
Learning to Evaluate Conditional Partial Plans

Sławomir Nowaczyk and Jacek Malec

Department of Computer Science, Lund University
Slawomir.Nowaczyk@cs.lth.se

Jacek.Malec@cs.lth.se

Abstract. We study agents situated in partially observable environments, who
do not have sufficient resources to create conformant (complete) plans. Instead,
they create plans which are conditional and partial, execute or simulate them, and
learn from experience to evaluate their quality. Our agent employs an incomplete
symbolic deduction system based on Active Logic and Situation Calculus for rea-
soning about actions and their consequences. An Inductive Logic Programming
algorithm generalises observations and deduced knowledgeso that the agent can
choose the best plan for execution.
We show results of using PROGOL learning algorithm to distinguish “bad” plans
early in the reasoning process, before too many resources are wasted on con-
sidering them. We show that additional knowledge needs to beprovided before
learning can be successful, but argue that the benefits achieved make it well worth
the additional effort.
Finally, we identify several assumptions made by PROGOL, shared by other sim-
ilarly universal algorithms, which — while well justified ingeneral — fail to
exploit the properties of some class of problems faced by rational agents.1

1 Introduction

Rational, autonomous agents able to survive and achieve their goals in dynamic, only
partially observable environments are the ultimate dream of AI research since its be-
ginning. Quite a lot has already been done towards achievingthat dream, but dynamic
environments still are a big challenge for autonomous systems. In particular, nontrivial
environments that are only partially observable pose demands which are beyond the cur-
rent state of the art, possibly except when dedicated solutions are developed for specific
domains.

One of the major ways of coping with uncertainty and lack of knowledge about
current situation is to exploit previous experience. In ourresearch we are interested in
developing rational, situated agents that are aware of their own limitations and can take
them into account, as brilliantly presented by Chong and others in [1].

Due to limited resources and the necessity to stay responsive in a dynamic world,
situated agents cannot be expected to create a complete planfor achieving their goals. A
common approach is to create aconformant plan, i.e. a plan which contains provisions
for any possibility and is guaranteed to reach the goal in anyscenario. For situated

1 This work has been partially supported by the EU-project SIARAS, Skill-Based Inspection
and Assembly for Reconfigurable Automation Systems (FP6 - 017146).



agents, however, not only the task ofcreating, but even simplystoring, such plan could
exceed available resources.

Therefore, situated agents need to consciously alternate between reasoning, acting
and observing their environment, or even do all those thingsin parallel. We aim to
achieve this by making the agents create short partial plansand execute them, learning
more about their surroundings throughout the process. Theycreate several partial plans
and reason about usefulness of each one, including what knowledge can it provide.
They generalise their past experience to evaluate the likelihood of plans leading to the
goal. The plans are conditional (i.e. actions to be taken depend on observations made
during execution), which makes them more generic and means that their quality can be
estimated more meaningfully. We also intend for the agent tojudge by itself whether
it is more beneficial to begin executing one of those plans immediately or rather to
continue deliberation.

We expect the agent to live significantly longer than the duration of any single plan-
ning episode, so it should generalise solutions it finds. In particular, the agent needs
to extract domain-dependent control knowledge and use it when solving subsequent,
similar problem instances. It is the authors’ belief that deductive knowledge, at least
in many of the domains we are interested in, may contain more details and be more
accurate than other forms of representation (such as numerical or probabilistic), there-
fore our agent learns deductively using a symbolic representation in Active Logic. To
this end we introduce an architecture consisting of three modules, which allow us to
combine state-of-the-art solutions from several fields of Artificial Intelligence, in order
to provide the synergy our agent requires to achieve the desired functionality.

The goal of this paper is to show the results of experiments ofusing Inductive Logic
Programming algorithm to evaluate partial plans within ourarchitecture for situated ra-
tional agents. In the next section we introduce example domains on which we present
our ideas. In sectionArchitecturewe describe the organisation of our agent. The three
following sections introduce each of agent’s functional modules in more detail:Deduc-
tor, ActorandLearner. After that, we presents theResultsof our first experiments with
the architecture, discuss some of theRelated Workand finish with someConclusions.

2 Experimental Domains

Throughout this paper we will be using a simple game called Wumpus, the well-known
testbed for intelligent agents [2], to better illustrate our ideas. The game is very simple,
easy to understand, and people have no problems playing it effectively as soon as they
learn the rules. For artificial agents, however, this game — and other similar applica-
tions, including many of practical importance — remain a serious challenge.

The game is played on a square board. There are two characters, the player and the
Wumpus. The player can, in each turn, move to any neighbouring square, while the
Wumpus does not move at all. Position of the monster is not known to the player, he
only knows that it hides somewhere on the board. Luckily, Wumpus is a smelly beast,
so whenever the player enters some square, he can immediately notice if the creature
is in the vicinity. The goal of the game is to find out the exact location of the monster,
by moving throughout the board and observing on which squares does it smell. At the



same time, if the player enters the square occupied by the beast, he gets eaten and loses
the game.

For learning experiments we also use a second domain, a modified version of “king
and rook vs king and knight” chess ending. Since we are interested in partially unknown
environments we assume, for the sake of experimentations, that the agent does not know
how the opponent’s king is allowed to move —a priori, any move is legal. The agent
will need to use learning to discover what kinds of moves are actually possible.

In order to understand the goal of our research, it can be helpful to imagine the set-
ting somewhat akin to theGeneral Game Playing Competition[3]: our agent is given
some knowledge about the domain and is supposed to act rationally from the very be-
ginning, while becoming more and more proficient as it gathers more experience.

3 Agent Architecture

The architecture of our agent consists of four main functional modules. Each of them is
responsible for a different part of agent’s rationality, but the overall intelligence is only
achievable by the interactions of them all.

The Deductormodule is the one responsible for classical “reasoning”. Ituses a
logical formalism based on combination of Active Logic and Situation Calculus (as
introduced in [4]) in order to find out consequences of the agent’s current beliefs. Based
on the domain knowledge and previous observations, it analyses possible actions and
predicts what will be the effect of their execution.

The second module is aPlanner, which generates partial, conditional plans applica-
ble in the agent’s current situation. In the reported experiments, our planner is a simple
one, which generates pre-arranged plans only (all imaginable plans for the Wumpus
domain, and some set of “interesting” plans for Chess). The third main module,Actor,
oversees Deductor’s reasoning process and evaluates plansthe latter has come up with,
trying to find out which is the most useful one to perform. For this paper, Actor waits
until Deductor terminates and only executes plans after this happens, but in general it is
Actor’s responsibility to balance acting and deliberation.

Finally, theLearnermodule analyses the agent’s past experience and induces rules
for estimating quality of plans. Results of learning process are used both by Deductor
and by Actor. In particular, since the plans Deductor reasons about are partial (i.e. they
do not — most of the time — lead all the way to the goal) it can be very difficult to
estimate whether a particular plan is a step in the right direction or not. Using machine
learning techniques is one way in which this could be achieved.

In general, the ultimate goal of this architecture is to allow putting together state-of-
the-art solutions from several different areas of Artificial Intelligence. Despite multiple
efforts, both ones done in the past and those still in progress, the vast majority of AI
research is being done in specialised subfields and it is our belief that neither of these
subfieldsalonecan give us truly intelligent, rational agents. Our architecture, which to
the best of our knowledge is novel, may be one way to integratethem.



4 Deductor

Deductor performs logical inference and directly reasons about the agent’s knowledge.
In particular, it is the module which analyses both current state of the world and how it
will change as a result of performing a particular action. Tothis end, the agent uses a
variant of Active Logic [5], augmented with some ideas from Situation Calculus [6].

Active Logic [5] is a reasoning formalism which, unlike classical logic, concerns
theprocessof performing inferences, not just the final extension of theentailment re-
lation. In particular, instead of classical notion of theoremhood, AL hasi-theorems, i.e.
formulae which can be provenin i steps. This allows an agent to reason aboutdifficulty
of proving something, to retract knowledge found inappropriate and to resolve contra-
dictions in a meaningful way, as well as makes the agent awareof the passage time and
its own non-omniscience.

Following ideas of [4] we have decided to augment Active Logic with some con-
cepts from Situation Calculus. In particular, in order to have the agent reason about
changing world, every formula is indexed with current situation. Furthermore, since the
agent needs to reason about effects of executing various plans, we additionally index
formulae with the plan the agent is considering. Therefore,a typical formula our agent
reasons about looks like this:Knows(s, p, Neighbour(a2, b2)), meaning “an agent
knows that after executing planp in situations, squaresa2 andb2 will be adjacent.”

From agent’s point of view, the most interesting formulae are ones of the form:
Knows(s, p, Wumpus(b3))∨Knows(s, p, Wumpus(c2)), meaning “an agent knows
that after executing planp in situations, it will eitherknow that there is Wumpus onb3
or that there is Wumpus onc2”. Which of the “or” clauses will be true depends on the
observations that agent will make while acting. This is exactly the kind of knowledge
that agent is interested in — itdoestell important things about quality of the plan
being considered. For a human “expert,” suchp looks like a good plan. The goal of our
research is to makean agentbe able to reason about plans in exactly this way.

In the experiments reported in this paper, we consider plansof length one and two
only. In order to make plan evaluation more meaningful, we allow those plans not only
to be simple (sequential) but alsoconditional, i.e. to have branches where actions de-
pend on agent’s observations. We expect that such conditional plans will be, in many
domains, much easier to classify as either good or bad ones.

5 Planner and Actor

The Actor module is an overseer of Deductor and works as a controller of the agent
as a whole. In its ultimate form, it is expected to do three main things. First, it guides
the reasoning process by making it focus on the plans most likely to be useful. Second,
it decides when enough time has been spent on deliberation and no further interesting
results are likely to be obtained. Third, it makes decisionsto execute a particular plan
from Deductor’s repertoire.

In this paper we have decided to focus on the interactions between learning and
deduction, so both Planner and Actor have been significantlysimplified. Planner does
not use any heuristics and simply creates all possible plans, although we aim to use



existing planners to efficiently create only the “reasonable” plans. Deductor uses an
incomplete reasoner which always terminates, therefore Actor does not decidewhento
begin plan execution — it simply lets Deductor infer everything it can about each of the
available plans and chooses the best one based on all the available information.

6 Learner

The ultimate goal of the learning module is to provide Actor with knowledge necessary
to choose the best plan for execution and to stop deliberation when too much time has
been spent on it without any new interesting insights.

A step in this direction is to learn how to detect “bad” plans early, so that Deductor
does not waste time deliberating about them. In our experimental domains we have
defined bad plans to be those which can kill the agent (for Wumpus), and those that
lead to losing the rook (for Chess).

In the next section we describe our experiments which illustrate how different rep-
resentations of Deductor’s knowledge base influence learning results. In particular, we
show that a small amount of additional domain specific knowledge needs to be provided
in order for learning to be successful. One of the problems isthe closed world seman-
tics used by most ILP algorithms. Deductor, in order to deal with incomplete knowledge
that the agent has about the world, employs open-world semantics — from the mere fact
that the agent is unable to prove something it does not followthat it is false.

One question is how to represent situations and plans in the way most suitable for
learning. We have decided to encode plan and its branches as additional arguments to
the domain predicates. The first step of a plan is an unconditional one — the agent sim-
ply decides how to move in a given situation. For Wumpus, the rest of the plan consists
of two branches (calledleft andright, with left being taken iff it smells on the newly-
visited square). For Chess, there are three explicit branches (each specifying expected
move of the opponent and the agent’s response, without any meaning assigned to their
order) and, additionally, adefaultbranch, which will be executed whenever the oppo-
nent makes any move other than those three. It is our belief that such representation is
sufficiently general to work well across many different domains. For example, a predi-
catePosition(p1, left, a2) means that whenever theleft branch of planp1 is executed,
the agent will be on squarea2.

In the experiments reported here, we assume that the agent has perfect knowledge
about which plans (training examples) are bad ones. This is ajustified assumption for
Chess domain, where the opponent does not make trivial mistakes and whenever it is
possible for him to capture the rook, he will do so. In Wumpus,the distinction is not so
clear — it is possible that the agent will get lucky and not dieeven though it executes a
dangerous plan, simply because the beast is in a favourable position.

We have made some preliminary tests in a moresimulation-likeenvironment, where
an agent executes a plan and observes its actual effects only, therefore it is prone to mak-
ing mistakes about which plans are potentially bad. Even though the learning algorithm
we used allows for the possibility of noisy data, we have found that rather insufficient
for our needs. Thus, the experiments we report here do not contain any noise.



4 8 12 16 20 24 28 32 36 40
Number of examples

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

Including Deductor
Excluding Deductor
With mode declarations
Without mode declarations

(a) In Wumpus domain.

4 8 12 16 20 24 28 32 36 40
Number of examples

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

Including Deductor
Excluding Deductor
With mode declarations
Without mode declarations

(b) In Chess domain.

7 Results of the experiments

For our experiments, we have used the Inductive Logic Programming algorithm called
PROGOL [7], since it is among the best known ones and its author has provided a fully-
functional, publicly available implementation. PROGOL isbased on the idea ofinverse
entailmentand it employs a covering approach similar to the one used by FOIL [8],
in order to generate hypothesis consisting of a set of clauses which cover all positive
examples and do not cover any negative ones.

We have used three example runs of a Wumpus game on a very small, 3x3, board.
The player had considered 134 plans in each case, which is thetotal number of length
2 plans (both simple and conditional ones) in four situations: the player started ona1,
first moved toa2, then tob2, and finally toc3.

In the first run, the agent noticed that it smells onb2, and after moving tob3 and
not dying, it figured out that Wumpus is onc2. The second and third runs were similar,
except that Wumpus was ona3 andc1, respectively. In the Chess domain, we have used
three board positions in which the white have a winning strategy and have hand-crafted
69 plans covering different possible types of situations, since it is obviously not feasible
to analyseall possible plans in this domain.

In the first experiment, we used as little domain-specific knowledge as possible, in
particular we have not provided anymode declarationsfor PROGOL. The goal of mode
declarations is to reduce the hypothesis search space by limiting types of predicate ar-
guments, as well as by specifying which ones are input and which are output arguments
and whether variables or constants should be used.

We have plotted the accuracy of the learned hypothesis as thelowest curve (marked
“Without mode declarations”) for Wumpus in figure 7a and for Chess in figure 7b. Each
point on the graph is an average over 50 trials. It can be easily seen that learning quality
is too low to be practically useful.

The second curve (marked “With mode declarations”) clearlyshows that providing
even such a small amount of domain knowledge (mode declarations are easy to specify
for a domain expert) is enough to greatly improve quality of learned hypothesis. It can



badPlan(A)⇐ visit(A,first,B), maybeWumpus(A,B).
badPlan(A)⇐ visit(A,second,B), maybeWumpus(A,B).
badPlan(A)⇐ visit(A,left,B), maybeWumpus(A,B).

badPlan(A)⇐ notProtected(A,default,rook),
distanceTwo(A,default,black-king,rook).

badPlan(A)⇐ isStep(B), position(A,B,rook,C),
canMove(A,B,black-knight,C).

Table 1. Correct definitions of bad plans for Wumpus and Chess.

be also easily seen that the accuracy in the Wumpus domain is significantly higher than
the one in the Chess domain. Nevertheless, the learning is still not fully successful —
even though all the knowledge necessary to express the correct hypothesis is available.
We attribute this to two things: overfitting and the fact thatthe search space is too large
for PROGOL to handle sufficiently well.

Because of that, we have looked into ways of limiting the amount of knowledge used
for learning — seemingly, presenting all of the agent’s knowledge to the ILP algorithm
is not the best idea. As a start, we have decided to use only theinitial domain definition
and the observations that the agent made in previous situations. In the Wumpus domain
this resulted in knowledge base containing mostlymaybeSmells, knowsClear and
knowsSmell predicates, while in Chess mostlyposition, canMove and geometrical
relations. The results of learning can be seen on curve marked “Excluding Deductor”,
so named since they roughly correspond to an agent who does not have a specialised
deduction module and uses learning only.

As can be seen, the results in the Wumpus domain are pretty discouraging, while in
the Chess domain the accuracy is actuallybetterthan when we provided the full knowl-
edge. This is caused by the fact that the Chess domain is much larger and much more
complex, and removing almostanythingfrom the knowledge base improves the quality
of the hypothesis. In Wumpus, however, the learning algorithm is actually able to make
some use of the extra knowledge provided by Deductor, while not quite being able to
duplicate its work. This result reinforces our belief that the multi-module architecture
we develop for integration of different Artificial Intelligence areas is a useful one.

Finally, in our fourth and final experiment, we have selectedonly the most rele-
vant parts of knowledge generated by Deductor and presentedthem to PROGOL. In
the Wumpus case this includedmaybeWumpus, noWumpus andknowsWumpus

predicates, while in Chess it includednotProtected, distanceTwo, anddistanceTwo

predicates. As can be seen from the curve marked “Including Deductor”, the agent man-
aged to perfectly identify bad plans from as few as 30 examples chosen at random, in
both domains. The exact hypotheses that PROGOL learned are presented in table 1.

It is interesting to note that as few as fivehand-chosenexample plans suffice for
PROGOL to learn the correct definition for the Wumpus domain,which opens up inter-
esting possibilities for an agent toselectlearning examples in an intelligent way.

Having established that successful learning is possible, one more thing that should
be shown is whether it is actuallyuseful. In our implementation (which is designed for
flexibility of reasoning rather than for its speed) analysing a complete game of Wum-
pus takes (depending on the monster’s real position) on the order of 15 hours. If Actor



WumpusFull time Improved timeTime decrease
position (hours) (hours) (percent)

c2 16.07 h 4.41 h 72.58%
a3 14.72 h 5.52 h 62.49%
c1 15.23 h 7.18 h 52.84%

Table 2. Usefulness of learning.

knows how to identify bad plans and forces Deductor to ignorethem, the total time
drops down dramatically, to aboutsix hours. This is a clear confirmation of our claim
that the knowledge gained due to learning from experience can be very useful in im-
proving efficiency of reasoning.

Finally, we would like to point out that PROGOL algorithm, while a very efficient
one, is rather poorly suited for the class of problems we face. It was sufficient for a
proof of concept and to show the general usefulness of learning as such, but our next
step will be to find (or, more likely, develop) a different algorithm, better adapted to the
particular needs of evaluating plans.

8 Related work

Combination of planning and learning is an area of active research, in addition to the
extensive amount of work being done separately in those respective fields.

The first to mention is [9], which presented results establishing conceptual similari-
ties between explanation-based learning and reinforcement learning. In particular, they
discussed how Explanation-Based Learning can be used to learn action strategies and
provided important theoretical results concerning its applicability to this aim.

There has been significant amount of work done in learning about what actions to
take in a particular situation. One notable example is [10],where author showed impor-
tant theoretical results about PAC-learnability of actionstrategies in various models. In
[11] author discussed a more practical approach to learningEvent Calculus programs
using Theory Completion. He used extraction-case abduction and the ALECTO system
to simultaneously learn two mutually related predicates (Initiates andTerminates)
from positive-only observations. Recently, [12] developed a system which learns low-
level actions and plans from goal hierarchies and action examples provided by experts,
within the SOAR architecture. Yet another fresh work close to this approach is docu-
mented in [13], whereteleoreactive logic programs, possibly even recursive ones, are
used for representing the action part of an agent. On top of ita learning mechanism,
quite similar to ILP, is employed for improving the existingaction programs.

One attempt to escape the trap of large search space has been presented in [14],
where relational abstractions are used to substantially reduce cardinality of search space.
Still, this new space is subjected to reinforcement learning, not to a symbolic planning
system. A conceptually similar idea, but where relational representation is being learned
via behaviour cloning techniques, is presented in [15].

The work mentioned above focuses primarily on learning how to act, without trying
to reach conclusions in a deductive way. In a sense, the results are more similar to the
reactive-like behaviour than to classical planning system, with many similarities to the
reinforcement learning.



Outside the domain of planning, there is a lot of important research being done in
the learning paradigm. Recently, [16] showed several ideasabout how to learn interest-
ing facts about the world, as opposed to learning a description of a predefined concept.
A somewhat similar result, more specifically related to planning, has been presented in
[17], where the system learns domain-dependent control knowledge beneficial in plan-
ning tasks. From another point of view, [18,19] presented a framework for learning done
“specifically for the purpose of reasoning with the learned knowledge,” an interesting
early attempt to move away from thelearning to classifyparadigm, which dominates
the field of machine learning.

Yet another track of research focuses on (deductive) planning, taking into account
incompleteness of agent’s knowledge and uncertainty aboutthe world. Conditional
plans, generalised policies, conformant plans, universalplans are the terms used by
various researchers [20,21,22]to denote in principle the same idea: generating a plan
which is “prepared” for all possible reactions of the environment. This approach has
much in common with control theory, as observed in [23] or earlier in [24]. We are not
aware of any such research that would attempt to integrate learning into this approach.

9 Conclusions

We are developing an architecture for rational agents that combine planning, deductive
reasoning, inductive learning and time-awareness in orderto operate successfully in
dynamic environments. Our agent creates conditional partial plans, reasons about their
consequences using an extension of Active Logic with Situation Calculus features, and
employs ILP learning to generalise past experience in orderto distinguish good plans
from bad ones.

In this paper we report on our experiments with using PROGOL learning algorithm
to identify bad plans early, in order to save agent the (wasteful) effort of deliberating
about them. We analyse how the quality of learning depends onthe amount of additional
domain-specific knowledge provided by the user specificallyfor the purpose of experi-
ence generalisation. Finally, we show that successful learning can result in a dramatic
decrease of the agent’s reasoning time.

The research presented here can be continued in many different directions. The
most obvious one is to improve the learning algorithm, by making it aware of the actual
meaning and origins of data presented to it. In particular, the fact that different parts of
knowledge base can have different “usefulness” or “relevance” is very important and
should be taken into account explicitly — and, if possible, automated in some way.

Moreover, the exact way of representing plans and their properties, for the sake of
efficient learning, requires more work. Our current setup, which uses slightly modified
Situation Calculus mechanisms, is most likely suboptimal —but anything better suited
would need to have some support built into the learning algorithms itself.

In addition, for rational agents there is the very interesting notion of “experiment
generation”, since they often do not learn for a pre-prepared set of training examples,
but rather face the complexexploration vs exploitationdilemma. How to act in a way
which both provides short term rewards (or, at the very least, keeps the agent safe) and
at the same time offers a chance to learn something new is often far from obvious.



Finally, the architecture we are presenting here is still evolving and the functionality
of every module will be expanded in the future.

References

1. Chong, W., O’Donovan-Anderson, M., Okamoto, Y., Perlis,D.: Seven days in the life of a
robotic agent. In: GSFC/JPL Workshop on Radical Agent Concepts. (2002)

2. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. 2nd edn. Prentice Hall
Series in AI (2003)

3. Genesereth, M., Love, N., Pell, B.: General game playing:Overview of the aaai competition.
AI Magazine26(2) (2005) 62–72

4. Nowaczyk, S.: Partial planning for situated agents basedon active logic. In: Workshop on
Logics for Resource Bounded Agents, ESSLLI 2006. (2006)

5. Purang, K., Purushothaman, D., Traum, D., Andersen, C., Perlis, D.: Practical reasoning and
plan execution with active logic. In Bell, J., ed.: Proceedings of the IJCAI-99 Workshop on
Practical Reasoning and Rationality. (1999) 30–38

6. Reiter, R.: Knowledge in Action: Logical Foundations forSpecifying and Implementing
Dynamical Systems. The MIT Press (2001)

7. Muggleton, S.: Inverse entailment and Progol. New Generation Computing, Special issue
on Inductive Logic Programming13(3-4) (1995) 245–286

8. Mitchell, T.M.: Machine Learning. McGraw-Hill Higher Education (1997)
9. Dietterich, T.G., Flann, N.S.: Explanation-based learning and reinforcement learning: A

unified view. In: International Conference on Machine Learning. (1995) 176–184
10. Khardon, R.: Learning to take actions. Machine Learning35(1) (1999) 57–90
11. Moyle, S.: Using theory completion to learn a robot navigation control program. In: ILP.

(2002)
12. Könik, T., Laird, J.E.: Learning goal hierarchies fromstructured observations and expert

annotations. Machine Learning64 (2006) 263–287
13. Langley, P., Choi, D.: Learning recursive control programs from problem solving. Journal

of Machine Learning Research7 (2006) 493–518
14. Džeroski, S., Raedt, L.D., Driessens, K.: Relational reinforcement learning. Machine Learn-

ing 43(1/2) (2001) 7–52
15. Morales, E.F.: Relational state abstractions for reinforcement learning. In: ICML-04 Work-

shop on Relational Reinforcement Learning. (2004)
16. Colton, S., Muggleton, S.: ILP for mathematical discovery. In: 13th International Conference

on Inductive Logic Programming. (2003)
17. Fern, A., Yoon, S., Givan, R.: Learning domain-specific control knowledge from random

walks. In: International Conference on Automated Planningand Scheduling. (2004)
18. Khardon, R., Roth, D.: Learning to reason with a restricted view. In: Workshop on Compu-

tational Learning Theory. (1995)
19. Khardon, R., Roth, D.: Learning to reason. Journal of theACM 44(5) (1997) 697–725
20. Cimatti, A., Roveri, M., Bertoli, P.: Conformant planning via symbolic model checking and

heuristic search. Artificial Intelligence159(1-2) (2004) 127–206
21. Petrick, R.P.A., Bacchus, F.: Extending the knowledge-based approach to planning with

incomplete information and sensing. In: International Conference on Automated Planning
and Scheduling. (2004) 2–11

22. van der Hoek, W., Wooldridge, M.: Tractable multiagent planning for epistemic goals. In:
Proceedings of the First International Conference on Autonomous Agents and Multiagent
Systems (AAMAS). (2002)



23. Bonet, B., Geffner, H.: Planning and control in artificial intelligence: A unifying perspective.
Applied Intelligence14(3) (2001) 237–252

24. Dean, T., Wellman, M.P.: Planning and Control. Morgan Kaufmann (1991)


