Partial Planning for Situated Agents based on
Active Logic

Stawomir Nowaczyk
Slawomir.Nowaczyk@cs.Ith.se
Department of Computer Science

Lund University, Sweden

Abstract

This paper presents an investigation of rational agentshidaee limited
computational resources and intentionally interact wlikirt environments.
We present an example logical formalism, based on Activeid.agd Sit-
uation Calculus, that can be employed in order to satisfyrélggirements
arising due to being situated in a dynamic universe. We aeahpw such
agents can combine, in a time-aware fashion, inductivaiegrfrom expe-
rience and deductive reasoning using domain knowledgeatticplar, we
consider how patrtial plans are created and reasoned abousifig on what
new information can be provided as a result of action exenuti

1 Introduction

In our research we are interested in building rational ag#ret can interact with
their environment. In order to be practically useful, sugarats should be modelled
as having bounded computational resources. Moreover $ivay are situated in
a dynamic world, they need to be aware of the notion of time —particular,
that their reasoning process is not instantaneous. On ke band, such agents
have the possibility to acquire important knowledge by olisg the environment
surrounding them and by analysing their past interactioitis itv

This paper mainly focuses on presentation of one kind ofcklgiormalism
we think may be appropriate for such agents. We describe haweALogic can
be augmented with epistemic concepts and combined with amésin related to
Situation Calculus, in order to provide flexible and effitiemasoning formalism
for rational agents.

We also present how such agents can deal with planning in idsméere
complexity makes finding complete solutions intractabldea@y, it is often not
realistic to expect an agent to be able to find a total plan lwbadves a problem at
hand. Therefore, we investigate how an agent can createsasdm aboupartial
plans By that we mean plans which bring it somewhat closer to aahgethe
goal, while still being simple and short enough to be conigetan reasonable

time. Currently we mainly concentrate on plans which allowagent to acquire
additional knowledge about the world.

By executing such “information-providing” partial plaresy agent can greatly
simplify subsequent planning process — it no longer neetiskiminto account the
vast number of possible situations which will be inconsisteith newly observed
state of the world. Thus, it can proceed further in a morecéffe way, by devoting
its computational resources to more relevant issues.

If the environment is modelled sufficiently well (for exarapif a simulator
exists), the agent may have a high degree of freedom in emglitrand in deciding
how to interact with it. It may be possible to gain informatithat the agent would
not be able to, by itself, observe directly. In many domaiits significantly easier
to build and employ a simulator than to analytically predesults of complex
interactions. In other cases, for example when the agentdabat situated in an
unknown environment, it must learn “in the wild” and be awtrat the actions it
executes are final: they do happen and there is no way of updoém, other than
performing, if possible, a reverse action.

In order to accommodate all of the above we use a variant aiédtogic
(Elgot-Drapkinet al. 1999) as agent’s reasoning formalism. It was designed for
non-omniscient agents and has mechanisms for dealing witbrtain and contra-
dictory knowledge. We believe that Active Logic is a goods@ang technique for
versatile agents, in particular as it has been applied safdly to several differ-
ent problem domains, including some in which planning playg&ry prominent
role (Puranget al. 1999). Moreover, in order to be able to intentionally dirist
own learning process, the agent needs to reason about itkrmwiedge and lack
of thereof — thus, the logic we use has been augmented wigttespic concepts
(Faginet al. 1995).

In other words, our agents are supposed to combine dedwmtiyénductive
reasoning with time-awareness. We believe that the inferecamong those three
aspects are crucial for developing truly intelligent sgste It is not our goal to
analyse strict deadlines or precise time measurement®(glh we do not exclude
a possibility of doing that), but rather to express that imna agent needs the abil-
ity to reason about committing its resources to variousstg€ionget al. 2002).
In particular, it is not justified to assume that an agent kmall/deductive conse-
guences of its own beliefs.

2 Wumpus Game

The example problem we will be using through this paper is likmown game of
Wumpus, a classic testbed for intelligent agents. In itsclfasm, the game takes
place on a rectangular board through which an player is alibiw move freely. A
beast called Wumpus occupies one, initially unknown, sgjudgent’s goal is to
kill the creature, a task that can be achieved by shootingrawan that square.
Luckily, Wumpus is a smelly creature, so the player alwaysadsif the monster
is nearby. But unfortunately, not the exact direction tdAit.the same time, when
walking around, the player needs to avoid stumbling actossrtonster, or else he

2

Plan
Deductor

Game history | Learning
—>

- Actor
Observation

Figure 1: The architecture of the system.

gets eaten by it.

This game is concise enough to be explained easily, but fingisolution is
sufficiently complex to illustrate the issues we want to eagike. We look at it as
one instance of a significantly broader class of problenesigaihe lines oGeneral
Game Playingwhere an agent accepts a formal description of an arbitanye
and, without further human interaction, can play it effeely.

3 Agent Architecture

We use a simple architecture for our agent, as presentedyirlFilt consists of
three main elements, corresponding to the three main td$ke agent.

The Deductor reasons about world, possible actions and edhddl be their
consequences. Its main aim is to generate plans appligablerient situation and
predict — at least as far as past experience, imperfect dokmawledge and lim-
ited computational resources allow — effects each of thelirhave, in particular
what new knowledge can be acquired.

The Actor is responsible for overseeing the reasoning gmamainly for in-
troducing new observations into the knowledge base andioosing plans for
execution. Basically, it decideshento switch from deliberation to acting, and
which of the plans under consideration to execute.

These two modules form the core of the agent. By creating aeclging a se-
guence of partial plans our agent moves progressively ichog closer to its goal,
until it reaches a point where a winning plan can be direatbated by Deductor,
and its correctness can be proven.

The learning module is necessary in order to ensure thatahe pgent chooses
for execution are indeed “good” ones. After the game is aegiardless of whether
the agent has won or lost, learning system inductively gdises experience it has
gathered — attempting to improve Deductor’'s and Actor'dgremance. Our goal
is to use the learned information to fill gaps in the domainvkedge, to figure
out generally interesting reasoning directions, to discaelevant subgoals and,
finally, to more efficiently select the best partial plan.

4 Deductor

In this section we first explain the knowledge represematised, then point out
some of the more interesting issues with the reasoning mewchiand finally

we introduce a simplified example illustrating how our exémumpus domain
could be axiomatised.

4.1 Knowledge Representation

The language used by Deductor is the First Order Logic autgdenith some
mechanisms similar to those of Situation Calculus. Withiivan situation, knowl-
edge is expressed using standard FOL. In particular, we tpui@ny limitations
on the expressiveness of the language. Predi&atews describes knowledge of
the agent, e.qg.,

Knows| Smell(a) < I,Wumpus(x) A Neighbour(a,z) |

means:agent knows that it smells on exactly those squares whighheur Wum-
pus’ position The predicaté nows may be nested, a feature which is very useful,
if only in a number of specialised contexts — mainly for aliogs an agent to
reason about future and about what effects performed actiglhhave. We use
standard reification mechanism for putting formulae asrpatars of a predicate
(Reiter 2001).

In order to describe actions and change, we employ a varfanel-known
Situation Calculus approach (McCarthy & Hayes 1969), extiegt we use predi-
cateKnows instead ofH olds — in order to make it explicit that out main priority
is describing agent’s knowledge. There are some semalfftcatices between our
Knows and a typicalH olds, however — for example,

Knows(s,aV) — Knows(s,a) V Knows(s, (3)

is not a tautology, while a corresponding formula fBlds usually is. We will
discuss these issues later in this section.

Nevertheless, we introduce an additional parameter tdsthews predicate,
which denotes the current situation. Moreover, since tleaeg required to reason
about knowledge-producing actions, we add yet anothempeter, namely the
plan agent is going to execute.

In other words, the first formula in this section should be eqaoperly written
in the form:

Knowsls,p, Smell(a) < 3z(Wumpus(z) A Neighbour(a,x))]

and mean:agent knows that executing planin situation s leads to a new sit-
uation, such that it smells on exactly those squares whiéghbeur Wumpus’
position This particular formula is an universal law of the worldJidaegard-
less of the choser andp, but many interesting ones — e.gWumpus(a)” or

“ Knows[Smell(b)]" — are true only for specific andp.

4

The initial knowledge of the agent, one concerning currgnaton, represents
the state of the world after execution of the empty plan. Ftois, using typical
STRI PS-like representation of actions (i.e. preconditions arfdot$), the agent
can reason about extending a particular plan by variousatipas. Next, for ev-
ery plan obtained this way, it can deduce which formulae atie n situation(s)
resulting from its execution.

One important extension to the classi€alRl PS formalism we employ is sup-
port for conditional actions. Such actions are importanembome of agent’s ac-
tions may provide information which is necessary to carryBasically, the plans
agent reasons about consist of a concatenation of classidalonditional actions,
the latter of the form(predicate ? action; : actions). Those have the standard
meaning, i.e. thatiction; will be executed ifpredicate holds, andactions will
be executed otherwise. For a well-developed discussiothef possible ways of
representing conditional partial plans and of interlegyitanning and execution
see, for example, Bertoli, Cimatti, & Traverso (2004).

Conceptually, the agent creates new plans by inductivelgneling each and
every plan considered up to now by each and every possiki@nacDbviously,
many plans created this way would be either invalid or cleaninteresting. There-
fore, due to the computational complexity issues of suchigerapproach, we im-
plement plan creation and validation as a process extasrthetlogical reasoner.
In general, the main requirement is to ensure that each plagent reasons about
is valid, i.e. that the preconditions of each action arelfetfi

We use standard Situation Calculus representation of tih@enaagent can ex-
ecute, i.e. using pre— and postconditions. Since some akthotions can be
knowledge-producing, it is important to represent that feoperly in their effects.
For example, moving onto squasewill make an agent know whethefmell(a)
is true or false. Of course, this information will only be #g&ble during plan exe-
cution, not during the planning itself. But it is necessaryistinguish that agent
will have this knowledge, so that it is able to create a conditionah fpieanching
on value of this predicate. In order to properly represeistribtion, we introduce
a predicatelnowslf, syntactically similar ta{nows, except that the meaning of
Knowslf (s, p,) is thatagent knows that executing plarin situation s leads to
a new situation, in which vill know whethera is true or false — but it does not
necessarily know, at planning time, which one.

Extra care needs to be taken when creating conditional p&# is impor-
tant to make sure that the agent has, during plan executimuygh knowledge
to correctly choose the appropriate conditional branch.siddly, a precondi-
tion for a conditional action(predicate 7 action, : actionsy) is the conjunc-
tion of preconditions fomction,, preconditions formctiony and truthfulness of
Knowslf (predicate) — the fact that agent knows whethpredicate holds or
not.

Finally, due to semantical differences betwdénids and K nows predicates,
we have found it advantageous to introduce an explicitraiitn betweeriluents
anddomain constraints Semantically, the difference is that truth value of fluents

5

depends on current situation, while the truth value of doneainstraints remains
fixed for the duration of game episode (althouagient’'s knowledgef them can,
obviously, change).

To this end we introduce a predicdtevariant, distinguishing formulae which
are independent of current situation, and a special inéerenle which allows
agent to propagate knowledge of domain constraints fronsitnation to another.

4.2 Reasoning

We will start this subsection by describing the reasoninocesswithin a given
situation, i.e. while an agent ponders which actions to @bec Later we will
shortly mention problems that arise when an action is erecand the state of
the world changes, and we will conclude with some referenaedsoning about
different game episodewhich is still very much work in progress.

As we said previously, an agent will create a number of plariseach such
plan will be evaluated by an Actor. Therefore, Deductor cavote more effort
to plans that are more promising. Since the agent employisédtbgic, this can
be easily modelled within that formalism, as it is intendedléscribe the deduc-
tion as an ongoing process, rather than characterisingsomhe static, fixed-point
consequence relation.

Active Logic annotates every formula with a time-stamp @llsuan integer)
of when it was first derived, incrementing the label with gvapplication of an
inference rule:

i: a,a—b
i+1: b
It also includes theVow predicate, true only during current time point (i.ei,:"
Now(j)" is true for alli = j, but false for all; # j). It can, therefore, use this

time-stamp to prioritise plans. For example, if an Actoridiés the plans into two
classesnormalones andjreatones, we can have inference rules of the kind:

i: Great(s,P), Knows(s, P,a), Knows(s, P,a — b)
i+1: Knows(s,P,b)

i: Now(i),even(i), Knows(s, P,a), Knows(s, P,a — b)
i+1: Knows(s,P,b)

which would ensure that reasoning abgutat plans happens at every step, but
reasoning aboutormal ones only happens every other step. This is a very simple
example, more complex scenarios are certainly possibtéhein usefulness has to
be evaluated experimentally. In particular, we find the ideallowing the agent

to consciously balance this tradeoff very stimulating.

In a similar spirit, we can balance the tradeoff betweentorganore complex,
longer plans and reasoning about effects of already credded. At this pointitis,
however, somewhat unclear on what basis should the agert dealisions regard-
ing this. Nevertheless, another feature of Active Logianely theobservation

6

function which delivers axioms that are valid since a specific pairirhe, can be
used quite naturally to acquire new plans — possibly from dutmexternal to the
reasoner itself.

We mentioned above that thevariant predicate requires a specialised infer-
ence rule. There are several possibilities, one being:

i: Knows(s,p,a) A Invariant(a)
i+1: Knows(s',p,a«)

for everys, p, ', p’. In practice, the reasoner would not need to multiply thenfor
lae for every possible combination of plan and situatiogait simply mark them
as being invariant and take this into account during infeeen an efficient way.

After the reasoning and planning has progressed suffigjettite Actor will
choose a plan and execute it. At that point the reasoner saardi other plans it
has created — they are no longer needed — and needs to adaptnew state
of affairs. First, it needs to notice that current situati@s changed — we use a
predicateState, modelled closely after standard Active Logic predicatew, in
order to achieve this. And second, it needs to absorb the newlkdge acquired
by the executing the actions, which can be done using olismmfanction.

An interesting issue is also how to allow an agent to reasaitabast game
episodes. In particular, after the game is won or lost ancheome is being started,
a lot of knowledge acquired previously still remains validlanteresting. We are
working on ways to extract general useful knowledge and soadier similarities
in episodes. This is also closely related to the learningutedliscussed in more
detail in subsequent sections.

4.3 Wumpus Example

In this section we briefly introduce our example domain, thmg of Wumpus. We
use a rather natural set of axioms to describe it. First weifypthat Wumpus is
on exactly one square:

3, Wumpus(x)
Vaoy ¢ #y— ~Wumpus(z) V -Wumpus(y)
We define the smelling phenomenon:
vy Smell(x) < 3, Wumpus(y) A Neighbour(z,y)
and that the agent will always know whether it smells on theasg|it is on:
V.. Player(z) < Knowslf(Smell(x))

We also defineVeighbour relation and other geometrical knowledge in a natural
way.

Finally, we need to specify thdl/umpus remains stationary thorough the
episode. This is the main reason for introduction of fhevariant predicate

7

in previous section. It allows us to state in a simple way tra&tdicates such
asWumpus, Neighbour, up, down, left, right, even etc. do not depend on the
current situation. Therefore, any formulacontaining only those predicates is
an invariant. So, if an agent discovers in some situatipthat Wumpus(a) V
Wumpus(b), it can easily deduce th&dt umpus(a) vV Wumpus(b) also holds in
any other situation,.

Observe that a, somewhat more natural, rule such as:

Va.s.s' pp Knows(s,p, Wumpus(z)) < Knows(s',p', Wumpus(z))
does not quite work, as agent’s knowledge is typically ofkimel
Knows(s,p, Wumpus(a) V Wumpus(b))

and itis not clear how to propagate such formulae betweaat&ins without expo-
nential blowup of axioms (problems arise, for example, fthmfact thatk nows
is not distributive to disjunction).

We currently perform grounding of all the variables in orttehave reasoning
in predicate logic.

44 Summary

In general, our agent reasons on three distinct levels dfadti®on. First iswithin

a given situation, where it tries to find the best plan to eteec8econd level con-
cerns effects of executed actions, where state of the whddges and new knowl-
edge becomes available. And third deals with comparin@difit game episodes,
where knowledge previously assumed tolb@ariant is no longer so (for exam-
ple, Wumpus may now be at another location).

The Active Logic formalism used, especially predicAtew, makes it possible
to reason about passing time and, combined with observaiiwtion delivering
knowledge about external events, allows the agent to remesiponsive during
its deliberations. This way both Deductor and Actor can keapk of how the
reasoning is progressing and make informed decisions dimlahcing thinking
and acting.

One of the reasons we have chosen symbolic representatiplardd, as op-
posed to a policy (an assignment of value to each statenaptd) is that we
intend to deal with other types of goals than just reachghilnes. For a discus-
sion of possibilities and rationalisation of why such goatle interesting, see for
example Bertoliet al. (2003), where authors present a solution for planning with
goals described in Computational Tree Logic. This forrmalallows to express
goals of the kind “value o& will never be changed”,a will be eventually restored
to its original value” or “value of, after timet, will always beb” etc.

To summarise, our agent uses Active Logic to reason aboutwits knowl-
edge, which is very important in the Wumpus domain. Here,ntlaén goal can
be reduced to “learn the position of Wumpus”, so active glagifior knowledge

acquisition is crucial. Agent also requires an ability tongare what kind of infor-
mation will execution of each plan provide, in order to beeatnl choose the best
one of them.

5 Actor

The Actor module supervises the deduction process and dieakselected mo-
ments, e.g., when it notices a particularly interestingqiawhen it decides that
sufficiently long time has been spent on planning. It thealuatesexisting partial
plans and executes the best one of them. The evaluationggsrizcerucial here, and
we expect the subsequent learning process to greatly botgio its improvement.
In the beginning, the choice may be done at random, or sonmesimeuristic may
be used. After execution of partial plan, a new situatioresched and the Actor
lets the Deductor create another set of possible plans.

This is repeated as many times as needed, until the gamealepsseither won
or lost. Losing the game clearly identifies bad choices omp#reof the Actor and
leads to an update of the evaluation function.

Winning the game also yields feedback that may be used forawving this
function, but it also provides a possibility to (re)constra complete plan, i.e. one
which starts in the initial situation and ends in a winningtst If such a plan can
be found, it may be subsequently used to quickly solve anigleno instance for
which it is applicable. Moreover, even if such plan is noedtty applicable, an
Actor can use it when evaluating other plans found by the Ddu Those with
structure similar to the successful one are more likely tavbghwhile.

6 Learning

When analysing learning module, it is important to keep imanthat our agent
has a dual aim, akin to the exploration and exploitationnditea in reinforcement
learning. On one hand, it wants to win the current game episbuat at the same
time it needs to learn as much general knowledge as possileger to improve

its future performance.

Currently we are mainly investigating the learning modutarf Actor’'s per-
spective — using ILP to evaluate quality of partial planstes,the best of our
knowledge, a novel idea. One issue is that work on ILP has Healing almost
exclusively with the problem oflassification while our situation requiresvalu-
ation. There is no predefined set of classes into which plans shmulaksigned.
What our agent needs is a way to chooseltbstone of them.

For now, however, we focus on distinguishing a special obdisbad” plans,
namely ones that lead to losing the game. Clearly some plankose that in
agent’s experiencdid so — are bad ones. But not every plan which does not cause
the agent to lose is good plan. Further, not every plan that leadswnning a
game is a good one. An agent might have executed a dangeeyuarmd win only
because it has been lucky.

Therefore, we define as positive examples those plans weath or can be
proven topossiblylead, to the defeat. On the other hand, those plans whichecan b

9

proven tonevercause defeat are negative examples. There is a third clatsnst
when neither of the above assertions can be proven. We akingam how to use
such examples in learning most effectively.

Nevertheless, this is only the beginning. After all, in maityiations a more
“proactive” approach than simpleot-losingis required. One promising idea is to
explore the epistemic quality of plans: an agent shouldysutisose which provide
the most important knowledge. Another way of expressingirdison between
good and bad partial plans, one we feel can give very goodisesidiscovering
relevant subgoals and landmarks, as in Hoffmann, Port&€o8gbastia (2004).

7 Environment Interaction

Another interesting issue in our framework is the “conssimss” of interactions
between an agent and its environment, conducted in such asw@ymaximise the
knowledge that can be obtained. In particular, an agentiadaat all times, the
exploration versus exploitation dilemma, i.e., it both deéo gather new knowl-
edgeandto win the current game episode.

In order to facilitate such reasoning, our agent requireallity to both act
in the world and to observe it. Finally, it needs to considerown knowledge
and how it will (orcan) change in response to various events taking place in the
environment. In different domains and applications défémodels of interactions
with the world are possible.

The most unrestrictive case is a simulator, where an agsrtdraplete control
over the (training) environment. It can setup an arbitréiyasion, execute some
actions and observe the results. Such a scenario is commdor iexample, a
physical modelling, where it is often much easier to simeuthatngs than to predict
their behaviour and interactions. In a similar spirit, ityrize easier for our agent
to “ask the environment” about validity of some formula tharmprove it.

If agent’s freedom is slightly more restricted, it is po$sithat it is not allowed
to freely change the environment, but can “try out” sevetahg in a given situa-
tion. For example, the agent may provide a set of plans amiean outcome for
each of them. Alternatively, it may store some opasjii¢ation identifierso that it
can revisit the same situation at later time. This modelse alitable for agents
that do not have perfect knowledge of the world, as the “sgptapability does
not assuméhe agents able to fully reconstruct the situation or knows the stdte
the world completely.

In our opinion, this is the most interesting setting: it gitbe agent sufficient
freedom to allow it to achieve interesting results and atddme time is not, in
many domains, overly infeasible. On the other hand, we amking on ways
in which this setting could be made even more practical — dea is having an
agent accept the fact that in several replays “the samedt&itucould vary slightly.
For example, physical agent might request an operator toreethe previous state
of the world: it would not really be identical, but it may beffatiently close.
Alternatively, in some application domains, only a subdesituations may be
“replayable” — only those, for example, that an agent catores with required

10

tolerance, all by itself.

In most applications, however, the agent is only able to énfe its own ac-
tions and have no control whatsoever over the rest of thedwdrhis is also the
most suitable model for amutonomougphysical agent. In such case, the environ-
ment will irreversibly move into the subsequent state upatheagent'’s action (or
any other event), leaving it no option but to adapt. It malf & interesting, in
some situations, to substitute acting for reasoning, iatdent needs to be aware
that once acted upon, the current situation will be gonesiptysforever. It thus
needs to consider if saving some deduction effort is indeedbést possible course
of action, or if doing something else instead would be moraathgeous.

Finally, we can imagine a physical agent situated daagerousenvironment,
where it is not even plausible for it to freely choose its@utsi — it needs to, first,
assert that an action is reasonably safe. In this case,euthlik previous one, a
significant amount of reasonimgeeddo be performed before every experiment.

As an orthogonal issue, sometimes it is feasible for an ageeiecute an
action, observe the results, reason about them and figuteeuext action to per-
form. But in many applications the “value” of time variesmficantly. There are
situations where an agent may freely spend its time meniifatind there are sit-
uations where decisions must be made quickly. For examplRpboCup robotic
soccer domain, when the ball is in possession of a friendlyqsl the agent just
needs to position itself in a good way for a possible pass —skawdich is not too
demanding and leaves agent free to ponder more “philosalphifsues. On the
other hand, when the ball is rolling in agent’s directiomsiis of essence and an
agent better had plans ready for several most plausibleragtitcomes.

8 Reated Work

Combination of planning and learning is an area of activeassh, in addition to
the extensive amount of work being done separately in thesgective fields.

There has been significant amount of work done in learningitabihat ac-
tions to take in a particular situation. One notable exaniplghardon (1999),
where author showed important theoretical results abo@-Rarnability of ac-
tion strategies in various models. In Moyle (2002) authacdssed a more prac-
tical approach to learning Event Calculus programs usingofhCompletion. He
used extraction-case abduction and the ALECTO system &r ¢ocsimultaneously
learn two mutually related predicategtiates andT erminates) from positive-
only observations. Recently, Konik & Laird (2004) devetdpa system which is
able to learn low-level actions and plans from goal hieri@shnd action examples
provided by experts, within the SOAR architecture.

The work mentioned above focuses primarily on learning howat, without
focusing on reaching conclusions in a deductive way. In aeetine results are
somewhat more similar to the reactive-like behaviour thalassical planning
system, with important similarities to the reinforcemesdrhing and related tech-
niques.

One attempt to escape the trap of large search space has tesemtpd in

11

DZeroski, Raedt, & Driessens (2001), where relationarabsons are used to sub-
stantially reduce cardinality of search space. Still, tiesv space is subjected to
reinforcement learning, not to a symbolic planning systAmonceptually similar
idea, but where relational representation is actually dpééarned via behaviour
cloning techniques, is presented in Morales (2004).

Recently, Colton & Muggleton (2003) showed several ideagiabow to learn
interesting facts about the world, as opposed to learningsaription of a prede-
fined concept. A somewhat similar result, more specificalgted to planning, has
been presented in (Fern, Yoon, & Givan 2004), where the sy#arns domain-
dependent control knowledge beneficial in planning tasks.

Yet another track of research focuses on (deductive) phaniiaking into ac-
count incompleteness of agent’'s knowledge and uncertaimyt the world. Con-
ditional plans, generalised policies, conformant plamsyarsal plans and some
others are the terms used by various researchers (Cimat#riR& Bertoli 2004;
Bertoli, Cimatti, & Traverso 2004) to denote in principletsame idea: generating
a plan which is “prepared” for all possible reactions of theinment. This ap-
proach has much in common with control theory, as observ@&biret & Geffner
(2001) or earlier in Dean & Wellman (1991). We are not awaramf such re-
search that would attempt to integrate learning.

9 Conclusions

The work presented here is still very much in progress angeudsion of an in-
teresting track of research, rather than a report on someretenresults. We have
introduced an agent architecture facilitating resouswara deductive planning in-
terwoven with plan execution and supported by inductivfe;lbng learning. The

particular deduction mechanism used is based on Actived, agiorder to incor-

porate time-awareness into the reasoning itself. The pleeated in deductive
way are conditional, accounting for possible results dfifeitactions, in particular
information-gathering ones.

We intend to continue this work in several directions. Disring subgoals
and subplans seems to be one of the most useful capabilitiesnoan problem
solving and we would like our agent to invent and use suchejaindn our example
domain a useful subgoal could be “First, find a place whemnélks.” In addition,
Deductor should be able to conceive general rules of rdtioslaaviour, such as
“Don’t shoot if you don't know Wumpus’ position”. Yet anothelear advantage
would be the ability to reuse a previously successful plaa different situation.
Finally, domain experts often are an invaluable source oitedge that the agent
should be able to exploit, if possible.

The ideas above do not cover all the possible further inyastins and exten-
sions of the proposed system; it is just a biased presentafithe authors’ own
interests and judgements.

12

References

Bertoli, P.; Cimatti, A.; Pistore, M.; and Traverso, P. 2083Framework for planning with
extended goals under partial observability. Iternational Conference on Automated
Planning and Schedulin@15-225.

Bertoli, P.; Cimatti, A.; and Traverso, P. 2004. Interleayiexecution and planning for
nondeterministic, partially observable domains.Buropean Conference on Atrtificial
Intelligence 657—661.

Bonet, B., and Geffner, H. 2001. Planning and control irfiaidl intelligence: A unifying
perspectiveApplied Intelligence 4(3):237-252.

Chong, W.; O’'Donovan-Anderson, M.; Okamoto, Y.; and Peiflis 2002. Seven days in
the life of a robotic agent. IGSFC/JPL Workshop on Radical Agent Concepts

Cimatti, A.; Roveri, M.; and Bertoli, P. 2004. Conformangaphing via symbolic model
checking and heuristic searchrtificial Intelligencel59(1-2):127-206.

Colton, S., and Muggleton, S. 2003. ILP for mathematicata@igery. In13th International
Conference on Inductive Logic Programming

Dean, T., and Wellman, M. P. 199Planning and Contral Morgan Kaufmann.

Dzeroski, S.; Raedt, L. D.; and Driessens, K. 2001. Refafioeinforcement learning.
Machine Learningt3(1/2):7-52.

Elgot-Drapkin, J.; Kraus, S.; Miller, M.; Nirkhe, M.; and fis, D. 1999. Active log-
ics: A unified formal approach to episodic reasoning. TeciinfReport CS-TR-4072,
University of Maryland.

Fagin, R.; Halpern, J. Y.; Vardi, M. Y.; and Moses, Y. 19%%asoning about knowledge
MIT Press.

Fern, A.; Yoon, S.; and Givan, R. 2004. Learning domain-#jgezontrol knowledge from
random walks. Innternational Conference on Automated Planning and Sclieglu

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordarebiarks in planninglournal
of Artificial Intelligence Research2:215-278.

Khardon, R. 1999. Learning to take actiohdachine Learning5:57-90.

Konik, T., and Laird, J. 2004. Learning goal hierarchiesirstructured observations and
expert annotations. Ih4th International Conference on Inductive Logic Prograimgn

McCarthy, J., and Hayes, P. J. 1969. Some philosophicalgrabfrom the standpoint of
artificial intelligence.Machine Intelligencé:463-502.

Morales, E. P. 2004. Relational state abstraction for cega@ment learning. IRroceedings
of the ICML'04 Workshop on Relational Reinforcement Leagni

Moyle, S. 2002. Using theory completion to learn a robot gation control program. In
12th International Conference on Inductive Logic Prograimgn

13

Purang, K.; Purushothaman, D.; Traum, D.; Andersen, C.;Rertls, D. 1999. Prac-
tical reasoning and plan execution with active logic. Aroceedings of the 1JCAI-99
Workshop on Practical Reasoning and Rational@§—38.

Reiter, R. 2001Knowledge in Action: Logical Foundations for Specifyingldmplement-
ing Dynamical System3he MIT Press.

14

	Introduction
	Wumpus Game
	Agent Architecture
	Deductor
	Knowledge Representation
	Reasoning
	Wumpus Example
	Summary

	Actor
	Learning
	Environment Interaction
	Related Work
	Conclusions

