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Abstract

Decision trees constructed by 1D3-like a gorithms suffer from an inability of detecting instances of
categories not present in the set of training examples, i.e.,, they are discriminative representations.
Instead, such instances are assigned to one of the classes actually present in thetraining set, result-
inginundesired misclassifications. Inthisreport, two methodsof reducing thisproblem by learning
characteristic representations are presented. The central idea behind both methods is to augment
each leaf of the decision tree with a subtree contai ning additiona information concerning each fea-
ture'svauesinthat leaf. Thisisaccomplished by computing two limits(lower and upper) for every
feature from the training instances belonging to the leaf. A subtreeis then constructed from these
limitsthat testsevery feature; if the valueisbelow thelower limit or abovethe upper limit for some
feature, the instance will be rgjected, i.e., regarded as belonging to a novel class. This subtreeis
then appended to the leaf. The first method presented corresponds to creating a maximum specific
description, whereas the second isa novel method called ID3-SD that makes use of theinformation
about the statistical distribution of the feature vaues that can be extracted from the training exam-
ples. Animportant property of the novel method isthat the gap between the limits(i.e., the degree
of generalization) can be controlled. The two methods are then evaluated empirically in three dif-
ferent domains: the classic Irisdatabase, awine database, and a novel database from a coin-sorting
machine. It is concluded that the dynamical properties of the ID3-SD method makes it preferable
inmany applications. Finally, we argue that thismethod in fact isgeneral inthat it, in principle, can
be applied to any empirica learning algorithm, i.e., it is not restricted to decision tree algorithms.

1 Introduction

One often ignored problem for alearning system is how to know when it encounters an instance of an
unknown category. In many practical applicationsit cannot be assumed that every category is repre-
sented in the set of training examples' and sometimes the cost of amisclassification is too high. What
is needed in such situationsis the ability to reject instances of categories that the system has not been
trained on. For example, consider the decision mechanism in a coin-sorting machine of the kind often
usedin bank offices. Itstaskisto sort (and count) alimited number of different coins(for instance, apar-
ticular country’s), and to reject al other coins. Supposing that this decision mechanismisto belearned,
itisfor practical reasonsimpossibleto train the learning system on every possiblekind of coin, genuine
or faked. Rather, it isdesired that the system should be trained only on the kinds of coinsit is supposed
to accept. Another example are decision support systems, for instance in medical diagnosis, where the

!That is, they are open domains (cf. Hutchinson [8]).



cost of a misclassification often isvery high— it is better to remain silent than to give an incorrect di-
agnosis. Moreover, thisisacritical problem in autonomous learning systems, as such systems must be
able to decide when to create a new concept (cf. Davidsson [3]).2

As been claimed by Smyth and Mellstrom [13], the only way of solving this problem is to learn
characteristic category descriptionsthat try to capture the simil arities between the members of the cat-
egory. This, in contrast to learning discriminative descriptions that can be seen as representations of
the boundaries between categories. The difference between these kinds of descriptionsisillustratedin
Figure 1. It showssomeinstances of three known categories (x, ¢, and ¢), and exampl es of possiblecat-
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Figure 1: Discriminative versus characteristic category descriptions.

egory boundaries of the conceptslearned by a system using discriminative descriptions (to the left) and
by a system using characteristic descriptions (to theright). In thiscase, amember of an unknown cate-
gory (X) will be categorized wrongly by a system using discriminative descriptions, whereas it will be
regarded as amember of anovel category by asystem using characteristic descriptions. In other words,
whereas systems that |earn discriminative descriptionstend to overgeneralize, the degree of generaliza-
tion can be controlled, or at least limited, by systems learning characteristic descriptions.

Decision trees constructed by ID3-like agorithms [10], as well as, for instance, nearest neighbor
algorithms and neural networks learned by back-propagation,® suffer from this inability of detecting
examples of categories not present in thetraining set. Of course, there exist methods for learning char-
acteristic descriptions from examples (with numerical features), for instance, the a gorithm presented
by Smyth and MédlIstrom [13], ART-MAP [2], and certain kinds of instance-based methods. The prob-
lem with these is that they do not learn explicit rules, which is desired in many practical applications
such as the coin classification task outlined earlier. However, as has been shown by Holte e al. [7],
CN2 (arelative to the AQ-family) can be modified to learn characteristic descriptionsin the form of
rule-based maxi mum specific descriptions.

Inthe next sectionstwo methods of |earning characteristic decisiontreeswill be presented. Thefirst
method is a straightforward adaption of the idea of maximum specific descriptionsto the decision tree
domain. The second method, whichisan improved version of the method outlined by Davidsson [4], is
anovel approach that makes use of the information about the statistical distribution of the feature val-
ues that can be extracted from the training examples. These methods are then evaluated empirically in
threedifferent domains: the classic Irisclassification problem, awinerecognition problem, and thecoin
classification problem described above. In thelast section thereisageneral discussion of the suggested
methods.

2In short, if the system believes that the current observation belongs to an (for the agent) unknown category, it seems
rational to create a new category based on this instance.
At least, in the original versions of these algorithms.



2 Method | — Maximum Specific Description

Both methods are based on the idea of augmenting each leaf of the decision tree resulting from the
origina 1D3 agorithm with a subtree. The purpose of these subtreesis to impose further restrictions
on the feature values. A lower and an upper limit are computed for every feature. These will serve as
testsin the following way: if the feature value of the instance to be classified is below the lower limit
or above the upper limit for one or more of the features, the instance will be rejected, i.e., regarded as
belonging to a novel class, otherwiseit will be classified according to the original decision tree. Thus,
when anew instance isto be classified, the decision tree isfirst applied as usual, and then, when aleaf
would have been reached, every feature of the instance is checked to see if it belongs to the interval
defined by the lower and the upper limit. If all features of the new instance are insidetheir interval the
classificationis still valid, otherwise the instance will be rejected.

Inthefirst method we compute the minimum and maximum feature val uefrom thetrai ning instances
of theleaf and | et these be thelower and upper limitsrespectively. Thisapproach will yield amaximum
specific description (cf. the modification of CN2 by Holteet al. [7]).

3 Method Il —Statistical Distribution

Whilebeing intuitiveand straight-forward, the method described aboveisalso rather staticin the sense
that there is no way of controlling the values of thelimits, i.e., the degree of generaization. An ability
to do thisis desirable, for example, when some instances that would have been correctly classified by
the original decision tree are rejected by the augmented tree (which happensif any of its feature values
isonthewrong side of alimit). Actually, thereisatrade-off between the number of failures of thiskind
and the number of misclassified instances. How it should be balanced is, of course, dependent of the
application (i.e., the costs of misclassification and rejection). Thisis to avoid under-generalization, a
similar trade-off hasto be bal anced to avoid over-generalization, i.e., when some instances of unknown
categories are not rejected. Since it isimpossible in the above method to balance these trade-offs, a
more dynamic method in which the degree of generalization can be controlled has been developed.

The central ideaof thismethod isto make use of statistical information concerning the distribution
of the feature values of the instancesinthe leaf. For every feature we compute the lower and the upper
limitsso that the probability that a particular feature val ue (of an instance bel ongingto thisleaf) belongs
to the interva between theselimitsis1 — «.

In this way we can control the degree of generalization and, consequently, the mentioned trade-
offs by choosing an appropriate a-value. The lesser the a-value is, the more misclassified and less
rejected instances. Thus, if it isimportant not to misclassify instances and a high number of rejected
(not classified) instances are acceptable, a high a-value should be selected.

3.1 ComputingtheLimits

It turns out that only very simple statistical methods are needed to compute such limits. Assuming that
X isnormally distributed stochastic variable, we have that:

Pim—Aso <z <m+Aso)=1-o

where m isthe mean, ¢ isthe standard deviation, and A isacritical value depending on « (for instance
Ao.o2s = 1.960). Thus, we have, for instance, that the probability of an observation being larger than
m — 1.960 and smaller than m + 1.96¢ is 95%.



In order to follow thisline of argument we have to assume that the feature val ues of each category
(or each leef if it is a disjunctive concept*) are normally distributed. This assumption seems not too
strong for most applications. However, as we typically cannot assume that the actual values of m and
o are known, they have to be estimated. A simple way of doing thisis just to compute the mean and
the standard deviation of the training instances (z1, ..., z,,) belonging to the current leaf:

me= B g = [REEE
To get aniceinterpretation of the interval between the upper and lower limit, we have to assume that
these estimates are equal to the actual valuesof m and o. Thisis, of course, too optimistic, but it seems
reasonable to believe (and will be shown in Section 5) that the method is of practical value also with-
out thisinterpretation. Anyway, theintended statistical interpretation suggeststhat the probability of a
feature of an instance of a category being larger than the lower limit and smaller than the upper limit
for @« = 0.01 i599%.

It can be argued that thisis arather crude way of computing the limits. A more elaborate approach
would be to compute confidence intervalsfor the limits (i.e., for m and ¢) and usetheseinstead. This
was actually theinitial idea but it turned out that this only complicates the agorithm and does not in-
crease the classification performance significantly.

4 A Smple Example

In thissection avery simple exampleispresented toillustratethe suggested methods and compare them
withthe origina D3 agorithm. All instancesare described by two numerical features, and thetraining
instances belong to either of two categories: the x-category or the o-category. The systemisgiven four
training instances of each category.

Thefeature values of the training instances of the x-category are: (3.0, 1.2), (3.5, 0.9), (4.5, 1.1), (5.0,
0.8) and the o-category traininginstancesare: (11.5,1.8), (12.5, 1.5), (12.5, 1.8), (13.5, 2.1). Figure 2 shows
theinstances' positionsin the feature space.

If these training-instancesare given to the ID3 a gorithm, the output will be the following decision
tree:®

feature 1

<825 > 8.25

*-category o-category

This tree represents the decision rule: if feature 1 < 8.25 then the instance bel ongs to the x-category,
elseit belongsto the ¢-category. The classification boundary that followsfrom thisruleisillustratedin
Figure 2 by avertical dashed line. If we now apply the decision tree to an instance of another category
() with the feature values (9.0,0.5), it will be (mis)classified as an instance of the ¢-category.

* Systems that learn from examples do often not succeed in creating purely conjunctive descriptions for each category.
Instead, they create a descriptions that consists of several disjuncts, where each disjunct corresponds to a subcategory, or
cluster of training instances, represented by a conjunctive description (which typically corresponds to only one cluster of
instances).

Or asimilar one, depending on the cut-point selection strategy. In all examples of this paper the cut-point is chosen by
first sorting all values of the training instances belonging to the current node. The cut-paint is then defined as the average of
two consecutive values of the sorted list if they belong to instances of different classes.
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Figure 2: The feature space of the example. The boundary between the two categories (x
and ¢) induced by the ID3 agorithm is represented by the vertical dashed line.

4.1 Method | — Maximum Specific Description
Let us apply the same problem to the method based on the maximum specific description. The lower
and the upper limitswill then be as follows:

feature 1 feature 2
*-category 30..50 08..12
o-category 115..135 15.21

These limits giverise to the following decision tree (which covers the dotted boxes in Figure 3):

feature 1 feature 1

> 135
reject feature 2 reject reject feature 2 reject
<08 > 12 <15 >21
reject *-category reject reject o-category reject

If we now apply the augmented decision tree to the -category instance, we first use the decision
tree as before resulting in a preliminary classification which, still as before, suggests that it belongs
to the -category. However, as we proceed further down the tree into the appended subtree, we will
eventually encounter a test that brings us to a reject-leaf (i.e., we check whether the new instance is
inside the dotted box, and find out that it is not). Asaconsequence, theinstanceisrejected and treated
as an instance of anovel, or unknown, category.



4.2 Method Il — Statistical Distribution
If we apply the statistical method with o = 0.05, the lower and upper limitswill be asfollows:
feature 1 feature 2

*-category 22..58 06..14
o-category 109. 141 13..23

Theselimitswill yield adecision tree similar to that of the maximum specific method but with different
values on the rejection branches, and will cover the inner dashed boxes in Figure 3. Such a box can
be interpreted as meaning that, if the assumptions mentioned above were correct and if the features are
independent, 90.2% (0.95 x 0.95) of the instances of the category are inside the box. Just as with the
maximum specific tree this tree will reject the X-category instance. We can also see that the lesser a-
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Figure 3: Thefeature space of the example. The maximum specific description correspond
to the dotted boxes. Theinner dashed boxes correspond to the description result-
ing from the method based on statistical distribution with o = 0.05. The outer
dashed boxes correspond to o = 0.001.

valuethat is chosen, the more will the agorithm generalize. The outer dashed boxes correspondto « =
0.001, i.e., the probability is 99.8% that an instance of the category isinside the box.

5 Empirical Evaluation

In this section the two methods are evaluated empirically in three different domains. the classic Iris
classification problem, a wine recognition problem, and a novel coin classification problem. Aswe
here are interested in the behaviour of the algorithms when confronted with unknown categories, not
all of the categories present in the data sets were used in the training phase. This approach may at first
sight seem somewhat strange as we actually know that there are, for instance, three categories of Irises
in the data set. But, how can we be sure that there exist only three categories? It might exist some not
yet discovered speciesof Iris. Infact, we believethat in most real world applicationsit isnot reasonable
to assumethat all relevant categories are known and can be given to the learning systemin thetraining
phase.



5.1 ThelrisDatabase

For this series of experiments the Iris database described by Fisher [6] has been used. It contains 3
categories of 50 instanceseach, where acategory refersto atypeof Irisplant (Iris Setosa, Iris Versicolor
or Iris Virginica). All of the 4 attributes (sepa length, sepal width, petal length, and petal width) are
numerical.

In each experiment the data set was randomly divided in half, with one set used for training and the
other for testing. Thus, 50 (2x 25) instanceswere used for training and 75 (3x 25) instancesfor testing.
Each experiment was performed with the original 1D3 agorithm, the maximum specific tree a gorithm
(ID3-Max), and the a gorithm based on statistical distribution (ID3-SD) for the a-values: 0.2, 0.1, 0.05,
and 0.01.

Table 1 showsthe classification resultswhen the algorithmswere trained on instances of Iris Setosa
and Iris Versicolor. Since these categories are linearly separable, the ID3 algorithm have no problem

Iris Setosa Iris Versicolor Iris Virginica

correct ‘ miss ‘ reject correct ‘ miss ‘ reject correct ‘ miss ‘ reject
ID3 100.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0
ID3-Max 68.8 0.0 31.2 76.4 0.0 236 0.0 0.4 99.6
ID3-SD 0.2 42.4 0.0 57.6 47.2 0.0 52.8 0.0 0.0 100.0
ID3-SD 0.1 62.8 0.0 37.2 65.2 0.0 34.8 0.0 12 98.8
ID3-SD 0.05 73.2 0.0 26.8 82.0 0.0 18.0 0.0 2.8 97.2
ID3-SD 0.01 84.4 0.0 15.6 95.2 0.0 48 0.0 18.8 81.2
desired 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0

Table 1: Resultsfromtraining set containinginstancesof IrisSetosaand IrisVersicolor (av-
erages in percentages over 10 runs).

separating them, but misclassifies (of course) al theinstances of Iris Virginica. We can a so see that by
varying the a-valueit is possibleto control the trade-off between the number of rejected and misclassi-
fied instances. However, the maximum description a gorithm works very well on this simple problem.
It handlesevery category slightly better than the statistical agorithmfor « =0.1. Itispossibleto achieve
zero misclassificationsif we choose oo = 0.2, but then we get arejection rate of over 50% also for the
two known categories.

A more difficult task iswhen the training set consists of instances of Iris Setosaand Iris Virginica.
Theresultsare shownin Table 2. The most interesting fact to notice here, isthat the ID3-SD algorithm
(o = 0.1) performs significantly better than the ID3-Max algorithm. It has a slightly higher regjection-
rate, but misclassifies over 60% less instances than the ID3-Max algorithm.

Finally, there isthe case when the training instances are either Iris Versicolor or Iris Virginica (see
Table 3). Here we can see that it is possibleto reduce the number of misclassifications aso of known
categories by using characteristic descriptions (also Table 2 showsthis, but to alesser degree). For in-
stance, thedecision treeinduced by the D3 a gorithm misclassifies 9.2% of thelris Virginicainstances,
whereas both ID3-max and ID3-stat (« = 0.2 and 0.1) induce trees that do not misclassify any of these
instances. The main reason for thisis probably that the characteristic decision trees check all features
so that they do not take unreasonable values, whereas the discriminative trees only check one or two of
the features.



Iris Setosa Iris Versicolor Iris Virginica

correct ‘ miss ‘ reject correct ‘ miss ‘ reject correct ‘ miss ‘ reject
ID3 98.8 12 0.0 0.0 100.0 0.0 99.2 0.8 0.0
ID3-Max 68.8 0.0 31.2 0.0 148 85.2 74.0 0.0 26.0
ID3-SD 0.2 42.4 0.0 57.6 0.0 12 98.8 49.6 0.0 50.4
ID3-SD 0.1 62.4 0.0 37.6 0.0 5.6 94.4 70.4 0.0 29.6
ID3-SD 0.05 74.0 0.0 26.0 0.0 17.6 824 80.0 0.0 20.0
ID3-SD 0.01 84.0 0.0 16.0 0.0 47.2 52.8 91.2 0.0 8.8
desired 100.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0

Table 2: Resultsfrom training set containing instances of Iris Setosaand Iris Virginica(av-
erages in percentages over 10 runs).

Iris Setosa

Iris Versicolor

Iris Virginica

correct‘ miss ‘ reject

correct‘ miss ‘ reject

correct‘ miss ‘ reject

ID3 0.0 100.0 0.0 91.6 8.4 0.0 90.8 9.2 0.0
ID3-max 0.0 0.0 100.0 66.0 2.0 320 65.2 0.0 34.8
ID3-stat 0.2 0.0 0.0 100.0 40.0 16 58.4 38.0 0.0 62.0
ID3-stat 0.1 0.0 0.0 100.0 60.0 3.2 36.8 64.4 0.0 35.6
ID3-stat 0.05 0.0 0.0 100.0 74.0 4.8 21.2 74.4 16 24.0
ID3-stat 0.01 0.0 0.0 100.0 84.4 4.8 10.8 82.8 4.8 12.4
desired 0.0 0.0 100.0 100.0 0.0 0.0 100.0 0.0 0.0

Table 3: Resultsfrom training set containing instances of Iris Versicolor and Iris Virginica
(averages in percentages over 10 runs).




5.2 WineRecognition

Thisdata set comes from the Instituteof Pharmaceutical and Food Analysisand Technol ogiesin Genoa,
Italy andisavail ableat the UCI Repository of Machine L earning databases.® 1t containsresultsof chem-
ical anayses of wines grown in the same region of Italy, but are fermented using three different kinds
of yeast. Intheanalysesthe quantitiesof 13 different constituentswere measured. The dataset consists
of 59 instances of wine of type 1, 71 of type 2, and 48 of type 3. Thisisamore difficult problem than
the above since we here are dealing with many, potentially irrelevant, features.

In each experiment 50 (2x 25) instances were used for training and 60 (3x 20) instances for test-
ing. Each experiment was performed with the original 1D3 algorithm, ID3-Max, and ID3-SD for the
a-vaues: 0.1, 0.05, 0.01, 0.001 and 0.0001. Table 4, Table 5, and Table 6 showsthe classification re-
sults of these experiments.

Wine 1 Wine 2 Wine 3

correct ‘ miss ‘ reject correct ‘ miss ‘ reject correct ‘ miss ‘ reject
ID3 93.0 7.0 0.0 90.0 10.0 0.0 0.0 100.0 0.0
ID3-Max 310 0.0 69.0 275 0.0 725 0.0 1.0 99.0
ID3-SD 0.1 19.0 0.0 81.0 225 0.0 775 0.0 0.0 100.0
ID3-SD 0.05 420 0.0 58.0 375 0.0 62.5 0.0 0.0 100.0
ID3-SD 0.01 67.5 30 295 63.5 0.0 36.5 0.0 15 98.5
ID3-SD 0.001 775 6.0 16.5 75.5 15 23.0 0.0 8.0 92.0
ID3-SD 0.0001 85.5 7.0 75 80.0 25 175 0.0 120 88.0
desired 100.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 100.0

Table 4: Result from training set containing wine of type 1 and 2 (averages in percentages
over 10 runs).

We can see that for the right «-value (between 0.05 and 0.001 depending on the constraints of the
application) thelD3-SD algorithm performs significantly better than the |D3-Max algorithm. ID3-Max
has greater problems than ID3-SD when the number of features grows since each additional feature
decreases the probability that every feature value of an instance is between the limits. In other words,
the number of training instances needed by ID3-Max increases when the number of featuresincreases.

5.3 Coin Classification

Thiscorrespondsto the problem of |earning the decision mechanismin coin sorting machines described
intheintroduction.” A preliminary study of thisproblemisdescribedinaMaster’ sthesisby Martensson
[12]. Hetested a neura network approach, a statistical method based on a Bayesian classifier, and a
decisiontreeinduction method (ID3-Max) on the problem. Although these methods had approximately
the same classification accuracy (on known types of coins), he concluded that ID3-Max was the most
appropriate method for this application, mainly because it learns explicit rules and is fast both in the
learning and in the classification phase.

°Retrievable by anonymousftp from ftp. ics.uci.eduin directory /pub/machine-learning-databases.
"This work hasin part been carried out in collaboration with Scan Coin AB (Malmd, Sweden).



Winel

Wine2

Wine 3

correct‘ miss ‘ reject

correct‘ miss ‘ reject

correct‘ miss ‘ reject

ID3 99.5 0.5 0.0 0.0 100.0 0.0 99.0 1.0 0.0
ID3-Max 33.0 0.0 67.0 0.0 0.0 100.0 35.0 0.0 65.0
ID3-SD 0.1 20.0 0.0 80.0 0.0 0.0 100.0 26.5 0.0 735
ID3-SD 0.05 46.0 0.0 54.0 0.0 0.5 99.5 44.0 0.0 56.0
ID3-SD 0.01 74.0 0.0 26.0 0.0 5.0 95.0 78.5 0.0 215
ID3-SD 0.001 86.5 0.0 135 0.0 40.5 59.5 91.0 0.0 9.0
ID3-SD 0.0001 94.5 0.0 6.5 0.0 59.0 31.0 95.0 0.0 5.0
desired 100.0 0.0 0.0 0.0 0.0 100.0 100.0 0.0 0.0

Table 5: Result from training set containing wine of type 1 and 3 (averages in percentages
over 10 runs).

Wine 1 Wine 2 Wine 3

correct ‘ miss ‘ reject correct ‘ miss ‘ reject correct ‘ miss ‘ reject
ID3 0.0 100.0 0.0 915 85 0.0 84.5 155 0.0
ID3-Max 0.0 25 975 310 0.0 69.0 320 0.0 68.0
ID3-SD 0.1 0.0 0.0 100.0 255 0.0 745 24.0 0.0 66.0
ID3-SD 0.05 0.0 0.0 100.0 43.0 0.0 57.0 40.5 0.0 59.5
ID3-SD 0.01 0.0 10.0 90.0 65.5 0.5 34.0 64.5 20 335
ID3-SD 0.001 0.0 22.0 78.0 77.0 3.0 20.0 73.0 6.0 210
ID3-SD 0.0001 0.0 295 70.5 83.0 4.0 130 77.0 105 125
desired 0.0 0.0 100.0 100.0 0.0 0.0 100.0 0.0 0.0

Table 6: Result from training set containing wine of type 2 and 3 (averages in percentages
over 10 runs).
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In our experiments two databases were used, one describing Canadian coins contains 7 categories
(1,5, 10, 25, 50 cent, 1 and 2 dollar), and one describing Hong Kong coins that aso contains 7 cate-
gories(5, 10, 20, 50 cent, 1, 2, and 5 dollar). All of the 5 attributes (diameter, thickness, conductivityl,
conductivity2, and permeability) are numerical. The Canada and Hong Kong databases were chosen
because when using the company’s current method for creating the rules of the decision mechanism
(which ismanual to alarge extent), these coins have been causing problems.

In each experiment 140 (7x 20) instances were randomly chosen for training and 700 (2x 7x 50)
instancesfor testing. Thisscenarioisquitesimilar to theactual situationwhereyou in thetraining phase
expose the system only to the coins of one country, but in the classification phase also confront it with
coinsof other countries. Each experiment was performed with theoriginal | D3 algorithm, themaximum
specific tree algorithm (ID3-Max), and the a gorithm based on statistical distribution (ID3-SD) for the
a-vaues: 0.1, 0.05, 0.01, 0.001, and 0.0001.

Table7 showstheclassification resultswhen training on the Canadian coin database. We can seethat

Canadian Coins Foreign Coins

correct ‘ miss ‘ reject correct ‘ miss ‘ reject
ID3 99.7 0.3 0.0 0.0 100.0 0.0
ID3-Max 83.7 0.0 16.3 0.0 0.0 100.0
ID3-SD 0.1 62.1 0.0 379 0.0 0.0 100.0
ID3-SD 0.05 775 0.0 225 0.0 0.0 100.0
ID3-SD 0.01 92.2 0.0 7.8 0.0 0.0 100.0
ID3-SD 0.001 97.9 0.0 21 0.0 0.0 100.0
ID3-SD 0.0001 98.9 0.0 11 0.0 0.0 100.0
desired 100.0 0.0 0.0 0.0 0.0 100.0

Table 7: Result from training set containing Canadian coins (averages in percentages over
10 runs).

all foreign coins (i.e., Hong Kong coins) are rejected, except of course for the ID3 algorithm. Neither
were there any problems with misclassifications. However, in this particular application there are some
demands that must be met by the learning system before it can be used in reality, namely, less than
5% rejects of known coins and very few misclassifications (less than 0.5%). In our experiment, these
requirements are met only by the ID3-SD agorithm with « = 0.001 and 0.0001, which illustrates the
advantage of being able to control the degree of generalization.

In Table 8 the resultswhen training on the Hong K ong coin database are shown. Asindicated by the
percentages of misclassifications of known types of coins, thisis a more difficult problem. Although
there aretwo a-values (0.001 and 0.0001) that meet the requirements, they are very closeto the accept-
able number of rejects (0.001) and misclassifications (0.0001) respectively.

6 Discussion
The rationale behind the methods presented in this paper was to combine the obvious advantages of

characteristic representations with the classification efficiency, explicitness, and simplicity of decision
trees. Of the two methods presented, the maximum specific description method (ID3-Max) seems to
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Hong Kong Coins Foreign Coins

correct ‘ miss ‘ reject correct ‘ miss ‘ reject
ID3 98.3 17 0.0 0.0 100.0 0.0
ID3-Max 79.7 0.0 20.3 0.0 0.0 100.0
ID3-SD 0.1 60.0 0.0 40.0 0.0 0.0 100.0
ID3-SD 0.05 74.8 0.0 252 0.0 0.0 100.0
ID3-SD 0.01 88.9 0.0 1.1 0.0 0.0 100.0
ID3-SD 0.001 95.1 0.3 4.6 0.0 0.0 100.0
ID3-SD 0.0001 96.3 05 3.2 0.0 0.0 100.0
desired 100.0 0.0 0.0 0.0 0.0 100.0

Table 8: Result from training set containing Hong Kong coins (averages in percentages
over 10 runs).

work well in some domains, but often the method based on statistical distribution (ID3-SD) givessig-
nificantly better results. The main reasonsfor this seem to bethat it is more robust than the former and
that it ispossibleto control the degree of generalization, which leadsto another advantage of the statis-
tical approach, namely, that the trade-off between the number of rejections and misclassifications can
be balanced in accordance to the constraints of the application. In some applicationsthe cost of amis-
classification is very high and rejections are desirablein uncertain cases, whereasin others the number
of rejected instances are to be kept low and a small number of misclassifications are accepted.

The expansion of the D3 algorithmto ID3-SD was carried out using simple statistical methods. If
n isthe number of training instances and m isthe number of features, the algorithmic complexity of the
computations associated with the limitsis linear in the product of these (i.e., O(nm)) in the learning
phase (which can be neglected when compared to the cost of computing the original decision tree), and
linear in m (i.e., O(m)) in the classification phase.

6.1 Some Potential Limitations

The main limitation of the SD-method seems to be that it is only applicable to numerical attributes.
The maximum specific description method, on the other hand, requires only that the features can be
ordered. Thus, one way of making the former method more general is to combine it with the latter
method to form a hybrid approach that is able to handle al kinds of ordered features. We would then
use the statistical method for numerical attributes and the maximum specific description method for the
rest of the attributes. Moreover, nominal attributes could be handled by accepting those val ues present
among the instances of the leaf and reject those that are not. In this way we get a method that learns
characteristic descriptions using all kinds of attributes. However, the degree of generalization can, of
course, only be controlled for numeric features.

Aswe observed in section 5, some instances that would have been correctly classified by the deci-
siontreearerejected by theaugmentedtree(i.e., if any of itsfeaturevaluesisoutsidetheir interval). This
isrelated to the trade-off between the number of rejections and misclassificationsthat can be controlled
by selecting a proper a-value. Development of methodsto automatically determine the appropriate de-
gree of generalization belongs, however, to future research.

Moreover, the original ID3-algorithm is quite good at handling the problem of irrelevant features
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(only features that are useful for discriminating between the categoriesin the training set are selected).
But since the suggested methods compute upper and lower limits for every feature and use these in
the classification phase, aso the irrelevant features will be subject for consideration. However, this
potentia problem will typically disappear when using the statistically based method for the following
reason. Anirrelevant feature isoften defined as afeature which valueis randomly selected according to
auniform distributionon thefeature'svaluerange (cf. Aha[1]). That is, the feature valueshave alarge
standard deviation, which will lead to alarge gap between the lower and the upper limit. Thus, as most
values of thisfeature will beinsidethisinterval, the featurewill still beirrelevant for the classification.

Another potential problem for the ID3-SD agorithm is the problem of few training instances. One
would think that when the number of training examples of a category decreases thereisarisk that the
estimates of the mean value and the standard deviation (which are fundamental for computing the lim-
its) will not be sufficiently good. However, preliminary experiments in the coin classification domain
indicatesthat the cl assification performance decreases slowly when the training examples get fewer. As
can beseeninfigure4, it handlesthe problem of few traininginstancesbetter than the maximum specific
descriptionwhich, in fact, has been suggested as a solutionto the related problem of small disjuncts(cf.
Holteet a. [7]).

% Correct 100

ID3-SD 0.001
80 ID3-SD 0.01
60 ID3-Max
40
20

5 10 Number of training instances

Figure 4: The percentage of correctly classified instances of known categories (Canadian
coins) as afunction of the number of instances of each category in small training
sets (averages over 10 runs). The remaining instances were rejected.

Finally, another problem arises when the number of featuresis large. If we choose a = 0.01 and
have 20 features, the probability that every feature vaue of an instance is between the the lower and
the upper limitsis just 81.8%" resulting in too many undesired rejected instances. However, asimple
solutionto thisproblemisto determinethe a-value out of adesired total probability, P;,; (we havethat
(1 —a)* = Pi,). For example, if there are 20 features and we want a total probability of 95%, we
should choose o = 0.0025.

6.2 Noisy Dataand The Generality of the SD-approach

The ID3-SD agorithm is better at handling noisy data than the ID3-Max agorithm in the sense that
an extreme feature vaue for one (or a few) instance(s) will not influence the positions of the limits of
that featurein ID3-SD asmuch asit will in ID3-Max. (See Figure 5) A method, not yet evaluated, for

#\We are here still assuming that the assumptions made in Section 3.1 are correct
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feature 2

5 10 15 feature 1

Figure5: A category with twenty good and one noisy instance. The maximum specific de-
scription correspond to thedotted box. The dashed box correspond to the descrip-
tion resulting from the ID3-SD agorithm with « = 0.1.

further reducing the problem of noisy instances, would be to use the limits to remove the instances of
the leaf that have feature values that are (considerably) lower than the lower or (considerably) higher
than the higher limit, and then recal culate thelimits. However, inthis paper we have used thetraditional
ID3 agorithm as abasis, an algorithm that is not very good at handling noisy datain thefirst place. In
fact, thereisatrivia solutionto the problem with noisy data: Use a pruning method (cf. Mingers[9]) to
cut off the undesired branches, or use any other noise tolerant algorithm (e.g., C4.5 [11]) for inducing
decision trees, and then compute the subtrees as before for the remaining leaves.

Thus, the statistically based approach for creating characteristic descriptionsisa general methodin
the sense that we can take the output from any decision tree induction a gorithm, compute a subtree for
every leaf, and append them to their leaf. In fact, the approach can, in principle, be applied to any em-
pirical learning method (supervised or unsupervised) provided that al attributes can be ordered (using
the hybrid approach).” However, if the instances of a category corresponds to more than one cluster in
the feature space (cf. disjunctive concepts), the method will probably work better for algorithms that
explicitly separates the clusters, i.e., whereit is possibleto find out which cluster a particular instance
belongsto. If thisisthe case, thelimitscan be computed separately for each cluster. Otherwise, we must
computeonly onelower and upper limit for thewhol e category, which probably will resultinatoo large
gap between the lower and the upper limit. Thisisalso theanswer to the question: Why bother building
adecisiontreein thefirst place? Could we not just computethelower and the upper limitsfor every cat-
egory and test unknown instances agai nst these? Thisis, in fact, an adequate method when dealing with
purely conjunctive concepts (if we don’t care about classification efficiency). However, when dealing
with disjunctive concepts, for the reason mentioned above, this would not be agood approach. In this
case, we must have an algorithm that is able to find suitable diguncts of the concept (which, infact, is
an unsupervised learning problem), atask that |D3-like agorithms normally are quite good at.'°

The procedure for augmenting an arbitrary empirical learning agorithm X isasfollows: train X as
usual, then compute the limits for every category (i.e., cluster) in the training set as described earlier.
When a new instance is to be classified, first apply X's classification mechanism in the same way as
usual, then check that all features values of the new instance are larger than the lower limit and smaller
than the upper limit. Thus, it is not necessary to represent the limits in the form of decision trees, the
main point is that there should be a method for comparing the feature values of the instanceto be clas-

?In incremental methods, however, the training instances must be saved.
However, Van de Merckt [5] has suggested that for numerical attributes a similarity-based selection measure is more
appropriate for finding the correct disjunctsthan the original entropy-based measure that has been used in the empirical eval-
uations presented here.
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sified with the limits. Future work will evaluate how different empirical learning methods can be im-
provedinthisway. Inthisperspective, we haveinthispaper only described an application of thegeneral
method to the ID-3 agorithm (i.e., it can be regarded a case study). Moreover, thisisthe main reason
why we have not compared the ID3-SD algorithm with other kinds of algorithmsthat learn character-
istic descriptions.
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