto Lepistö, and Donald Sanella,
editors, Automata, Languages and Programming: 31st International Colloquium
(ICALP-2004), July 12-16, 2004, Turku, Finland. Proceedings, volume 3142 of
Lecture Notes in Computer Science, pages 1227–1237. Springer–Verlag, 2004.

