L earning to Evaluate Conditional Partial Plans

Stawomir Nowaczyk and Jacek Malec

Department of Computer Science, Lund University
Sl awomi r. Nowaczyk@s. | th. se
Jacek. Mal ec@s. | th. se

Abstract. We study agents situated in partially observable envirarimjavho
do not have sufficient resources to create conformant (cetepplans. Instead,
they create plans which are conditional and partial, execusimulate them, and
learn from experience to evaluate their quality. Our agemtleys an incomplete
symbolic deduction system based on Active Logic and Situafialculus for rea-
soning about actions and their consequences. An InductigiclProgramming
algorithm generalises observations and deduced knowksaltfeat the agent can
choose the best plan for execution.

We show results of using PROGOL learning algorithm to dggtish “bad” plans
early in the reasoning process, before too many resoureewasted on con-
sidering them. We show that additional knowledge needs tprbeided before
learning can be successful, but argue that the benefitsvachieake it well worth
the additional effort.

Finally, we identify several assumptions made by PROGO&redthby other sim-
ilarly universal algorithms, which — while well justified igeneral — fail to
exploit the properties of some class of problems faced bgratagents.

1 Introduction

Rational, autonomous agents able to survive and achieiregib@ls in dynamic, only
partially observable environments are the ultimate dre&wl sesearch since its be-
ginning. Quite a lot has already been done towards achigtigigdream, but dynamic
environments still are a big challenge for autonomous systén particular, nontrivial
environments that are only partially observable pose deisyvahich are beyond the cur-
rent state of the art, possibly except when dedicated soisiire developed for specific
domains.

One of the major ways of coping with uncertainty and lack obwiedge about
current situation is to exploit previous experience. In mgearch we are interested in
developing rational, situated agents that are aware af tai limitations and can take
them into account, as brilliantly presented by Chong andrstin [1].

Due to limited resources and the necessity to stay respoirsi@ dynamic world,
situated agents cannot be expected to create a complet®p&ohieving their goals. A
common approach is to create@anformant plani.e. a plan which contains provisions
for any possibility and is guaranteed to reach the goal in sognario. For situated

! This work has been partially supported by the EU-projectFAS, Skill-Based Inspection
and Assembly for Reconfigurable Automation Systems (FPG1488).

agents, however, not only the taskarating but even simplystoring such plan could
exceed available resources.

Therefore, situated agents need to consciously altermdieclen reasoning, acting
and observing their environment, or even do all those thingsarallel. We aim to
achieve this by making the agents create short partial gladexecute them, learning
more about their surroundings throughout the process. Gteate several partial plans
and reason about usefulness of each one, including whatl&dge can it provide.
They generalise their past experience to evaluate théhded of plans leading to the
goal. The plans are conditional (i.e. actions to be takeredémn observations made
during execution), which makes them more generic and méansteir quality can be
estimated more meaningfully. We also intend for the ageijudge by itself whether
it is more beneficial to begin executing one of those plans ediately or rather to
continue deliberation.

We expect the agent to live significantly longer than the tlomaof any single plan-
ning episode, so it should generalise solutions it finds.dnigular, the agent needs
to extract domain-dependent control knowledge and use énvdolving subsequent,
similar problem instances. It is the authors’ belief thadagive knowledge, at least
in many of the domains we are interested in, may contain metaild and be more
accurate than other forms of representation (such as ncaheri probabilistic), there-
fore our agent learns deductively using a symbolic repttasien in Active Logic. To
this end we introduce an architecture consisting of thredutes, which allow us to
combine state-of-the-art solutions from several fields dffigial Intelligence, in order
to provide the synergy our agent requires to achieve theateRinctionality.

The goal of this paper is to show the results of experimentsiofy Inductive Logic
Programming algorithm to evaluate partial plans within athitecture for situated ra-
tional agents. In the next section we introduce example dtwsr@n which we present
our ideas. In sectioArchitecturewe describe the organisation of our agent. The three
following sections introduce each of agent’s functionabmles in more detaiDeduc-
tor, ActorandLearner After that, we presents tHeesultof our first experiments with
the architecture, discuss some of Belated Worland finish with som€onclusions

2 Experimental Domains

Throughout this paper we will be using a simple game calledipus, the well-known
testbed for intelligent agents [2], to better illustrate mleas. The game is very simple,
easy to understand, and people have no problems playinfgdtig€ly as soon as they
learn the rules. For artificial agents, however, this gamend-ather similar applica-
tions, including many of practical importance — remain aaes challenge.

The game is played on a square board. There are two charahte@ayer and the
Wumpus. The player can, in each turn, move to any neighbgwtuare, while the
Wumpus does not move at all. Position of the monster is notknto the player, he
only knows that it hides somewhere on the board. Luckily, \Wumis a smelly beast,
so whenever the player enters some square, he can immgdiatée if the creature
is in the vicinity. The goal of the game is to find out the exactttion of the monster,
by moving throughout the board and observing on which sguaoes it smell. At the

same time, if the player enters the square occupied by thet, lfeagets eaten and loses
the game.

For learning experiments we also use a second domain, a eobdéision of “king
and rook vs king and knight” chess ending. Since we are istedan partially unknown
environments we assume, for the sake of experimentatiuaistite agent does not know
how the opponent’s king is allowed to move a-priori, any move is legal. The agent
will need to use learning to discover what kinds of moves ateadly possible.

In order to understand the goal of our research, it can bduietpimagine the set-
ting somewhat akin to th&eneral Game Playing Competiti¢8]: our agent is given
some knowledge about the domain and is supposed to actalyiérom the very be-
ginning, while becoming more and more proficient as it gatineore experience.

3 Agent Architecture

The architecture of our agent consists of four main funetiomodules. Each of them is
responsible for a different part of agent’s rationalityt the overall intelligence is only
achievable by the interactions of them all.

The Deductormodule is the one responsible for classical “reasoninglisis a
logical formalism based on combination of Active Logic anitu&tion Calculus (as
introduced in [4]) in order to find out consequences of thenéigeurrent beliefs. Based
on the domain knowledge and previous observations, it aralpossible actions and
predicts what will be the effect of their execution.

The second module isRlanner, which generates partial, conditional plans applica-
ble in the agent’s current situation. In the reported experits, our planner is a simple
one, which generates pre-arranged plans only (all imaggnglans for the Wumpus
domain, and some set of “interesting” plans for Chess). Tilvd thain moduleActor,
oversees Deductor’s reasoning process and evaluatestipéalagter has come up with,
trying to find out which is the most useful one to perform. Huos paper, Actor waits
until Deductor terminates and only executes plans aftertthppens, but in general it is
Actor’s responsibility to balance acting and deliberation

Finally, theLearnermodule analyses the agent’s past experience and induess rul
for estimating quality of plans. Results of learning pracage used both by Deductor
and by Actor. In particular, since the plans Deductor reastout are partial (i.e. they
do not — most of the time — lead all the way to the goal) it can bey\difficult to
estimate whether a particular plan is a step in the righttoe or not. Using machine
learning techniques is one way in which this could be achieve

In general, the ultimate goal of this architecture is towalfutting together state-of-
the-art solutions from several different areas of Artifitigelligence. Despite multiple
efforts, both ones done in the past and those still in pragithe vast majority of Al
research is being done in specialised subfields and it is elieflthat neither of these
subfieldsalonecan give us truly intelligent, rational agents. Our arattitee, which to
the best of our knowledge is novel, may be one way to intednzie.

4 Deductor

Deductor performs logical inference and directly reasdimiithe agent’s knowledge.
In particular, it is the module which analyses both curréatesof the world and how it
will change as a result of performing a particular actiontfis end, the agent uses a
variant of Active Logic [5], augmented with some ideas froitu&ion Calculus [6].

Active Logic [5] is a reasoning formalism which, unlike ct&=al logic, concerns
the processof performing inferences, not just the final extension of éngéailment re-
lation. In particular, instead of classical notion of themhood, AL hag-theoremsi.e.
formulae which can be proven i steps This allows an agent to reason abdifficulty
of proving something, to retract knowledge found inappiaterand to resolve contra-
dictions in a meaningful way, as well as makes the agent aefdhe passage time and
its own non-omniscience.

Following ideas of [4] we have decided to augment Active lcogith some con-
cepts from Situation Calculus. In particular, in order towvdndhe agent reason about
changing world, every formula is indexed with current diiora. Furthermore, since the
agent needs to reason about effects of executing various,plee additionally index
formulae with the plan the agent is considering. Therefattgpical formula our agent
reasons about looks like thi&nows(s, p, Neighbour(a2,b2)), meaning “an agent
knows that after executing planin situations, squares2 andb2 will be adjacent.”

From agent’s point of view, the most interesting formulae anes of the form:
Knows(s, p, Wumpus(b3))V Knows(s, p, Wumpus(c2)), meaning “an agent knows
that after executing plamin situations, it will eitherknow that there is Wumpus a3
or that there is Wumpus a2”. Which of the “or” clauses will be true depends on the
observations that agent will make while acting. This is éyabe kind of knowledge
that agent is interested in — @oestell important things about quality of the plan
being considered. For a human “expert,” spdboks like a good plan. The goal of our
research is to makan agentoe able to reason about plans in exactly this way.

In the experiments reported in this paper, we consider péfength one and two
only. In order to make plan evaluation more meaningful, i@wathose plans not only
to be simple (sequential) but alsonditional i.e. to have branches where actions de-
pend on agent’s observations. We expect that such conditmans will be, in many
domains, much easier to classify as either good or bad ones.

5 Planner and Actor

The Actor module is an overseer of Deductor and works as adatartof the agent
as a whole. In its ultimate form, it is expected to do threemthings. First, it guides
the reasoning process by making it focus on the plans mady ltk be useful. Second,
it decides when enough time has been spent on deliberatbn@further interesting
results are likely to be obtained. Third, it makes decisitmnexecute a particular plan
from Deductor’s repertoire.

In this paper we have decided to focus on the interactionsd®at learning and
deduction, so both Planner and Actor have been significantiplified. Planner does
not use any heuristics and simply creates all possible pkEtitough we aim to use

existing planners to efficiently create only the “reasomélplans. Deductor uses an
incomplete reasoner which always terminates, therefoterAtoes not decidehento
begin plan execution — it simply lets Deductor infer evemthit can about each of the
available plans and chooses the best one based on all thadeanformation.

6 Learner

The ultimate goal of the learning module is to provide Actaihvknowledge necessary
to choose the best plan for execution and to stop deliberatieen too much time has
been spent on it without any new interesting insights.

A step in this direction is to learn how to detect “bad” plaaslg so that Deductor
does not waste time deliberating about them. In our experiah@lomains we have
defined bad plans to be those which can kill the agent (for Wighpand those that
lead to losing the rook (for Chess).

In the next section we describe our experiments which isthow different rep-
resentations of Deductor’s knowledge base influence legnmsults. In particular, we
show that a small amount of additional domain specific kndgteneeds to be provided
in order for learning to be successful. One of the problentisésclosed world seman-
tics used by most ILP algorithms. Deductor, in order to det mcomplete knowledge
that the agent has about the world, employs open-world séesan from the mere fact
that the agent is unable to prove something it does not fall@wit is false.

One question is how to represent situations and plans in #yermost suitable for
learning. We have decided to encode plan and its branchetd#aal arguments to
the domain predicates. The first step of a plan is an uncomditone — the agent sim-
ply decides how to move in a given situation. For Wumpus, éis¢ of the plan consists
of two branches (callet:ft andright, with left being taken iff it smells on the newly-
visited square). For Chess, there are three explicit bemfdach specifying expected
move of the opponent and the agent’s response, without aapimgeassigned to their
order) and, additionally, defaultbranch, which will be executed whenever the oppo-
nent makes any move other than those three. It is our bebg¢fktich representation is
sufficiently general to work well across many different damsaFor example, a predi-
catePosition(pl, le ft,a2) means that whenever theft branch of plarplis executed,
the agent will be on squae.

In the experiments reported here, we assume that the agepenhfect knowledge
about which plans (training examples) are bad ones. Thigustdied assumption for
Chess domain, where the opponent does not make trivial kestand whenever it is
possible for him to capture the rook, he will do so. In Wumgphs,distinction is not so
clear — it is possible that the agent will get lucky and notelien though it executes a
dangerous plan, simply because the beast is in a favourabiggn.

We have made some preliminary tests in a nedmeulation-likeenvironment, where
an agent executes a plan and observes its actual effectstarigfore it is prone to mak-
ing mistakes about which plans are potentially bad. Eveanghdhe learning algorithm
we used allows for the possibility of noisy data, we have fbthvat rather insufficient
for our needs. Thus, the experiments we report here do negicosny noise.

0.95 0.95 r

0.9 0.9 r

0.85 0.85 r

o
©
I
o
©
I
T

Accuracy
o
N
al
I
Accuracy
o
N
al
I
T

°
I
I
°
I
I

0.65 - 0.65 -
- - — Without mode declarations

— — With mode declarations

0.6 0.6

/5 - - — Without mode declarations Excluding Deductor
055 |/ 7 — — With mode declarations L 0.55 . Including Degu.ct_grr =
. 7 Excluding Deductor . T~ =
7 Including Deductor
0.5 T T T T T T T T T 0.5 4+ T T T T T T
4 8 12 16 20 24 28 32 36 40 16 20 24 28 32 36 40
Number of examples Number of examples
(&) In Wumpus domain. (b) In Chess domain.

7 Resultsof the experiments

For our experiments, we have used the Inductive Logic Progriag algorithm called
PROGOL [7], since it is among the best known ones and its atit®provided a fully-
functional, publicly available implementation. PROGOlbissed on the idea afverse
entailmentand it employs a covering approach similar to the one usediy. 8],
in order to generate hypothesis consisting of a set of ctaw$éch cover all positive
examples and do not cover any negative ones.

We have used three example runs of a Wumpus game on a very 8x&lboard.
The player had considered 134 plans in each case, which tetdlenumber of length
2 plans (both simple and conditional ones) in four situaidhe player started aml,
first moved toa2, then tob2, and finally toc3.

In the first run, the agent noticed that it smells& and after moving t@3 and
not dying, it figured out that Wumpus is @B. The second and third runs were similar,
except that Wumpus was @B andcl, respectively. In the Chess domain, we have used
three board positions in which the white have a winning stratand have hand-crafted
69 plans covering different possible types of situatiomgesit is obviously not feasible
to analyseall possible plans in this domain.

In the first experiment, we used as little domain-specifioldedge as possible, in
particular we have not provided amode declarationfor PROGOL. The goal of mode
declarations is to reduce the hypothesis search space lindrtypes of predicate ar-
guments, as well as by specifying which ones are input andwdrie output arguments
and whether variables or constants should be used.

We have plotted the accuracy of the learned hypothesis davilest curve (marked
“Without mode declarations”) for Wumpus in figure 7a and ftxeSs in figure 7b. Each
point on the graph is an average over 50 trials. It can beyesesiin that learning quality
is too low to be practically useful.

The second curve (marked “With mode declarations”) cleginigws that providing
even such a small amount of domain knowledge (mode dedasatire easy to specify
for a domain expert) is enough to greatly improve qualityearhed hypothesis. It can

badPlan(A)< visit(A first,B), maybeWumpus(A,B).
badPlan(A)< visit(A,second,B), maybeWumpus(A,ﬂ3 .
badPlan(A)< visit(A left,B), maybeWumpus(A,B).

~

badPlan(A)«< notProtected(A,default,rook),
distanceTwo(A,defauIt,black-king,rooL
badPlan(A)< isStep(B), position(A,B,rook,C),
canMove(A,B,black-knight,C).
Table 1. Correct definitions of bad plans for Wumpus and Chess.

).

be also easily seen that the accuracy in the Wumpus domagniicantly higher than
the one in the Chess domain. Nevertheless, the learningl isatfully successful —
even though all the knowledge necessary to express thectbgngothesis is available.
We attribute this to two things: overfitting and the fact tthet search space is too large
for PROGOL to handle sufficiently well.

Because of that, we have looked into ways of limiting the amofiknowledge used
for learning — seemingly, presenting all of the agent'’s klealge to the ILP algorithm
is not the best idea. As a start, we have decided to use onigitta domain definition
and the observations that the agent made in previous sihgatin the Wumpus domain
this resulted in knowledge base containing mostlyybeSmells, knowsClear and
knowsSmell predicates, while in Chess mosfysition, can M ove and geometrical
relations. The results of learning can be seen on curve mMadkkecluding Deductor”,
so named since they roughly correspond to an agent who ddédwmwe a specialised
deduction module and uses learning only.

As can be seen, the results in the Wumpus domain are prettyudsging, while in
the Chess domain the accuracy is actubéjterthan when we provided the full knowl-
edge. This is caused by the fact that the Chess domain is ratgdrland much more
complex, and removing almoatythingfrom the knowledge base improves the quality
of the hypothesis. In Wumpus, however, the learning algoriis actually able to make
some use of the extra knowledge provided by Deductor, whitegoite being able to
duplicate its work. This result reinforces our belief tha multi-module architecture
we develop for integration of different Artificial Intellence areas is a useful one.

Finally, in our fourth and final experiment, we have seleaety the most rele-
vant parts of knowledge generated by Deductor and presé¢mésd to PROGOL. In
the Wumpus case this includedaybeW umpus, noWumpus and knowsW umpus
predicates, while in Chess it includedt Protected, distanceTwo, anddistanceTwo
predicates. As can be seen from the curve marked “Includadyiotor”, the agent man-
aged to perfectly identify bad plans from as few as 30 exasgf®@sen at random, in
both domains. The exact hypotheses that PROGOL learnedeseried in table 1.

It is interesting to note that as few as filland-chosem®xample plans suffice for
PROGOL to learn the correct definition for the Wumpus domahrich opens up inter-
esting possibilities for an agent $electiearning examples in an intelligent way.

Having established that successful learning is possilole noore thing that should
be shown is whether it is actuallyseful In our implementation (which is designed for
flexibility of reasoning rather than for its speed) analgsincomplete game of Wum-
pus takes (depending on the monster’s real position) onrter @f 15 hours. If Actor

WumpusFull time|lmproved timeTime decrease
position| (hours) (hours) (percent)
c2 |16.07h 4.41h 72.58%
a3 |14.72h 5.52h 62.49%
cl |15.23h 7.18h 52.84%
Table 2. Usefulness of learning.

knows how to identify bad plans and forces Deductor to igrthesm, the total time
drops down dramatically, to abositx hours This is a clear confirmation of our claim
that the knowledge gained due to learning from experiennebeavery useful in im-
proving efficiency of reasoning.

Finally, we would like to point out that PROGOL algorithm, iha very efficient
one, is rather poorly suited for the class of problems we.f#o@as sufficient for a
proof of concept and to show the general usefulness of legas such, but our next
step will be to find (or, more likely, develop) a different aighm, better adapted to the
particular needs of evaluating plans.

8 Redated work

Combination of planning and learning is an area of activeassh, in addition to the
extensive amount of work being done separately in thoseotise fields.

The first to mention is [9], which presented results esthbig conceptual similari-
ties between explanation-based learning and reinforcel@m@ming. In particular, they
discussed how Explanation-Based Learning can be usedrnodetion strategies and
provided important theoretical results concerning itsliagpility to this aim.

There has been significant amount of work done in learningitalvbat actions to
take in a particular situation. One notable example is [Mgre author showed impor-
tant theoretical results about PAC-learnability of actstrategies in various models. In
[11] author discussed a more practical approach to leafBirggnt Calculus programs
using Theory Completion. He used extraction-case abduatid the ALECTO system
to simultaneously learn two mutually related predicates{iates andT erminates)
from positive-only observations. Recently, [12] develdpesystem which learns low-
level actions and plans from goal hierarchies and actiomekes provided by experts,
within the SOAR architecture. Yet another fresh work claséhis approach is docu-
mented in [13], wher¢eleoreactive logic programgossibly even recursive ones, are
used for representing the action part of an agent. On topafefarning mechanism,
quite similar to ILP, is employed for improving the existiagtion programs.

One attempt to escape the trap of large search space has tesentpd in [14],
where relational abstractions are used to substantiallyoecardinality of search space.
Still, this new space is subjected to reinforcement legymiot to a symbolic planning
system. A conceptually similar idea, but where relatioeptesentation is being learned
via behaviour cloning techniques, is presented in [15].

The work mentioned above focuses primarily on learning hmact, without trying
to reach conclusions in a deductive way. In a sense, thetsesm@ more similar to the
reactive-like behaviour than to classical planning syst@ith many similarities to the
reinforcement learning.

Outside the domain of planning, there is a lot of importaseegch being done in
the learning paradigm. Recently, [16] showed several idbasit how to learn interest-
ing facts about the world, as opposed to learning a desonijti a predefined concept.
A somewhat similar result, more specifically related to plag, has been presented in
[17], where the system learns domain-dependent contratlatiye beneficial in plan-
ning tasks. From another point of view, [18,19] presentadiméwork for learning done
“specifically for the purpose of reasoning with the learnedwledge,” an interesting
early attempt to move away from tiearning to classifyparadigm, which dominates
the field of machine learning.

Yet another track of research focuses on (deductive) ptannaking into account
incompleteness of agent’s knowledge and uncertainty attwuivorld. Conditional
plans, generalised policies, conformant plans, univepksais are the terms used by
various researchers [20,21,22]to denote in principle Hraesidea: generating a plan
which is “prepared” for all possible reactions of the enmiment. This approach has
much in common with control theory, as observed in [23] otieain [24]. We are not
aware of any such research that would attempt to integrataitgy into this approach.

9 Conclusions

We are developing an architecture for rational agents thaténe planning, deductive
reasoning, inductive learning and time-awareness in daeperate successfully in
dynamic environments. Our agent creates conditionalglgtns, reasons about their
consequences using an extension of Active Logic with Saunatalculus features, and
employs ILP learning to generalise past experience in daddistinguish good plans
from bad ones.

In this paper we report on our experiments with using PROG#lrrling algorithm
to identify bad plans early, in order to save agent the (viateffort of deliberating
aboutthem. We analyse how the quality of learning depentisssamount of additional
domain-specific knowledge provided by the user specifidaliyhe purpose of experi-
ence generalisation. Finally, we show that successfuhiegrcan result in a dramatic
decrease of the agent’s reasoning time.

The research presented here can be continued in many diffdirections. The
most obvious one is to improve the learning algorithm, by imgk aware of the actual
meaning and origins of data presented to it. In particutex fact that different parts of
knowledge base can have different “usefulness” or “relegais very important and
should be taken into account explicitly — and, if possiblgépmated in some way.

Moreover, the exact way of representing plans and theirgntags, for the sake of
efficient learning, requires more work. Our current setulpiclv uses slightly modified
Situation Calculus mechanisms, is most likely suboptimabut-anything better suited
would need to have some support built into the learning &lyoss itself.

In addition, for rational agents there is the very interggtotion of “experiment
generation”, since they often do not learn for a pre-preghaet of training examples,
but rather face the complexploration vs exploitatiodilemma. How to act in a way
which both provides short term rewards (or, at the very |dasps the agent safe) and
at the same time offers a chance to learn something new is faftérom obvious.

Finally, the architecture we are presenting here is stdhéug and the functionality

of every module will be expanded in the future.

References

(0]

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

. Chong, W., O’'Donovan-Anderson, M., Okamoto, Y., Peills, Seven days in the life of a

robotic agent. In: GSFC/JPL Workshop on Radical Agent Cptec€2002)

. Russell, S., Norvig, P.: Artificial Intelligence: A ModeApproach. 2nd edn. Prentice Hall

Series in Al (2003)

. Genesereth, M., Love, N., Pell, B.: General game playingrview of the aaai competition.

Al Magazine26(2) (2005) 62—72

. Nowaczyk, S.: Partial planning for situated agents basedctive logic. In: Workshop on

Logics for Resource Bounded Agents, ESSLLI 2006. (2006)

. Purang, K., Purushothaman, D., Traum, D., Andersen,eZlisPD.: Practical reasoning and

plan execution with active logic. In Bell, J., ed.: Procegi of the IJCAI-99 Workshop on
Practical Reasoning and Rationality. (1999) 30-38

. Reiter, R.: Knowledge in Action: Logical Foundations f§pecifying and Implementing

Dynamical Systems. The MIT Press (2001)

. Muggleton, S.: Inverse entailment and Progol. New Geimegr&omputing, Special issue

on Inductive Logic Programming3(3-4) (1995) 245-286

. Mitchell, T.M.: Machine Learning. McGraw-Hill Higher Eidation (1997)
. Dietterich, T.G., Flann, N.S.: Explanation-based lesgrand reinforcement learning: A

unified view. In: International Conference on Machine Léagn(1995) 176-184

Khardon, R.: Learning to take actions. Machine Lear3#(d) (1999) 57-90

Moyle, S.: Using theory completion to learn a robot natin control program. In: ILP.
(2002)

Konik, T., Laird, J.E.: Learning goal hierarchies fratnuctured observations and expert
annotations. Machine Learnirgg (2006) 263-287

Langley, P., Choi, D.: Learning recursive control pesgs from problem solving. Journal
of Machine Learning Resear@h(2006) 493-518

DZeroski, S., Raedt, L.D., Driessens, K.: Relatioaalforcement learning. Machine Learn-
ing 43(1/2) (2001) 7-52

Morales, E.F.: Relational state abstractions for cgggment learning. In: ICML-04 Work-
shop on Relational Reinforcement Learning. (2004)

Colton, S., Muggleton, S.: ILP for mathematical disagvén: 13th International Conference
on Inductive Logic Programming. (2003)

Fern, A., Yoon, S., Givan, R.: Learning domain-specifiotool knowledge from random
walks. In: International Conference on Automated Planring Scheduling. (2004)
Khardon, R., Roth, D.: Learning to reason with a restdatiew. In: Workshop on Compu-
tational Learning Theory. (1995)

Khardon, R., Roth, D.: Learning to reason. Journal ofX8&1 44(5) (1997) 697-725
Cimatti, A., Roveri, M., Bertoli, P.: Conformant plangivia symbolic model checking and
heuristic search. Artificial IntelligencEs9(1-2) (2004) 127-206

Petrick, R.P.A., Bacchus, F.: Extending the knowledgsed approach to planning with
incomplete information and sensing. In: International feocence on Automated Planning
and Scheduling. (2004) 2-11

van der Hoek, W., Wooldridge, M.: Tractable multiagelainping for epistemic goals. In:
Proceedings of the First International Conference on Aatoous Agents and Multiagent
Systems (AAMAS). (2002)

23. Bonet, B., Geffner, H.: Planning and control in artificielligence: A unifying perspective.
Applied Intelligencel4(3) (2001) 237-252
24. Dean, T., Wellman, M.P.: Planning and Control. Morganifikaann (1991)

