
Partial Planning for Situated Agents based on
Active Logic

Sławomir Nowaczyk
Slawomir.Nowaczyk@cs.lth.se

Department of Computer Science
Lund University, Sweden

Abstract

This paper presents an investigation of rational agents that have limited
computational resources and intentionally interact with their environments.
We present an example logical formalism, based on Active Logic and Sit-
uation Calculus, that can be employed in order to satisfy therequirements
arising due to being situated in a dynamic universe. We analyse how such
agents can combine, in a time-aware fashion, inductive learning from expe-
rience and deductive reasoning using domain knowledge. In particular, we
consider how partial plans are created and reasoned about, focusing on what
new information can be provided as a result of action execution.

1 Introduction
In our research we are interested in building rational agents that can interact with
their environment. In order to be practically useful, such agents should be modelled
as having bounded computational resources. Moreover, since they are situated in
a dynamic world, they need to be aware of the notion of time — inparticular,
that their reasoning process is not instantaneous. On the other hand, such agents
have the possibility to acquire important knowledge by observing the environment
surrounding them and by analysing their past interactions with it.

This paper mainly focuses on presentation of one kind of logical formalism
we think may be appropriate for such agents. We describe how Active Logic can
be augmented with epistemic concepts and combined with mechanism related to
Situation Calculus, in order to provide flexible and efficient reasoning formalism
for rational agents.

We also present how such agents can deal with planning in domains where
complexity makes finding complete solutions intractable. Clearly, it is often not
realistic to expect an agent to be able to find a total plan which solves a problem at
hand. Therefore, we investigate how an agent can create and reason aboutpartial
plans. By that we mean plans which bring it somewhat closer to achieving the
goal, while still being simple and short enough to be computable in reasonable

1

time. Currently we mainly concentrate on plans which allow an agent to acquire
additional knowledge about the world.

By executing such “information-providing” partial plans,an agent can greatly
simplify subsequent planning process — it no longer needs totake into account the
vast number of possible situations which will be inconsistent with newly observed
state of the world. Thus, it can proceed further in a more effective way, by devoting
its computational resources to more relevant issues.

If the environment is modelled sufficiently well (for example, if a simulator
exists), the agent may have a high degree of freedom in exploring it and in deciding
how to interact with it. It may be possible to gain information that the agent would
not be able to, by itself, observe directly. In many domains it is significantly easier
to build and employ a simulator than to analytically predictresults of complex
interactions. In other cases, for example when the agent is arobot situated in an
unknown environment, it must learn “in the wild” and be awarethat the actions it
executes are final: they do happen and there is no way of undoing them, other than
performing, if possible, a reverse action.

In order to accommodate all of the above we use a variant of Active Logic
(Elgot-Drapkinet al. 1999) as agent’s reasoning formalism. It was designed for
non-omniscient agents and has mechanisms for dealing with uncertain and contra-
dictory knowledge. We believe that Active Logic is a good reasoning technique for
versatile agents, in particular as it has been applied successfully to several differ-
ent problem domains, including some in which planning playsa very prominent
role (Puranget al. 1999). Moreover, in order to be able to intentionally directits
own learning process, the agent needs to reason about its ownknowledge and lack
of thereof — thus, the logic we use has been augmented with epistemic concepts
(Faginet al.1995).

In other words, our agents are supposed to combine deductiveand inductive
reasoning with time-awareness. We believe that the interactions among those three
aspects are crucial for developing truly intelligent systems. It is not our goal to
analyse strict deadlines or precise time measurements (although we do not exclude
a possibility of doing that), but rather to express that a rational agent needs the abil-
ity to reason about committing its resources to various tasks (Chonget al. 2002).
In particular, it is not justified to assume that an agent knows all deductive conse-
quences of its own beliefs.

2 Wumpus Game
The example problem we will be using through this paper is a well-known game of
Wumpus, a classic testbed for intelligent agents. In its basic form, the game takes
place on a rectangular board through which an player is allowed to move freely. A
beast called Wumpus occupies one, initially unknown, square. Agent’s goal is to
kill the creature, a task that can be achieved by shooting an arrow on that square.
Luckily, Wumpus is a smelly creature, so the player always knows if the monster
is nearby. But unfortunately, not the exact direction to it.At the same time, when
walking around, the player needs to avoid stumbling across the monster, or else he

2

Deductor

Actor

Plan

Observation

LearningGame history

Figure 1: The architecture of the system.

gets eaten by it.
This game is concise enough to be explained easily, but finding a solution is

sufficiently complex to illustrate the issues we want to emphasise. We look at it as
one instance of a significantly broader class of problems, along the lines ofGeneral
Game Playing, where an agent accepts a formal description of an arbitrarygame
and, without further human interaction, can play it effectively.

3 Agent Architecture
We use a simple architecture for our agent, as presented in Fig. 1. It consists of
three main elements, corresponding to the three main tasks of the agent.

The Deductor reasons about world, possible actions and whatcould be their
consequences. Its main aim is to generate plans applicable in current situation and
predict — at least as far as past experience, imperfect domain knowledge and lim-
ited computational resources allow — effects each of them will have, in particular
what new knowledge can be acquired.

The Actor is responsible for overseeing the reasoning process, mainly for in-
troducing new observations into the knowledge base and for choosing plans for
execution. Basically, it decideswhento switch from deliberation to acting, and
which of the plans under consideration to execute.

These two modules form the core of the agent. By creating and executing a se-
quence of partial plans our agent moves progressively closer and closer to its goal,
until it reaches a point where a winning plan can be directly created by Deductor,
and its correctness can be proven.

The learning module is necessary in order to ensure that the plans agent chooses
for execution are indeed “good” ones. After the game is over,regardless of whether
the agent has won or lost, learning system inductively generalises experience it has
gathered — attempting to improve Deductor’s and Actor’s performance. Our goal
is to use the learned information to fill gaps in the domain knowledge, to figure
out generally interesting reasoning directions, to discover relevant subgoals and,
finally, to more efficiently select the best partial plan.

3

4 Deductor
In this section we first explain the knowledge representation used, then point out
some of the more interesting issues with the reasoning machinery, and finally
we introduce a simplified example illustrating how our example Wumpus domain
could be axiomatised.

4.1 Knowledge Representation

The language used by Deductor is the First Order Logic augmented with some
mechanisms similar to those of Situation Calculus. Within agiven situation, knowl-
edge is expressed using standard FOL. In particular, we do not put any limitations
on the expressiveness of the language. PredicateKnows describes knowledge of
the agent, e.g.,

Knows[Smell(a) ↔ ∃xWumpus(x) ∧ Neighbour(a, x)]

means:agent knows that it smells on exactly those squares which neighbour Wum-
pus’ position. The predicateKnows may be nested, a feature which is very useful,
if only in a number of specialised contexts — mainly for allowing an agent to
reason about future and about what effects performed actions will have. We use
standard reification mechanism for putting formulae as parameters of a predicate
(Reiter 2001).

In order to describe actions and change, we employ a variant of well-known
Situation Calculus approach (McCarthy & Hayes 1969), except that we use predi-
cateKnows instead ofHolds — in order to make it explicit that out main priority
is describing agent’s knowledge. There are some semantic differences between our
Knows and a typicalHolds, however — for example,

Knows(s, α ∨ β) → Knows(s, α) ∨ Knows(s, β)

is not a tautology, while a corresponding formula forHolds usually is. We will
discuss these issues later in this section.

Nevertheless, we introduce an additional parameter to theKnows predicate,
which denotes the current situation. Moreover, since the agent is required to reason
about knowledge-producing actions, we add yet another parameter, namely the
plan agent is going to execute.

In other words, the first formula in this section should be more properly written
in the form:

Knows[s, p, Smell(a) ↔ ∃x(Wumpus(x) ∧ Neighbour(a, x))]

and mean:agent knows that executing planp in situation s leads to a new sit-
uation, such that it smells on exactly those squares which neighbour Wumpus’
position. This particular formula is an universal law of the world, valid regard-
less of the chosens andp, but many interesting ones — e.g. “Wumpus(a)” or
“Knows[Smell(b)]” — are true only for specifics andp.

4

The initial knowledge of the agent, one concerning current situation, represents
the state of the world after execution of the empty plan. Fromthis, using typical
STRIPS-like representation of actions (i.e. preconditions and effects), the agent
can reason about extending a particular plan by various operations. Next, for ev-
ery plan obtained this way, it can deduce which formulae are valid in situation(s)
resulting from its execution.

One important extension to the classicalSTRIPS formalism we employ is sup-
port for conditional actions. Such actions are important when some of agent’s ac-
tions may provide information which is necessary to carry on. Basically, the plans
agent reasons about consist of a concatenation of classicaland conditional actions,
the latter of the form(predicate ? action1 : action2). Those have the standard
meaning, i.e. thataction1 will be executed ifpredicate holds, andaction2 will
be executed otherwise. For a well-developed discussion of other possible ways of
representing conditional partial plans and of interleaving planning and execution
see, for example, Bertoli, Cimatti, & Traverso (2004).

Conceptually, the agent creates new plans by inductively extending each and
every plan considered up to now by each and every possible action. Obviously,
many plans created this way would be either invalid or clearly uninteresting. There-
fore, due to the computational complexity issues of such a naive approach, we im-
plement plan creation and validation as a process external to the logical reasoner.
In general, the main requirement is to ensure that each plan an agent reasons about
is valid, i.e. that the preconditions of each action are fulfilled.

We use standard Situation Calculus representation of the actions agent can ex-
ecute, i.e. using pre– and postconditions. Since some of those actions can be
knowledge-producing, it is important to represent that fact properly in their effects.
For example, moving onto squarea will make an agent know whetherSmell(a)
is true or false. Of course, this information will only be available during plan exe-
cution, not during the planning itself. But it is necessary to distinguish that agent
will have this knowledge, so that it is able to create a conditional plan branching
on value of this predicate. In order to properly represent this notion, we introduce
a predicateKnowsIf , syntactically similar toKnows, except that the meaning of
KnowsIf (s, p, α) is thatagent knows that executing planp in situations leads to
a new situation, in which itwill know whetherα is true or false — but it does not
necessarily know, at planning time, which one.

Extra care needs to be taken when creating conditional plans, as it is impor-
tant to make sure that the agent has, during plan execution, enough knowledge
to correctly choose the appropriate conditional branch. Basically, a precondi-
tion for a conditional action(predicate ? action1 : action2) is the conjunc-
tion of preconditions foraction1, preconditions foraction2 and truthfulness of
KnowsIf (predicate) — the fact that agent knows whetherpredicate holds or
not.

Finally, due to semantical differences betweenHolds andKnows predicates,
we have found it advantageous to introduce an explicit distinction betweenfluents
anddomain constraints. Semantically, the difference is that truth value of fluents

5

depends on current situation, while the truth value of domain constraints remains
fixed for the duration of game episode (althoughagent’s knowledgeof them can,
obviously, change).

To this end we introduce a predicateInvariant, distinguishing formulae which
are independent of current situation, and a special inference rule which allows
agent to propagate knowledge of domain constraints from onesituation to another.

4.2 Reasoning

We will start this subsection by describing the reasoning processwithin a given
situation, i.e. while an agent ponders which actions to execute. Later we will
shortly mention problems that arise when an action is executed and the state of
the world changes, and we will conclude with some reference to reasoning about
different game episodes, which is still very much work in progress.

As we said previously, an agent will create a number of plans and each such
plan will be evaluated by an Actor. Therefore, Deductor can devote more effort
to plans that are more promising. Since the agent employs Active Logic, this can
be easily modelled within that formalism, as it is intended to describe the deduc-
tion as an ongoing process, rather than characterising onlysome static, fixed-point
consequence relation.

Active Logic annotates every formula with a time-stamp (usually an integer)
of when it was first derived, incrementing the label with every application of an
inference rule:

i : a, a → b

i + 1 : b

It also includes theNow predicate, true only during current time point (i.e., “i :
Now(j)” is true for all i = j, but false for alli 6= j). It can, therefore, use this
time-stamp to prioritise plans. For example, if an Actor divides the plans into two
classes,normalones andgreatones, we can have inference rules of the kind:

i : Great(s, P),Knows(s, P, a),Knows(s, P, a → b)

i + 1 : Knows(s, P, b)

i : Now(i), even(i),Knows(s, P, a),Knows(s, P, a → b)

i + 1 : Knows(s, P, b)

which would ensure that reasoning aboutgreat plans happens at every step, but
reasoning aboutnormalones only happens every other step. This is a very simple
example, more complex scenarios are certainly possible, but their usefulness has to
be evaluated experimentally. In particular, we find the ideaof allowing the agent
to consciously balance this tradeoff very stimulating.

In a similar spirit, we can balance the tradeoff between creating more complex,
longer plans and reasoning about effects of already createdplans. At this point it is,
however, somewhat unclear on what basis should the agent make decisions regard-
ing this. Nevertheless, another feature of Active Logic, namely theobservation

6

function, which delivers axioms that are valid since a specific point in time, can be
used quite naturally to acquire new plans — possibly from a module external to the
reasoner itself.

We mentioned above that theInvariant predicate requires a specialised infer-
ence rule. There are several possibilities, one being:

i : Knows(s, p, α) ∧ Invariant(α)

i + 1 : Knows(s′, p′, α)

for everys, p, s′, p′. In practice, the reasoner would not need to multiply the formu-
lae for every possible combination of plan and situation, itcan simply mark them
as being invariant and take this into account during inference in an efficient way.

After the reasoning and planning has progressed sufficiently, the Actor will
choose a plan and execute it. At that point the reasoner can discard other plans it
has created — they are no longer needed — and needs to adapt to the new state
of affairs. First, it needs to notice that current situationhas changed — we use a
predicateState, modelled closely after standard Active Logic predicateNow, in
order to achieve this. And second, it needs to absorb the new knowledge acquired
by the executing the actions, which can be done using observation function.

An interesting issue is also how to allow an agent to reason about past game
episodes. In particular, after the game is won or lost and a new one is being started,
a lot of knowledge acquired previously still remains valid and interesting. We are
working on ways to extract general useful knowledge and to discover similarities
in episodes. This is also closely related to the learning module, discussed in more
detail in subsequent sections.

4.3 Wumpus Example

In this section we briefly introduce our example domain, the game of Wumpus. We
use a rather natural set of axioms to describe it. First we specify that Wumpus is
on exactly one square:

∃x Wumpus(x)

∀x,y x 6= y → ¬Wumpus(x) ∨ ¬Wumpus(y)

We define the smelling phenomenon:

∀x Smell(x) ↔ ∃y Wumpus(y) ∧ Neighbour(x, y)

and that the agent will always know whether it smells on the square it is on:

∀x Player(x) ↔ KnowsIf (Smell(x))

We also defineNeighbour relation and other geometrical knowledge in a natural
way.

Finally, we need to specify thatWumpus remains stationary thorough the
episode. This is the main reason for introduction of theInvariant predicate

7

in previous section. It allows us to state in a simple way thatpredicates such
asWumpus,Neighbour, up, down, left, right, even etc. do not depend on the
current situation. Therefore, any formulaα containing only those predicates is
an invariant. So, if an agent discovers in some situations1 that Wumpus(a) ∨
Wumpus(b), it can easily deduce thatWumpus(a) ∨ Wumpus(b) also holds in
any other situations2.

Observe that a, somewhat more natural, rule such as:

∀x,s,s′,p,p′Knows(s, p,Wumpus(x)) ↔ Knows(s′, p′,Wumpus(x))

does not quite work, as agent’s knowledge is typically of thekind

Knows(s, p,Wumpus(a) ∨ Wumpus(b))

and it is not clear how to propagate such formulae between situations without expo-
nential blowup of axioms (problems arise, for example, fromthe fact thatKnows

is not distributive to disjunction).
We currently perform grounding of all the variables in orderto have reasoning

in predicate logic.

4.4 Summary

In general, our agent reasons on three distinct levels of abstraction. First iswithin
a given situation, where it tries to find the best plan to execute. Second level con-
cerns effects of executed actions, where state of the world changes and new knowl-
edge becomes available. And third deals with comparing different game episodes,
where knowledge previously assumed to beInvariant is no longer so (for exam-
ple, Wumpus may now be at another location).

The Active Logic formalism used, especially predicateNow, makes it possible
to reason about passing time and, combined with observationfunction delivering
knowledge about external events, allows the agent to remainresponsive during
its deliberations. This way both Deductor and Actor can keeptrack of how the
reasoning is progressing and make informed decisions aboutbalancing thinking
and acting.

One of the reasons we have chosen symbolic representation ofplans, as op-
posed to a policy (an assignment of value to each state–action pair) is that we
intend to deal with other types of goals than just reachability ones. For a discus-
sion of possibilities and rationalisation of why such goalsare interesting, see for
example Bertoliet al. (2003), where authors present a solution for planning with
goals described in Computational Tree Logic. This formalism allows to express
goals of the kind “value ofa will never be changed”, “a will be eventually restored
to its original value” or “value ofa, after timet, will always beb” etc.

To summarise, our agent uses Active Logic to reason about itsown knowl-
edge, which is very important in the Wumpus domain. Here, themain goal can
be reduced to “learn the position of Wumpus”, so active planning for knowledge

8

acquisition is crucial. Agent also requires an ability to compare what kind of infor-
mation will execution of each plan provide, in order to be able to choose the best
one of them.

5 Actor
The Actor module supervises the deduction process and breaks it at selected mo-
ments, e.g., when it notices a particularly interesting plan or when it decides that
sufficiently long time has been spent on planning. It thenevaluatesexisting partial
plans and executes the best one of them. The evaluation process is crucial here, and
we expect the subsequent learning process to greatly contribute to its improvement.
In the beginning, the choice may be done at random, or some simple heuristic may
be used. After execution of partial plan, a new situation is reached and the Actor
lets the Deductor create another set of possible plans.

This is repeated as many times as needed, until the game episode is either won
or lost. Losing the game clearly identifies bad choices on thepart of the Actor and
leads to an update of the evaluation function.

Winning the game also yields feedback that may be used for improving this
function, but it also provides a possibility to (re)construct a complete plan, i.e. one
which starts in the initial situation and ends in a winning state. If such a plan can
be found, it may be subsequently used to quickly solve any problem instance for
which it is applicable. Moreover, even if such plan is not directly applicable, an
Actor can use it when evaluating other plans found by the Deductor. Those with
structure similar to the successful one are more likely to beworthwhile.

6 Learning
When analysing learning module, it is important to keep in mind that our agent
has a dual aim, akin to the exploration and exploitation dilemma in reinforcement
learning. On one hand, it wants to win the current game episode, but at the same
time it needs to learn as much general knowledge as possible,in order to improve
its future performance.

Currently we are mainly investigating the learning module from Actor’s per-
spective — using ILP to evaluate quality of partial plans is,to the best of our
knowledge, a novel idea. One issue is that work on ILP has beendealing almost
exclusively with the problem ofclassification, while our situation requiresevalu-
ation. There is no predefined set of classes into which plans shouldbe assigned.
What our agent needs is a way to choose thebestone of them.

For now, however, we focus on distinguishing a special classof “bad” plans,
namely ones that lead to losing the game. Clearly some plans —those that in
agent’s experiencedid so — are bad ones. But not every plan which does not cause
the agent to lose is agood plan. Further, not every plan that leads towinning a
game is a good one. An agent might have executed a dangerous plan and win only
because it has been lucky.

Therefore, we define as positive examples those plans which lead, or can be
proven topossiblylead, to the defeat. On the other hand, those plans which can be

9

proven tonevercause defeat are negative examples. There is a third class ofplans,
when neither of the above assertions can be proven. We are working on how to use
such examples in learning most effectively.

Nevertheless, this is only the beginning. After all, in manysituations a more
“proactive” approach than simplenot-losingis required. One promising idea is to
explore the epistemic quality of plans: an agent should pursue those which provide
the most important knowledge. Another way of expressing distinction between
good and bad partial plans, one we feel can give very good results, is discovering
relevant subgoals and landmarks, as in Hoffmann, Porteous,& Sebastia (2004).

7 Environment Interaction
Another interesting issue in our framework is the “consciousness” of interactions
between an agent and its environment, conducted in such a wayas to maximise the
knowledge that can be obtained. In particular, an agent is facing, at all times, the
exploration versus exploitation dilemma, i.e., it both needs to gather new knowl-
edgeand to win the current game episode.

In order to facilitate such reasoning, our agent requires anability to both act
in the world and to observe it. Finally, it needs to consider its own knowledge
and how it will (or can) change in response to various events taking place in the
environment. In different domains and applications different models of interactions
with the world are possible.

The most unrestrictive case is a simulator, where an agent has complete control
over the (training) environment. It can setup an arbitrary situation, execute some
actions and observe the results. Such a scenario is common in, for example, a
physical modelling, where it is often much easier to simulate things than to predict
their behaviour and interactions. In a similar spirit, it may be easier for our agent
to “ask the environment” about validity of some formula thanto prove it.

If agent’s freedom is slightly more restricted, it is possible that it is not allowed
to freely change the environment, but can “try out” several plans in a given situa-
tion. For example, the agent may provide a set of plans and receive an outcome for
each of them. Alternatively, it may store some opaquesituation identifierso that it
can revisit the same situation at later time. This model is also suitable for agents
that do not have perfect knowledge of the world, as the “replay” capability does
not assumethe agentis able to fully reconstruct the situation or knows the stateof
the world completely.

In our opinion, this is the most interesting setting: it gives the agent sufficient
freedom to allow it to achieve interesting results and at thesame time is not, in
many domains, overly infeasible. On the other hand, we are working on ways
in which this setting could be made even more practical — one idea is having an
agent accept the fact that in several replays “the same” situation could vary slightly.
For example, physical agent might request an operator to restore the previous state
of the world: it would not really be identical, but it may be sufficiently close.
Alternatively, in some application domains, only a subset of situations may be
“replayable” — only those, for example, that an agent can restore, with required

10

tolerance, all by itself.
In most applications, however, the agent is only able to influence its own ac-

tions and have no control whatsoever over the rest of the world. This is also the
most suitable model for anautonomousphysical agent. In such case, the environ-
ment will irreversibly move into the subsequent state upon each agent’s action (or
any other event), leaving it no option but to adapt. It may still be interesting, in
some situations, to substitute acting for reasoning, but the agent needs to be aware
that once acted upon, the current situation will be gone, possibly forever. It thus
needs to consider if saving some deduction effort is indeed the best possible course
of action, or if doing something else instead would be more advantageous.

Finally, we can imagine a physical agent situated in adangerousenvironment,
where it is not even plausible for it to freely choose its actions — it needs to, first,
assert that an action is reasonably safe. In this case, unlike the previous one, a
significant amount of reasoningneedsto be performed before every experiment.

As an orthogonal issue, sometimes it is feasible for an agentto execute an
action, observe the results, reason about them and figure outthe next action to per-
form. But in many applications the “value” of time varies significantly. There are
situations where an agent may freely spend its time meditating, and there are sit-
uations where decisions must be made quickly. For example, in RoboCup robotic
soccer domain, when the ball is in possession of a friendly player, the agent just
needs to position itself in a good way for a possible pass — a task which is not too
demanding and leaves agent free to ponder more “philosophical” issues. On the
other hand, when the ball is rolling in agent’s direction, time is of essence and an
agent better had plans ready for several most plausible action outcomes.

8 Related Work
Combination of planning and learning is an area of active research, in addition to
the extensive amount of work being done separately in those respective fields.

There has been significant amount of work done in learning about what ac-
tions to take in a particular situation. One notable exampleis Khardon (1999),
where author showed important theoretical results about PAC-learnability of ac-
tion strategies in various models. In Moyle (2002) author discussed a more prac-
tical approach to learning Event Calculus programs using Theory Completion. He
used extraction-case abduction and the ALECTO system in order to simultaneously
learn two mutually related predicates (Initiates andTerminates) from positive-
only observations. Recently, Könik & Laird (2004) developed a system which is
able to learn low-level actions and plans from goal hierarchies and action examples
provided by experts, within the SOAR architecture.

The work mentioned above focuses primarily on learning how to act, without
focusing on reaching conclusions in a deductive way. In a sense, the results are
somewhat more similar to the reactive-like behaviour than to classical planning
system, with important similarities to the reinforcement learning and related tech-
niques.

One attempt to escape the trap of large search space has been presented in

11

Džeroski, Raedt, & Driessens (2001), where relational abstractions are used to sub-
stantially reduce cardinality of search space. Still, thisnew space is subjected to
reinforcement learning, not to a symbolic planning system.A conceptually similar
idea, but where relational representation is actually being learned via behaviour
cloning techniques, is presented in Morales (2004).

Recently, Colton & Muggleton (2003) showed several ideas about how to learn
interesting facts about the world, as opposed to learning a description of a prede-
fined concept. A somewhat similar result, more specifically related to planning, has
been presented in (Fern, Yoon, & Givan 2004), where the system learns domain-
dependent control knowledge beneficial in planning tasks.

Yet another track of research focuses on (deductive) planning, taking into ac-
count incompleteness of agent’s knowledge and uncertaintyabout the world. Con-
ditional plans, generalised policies, conformant plans, universal plans and some
others are the terms used by various researchers (Cimatti, Roveri, & Bertoli 2004;
Bertoli, Cimatti, & Traverso 2004) to denote in principle the same idea: generating
a plan which is “prepared” for all possible reactions of the environment. This ap-
proach has much in common with control theory, as observed inBonet & Geffner
(2001) or earlier in Dean & Wellman (1991). We are not aware ofany such re-
search that would attempt to integrate learning.

9 Conclusions
The work presented here is still very much in progress and a discussion of an in-
teresting track of research, rather than a report on some concrete results. We have
introduced an agent architecture facilitating resource-aware deductive planning in-
terwoven with plan execution and supported by inductive, life-long learning. The
particular deduction mechanism used is based on Active Logic, in order to incor-
porate time-awareness into the reasoning itself. The planscreated in deductive
way are conditional, accounting for possible results of future actions, in particular
information-gathering ones.

We intend to continue this work in several directions. Discovering subgoals
and subplans seems to be one of the most useful capabilities of human problem
solving and we would like our agent to invent and use such concept. In our example
domain a useful subgoal could be “First, find a place where it smells.” In addition,
Deductor should be able to conceive general rules of rational behaviour, such as
“Don’t shoot if you don’t know Wumpus’ position”. Yet another clear advantage
would be the ability to reuse a previously successful plan ina different situation.
Finally, domain experts often are an invaluable source of knowledge that the agent
should be able to exploit, if possible.

The ideas above do not cover all the possible further investigations and exten-
sions of the proposed system; it is just a biased presentation of the authors’ own
interests and judgements.

12

References
Bertoli, P.; Cimatti, A.; Pistore, M.; and Traverso, P. 2003. A framework for planning with

extended goals under partial observability. InInternational Conference on Automated
Planning and Scheduling, 215–225.

Bertoli, P.; Cimatti, A.; and Traverso, P. 2004. Interleaving execution and planning for
nondeterministic, partially observable domains. InEuropean Conference on Artificial
Intelligence, 657–661.

Bonet, B., and Geffner, H. 2001. Planning and control in artificial intelligence: A unifying
perspective.Applied Intelligence14(3):237–252.

Chong, W.; O’Donovan-Anderson, M.; Okamoto, Y.; and Perlis, D. 2002. Seven days in
the life of a robotic agent. InGSFC/JPL Workshop on Radical Agent Concepts.

Cimatti, A.; Roveri, M.; and Bertoli, P. 2004. Conformant planning via symbolic model
checking and heuristic search.Artificial Intelligence159(1-2):127–206.

Colton, S., and Muggleton, S. 2003. ILP for mathematical discovery. In13th International
Conference on Inductive Logic Programming.

Dean, T., and Wellman, M. P. 1991.Planning and Control. Morgan Kaufmann.

Džeroski, S.; Raedt, L. D.; and Driessens, K. 2001. Relational reinforcement learning.
Machine Learning43(1/2):7–52.

Elgot-Drapkin, J.; Kraus, S.; Miller, M.; Nirkhe, M.; and Perlis, D. 1999. Active log-
ics: A unified formal approach to episodic reasoning. Technical Report CS-TR-4072,
University of Maryland.

Fagin, R.; Halpern, J. Y.; Vardi, M. Y.; and Moses, Y. 1995.Reasoning about knowledge.
MIT Press.

Fern, A.; Yoon, S.; and Givan, R. 2004. Learning domain-specific control knowledge from
random walks. InInternational Conference on Automated Planning and Scheduling.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered landmarks in planning.Journal
of Artificial Intelligence Research22:215–278.

Khardon, R. 1999. Learning to take actions.Machine Learning35:57–90.

Könik, T., and Laird, J. 2004. Learning goal hierarchies from structured observations and
expert annotations. In14th International Conference on Inductive Logic Programming.

McCarthy, J., and Hayes, P. J. 1969. Some philosophical problems from the standpoint of
artificial intelligence.Machine Intelligence4:463–502.

Morales, E. P. 2004. Relational state abstraction for reinforcement learning. InProceedings
of the ICML’04 Workshop on Relational Reinforcement Learning.

Moyle, S. 2002. Using theory completion to learn a robot navigation control program. In
12th International Conference on Inductive Logic Programming.

13

Purang, K.; Purushothaman, D.; Traum, D.; Andersen, C.; andPerlis, D. 1999. Prac-
tical reasoning and plan execution with active logic. InProceedings of the IJCAI-99
Workshop on Practical Reasoning and Rationality, 30–38.

Reiter, R. 2001.Knowledge in Action: Logical Foundations for Specifying and Implement-
ing Dynamical Systems. The MIT Press.

14

	Introduction
	Wumpus Game
	Agent Architecture
	Deductor
	Knowledge Representation
	Reasoning
	Wumpus Example
	Summary

	Actor
	Learning
	Environment Interaction
	Related Work
	Conclusions

