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Abstract. We study agents situated in partially observable environments, who
do not have sufficient resources to create conformant (complete) plans. Instead,
they create plans which are conditional and partial, execute or simulate them, and
learn from experience to evaluate their quality. Our agentsemploy an incomplete
symbolic deduction system based on Active Logic and Situation Calculus for rea-
soning about actions and their consequences. An Inductive Logic Programming
algorithm generalises observations and deduced knowledgeso that the agents can
choose the best plan for execution.
We describe an architecture which allows ideas and solutions from several sub-
fields of Artificial Intelligence to be joined together in a controlled and manage-
able way. In our opinion, no situated agent can achieve true rationality without
using at least logical reasoning and learning. In practice,it is clear that pure logic
is not able to cope with all the requirements put on reasoning, thus more domain-
specific solutions, like planners, are also necessary. Finally, any realistic agent
needs a reactive module to meet demands of dynamic environments.
Our architecture is designed in such a way that those three elements interact in or-
der to complement each other’s weaknesses and reinforce each other’s strengths.1

1 Introduction

Rational, autonomous agents able to survive and achieve their goals in dynamic, only
partially observable environments are the ultimate dream of AI research since its be-
ginning. Quite a lot has already been done towards achievingthat dream, but dynamic
domains still remain a major challenge for autonomous systems. In particular, nontriv-
ial environments that are only partially observable pose demands which are beyond
the current state of the art, possibly except when dedicated, hand-crafted solutions are
developed for specific domains.

One of the major ways of coping with uncertainty and lack of knowledge about
current situation is to exploit previous experience. In ourresearch we are interested in
developing rational, situated agents that are aware of their own limitations and can take
them into account, as brilliantly presented by Chong and others in [1]. To facilitate this,
we use Active Logic [2] for knowledge representation, whichcharacterises reasoning
as an ongoing process, instead of focusing on a fixed point of entailment relation.

1 This work has been partially supported by the EU-project SIARAS, Skill-Based Inspection
and Assembly for Reconfigurable Automation Systems (FP6 - 017146).



Due to limited resources and to the necessity to stay responsive in a dynamic world,
situated agents cannot be expected to create a complete planfor achieving their goals.
In theoretical AI a common approach is to create aconformant plan, i.e. a plan which
contains provisions for any possible sequence of external events and observations, and
which is guaranteed to reach the goal in all scenarios. For situated agents, however, not
only the task ofcreating, but even a requirement to simplystoresuch plan could easily
exceed available resources.

The lack of resources is partly addressed by considering “information-providing”
actions and interleaving their execution with planning activity. In particular, executing
them at the right time allows the agent to greatly simplify its subsequent planning pro-
cess — it no longer needs to take into account the vast number of possible situations
which would be inconsistent with newly observed state of theworld. Thus, it can pro-
ceed further in a more effective way, by devoting its computational resources to more
relevant tasks.

Therefore, situated agents need to consciously alternate between reasoning, acting
and observing their environment, or even do all those thingsin parallel. We aim to
achieve this by making the agents create short partial plansand execute them, learning
more about their surroundings throughout the process. Theycreate several partial plans
and reason about usefulness of each one, including what knowledge can it provide. They
generalise their past experience to evaluate the likelihood of any particular plan leading
to the goal. The plans are conditional (i.e. actions to be taken depend on observations
made during execution), which makes them more generic and means that their quality
can be estimated more meaningfully. We also intend for the agent to judge by itself
whether it is more beneficial to begin executing one of those plans immediately or
rather to continue deliberation and, possibly, develop longer and more complete plans,
in order to avoid making an unrecoverable mistake.

We expect the agent to live significantly longer than the duration of any single plan-
ning episode, so it should generalise solutions it finds. In particular, the agent needs
to extract domain-dependent control knowledge and use it when solving subsequent,
similar problem instances. It is the authors’ belief that deductive knowledge, at least in
many of the domains we are interested in, may contain more details and be more ac-
curate than other forms of representation (such as numerical or probabilistic), therefore
our agent learns deductively using a symbolic representation in Active Logic. To this
end we introduce an architecture consisting of four modules, which allow us to com-
bine state-of-the-art solutions from several fields of Artificial Intelligence, in order to
provide the synergy our agent needs to achieve the desired functionality.

Ultimately, the agent will need to be able to handle non-stationary, adversary en-
vironment, to cooperate with others in multi-agent settingand to plan for goals more
complex than simple reachability properties, such as temporally extended goals and
restoration goals. It is our belief that symbolic knowledgerepresentations are the only
way of achieving such versatility.

The goal of this paper is to present and justify the architecture we use for our agents,
as well as suggest possible ways to extend it. In the next section we introduce exam-
ple domains which we exploit to present and test our ideas. InsectionArchitecturewe
provide an overview of the organisation of our agent. The following four sections in-



troduce each of agent’s functional modules in more detail:Deductor, Planner, Actor
andLearner. After that, we describe the module interaction in some moredetail, briefly
present some of theResultsof our experiments with the architecture, discuss some of
theRelated Workand finish with someConclusions.

2 Experimental Domains

Throughout this paper we will be using two simple domains, tobetter illustrate our
ideas. The first one is a simple game called Wumpus [3]. The game is easy to understand
and people have no problems playing it effectively as soon asthey learn the rules. For
artificial agents, however, this game — and other similar applications, including many
of practical importance — remain a serious challenge.

The game is played on a square board. There are two characters, the player and
the monster called Wumpus. The player can, in each turn, moveto any neighbouring
square, while the Wumpus does not move at all. Position of themonster is not known
to the player, he only knows that it hides somewhere on the board. Luckily, Wumpus is
a smelly beast, so whenever the player enters some square, hecan immediately notice
if the creature is in the vicinity. The goal of the game is to find out the exact location
of the monster, by moving throughout the board and observingon which squares does
it smell. At the same time, if the player enters the square occupied by the beast, he gets
eaten and loses the game.

For learning experiments we also use a second domain, a modified version of “king
and rook vs king and knight” chess ending. Since we are interested in partially unknown
environments we assume, for the sake of experimentations, that the agent does not know
how the opponent’s king is allowed to move —a priori, any move may be legal. The
agent will need to use learning and discover what kinds of moves are actually possible.

Those domains are, obviously, only examples and the architecture presented here
does not dependent on them. In order to better understand thegoal of our research, it
can be helpful to imagine the setting similar to theGeneral Game Playing Competition
[4]: our agent is given some declarative knowledge about thedomain and is supposed
to act rationally from the very beginning, while becoming more and more proficient as
it gathers more experience.

3 Architecture

The architecture we propose consists of four main modules (shown in Figure 1).De-
ductorcorresponds to a typical “core” of logically reasoning agent, except that in our
case it does not use classical logic, but rather Active Logicformalism in order to better
interact with other modules.Plannermodule is mainly responsible for creating poten-
tially interesting plans, although any kind of domain-specific reasoning could just as
well be performed in it. Its main purpose is to increase the amount of agent’s beliefs
(including plans) that provide Deductor with knowledge to reason about.

Actor is an overseer of the interactions between an agent and its environment. It
analyses and interprets agent’s sensor data, in order to react whenever something inter-
esting happens in the external world. It also watches over agent’s reasoning process and
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Fig. 1. Architecture of an agent.

makes decisions about when their results are sufficiently well developed to begin acting
based on them.

Finally, Learneranalyses the performance of the agent as a whole and generalises
its past experience in order to improve the work of each module. In particular, the most
important part is to evaluate conditional partial plans andto learn which ones are most
likely to lead to good results in future situations.

In the following sections, we describe each module in more detail, as well as point
out the most important interactions among them.

4 Deductor

This module analyses both current state of the world and how it will change as a result of
performing a particular action. Our agent uses a variant of Active Logic [2], augmented
with some ideas from Situation Calculus [5].

Active Logic is a reasoning formalism which, unlike classical logic, is concerned
with theprocessof performing inferences, not just the final outcome (fixed point) of the
entailment relation. In particular, instead of classical notion of theoremhood, AL has
i-theorems, i.e. formulae which can be provenin i steps. This allows an agent to reason,
among other things, aboutdifficulty of proving something, to retract knowledge found
inappropriate and to resolve contradictions in a meaningful way, as well as makes it
aware of the passage time and its own non-omniscience.

To this end, each formula in AL is labelled with the step number when it was de-
rived. E.g., themodus ponensinference rule looks like this:i:α,α⇒β

i+1:β and means “if at
stepi formulaeα andα ⇒ β are present in the belief set, then at stepi + 1 formula
β will also be present.” Moreover, there is a special inference rule i:Now(i)

i+1:Now(i+1) , which
allows an agent to refer to the current moment and to explicitly follow the passage of
time. A more in-depth description of Active Logic can be found in [6].



Following ideas of [7] we have decided to augment Active Logic with some con-
cepts from Situation Calculus. In particular, in order to have the agent reason about
changing world, every formula is indexed with current situation. Furthermore, since
the agent needs to reason about effects of executing variousplans, we additionally in-
dex formulae with the plan the agent is considering. Therefore, a typical formula our
agent reasons about looks like this:Knows(s, p, Neighbour(a2, b2)) and means “an
agent knows that after executing planp in situations, squaresa2 andb2 will be adja-
cent2.” This formula is only mildly interesting, as its validity depends on neithers nor
p, at least in the Wumpus domain. But:Knows(s, p,¬Wumpus(b2)) which means
“an agent knows that after executing planp in situations, Wumpus will not be onb2,”
does, obviously, depend ons, since agent’s knowledge changes as it acts in the world.
It still does not, however, depend onp itself. Clearly, no “new” knowledge can be ob-
tained by simplyconsideringsome plan (without actually executing it). If an agent
Knows(s, p,¬Wumpus(b2)), then it must alsoKnow(s, ∅,¬Wumpus(b2)), where
∅ stands for an empty plan3.

In contrast, an example of some really interesting formulaethat can be formulated
could beKnows(s, p, Wumpus(b3))∨Knows(s, p, Wumpus(c2)) which means “an
agent knows that after executing planp in situations, it will either know that there is
Wumpus onb3 or that there is Wumpus onc2”. As an example of reasoning by cases and
predicting action results, this is exactly the kind of knowledge that we want the agent
to infer — it doestell important things about quality of the plan being considered. If all
the agent knew before was:Knows(s, ∅, Wumpus(b3) ∨ Wumpus(c2)) than clearly
executingp is useful. For a human “expert,” suchp looks like a good plan. The goal of
our research is to makean agentbe able to reason about plans in exactly this way. It
is our intuition, supported by preliminary experiments reported later in this paper, that
creating adomain independentActor module which would efficiently select good plans
by learning from experience using formulae like the one above is possible.

5 Planner

As we stated earlier, our agent creates conditional, partial plans. The plans are partial
because limited resources do not allow our agent to considerall the possibilities and
come up with a good conformant plan. The plans are conditional since we intend the
agent to learn that some of them are generally good and some ofthem are generally bad.
By the virtue of being conditional, the plans remain concisebut also strictly more ex-
pressive than in the unconditional case. In particular, their applicability is significantly
enhanced and the agent is able to reason about their usefulness.

Let us take an example from the Wumpus domain. With an agent onsquarea1, one
simple plan is “a2”, meaning “go toa2”, while another is “a2a3”, meaning “go toa2
and then go toa3”. A conditional plan could be “a2 ? a1 : b2”, meaning “go toa2 and
if it smells there go back toa1, else go forward tob2”. Actually, in Wumpus domain it

2 We use chess-like notation for naming squares, with lettersdesigning columns and numbers
designing rows.

3 Since in our game the player has no way of changing Wumpus’ position, the actual validity of
“Wumpus(b2)” remains constant, only agent’s knowledge is changing



is difficult to find a simple plan longer than one step which would be good, while there
exists a number of conditional plans which can be easily classified as good.

In a sense, our treatment of plans is related to the notion of hierarchical planning,
since the conditional partial plans we consider are very similar to macro-operators [8].
Our goal is to let the agent learn which conditional partial plans aregood to later use
them as building blocks for finding complete solutions.

6 Actor

The Actor module acts as a controller of the agent as a whole. It has three kinds of
duties. First, it observes the environment and forces the agent to react to interesting
events that take place there. Second, it decides when enoughtime has been spent on
deliberation and no further interesting results are likelyto be obtained. Finally, it makes
decisions to execute a particular plan from Deductor’s repertoire.

The typical scenario consists of Actor continuously monitoring the sensor input,
analysing it and transforming it into symbolic representation whenever needed. In Ac-
tive Logic, there exists a special provision for that, called observation function, with
exactly the same status as domain axioms, but with differenttemporal extent. Such in-
put can then be used by the Deductor, allowing an agent to respond to the changes in
the world. It is also possible for Actor to react more “violently” if needs arises, either
by directly and immediately performing some physical actions (e.g. obstacle avoidance
if the agent is about to hit something) or by straightforwardly influencing agent’s inter-
nal reasoning process (for example, if Actor notices that the change of the environment
reaches some threshold, it can “reset” Deductor, under the assumption that its previ-
ous results are no longer applicable anyway). In this sense,the Actor implements the
reactive behaviour of the agent.

In addition, Actor continuously monitors the progress of agent’s internal reasoning
and can react to certain conditions there. For example, as soon as Deductor finds a
plan which looks sufficiently good (in the extreme case, one which directly leads to the
goal), the reasoning can be interrupted and this plan executed immediately. Similarly, if
it turns out that the deduction cannot proceed further before some observation is made,
Actor can decide to pause the reasoning and perform the necessary sensing actions.

Finally, Actor chooses which plan to execute. This decisionmay be based on plan
ranking done earlier by either Deductor or Learner, or may simply be a random pick, if
a situation is sufficiently new and such knowledge is not yet available.

7 Learner

The goal of the learning module is to provide Actor with knowledge necessary to choose
the best plan for execution and to decide when to stop deliberation — i.e. when too
much time has been spent on it without reaching any new, interesting insights.

In order to do that, Learner finds out recipes for evaluating plans and to decide which
ones are most likely to lead to the goal. Since the plans are partial, it is very difficult
to predict, in general, whether a given plan is a step in the right direction. There is an
active research on heuristics in planning, focusing on exactly this problem.



Using learning techniques developed in the field of Inductive Logic Programming,
however, is another possible way to approach the problem. Based on experience and
on deductive reasoning performed by Deductor module, it is possible to analyse how
the world (and the agent’s knowledge about it) will change after executing a particular
plan. It is then possible to learn rules for determining the class of plans which have been
successful in the past, and use that to choose the one to be executed next.

In the simplest case, it could consist of just distinguishing “dangerous” plans, i.e.
ones that can lead to agent’s immediate death. This is not enough in general, but there
is a large class of domains which are “safe” in a sense that it is possible to win from
every position. Wumpus domain belongs to this class, while chess does not.

Moreover, an important question is one of credit assignment, since the agent typi-
cally executes several partial plans before it reaches a terminal state of the game. Only
the complete sequence of actions is then rewarded or punished. It can very well happen
that one of the plans in a bad sequence was, in fact, good. There are numerous tech-
niques, each with own advantages and disadvantages, being developed for dealing with
this problem, and it is not clear at this point which one wouldbe best suited for our
particular case.

8 Module Interactions
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Fig. 2. Some details of the architecture of the agent.



The main idea of our architecture is to ensure fruitful interactions between the mod-
ules introduced above. Each of them roughly corresponds to one of the major subfields
of Artificial Intelligence and is designed to employ state ofthe art solutions from it.
Each module can provide a very good performance in specific situations, but neither is
quite sufficient to achieve real intelligent behaviour of a generic situated agent.

The major contribution of our architecture is the idea to usemultiple conditional
partial plans, together with expected results of their application to a particular situation,
as the way to exchange information between modules. In this way, Planner comes up
with plans which are potentially interesting, but it does not need to commit to a single
one. Deductor reasons about each of those plans separately,but is also able to explore
interactions between them, as well as to make use of any similarities it can find in
order to extrapolate results concerning one plan to the others. Learner induces generic
knowledge about what types of plans have been successful in the past. Actor predicts,
based on that, which should be executed in the future, as wellas oversees the reasoning
and chooses the best course of action as soon as enough knowledge becomes available.

Using the above architecture, agent is able to reason about current state of the world,
both about the details of current situation and about the generic laws governing the ap-
plication domain. Moreover, it can also reason about the state of the world as it expects
it to be after execution of each plan under consideration. Finally, it reasons boutplans
themselves, how successful were they in the past, both in general and in situations sim-
ilar to the current one, and how good they are expected to be right now.

9 Results of Initial Experiments

We have performed some initial experiments in order to evaluate the feasibility of our
ideas and to check how well do they work in practice. Our focuswas on interactions
between modules and on showing that different approaches wecombine do indeed com-
plement each other.

We have used an ILP algorithm PROGOL [9] for learning, since it is among the best
known ones and its author has provided a fully-functional, publicly available imple-
mentation. In a previous paper [10] we have presented results of learning to distinguish
“bad” plans early. We have shown that PROGOL is able to find thecorrect hypothesis
from as few as 30 randomly-chosen examples. Such a hypothesis allows the agent to
save up to 70% of its reasoning time, since it does not need to waste resources analysing
plans which are known to be useless. Those results required providing additional do-
main knowledge specifically for the purpose of learning, butwe have also analysed (in
[11]) how the PROGOL learning algorithm can be adapted to extract it automatically.

The results we have obtained can be seen in figure 3. The first curve (middle one,
marked “Full Knowledge Base”) corresponds to the case wherewe used no additional
domain-specific knowledge, except from PROGOLmode declarations, and where the
whole knowledge the agent has gathered has been provided to the learning algorithm.

For the remaining two curves we identified the parts of agent’s knowledge which
are most relevant to learning the concept of bad plans and only presented those to the
learning algorithm. In the lowest one, marked “Relevant KB,Excluding Deductor”, we
have provided only domain description and observations, having removed all the results
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Fig. 3. Results of learning.

of Deductor’s work. In the highest one, we have left them intact. Only in this latest case
the Learner has been able to correctly learn the concept.

Those results show that Deductor provides knowledge which significantly improves
quality of learning. At the same time, as mentioned above, learning the right hypothesis
allows the agent to save a lot of its reasoning effort. We planfurther experiments which
shall reveal even more synergy between modules in the architecture.

10 Related Work

The amount of work on agent architectures in general is too large to summarise com-
prehensively here, therefore we will only discuss a small fraction of this field here.

The work presented in this paper is related to studies of architectures for general
intelligence. There has been a lot of attempts to define such an architecture, with SOAR
being the most prominent and most successful of them ([12] provides a general intro-
duction). In contrast to SOAR, we do not claim any cognitive plausibility of our archi-
tecture, focusing our interests on mainly on the task of achieving intelligent behaviour
of an artificial agent.

Our approach is also quite distinct from the layered architectures which are popular
nowadays (see, for example, [13] for a collection of papers on this topic). In particular,
we do not focus specifically on the reactive part of the system, hiding it one part of
the Actor module. This does not mean that we diminish the necessity or importance
of the reactivity, but rather that we simply decided to concentrate on the higher-level
reasoning aspect of our agent as it is less understood and requires more attention. We
make sure, however, that higher levels of our architecture remain sufficiently flexible to
be able to handle the requirements of reactive part.



Although we have been stressing the need of rationality and the importance of
reasoning throughout this paper, our approach also differsfrom the one exhibited by
Beliefs-Desires-Intentions systems and BDI architectures (see, among others, [14] for
a formalised approach to this topic). We do not explicitly distinguish intentions, while
both plans and goals are treated in a very similar manner. This is due to the fact, how-
ever, that BDI approaches usually lack learning, which is the central issue in our ap-
proach, and which allows an agent to account for its intentions in a different, but also
sufficiently effective, way.

11 Conclusions

In this paper we present an architecture for rational agentswe are currently develop-
ing. It allows agents to combine planning, deductive reasoning, inductive learning and
time-awareness in order to operate successfully in dynamicenvironments. Agents cre-
ate conditional partial plans, reason about their consequences using an extension of
Active Logic with Situation Calculus features, and employ ILP learning to generalise
past experience in an attempt to distinguish good plans frombad ones.

The basic framework of the architecture is already implemented and initial exper-
iments show that the synergy effects we aimed for do, indeed,appear. The modules
themselves still need more work before they contain the functionality needed to tackle
practical problems, since we have only been working on toy ones up to now. State of
the art solutions, however, are available and many of them can be integrated into our
architecture with minimal changes. Nevertheless, the onesneeding further attention are
efficient Deductor for Active Logic, and Learner using modified ILP algorithm. Our
current research focuses on those topics.
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