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Abstract

This paper is a treatment of the problem of concept ac-
quisition by autonomous agents, primarily from an AI
point of view. However, as this problem is not very
well studied in AI and as humans are indeed a kind of
autonomous agent, the problem is also studied from a
psychological point of view to see if the research in
human concept acquisition can be of any help when
designing artificial agents. However, the acquisition
cannot be studied in isolation since it is dependent on
more fundamental aspects of concepts. Consequently,
these are studied as well. Thus, this paper will give a
review of some of the research done in cognitive psy-
chology and AI (and to some extent philosophy) on
different aspects of concepts. Some proposals for how
central problems should be attacked and some pointers
for further research are also presented.

1 Introduction

In order to pursue goals and to plan future actions effi-
ciently, an intelligent system (human or artificial) must
be able to classify and reason about objects, behaviour
and events. As a basis for this it needs concepts. More-
over, since the system’s environment often cannot be
totally predicted in advance, all necessary knowledge
about the environment cannot be innate (humans) or
preprogrammed (artificial systems). Thus, it must also
be able to acquire concepts.

In some sense we can say that concepts refer to cat-
egories, where we by category mean a class of entities
united by some principle(s). Such a principle may be
rather concrete, like having similar perceptual charac-
teristics, or more abstract, like having the same role in
a theory or having similar functions.

The use of the term “concept” is rather ambiguous. In

everyday language it usually refers to the name1 (desig-
nator) of a category. However, the main concern of this
paper is not the linguistic task of learning the names
of categories.2 Therefore, I will in what follows use
the term in a different way, more in line with uses in
Cognitive Psychology and in AI. In Cognitive Psychol-
ogy the term “concept” sometimes refers to the mental
representation of the category, and in AI the term often
refers to the description of the intension3 of a concept.
In short, I will by “category” refer to a class of entities in
the world and by “concept” refer to an agent’s internal
representation of this class.

There are two major approaches to the studying of
computational concept acquisition (Michalski, 1987a) :

� Cognitive modeling, which strives to develop the-
ories of the actual concept acquisition processes in
humans (or animals). (i.e. Cognitive Psychology)

� The engineering approach, which attempts to ex-
plore all possible concept acquisition mechanisms,
irrespective of their occurrence in living organisms.
(i.e. AI)

The engineering approach has often been successful in
acquiring artificial concepts in restricted domains, but in
more realistic scenarios success has been limited. One
such scenario, probably the most natural, general and

1A word in a natural language
2As a matter of fact, this paper is not about traditional linguistics

at all (not deliberately at least). Thus, I make an assumption that
concepts are independent of language (or at least can be studied inde-
pendently of language). By language I mean here a natural language,
not an internal (mental) language (language of thought, mentalese).
The rejection of any assumption of language as a prerequisite for con-
cepts has been made by a number of scientists, for instance Edelman
(Edelman, 1989) who cites chimpanzees as an example of animals
which lack linguistic abilities but can have and acquire concepts.

3That is, if we by intension mean something that includes criteria
for determining category membership, but not properties that specify
the concept’s relations to other concepts (which sometimes is included
in the concept of intension).
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realistic, is a concept-learning autonomous agent acting
in a real-world environment. It is from this perspective
that I propose to view the problem of concept acquisi-
tion.

1.1 Autonomous Agents

An autonomous agent can be seen as a system that is ca-
pable of interacting independently and effectively with
its environment via its own perceptors (transducers, sen-
sors) and effectors in order to accomplish some given
or self-generated task.4 As I see it, an ultimate goal for
AI is to construct intelligent autonomous agents. How-
ever, at the moment we are quite far from achieving
this goal, partly because the problem of learning has
not been solved. Learning is important because without
it an agent is unable to adapt to unforeseen situations,
and cannot take advantage of its experience in order to
increase its performance. An important kind of learning
is the acquisition of concepts. The sub-field of AI that
studies learning is called Machine Learning (ML).

All computer-based autonomous agents have, more
or less, the same basic architecture, which is illustrated
in Figure 1.5 The arrows in the figure symbolize data
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Figure 1: The basic architecture of a computer-based
autonomous agent.

flows. The perceptors receive input from the environ-
ment and provide (sensor) data for the reasoner. The
reasoner refines this data and stores it in the knowledge
base (KB). When the reasoner is planning or doing other
kinds of reasoning, it retrieves the appropriate informa-
tion from the KB. When the reasoner has decided which
action to perform it commands the effectors to carry out
the action.

As mentioned above, this is a very rough description.
Usually, the reasoner is further divided into several in-
dependent parts. Moreover, the reasoner may control
the perceptors.

4Thus, humans (most of us,at least) can be regarded as autonomous
agents.

5Except from some primitive reactive agents, such as Pengi (Agre
and Chapman, 1987) and system based on neural networks, that do
not have explicitly separated reasoners and knowledge bases.

1.1.1 Scenarios for an Autonomous Agent

There are in principle two scenarios for an autonomous
agent.

� The agent is alone in its environment.

� There are other agents in the environment.

An agent on an exploration mission on Mars is a (pro-
totypical) instance of an agent being alone in its envi-
ronment. In the case where other agents exist they can
either be humans or machines (or both), as on a factory
floor. When I say that other agents exist I suppose that
our agent is able to communicate with them6, other-
wise it can be seen as being alone in its environment,
for instance, an agent on a factory floor that cannot
communicate with the other workers. Another possible
scenario is a combination of these two scenarios, where
the agent is trained by other agents in an initial stage
and then put in an environment where it is alone. For
instance, first trained at NASA and then sent away to
Mars.

Which of these situations the agent is placed in has, of
course, consequences for how concepts can be acquired.

1.1.2 Some Consequences of the Autonomous
Agent Perspective

Most of our information about concepts, we get from
some kind of observation. Since we are here dealing
with autonomous agents that receive information di-
rectly from the environment we need another notion of
observation than the one that is often used in AI (and
in ML in particular), where an observation is a linguis-
tic description in some specified language. It might be
useful to follow Gärdenfors (Gärdenfors, 1992), who
distinguishes three levels of describing observations.7

The highest level is the already mentioned linguistic
level, where observations are described in some lan-
guage. The second level is the conceptual level where
observations are not defined in relation to some lan-
guage. Rather, they are characterized in terms of some
underlying conceptual space, which consists of a num-
ber of quality dimensions (some of these dimensions are
closely related to what is produced by our sensory re-
ceptors, like temperature, colour and size, while others
are more abstract, like time). On the conceptual level
an observation can be defined as “an assignment of a
location in a conceptual space”. The lowest level is the
subconceptual level where observations are character-
ized in terms of the “raw” (not processed in any way)
inputs from sensory receptors. This input, however, is
too rich and unstructured to be useful in any concep-
tual task. It must be transformed to suit the conceptual

6To reduce the complexity I will in what follows suppose that com-
munication is done, more or less, on the agent’s conditions (terms).
Thus, I will not bother about such difficult topics as natural language
understanding.

7A similar distinction is made by Harnad (Harnad, 1987).
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or the linguistic level. To do this the subconceptual
information must be organized and its complexity re-
duced. The work of Musgrove and Phelps (Musgrove
and Phelps, 1990) is one of the few ML-approaches that
treat observations on the subconceptual level. Harnad
(Harnad, 1987) calls learning based on such perceptual
observations learning by acquaintance and contrasts it
with learning by description that bases the learning on
observations on the linguistic level.8

This three-level perspective raises several more or
less philosophical questions. For instance, is it conve-
nient or even possible, to do any useful cognitive tasks
(e.g. reasoning) on a sub-linguistic level, or do we need
some kind of language?9 If we assume that some kind
of language is necessary for reasoning (as I tend to do),
then observations must be described on some linguistic
level in the reasoner. It seems clear that at some (early)
stage in the perceptors observations must be described
on the subconceptual level. Concerning the concep-
tual level descriptions, it is not that obvious where they
should belong. The transitions from subconceptual to
conceptual and from conceptual to linguistic descrip-
tions might be done in the perceptors or in the reasoner
or one transition in each.

Moreover, it is not computationally tractable to pro-
cess all the input data. The system needs to know what
input information is relevant, some kind of mechanism
that controls the focus of attention. This gives rise to a
further question: on which level is it most appropriate
(or even possible) to have such a mechanism? Is the
“filter” between the subconceptual and the conceptual
level sufficient or do we need further “filters” at higher
levels?

Finally, it seems reasonable to suppose that an au-
tonomous agent encounters only a few instances of some
categories. Thus, it needs to learn a rather good concept
representation based on relatively few instances. This is
in contrast to trying to learn a perfect description from a
vast number of instances, which is often the task in tra-
ditional AI, where it is often supposed that the learning
system has a lot of examples to learn from.

1.2 Motivation and Disposition

Since humans obviously are autonomous agents that are
able to acquire concepts by interacting with the real
world, it may be a good idea to become inspired by the
research done in cognitive modeling. However, when
adopting this approach, there are some things we must
keep in mind. The most important is perhaps that the
task of creating an autonomous agent is not identical
with cognitive modeling. For instance, if there are no
advantages of adopting a particular feature of human

8This distinction is probably inspired by Russell’s (Russell, 1912),
but is not equivalent to his.

9Here “language” refers to a wider class than the class of natural
languages, including internal (mental) languages. Thus, this question
raises another still more fundamental question: What do we mean by
a language?

concept acquisition then we have no reason to do so
(humans are not optimal). On the other hand, a cog-
nitive model does not have to be a true model of hu-
man cognition to be useful in AI. Thus, I will not care
about the biological and psychological plausibility of
the cognitive models presented in this paper. More-
over, it is important to remember that we only have a
limited insight into the ways in which humans really
acquire concepts. A problem from the AI point of view
is that in experimental psychology, cognitive processes
concerning concept acquisition are often not described
algorithmically.

Since the topic of concepts is rather complex, I have
chosen to divide it into four aspects:

1. The functions of concepts

2. The nature of categories

3. Representation of concepts

4. Concept acquisition processes

The primary focus of this paper is the acquisition of con-
cepts, but this is clearly dependent on how concepts are
represented. The representation, in turn, is dependent
on what functions the concepts should serve. Moreover,
the choice of representation is constrained by the nature
of the actual categories. Thus, we have to examine these
aspects also.

The goal of this paper is to review some of the re-
search done in Cognitive Psychology on the four as-
pects and the work of the corresponding aspects in AI,
and hopefully to compare them in a meaningful manner.
Moreover, by doing this I hope to be able draw some
conclusions for the construction of computer-based au-
tonomous agents. However, already at this point the
reader should be warned that these conclusions in some
cases will be rather speculative (and maybe naı̈ve).

2 The Functions of Concepts

Why does an agent need to have concepts in the first
place? In this section I am going to try to answer this
question, mainly by investigating what functions con-
cepts have, or should have.

2.1 The Functions of Human Concepts

To begin with, we can state that concepts seem to be the
very stuff out of which reasoning and other cognitive
processes have as their basis. However, it is possible to
distinguish several functions of human concepts, some
of them are10:

� Stability functions

� Cognitive economical functions

10The list is inspired by works in cognitive psychology, linguistics
and philosophy, in particular (Rey, 1983) and (Smith, 1988)
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� Linguistic functions

� Metaphysical functions

� Epistemological functions

� Inferential functions

Concepts give our world stability in the sense that we
can compare the present situation with similar past expe-
riences. For instance, when confronted with a wasp,11

we can compare this situation with a situation some
years ago when we were stung by another wasp and
consequently take the appropriate measures. Actually,
there are two types of stability functions, intrapersonal
and interpersonal. Intrapersonal stability is the basis
for comparisons of cognitive states within an agent,
whereas interpersonal stability is the basis for compar-
isons of cognitive states between agents.

By partitioning the world into categories, in contrast
to always treating each individual entity separately, we
decrease the amount of information we must perceive,
learn, remember, communicate and reason about. In
this sense we can say that categories (and thus con-
cepts) promote cognitive economy. For instance, by
having one representation of the category wasp instead
of having a representation for every wasp we have ever
experienced, we do not have to remember that the wasp
we saw yesterday has a stinger (or that it has guts).

The linguistic function is mainly providing semantics
for linguistic entities (words), so that they can be trans-
lated and synonymy relations be revealed. For instance,
the fact that the English word “wasp” and the Swedish
word “geting” have the same meaning enables us to
translate “wasp” into “geting” and vice versa. Further-
more, it seems that it is the linguistic function together
with the interpersonal stability function that make it
possible for us to communicate (by using a language).

In philosophy, metaphysics deals with issues con-
cerning how the world is, while epistemology deals with
issues concerning how we know (believe, infer) how the
world is. Thus, we might say that the metaphysical
functions of a concept are those that determine what
makes an entity an instance of a particular category. For
example, we say that something actually is a wasp if it
has a particular genetic code or something like that.12

The epistemological functions then, are those that de-
termine how we decide whether the entity is an instance
of a particular category. For instance, we recognize a
wasp by colour, bodyshape and so on.13

11Here, and in the following, “wasp” refers to the most common
kind, the black- and yellow-striped wasp (or yellow-jacket).

12We use the word “metaphysic” in a more pragmatic way than in
philosophy. In my notion that which makes an entity an instance of
a particular category is decided by some kind of consensus amongst
the agents in the domain. The example with the wasp is rather unfor-
tunate though, since there exist several competing views of biological
taxonomy. For instance, the cladistic view, which categorize species
according to shared derived features, and the phenetic view, which
categorize them on the basis of overall similarity.

13For human concepts this distinction is maybe not as clean-cut and
unproblematic as described here, see (Lakoff, 1987), but nevertheless

Finally, concepts allow us to infer non-perceptual in-
formation from the perceptual information we get from
an entity, and to make predictions concerning it. Thus,
we can say that concepts enable us to go beyond the
information given. For instance, by perceptually recog-
nizing a wasp we can infer that it is able to hurt us.

2.2 Functions of Concepts in Artificial
Autonomous Agents

The functions of concepts are never really subject to
discussion in the AI-literature. However, there is often
an assumption made that the concepts acquired are to be
used for some classification task. Thus, the function is
mainly of an epistemological nature. The reason for this
limitation is probably that AI researchers often do not
study problems from an autonomous agent perspective.
Consequently, they, in some respect, lose the wholeness
of the problem. Therefore, it seems that I have to base
the discussion on my own reflections.

The functions of intrapersonal stability and cognitive
economy are of course important, but they are trivial in
the sense that they emerge more or less automatically for
the agent just by having concepts, independently of the
choice of representation. By analogy with the stability
functions, we can say that an agent can have both intrap-
ersonal and interpersonal linguistic functions. Where
the intrapersonal function is a rather weak one, implied
only by the fact that the concepts have names internal to
the agent. This function is, of course, also trivial in the
same sense as above. But what about the interpersonal
stability and linguistic functions? They are clearly not
necessary in a one-agent scenario. However, if we are
interested in a multi-agent scenario with communicating
agents, the concepts must have also these functions.

However, it is the remaining three functions, the meta-
physical, the epistemological and the inferential, that are
the most interesting, and the ones I will concentrate on
in the remaining part of this paper. Since an autonomous
agent should be able to classify objects in ordinary sit-
uations, the epistemological function is necessary. The
metaphysical functions can of course be useful for an
agent to have, but in most cases it seems that it can
manage without them. Finally, if the agent is to be able
to reason and plan about objects it is necessary that it
have at least some inferential functions.

3 The Nature of Categories

What can be said about categories in general? In this
section I will try to answer this question, not taking into
account how concepts are represented or acquired.

it suites my purposes very well.
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3.1 The Nature of Human Categories

To begin with, we should make a distinction between
categories that we normally use and artificial categories.
Artificial categories are typically categories that are
constructed for a particular psychological experiment,14

whereas natural categories are those that have evolved
in a natural way through everyday use. Artificial cat-
egories are constructed to be specified by a short and
simple definition in terms of necessary and sufficient
conditions, while this is not always possible with natu-
ral categories. Until quite recently cognitive psycholo-
gists have studied the different aspects of concepts using
only artificial categories. We who investigate psycho-
logical theories in order to build machines that are able
to learn concepts efficiently, find this state of affairs
rather unfortunate, since machines learn artificial con-
cepts relatively easily. However, during the last decades
it has become apparent that this approach does not have
much to say about how humans really acquire concepts.
Therefore, some researchers have begun to use natu-
ral categories for their experiments. This movement
towards a more ecologically sound approach is further
elaborated in (Neisser, 1987).

Natural categories can have members that are either
concrete, such as physical objects, or abstract, such as
emotions. In what follows I will concentrate on concrete
object categories. (This is probably difficult enough.)
While dealing with autonomous agents trying to learn
about their environment, it is also a quite natural initial
assumption. As we will see later, humans use other
types of categories that cannot be classified as natu-
ral, namely derived (Smith, 1986) or ad-hoc (Barsalou,
1986) categories. Moreover, natural categories can be
divided into natural kinds and artifacts (Smith, 1986).
However, let us begin by examining a more fundamental
topic: the properties of objects.

3.1.1 Properties

It is commonly accepted that the basis for the represen-
tation and categorization of an object is the properties15

that characterize the object. Some properties are per-
ceptual, in the sense that they (in some sense) are di-
rectly available from the perceptual system, while oth-
ers are more abstract (functional, for instance). Fur-
thermore, some features are structural (for instance, a
table has legs). However, what is considered a feature
is relative. Some features can be thought of as cat-
egories themselves (not necessarily a concrete object
category, though). As a matter of fact, we have a kind
of tree-hierarchy of categories (where the leaves are just

14In some sense also some scientific categories, such as mathemat-
ical categories, are artificial.

15Sometimes a distinction is made between quantitative properties
(dimensions), such as temperature in �C, and qualitative properties
(features), such as hot and cold. Since it is possible to transform a
qualitative property into a quantitative and vice versa, I will in most
cases not hold on to this distinction, and just speak of properties
(sometimes however calling them features or attributes).

features).16 An example of such a hierarchy is shown
in Figure 2. (Observe that only a small part of the hier-
archy is shown. Apples obviously have more than three
properties.)

apple

edible has seeds round
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���
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XXX

�
�
�
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Figure 2: Part of the property-hierarchy of the category
“apple”.

Some of the leaves (the branch end-points, edible and
round) of the resulting tree structure are perceptual fea-
tures (round).17 These are the features we normally use
to determine which category an object belongs to. They
are sometimes said to constitute a considerable part of
the identification procedure (Smith and Medin, 1981)
and are closely related to the epistemological function.
Moreover, the features on the second level (edible, has
seeds, round) are called the core of the concept and are
together with the rest of the features more connected to
the metaphysical and inferential functions.18 It is also
important to notice that these hierarchies imply that most
categories are, in some way or another, dependent on
other categories.

Given the distinctionbetween perceptual and abstract
features we can say that concepts allow us to go beyond
the information given and thus make possible the in-
ferential function. Because, once we have assigned an
object to a class on the basis of its perceptual features,
we can infer or predict its non-perceptual features.

3.1.2 Natural Kinds and Similarity

It seems natural to assume that categories emerge as
a consequence of the correlational structure of the en-
vironment, where the properties of the instances of a
category make them stand out as a natural class, distinct
from other categories. For instance, take the situation
where you see an elephant for the first time. Because of
its distinct (perceptual) features, you create a new cate-
gory. Moreover, if you see another elephant you decide
that it belongs to the same category because of the fea-
tures it shares with the first one. Quine (Quine, 1969)
has termed this type of category natural kinds. Rosch
and her colleagues (Rosch et al., 1976) also emphasized
that natural categories emerge in this way, assuming

16This structure is rather messy though. It is mostly the structural
features (has seeds) that can be thought of as a category. (Actually, it
is “seed” that are the category.) The functional features (edible) and
perceptual features are best thought of as just features.

17Whether round is a perceptual feature or not may be open for
discussion, but let us suppose that it is.

18Or like Smith (Smith, 1988) (p.29) puts it: “When reasoning we
use the cores, when categorizing we use the identification procedures.”
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that the environment constrained the categorizations, in
that human knowledge could not provide correlational
structure where there was none at all.

However, it is a rather strong metaphysical claim to ar-
gue that there exist objective categories in the world. We
must remember that all human categorization depends
(at least partially) on human physiology: observations
on the perceptual level are furnished by the sensory
projections of objects, whereas observations on the lin-
guistic level are furnished by symbolic statements about
objects that in turn are furnished by sensory projections
of these objects. A more sensible and somewhat less
strong, rather epistemological, claim is that categories
“through human perception” stand out as natural cate-
gories.

The natural kind categories seem to depend on a no-
tion of similarity, where similarity is a relation between
two objects. Similar objects are grouped together to
form a natural kind. This state of affairs forces us to
analyze the concept of similarity and how it can be
measured. The theoretical treatment of similarity has
been dominated by two kinds of models: geometric and
set-theoretical. 19

In geometric models (see, for instance, (Shepard,
1974)) objects are represented as points in some co-
ordinate space. The similarity between two objects is
then measured (defined) by the metric distance between
them. However, pure geometric models are inadequate
for several reasons, for instance:

� The measure is only meaningful if the selected at-
tributes are relevant for describing perceived object
similarity. (Michalski and Stepp, 1983)

� All selected attributes are given equal weight
(Michalski and Stepp, 1983) (or an arbitrary
weight, as I would like to put it).

� It is more appropriate to represent some features as
qualitative. (Tversky, 1977)

The geometric models seems related, in some way or
another, to Gärdenfors’ conceptual spaces. I will try
to make this relation explicit. It is possible to see the
subconceptual level as a (low-level) feature space of a
high dimensionality. Thus, it can be said to correspond
to a “pure” geometric model. A conceptual space can
then be seen as the resulting space when the two first
problems have been taken care of, corresponding to a
“refined” geometric model.

In set-theoretical models objects are represented as
collections of features. The most well-known set-
theoretical model is Tversky’s (Tversky, 1977) contrast
model. It expresses the similarity between two objects
as a linear combination of the measures of their com-
mon and distinctive features. However, set-theoretical
models (Tversky’s at least) have, more or less, the same

19It seems that geometric models tend to treat all features as
quantitative, whereas set-theoretic models tend to treat features as
qualitative.

problems as geometric models. They do not specify
how relevant attributes are selected. The attributes are
weighted, but how this is done is only loosely specified.
That the feature must be weighted is implied (I think) by
the theorem of the ugly duckling (Watanabe, 1969).20

Moreover, any two objects can be arbitrarily similar or
dissimilar by changing the weights. Finally, it is prob-
ably true that it is more appropriate to represent some
features as quantitative.

As we have seen there are problems with “pure” sim-
ilarity models, especially with the selection of relevant
features. Schank and his colleagues (Schank et al.,
1986) go one step further by stating that a “simple” the-
ory for specifying the relevant features is impossible.
Mainly because the relevance of features depends on
the goals of the agent having the concept. They con-
clude (p. 640): “The process of determining which
aspects of instances to be generalized are relevant must
be based on an explanation of why certain features of
a category took on the values they did, as opposed to
other values that might a priori have been considered
possible.”

Thus, it seems that not all categories that humans
normally use arise in the purely bottom-up fashion
(Holyoak and Nisbett, 1988) described above. This sug-
gests that even the weak claim that categories “through
human perception” stand out as natural categories may
be too strong, not covering all natural categories. For
instance, Rosch herself (Rosch, 1978) argues (taking
back her earlier claim) that some types of attributes
present problem for these claims. For instance, there
exist attributes that appear to have names not meaning-
ful prior to knowledge of the category (e.g. seat - chair).
Moreover, there exist functional attributes that seemed
to require knowledge of humans, their activities, and
the real world to be understood (e.g. “you eat on it” -
table). From these examples she concludes: “That is,
it appeared that the analysis of objects into attributes
was a rather sophisticated activity that our subjects (and
indeed a system of cultural knowledge) might well be
considered to be able to impose only after the develop-
ment of the category system.” Moreover, she states that
attributes are defined so that the categories once given,
would appear maximally distinct from one another.

Similarly, Murphy and Medin (Murphy and Medin,
1985) have claimed that people’s intuitive theories about
the world guide the representational process. They
made the demand upon categories that they must exhibit
something called conceptual coherence. A coherent cat-
egory is one “whose members seem to hang together, a
grouping of objects that makes sense to the perceiver.”

Thus, the problem with a purely “syntactical” model
of similarity is that it ignores both the perceptual and
the theory-related constraints that exist for, at least, a

20This theorem, that is formally proved, shows that whenever ob-
jects are described logically, no two objects can be inherently more
similar than any other pair. In other words, for similarity to be
meaningful, the predicates describing an object must be censored
or weighted.
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certain kind of categories.21

3.1.3 Derived Categories

As pointed out earlier natural kind categories arise in
a bottom-up fashion. In contrast, top-down category
formation is triggered by the goals of the learner.

The categories formed in a top-down manner are often
characterized in terms of functional features, whereas
bottom-up categories are characterized in terms of their
structure.

As Corter (Corter, 1986) points out, the two types of
categories seem to be characterized by different kinds
of features and feature relationships. Bottom-up cate-
gories tend to group instances that share co-occurring
properties (they are “similar”), whereas top-down cate-
gories often consist of disjunctive groupings of different
types of objects that may not share many properties (they
do not have to be “similar”). For instance, the category
“things-in-my-apartment” may include such things as
records, books, chairs, apples, and so forth.

Barsalou (Barsalou, 1986) suggests that many of the
top-down categories, which he calls ad-hoc categories,
do not have the same static nature as bottom-up cate-
gories. While bottom-up categories generally are be-
lieved to be represented by relatively permanent repre-
sentations in long-term memory,22 he states that “many
ad-hoc categories may only be temporary constructs in
working memory created once to support decision mak-
ing related to current goal-directed behaviour.” As an
example of a ad-hoc category he takes “activities to do in
Mexico with one’s grandmother”. Other top-down cat-
egories, like “food”, are relatively permanent though.

3.1.4 Artifact Categories

Not all natural categories are natural kinds. A natural
division can be made between species (natural kinds)
and artifacts. Rosch’s examples above, “chair” and “ta-
ble”, (which certainly are natural categories) are typical
artifacts. Characteristics for artifacts are that they are
made by humans to have a certain function, implying
that they should be characterized in terms of their func-
tional features. However, it seems that the instances of
most artifact categories also have structural, and thus
perceptual, similarities. Moreover, some objects made
for one purpose may be used for another purpose, it is
possible for instance to use a chair as a table. Thus,
we can say that artifact categories differ from natural
kinds in that they seem to arise both in a bottom-up and
a top-down fashion.

21However, a perceptualsystem must have some built-in constraints
that determine what will count as an attribute and the salience (weight)
an attribute will have. Thus, in an autonomous system the perceptual
constraints are determined by its perceptors.

22The representations can, of course, be modified but they are
permanent in the sense that there always exists a representation of the
category.

3.1.5 Taxonomies

Categories (natural categories at least) are also hierar-
chically organized in a different sense than “the property
hierarchies” described above, namely, in taxonomies.23

A part of a taxonomy is illustrated in Figure 3.

fruit

banana apple pear

Granny Smith Red Delicious

��
��

��

XX
XX
XX

�
�
��

P
P
PP

Figure 3: Part of a taxonomy of fruits

Taxonomies also serve an important function by pro-
moting cognitive economy. How this is possible is
demonstrated by Figure 4 and Figure 5. In Figure 4
we have a part of the fruit-taxonomy augmented with
some features of the categories.

fruit (sweet)

apple (sweet, round, seeds)

Granny Smith (sweet, round, seeds, green)

�
�
��

Figure 4: Part of a part of a taxonomy of fruits aug-
mented with features.

By noticing that categories on one level inherit the
features from the (parent) category on the level above
we can reduce the amount of information that we must
store on each level. This is illustrated in Figure 5.

fruit (sweet)

apple (round, seeds)

Granny Smith (green)

�
�
��

Figure 5: Part of a part of a taxonomy of fruits aug-
mented with features (optimized).

Rosch et al. (Rosch et al., 1976) argue that there exists
in these taxonomies a “basic level”. They write: “Basic
categories are those which carry the most information,
possess the highest cue validity24 and are thus, the most
differented from one another ... Basic-level categories

23This is a rather strong idealization, since some categories do not
belong to any taxonomy at all while others belong to several.

24The cue validity of a feature F with respect to a category C is the
validity with which F is a predictor of this category. The cue validity
of an entire category may be defined as the summation of the cue
validities for that category of each of the attributes of the category.
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possess the greatest bundle of features ... Basic objects
are the most inclusive categories which delineate the
correlational structure of the environment.” In our tax-
onomy of fruits (Figure 3) bananas, apples and pears
constitute the basic level.

The basic level has some interesting properties that
have consequences for both the epistemological and the
inferential function. Since the basic level is the one
we prefer (is the easiest) for categorization, the epis-
temological function is, in some sense, maximized at
this level. Also the inferential function is maximized
at the basic level. The basic categories have “the great-
est bundle of features” (perceptual and non-perceptual)
and many of the features are distinctive, permitting us to
infer a substantial number of properties without much
perceptual effort. In contrast superordinate categories
(fruit) have relatively few properties and hence can-
not enable us to make that many inferences. Although
subordinate categories (Granny Smith) have many prop-
erties they have so few distinctive properties that they
are more difficult to categorize perceptually. Finally,
we should note that which level that actually is the basic
level is context dependent, in the sense that it is the most
appropriate in most situations but not all.

3.2 The Nature of AI Categories

In traditional AI, categories are often presumed to be
artificial in the sense that all aspects of the category can
be summarized by a short and simple definition in terms
of necessary and sufficient conditions. This, of course,
makes things a lot easier than they really are.

Most work in AI is concerned with bottom-up concept
formation (similarity-based learning, SBL), although
exceptions exist, for example explanation-based learn-
ing (EBL) (DeJong and Mooney, 1986; Mitchell et al.,
1986).25 For SBL both geometric and set-theoretic
models have been used. Geometric models are often
used by conceptual clustering systems, such as CLUS-
TER/2 (Michalski and Stepp, 1983; Stepp and Michal-
ski, 1986), whereas supervised learning systems, such as
version spaces (Mitchell, 1977), often use set-theoretic
models.

Michalski and Stepp (Michalski and Stepp, 1983)
propose an approach for measuring similarity in geo-
metric models that, besides the objects (seen as points),
takes into account other objects and “the set of con-
cepts which are available for describing” the objects
“together”. They call this measure conceptual cohe-
siveness.

In AI the problem of selecting relevant features is of-
ten solved by letting the user select them. The choice
of features is called the bias26 of the learning system.

25However, categories are not formed in EBL. The categories are
formed beforehand and a high-level description of them is given as in-
put to the learner. The task is only to transform the (abstract) high-level
characterization into a low-level (often perceptual) characterization.

26Actually, this is one of several types of bias. Other types are, for
instance, (Utgoff, 1986), the space of hypotheses that the system can

However, sometimes the learning system has to select
among the user-selected features. Several, more or less
statistical, approaches for the selection of relevant at-
tributes have been proposed, for instance, multidimen-
sional scaling (Kruskal and Wish, 1978) and neural net-
works (Gärdenfors, 1992).27 Another approach could
be to use the algorithms presented in (Matthews and
Hearne, 1991). A related task is what is sometimes la-
belled constructive induction. In (Subramanian, 1989)
this task is described as: “finding a compact and sim-
ple concept representation given a labeled description
of the instances of the concept”. Moreover, “The chief
problem is the generation of high-level features from
the lower level features that characterize the instances.”
(Rendell, 1989) provides an overview of this problem.

Experiments have been conducted that use explana-
tions to select relevant attributes when doing top-down
concept formation (EBL). However, the success has
been limited, probably due to the difficulties in spec-
ifying the appropriate background knowledge.

Taxonomies and their properties are rather well stud-
ied both in AI and in computer science in general. Take
object-oriented languages, such as Smalltalk and Sim-
ula, where the classes are members of taxonomies and
where features are inherited from super-classes, for in-
stance. The topic of taxonomies in AI and computer
science is further elaborated in (Jansson, 1987). How-
ever, among the existing concept learning systems it is
only the conceptual clustering systems (Fisher and Lan-
gley, 1985) that actually construct taxonomies. Some
of these systems, for instance (Hanson and Bauer, 1989;
Fisher, 1988), also try to include basic-level aspects.

3.3 Conclusions

In contrast to traditional AI where artificial categories
are often used, an autonomous agent in a real-world
environment has to deal with the same kind of categories
(natural and derived) as humans do.

As we have seen, objects have properties of different
types. Some properties, common to all objects of the
category,28 are characteristic or discriminant, these can
be used for metaphysical and epistemological classifi-
cation (e.g. for the category “human”, the genetic code
and “walking upright” respectively). Some properties
are common to all objects in the category although not
characteristic or discriminant, these can be used to make
inferences (e.g. having a kidney). The more or less use-
less properties that are not common to all objects in the
category (sometimes called irrelevant properties) (e.g.
hair colour) are then left over. Moreover, it seems that

consider, the order in that hypotheses are to be considered, and the
criteria for deciding when a hypothesis is good enough.

27Multidimensional scaling and neural networks are used more to
reduce the number of attributes, than to actually find the relevant
attributes. However, these tasks seem closely related.

28Do not take “all” too literately. It may be the case that universal
regularities do not exist, implying that reasoning about categories
must be probabilistic in nature.
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some features are represented more naturally as quali-
tative and some as quantitative. Thus, it would be nice
if it were possible for the agent to have both types.

Somewhat carelessly one might say that bottom-up
categories arise due to curiosity, whereas top-down cat-
egories arise due to problem solving activities. Infor-
mation about bottom-up categories is to a great extent
derived from perceptual observations of the environ-
ment, whereas information about top-down comes from
more abstract observations. Thus, a passive agent (that
perhaps just tries to make a description of its environ-
ment) could manage with only bottom-up categories,
whereas a problem solving agent also needs top-down
categories.

As we have seen above, bottom-up category forma-
tion has been rather well studied in AI. However, some
problems remain to be solved. Top-down category for-
mation on the other hand is hardly studied at all. Unfor-
tunately, we do not get much help from the psychologists
either. They have pointed out that there are categories
that are formed in a top-down manner, but they do not
give us a hint as to how the formation takes place.

There is a problem with artifact categories in that they
seem to be both bottom-up and top-down categories,
where the top-down-ness, and the problem, is due to the
emphasis on the function of the artifact objects. The
recognition of possible functions of an object from per-
ceptual observations seems like a very hard problem.29

However, one approach to this problem is presented in
(Vaina and Jaulent, 1991). On the other hand, it would
require a very large knowledge base to be able to form
artifact categories in a top-down manner, and we still do
not know how this should be done.

The simplest solution may be to form artifact cat-
egories in a bottom-up fashion, making the assump-
tion that perceptual similarity is enough. Thus, having
bottom-up categories as the only permanent categories,
and maybe constructing temporal top-down (ad-hoc)
categories when convenient in problem solving tasks
(where it seems more likely that the right background
knowledge is available).

Finally, we need to structure the categories into tax-
onomies to promote cognitive economy and inferential
functions. However, since this is a rather well stud-
ied topic, it is probably wise to concentrate on other
problems.

29Mainly because, “[one] must have some knowledge that is ca-
pable of mediating between the features at the two levels; that is,
to determine whether an abstract feature is perceptually instantiated
in an object, one must have recourse to ancillary knowledge about
the relation between abstract and perceptual features.” (Smith and
Medin, 1981) (p.19). Moreover, the functions must, of course, be
known in advance, preprogrammed or learned (which seems to be an
even harder problem). It goes without saying that by letting the agent
have access to observations on the linguistic level, where the function
is explicitly given, the problems with functional properties disappear.
However, assuming that the agent has access to such observations
seems too generous for most applications.

4 Representation of Concepts

The classes of objects which we call categories, whose
members exist externally, must of course be internally
represented in some way. In this section I will discuss
the following questions; How do humans represent con-
cepts? How do present AI systems represent concepts?
How should AI systems represent concepts?

4.1 Human Representation of Concepts

In (Medin and Smith, 1984) three views of concepts
are presented: the classical, the probabilistic and the
exemplar. These views are to a great extent theories
about representation of concepts.

4.1.1 The Classical View and It’s Problems

According to the classical view all instances of a con-
cept share common features that are singly necessary
and jointly sufficient for defining the category. Thus, it
would be possible to represent a concept by these fea-
tures. Categorization would then be a matter of straight-
forward application of this “definition”.

However, there are some problems with this view
(according to, for instance (Smith and Medin, 1981)
and (Smith, 1988)):

� Natural categories are, in contrast to artificial cat-
egories, often not representable by necessary and
sufficient features.

� Even if a category can be defined as above we tend
to not use this definition.

� There are unclear cases of category membership.

� It is generally believed that some exemplars of a
category are more typical than others.

� We often think more concretely than the situation
demands.

The fact that some categories do not have a classical
definition is sometimes called the ontological problem
(Amsterdam, 1988). A nice and famous example, men-
tioned by Wittgenstein, is the category “game”. As we
shall see below, this issue is related to the metaphysical
function of concepts.

Assuming that a classical definition exists for a cate-
gory, it is interesting to notice that instead of using the
classical definition we often use non-necessary features
to characterize a category or to categorize objects of the
category. As we shall see below, this issue is closely
related to the epistemological function of concepts.

An example of unclear category membership is that
it is hard to decide for some objects whether they are
a bowl or a cup. In this example there is a relation
between an object and a category but the same prob-
lem arises between levels in a taxonomy (subcategory-
category relations). For instance, is tomato a fruit or a
vegetable, or is a rug a piece of furniture?
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Prototype usually refers to the best representative(s)
or most typical instance(s) of a category as opposed to
the treatment of categories as equivalence classes.30 For
instance, it has been shown that (at least for the exper-
iment subjects) robins are prototypical birds whereas
penguins are not.

It seems that we often think about specific objects
when we actually refer to a category. For instance, if
someone says that he had to see a dentist, we often think
of a specific dentist.

It has been suggested that instead of the strong de-
mand that category shall have a classical definition,
the instances of a category should only have to have a
sufficient amount of family resemblance (Wittgenstein,
1953; Rosch and Mervis, 1975). Family resemblance
usually refers to the number of features that are shared
by members of a category. It can be viewed as a measure
of typicality. Typical members of a category share many
attributes with other members of the category (and few
with members of other categories).

Thus, it seems clear that the classical view cannot
explain all aspects of human concepts. In response to
this, the probabilistic and the exemplar view have been
presented as views being more realistic and consistent
with empirical findings.

4.1.2 The Probabilistic View

According to the probabilistic view, concepts are repre-
sented by a summary representation in terms of features
that may be only probable (or characteristic) of category
members. Membership in a category is graded rather
than all-or-none. Better members have more charac-
teristic properties than the poorer ones. An object will
then be categorized as an instance of some category if,
for example, it possesses some critical number of prop-
erties, or sum of weighted properties, included in the
summary representation of that category.

Thus, rather than applyinga definition, categorization
is a matter of assessing similarity.

4.1.3 The Exemplar View

Those in favor of the exemplar view argue that cate-
gories may be represented by (some of) their individual
exemplars, and that concepts thus are represented by
representations of these exemplars. A new instance is
categorized as a member of a category if it is sufficiently
similar to one or more of the category’s known exem-
plars. Thus, also in this case categorization is a matter
of assessing similarity rather than applying a definition.

There are several models consistent with the exemplar
view. One such model is the proximity model which
simply stores all instances. An instance is categorized as
a member of the category which contains its most similar
stored exemplar. Another model is the best examples

30“Prototype” is ambiguous though, it has also been used to refer to
a description of a category that is more appropriate to some members
than it is to others.

model. It only stores selected, typical instances. This
model assumes that a prototype exists for each category
and that it is represented as a subset of the exemplars
of the category. Another possible alternative is that the
prototype is a non-existing “average” instance that is
derived from the known instances.

4.1.4 Combining the Probabilistic and Exem-
plar View

Another possibility is that the representation of a con-
cept contains both a probabilistic summary representa-
tion and exemplars (Smith and Medin, 1981). It seems
reasonable that when the first instances of a category are
encountered we represent it in terms of these instances.
And when further instances are encountered we apply
abstraction processes to them to yield a summary rep-
resentation.

It seems that this approach has some interesting fea-
tures that relates to non-monotonic reasoning (Ginsberg,
1987). Consider a point in time where a person has both
a summary and a exemplar representation of the concept
“bird”, where the summary representation contains the
feature “flies” (as very probable). How should the rep-
resentation be updated when the person is confronted
with a penguin? It would not be wise to alter the old
summary representation too much because the fact that
a random bird flies is very probable. A better solution
is probably to store the penguin as an exemplar as can
be done in a combined representation. However, there
are many details to work out before we have a complete
theory about a such combined representation.31

4.1.5 Comments

We must remember that the existence of prototypesdoes
not have any clear implications for the construction of
models of human concept representation, processing
and learning. Thus, prototypes do not specify such
models, only impose constraints on them. Actually, I
think that prototypes are only a problem for the classical
view if it states that categories are equivalence classes.
Clearly, there exists categories that have a classical def-
inition but still have prototypes. For instance, some
triangles are more typical than others.

Another reflection is that the classical view seems to
try to capture the intension of concepts whereas the ex-
emplar view (at least partially) describes the extension.

31The possible connection between prototype-based represen-
tations and non-monotonic reasoning has been pointed out in
(Gärdenfors, 1990). It is suggested that concepts at the conceptual
level are represented as convex regions in a conceptual space. When
an individual is first known as being a bird, it is believed to be a pro-
totypical bird, located in the center of the region representing birds.
In this part of the region birds do fly. If it then is learned that the
individual is a penguin, the earlier location must be revised so that
the individual will be located in the outskirts of the “bird-region”,
where most birds do not fly. However, my reflection concerns the
acquisition of the representation, whereas in Gärdenfors’ case the
representation is already learned. Moreover, the combined approach
is on the linguistic level and not restricted to convex regions.
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4.2 Representation of Concepts in AI

Traditionallyin AI, categories are treated as equivalence
classes that can be described by necessary and sufficient
conditions. Thus, AI has adopted a rather strong ver-
sion of the classical view. Some of the representation
languages that have been used are: logic-based notation
(Michalski, 1980) , decision trees (Quinlan, 1986) and
semantic nets (Winston, 1975).

4.2.1 Non-traditional Representation

Within the last few years, some experiments with non-
classical representations have been done. Some re-
searchers are inspired by the exemplar view and some
by the probabilistic view.

Let us begin with those who are influenced by the
exemplar view. Kibler and Aha (Kibler and Aha, 1987)
have experimented with both the proximity model where
all instances are stored and selected examples model
where a subset of the instances are stored. Systems that
use this kind of representation often use some version
of the nearest neighbor algorithm to classify unknown
instances. That is, a novel instance is classified accord-
ing to its most similar known instance. Musgrove and
Phelps (Musgrove and Phelps, 1990) have chosen to
have a singular representation of the average member
(not necessarily an instance) of the category, which they
call the prototype. Nagel (Nagel, 1987) presents a best
examples model that, in addition to the prototype(s),
stores transformations that transforms less typical in-
stances to a prototype. Learning systems which use
specific instances rather than abstractions to represent
concepts have by Aha and his colleagues (Aha et al.,
1991) been labeled instance-based. They also provide
a theoretical analysis of such algorithms.

Followers of the probabilistic view are, for instance,
de la Maza (de la Maza, 1991) who calls his type of
representation augmented prototypes. Fisher’s (Fisher,
1988) probabilistic concept tree represents a taxonomy
of probabilistic concepts.

An important reflection is that, at least, the exemplar
view seems to demand some kind of similarity measure.
But, as we have seen, similarity is not an unproblematic
topic. Moreover, the probabilistic representations seem
to have trouble with atypical instances. Therefore, it
would be interesting to experiment with implementa-
tions of a combination of the probabilistic view and the
exemplar view, which seem to handle such instances
quite well. Moreover, since a combination does not have
to store as many instances as an exemplar representa-
tion, it requires less memory and it probably categorizes
faster, since fewer comparisons between instances are
needed.

A quite different approach to non-traditional concept
representation is taken by Michalski and his colleagues
(Michalski, 1987b; Bergadano et al., 1992). Their rep-
resentation has two components, the base concept rep-
resentation (BCR) and the inferential concept interpre-

tation (ICI). The BCR is a classical representation that
is supposed to capture typical and relevant aspects of the
category, whereas the ICI should handle exceptional or
borderline cases. When categorizing an unknown ob-
ject, the object is first matched against the BCR. Then,
depending on the outcome, the ICI either extends or
specializes the base concept representation to see if the
object really belongs to the category. This approach is
similar to Nagel’s, but she uses a prototype as the BCR,
not a classical definition.

4.2.2 Subsymbolic Representation

Recall Gärdenfors’ three levels of observation from the
first section. In the same way that observations can be
described on different levels, it is possible to represent
concepts on different levels. The methods of representa-
tion described above are all on the linguistic (symbolic)
level. A method of representing (and acquiring) con-
cepts on a lower level is to use neural networks. These
were initially meant to be cognitive models of the brain
at the level of neurons.

Pylyshyn (Pylyshyn, 1984) has distinguished three
levels of cognitive modeling. The lowest level is con-
cerned with the physiological mechanisms underlying
thought. The highest level is concerned with the content
of thought, the aspects of the world that are encoded in
the mind. Between these levels are the mechanics of
how a representation is formed without regard to the
content of the representation. Newell (Newell, 1990)
refers to this level as the symbol manipulation level.
Thus, neural networks belong to the lowest of these
levels.

In the last years there has been a growing optimism
about the capability of neural networks, both as cog-
nitive models (e.g. the works of Grossberg (Carpenter
and Grossberg, 1986) and of Edelman (Edelman, 1989))
and as tools for pattern recognition (e.g. backpropaga-
tion networks (Rumelhart et al., 1986)). However, one
must keep in mind that neural networks that can be sim-
ulated on a computer, as most neural networks can, are
of course at the most Turing-machine-equivalent. They
might be better suited (more efficient or easier to pro-
gram) than symbolic algorithms (computers) for some
problems, but are not a more powerful tool in general.

Clearly, neural networks are adequate for cognitive
modeling of the physiological mechanisms underlying
thought, but since they do not represent knowledge ex-
plicitly, which seems crucial for the implementation
of the metaphysical and inferential functions, they do
not seem suitable for such purposes. The functions
that the subsymbolic methods will be able to handle
seem, for the moment, limited to tasks like perceptual
categorization.32 Thus, there is a possibility that they
might be able to implement the epistemological func-
tion. But for at least three reasons I will not discuss

32Even though the opposite opinion is sometimes held, see for
instance (Balkenius and Gärdenfors, 1991).
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them further in this paper. First, it is difficult to in-
troduce background (a priori) knowledge.33 Second, it
is difficult to exploit and reason about both the learned
knowledge and the learning process. Third, they learn
too slowly in the sense that they need many instances to
learn a fairly good representation and since the weights
often are randomly chosen, the behaviour of the net is
unpredictable in early stages and cannot be used for
classification.34

For a more detailed discussion about possibilities
and limitations of connectionist models in general, see
(Smolensky, 1988).

4.3 Conclusions

So, how should autonomous agents represent concepts?
Let us analyze this question in terms of the functions
that the concepts should be able to serve.

Some categories can be characterized by a clas-
sical definition (necessary and sufficient conditions).
However, such a definition is often based on features
that under normal circumstances are non-perceptual,
such as atomic structure, genetic code or functional-
ity. Thus, these definitions are not adequate for percep-
tual classification,35 and consequently not appropriate
representations for supporting the epistemological func-
tion. Instead, the implementation of the epistemological
function seems to demand some kind of prototypical (or
maybe subsymbolic) representation.

The implementation of the metaphysical function, on
the other hand, demands by definition a classical defi-
nition. However, it seems almost impossible for a non-
communicating autonomous agent to learn such a defi-
nition, since it is limited to perceptual observations. To
find the metaphysical definition can be seen as a very
sophisticated version of classical induction (as studied
in philosophy), since we do not only have to induce one
rule but possibly several. Moreover, we need to know
that these rules are necessary and sufficient.

To implement the inferential function we must have
some “encyclopedic” knowledge about the category and
its members. This knowledge can probably be seen as
a collection of universal or probabilistic rules. Kirsh
(Kirsh, 1986) has called this collection “a package of
associated glop”. The acquisition of this knowledge
seems like a hard learning problem, involving classical
induction.

Traditional work on concept representation in AI has
assumed that a single and simple structure (such as a

33There have been experiments with introducing symbolic knowl-
edge into “knowledge-based” neural networks, see for instance (Tow-
ell et al., 1990). However,as I see it these networks are rather symbolic
than subsymbolic representations since every node represents some-
thing. This implies moreover that the knowledge in these kinds of
nets are not distributed, which is one of the characteristic features of
neural networks.

34Moreover, I simply like the symbolic level more.
35However, in traditional AI it is very common to try to make a

classical definition of a category based directly on the perceptual data.

logic-based description, a decision tree, or an instance-
based description) could capture all the relevant aspects
of a concept. However, the above discussion makes
clear that this is not possible except for in very re-
stricted domains. We need a richer composite repre-
sentation that is structured according to the functions of
the represented concept.

Supported by the research reviewed in this paper I
propose the structure illustrated in Figure 6 as a reason-
able representation of concepts by autonomous agents.
The dashed boxes in the figure indicate optional fields.

external designator

internal designator

associated glop

metaphysical rep.

epistemological rep.

Figure 6: Composite Concept Representation

All parts of the representation are not always necessary
or even adequate. Metaphysical representation only
exists for some concepts and might, moreover, be irrel-
evant for an autonomous agent, and external designators
are only necessary for communicating agents.

Let us illustrate the idea of composite representation
by using the category “wasp”. The kind of informa-
tion that the epistemological representation may include
is that wasps are black and yellow striped, cylinder-
shaped, approximately two centimeters long and half a
centimeter in diameter, that they hum, have two wings,
and so on. As concluded above this information is best
represented by some kind of prototypical representa-
tion, probabilistic or instance-based or a combination of
these, or possibly a neural net. The metaphysical rep-
resentation may include information about the genetic
code of wasps expressed in a logic-based notation or
maybe by a decision tree. The kind of encyclopedic
knowledge that the associated glop would include is for
instance: can hurt other animates with its sting, lives in
collectives, and so on. This kind of information is prob-
ably best expressed in a logic-based notation. Internal
designator: organism.animate.xxx36 External designa-
tor: wasp.

There is of course no sharp distinction between what
information is included in these representations. Thus,
there may be redundant information. For example, in
addition to being an essential part of the epistemological
representation, the fact that wasps have wings is a quite
natural part of the encyclopedic knowledge represented

36The choice of the internal designator is entirely up to the system,
it should be as convenient and effective as possible for the system.
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in the associated glop. However, the fact is probably not
represented in the same way in these representations. It
may be rather implicit in a prototype for the epistemo-
logical representation and more explicit in a logic-based
notion for the associated glop.

This composite structure enables concepts to serve
all the functions listed before. The epistemological and
metaphysical representations support the epistemologi-
cal and metaphysical functions respectively. The associ-
ated glop supports the inferential function. The internal
designator supports the intrapersonal stability, whereas
the external designator supports both the interpersonal
stability and the linguistic function.

Depending on the situation, the composite concept
representation is accessed (or retrieved) in different
ways. External “stimuli” in the form of direct percep-
tion of objects access the concept via the epistemolog-
ical representation. If, on the other hand, the external
stimuli is on the linguistic level, as when communicat-
ing with other agents, the concept is accessed via the
external designator. Finally, if the stimulus is internal,
like in the case of reasoning, the concept is accessed via
the internal designator.

In this example taxonomical knowledge is expected to
be stored outside the actual concept-structure. Another
possibility is to store such knowledge inside the concept-
structure.

As we have seen, the AI community has already stud-
ied all of the well developed psychological models of
concept representation. The only psychological model
that has not been implemented yet (at least as far as
I know) is the combined exemplar and probabilistic
model. Even though it has not been studied in any depth
in cognitive psychology either, it might be a candidate,
at least from the AI point of view, for the epistemologi-
cal representation of concepts.

In the following I will concentrate on the learning of
the epistemological representation and to some extent
the metaphysical representation. The learning of the
associated glop, on the other hand, has more in common
with traditional induction than concept acquisition, and
is therefore not discussed in the rest of this paper.

5 Concept Acquisition

Finally, we have reached the stage were we are able to
discuss how concepts, these internal representations of
external categories, can be acquired.

5.1 Human Concept Acquisition

According to Atkinson et al. (Atkinson et al., 1987),
humans learn about categories in two different ways:

� by being explicitly taught

� by learning through experience

Unfortunately, the authors do not further elaborate this
distinction, and I have not found any other discussions
concerning this topic, so I will try to elaborate it my-
self. As I take it, it is possible to be explicitly taught
about categories on both the linguistic level (learning
by description) and on a sublinguistic (perceptual) level
(learning by acquaintance). Examples of learning on
the linguistic level are when you learn something read-
ing a book or being told something by some kind of
teacher. It seems likely that we learn the metaphysical
aspects of concepts in this way. As an example of being
explicitly taught on the perceptual level we have the sit-
uation when a teacher shows an exemplar of a category
(ostensive definition).37

When you learn from experience, there is no teacher
available to help you with the classification. For in-
stance, if you are confronted with an instance of a cate-
gory you know rather well, but this instance is different
in some aspect from those you have experienced, you
might nevertheless “guess” what category it belongs to
and, thus, learn something about the category. Another
situation is when you are confronted with an instance
of a category you know nothing about. You may then
form a new category based on that instance. Thus, there
are two cases of learning from experience, it can either
be learning something about a known category or about
an unknown category. It is important to notice that the
input when learning through experience is often on the
perceptual level.

There is yet another way of learning about categories
that is, in a way, orthogonal to the others, namely, learn-
ing by experimentation. It could be performed by ac-
tually making experiments or, maybe more common,
by asking questions. Asking questions belongs to the
linguistic level whereas learning by actual experiments
seems to belong to the perceptual level. This type of
learning bears resemblance to scientific discovery.

It is important to remember that in real life we do not
acquire a concept in just one of these ways. Instead, we
use them all interchangeably. Which kind of learning
that is appropriate in a particular situation is, of course,
to a great extent determined by the environment.

There are several other restrictions that the environ-
ment imposes on the concept acquisition process. For
instance, it must be incremental, since we do not en-
counter all instances of a category at one point in time.
Instead, we encounter an instance now and then, incor-
porating it into our “bulk of knowledge of concepts”.
Thus, concepts are acquired in a gradual fashion, by in-
teracting with the environment over time. Moreover, we
do not learn one concept at a time, concepts are rather
acquired in parallel.38

37The explicitness in the last example is weaker than in the examples
of linguistic level learning. Thus, it would be more appropriate to
place this type of learning between the two categories above.

38Here we refer to the normal, rather passive, concept acquisition
process. However, in some situations we adopt a more active strategy,
where we concentrate on one concept at the time.
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As Schank et al. (Schank et al., 1986) point out, any
dynamic and autonomous theory of concept acquisition
must specify at least three processes:

1. Deciding when to create a new concept.

2. Deciding when to modify a concept.

3. Deciding what part of the concept to change.

5.1.1 Theories of Concept Acquisition

As pointed out in the introduction of this paper, all our
knowledge about categories cannot be innate. However,
it is possible, and even plausible, that some knowledge
about categories is innate. Different researchers empha-
size this to different degrees. Fodor’s theories (Fodor,
1975), for instance, rely heavily on innate knowledge.

If all concepts are not innate then some of them must
be acquired in some way. How this is done has, of
course, been the subject of research in cognitive psy-
chology. The three most predominant psychological
theories of human concept acquisition are:

� The association theory

� The hypothesis testing theory

� The exemplar strategy

The association theory as described in (Solso, 1991)
seems rather outdated, with its roots in stimulus-
response psychology. It holds that the learning of a
concept is a result of (1) reinforcing the correct pairing
of a stimulus with the response of identifying it as a con-
cept, and (2) non-reinforcing (punishment) the incorrect
pairing of a stimulus with a response of identifying it
as a concept. This theory seems only to cover the case
of being explicitly taught something about the category
on the perceptual level. Moreover, it is extremely vague
and thus consistent with most theories. However, it is
interesting to notice its resemblance with the backprop-
agation algorithm for teaching neural nets.

The theory of hypothesis testing states that “we hy-
pothesize what properties are critical for determining
whether an item belongs to a category, analyze any po-
tential instance for these critical properties, and then
maintain our hypothesis if it leads to correct decisions.”
(Atkinson et al., 1987) Thus, it assumes that the cate-
gory can be characterized by a classical definition, and
it seems to assume that all instances of the category
are concurrently available for analysis. These assump-
tions are too strong for most learning situations. The
theory does not specify when to create a new concept.
Moreover, it is non-incremental and only learns one
concept at the time. In my opinion, the hypothesis test-
ing theory is a sort of model of some kind of learning
by experimentation, such as when a scientist is doing
experiments.

Finally, the exemplar strategy simply states that when
encountering a known instance of a category a represen-
tation of it is stored. This theory is consistent with the

exemplar view of representation and thus inherits its
limitations (for instance, covers only the epistemologi-
cal aspects). However, several questions remains open,
for example: How many, and which, instances should
be memorized? Moreover, the strategy is only specified
for learning from preclassified instances. However, it
seems possible to extend the theory to include learning
from experience, but then, when to create a new con-
cept must be specified. Advantages with the exemplar
strategy are, that it is incremental in nature and that it
accounts for the acquisition of many concepts at the
time.

5.2 AI Methods for Concept Acquisi-
tion

The concept acquisition process of an autonomous agent
is of course restricted by the environment in the same
way as a human is. Thus, from the earlier discussion we
can conclude that for artificial autonomous agents the
concept acquisition must also be incremental, concepts
must be acquired in parallel, and several methods must
be employed simultaneously.

5.2.1 AI Methods for Concept Acquisition Us-
ing Traditional Representation

In AI, several ways of learning about categories have
been studied. The most studied are:

� Direct implanting of knowledge

� Learning from examples

� Learning by observation

� Learning by discovery

� Learning by deduction

Direct implanting of knowledge is the extreme, almost
trivial, case of concept acquisition in which the learner
does not perform any inference at all on the information
provided. It includes learning by direct memorization
of given concept descriptions and the case when the
descriptions are programmed into the computer. The
latter can, from the perspective of an autonomous agent,
be seen as a way of incorporating innate, or a priori,
knowledge about concepts into the agent. In learning
by instruction (learning by being told), which is rather
similar to direct implanting of knowledge, the learner
acquires concepts (explicitly described on the linguistic
level) from a teacher, database, textbook or some other
organized source. This form of learning, in contrast
to direct implanting of knowledge, requires selecting
the relevant information and/or transformation of this
information to an usable form.

Learning from examples is by far the most studied
type of learning in AI and can be seen as learning by
being explicitly taught. In this kind of learning the
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learner induces a concept description from preclassi-
fied examples (and, in most cases, counterexamples) of
the category that are provided by some kind of teacher.
Since there is a teacher present to guide the learning
process, this type of learning is sometimes called su-
pervised learning. Thus, it is the teacher who decides
when to create a new concept. The task for this type of
learning can be seen as finding a definition (description)
consistent with all positive examples but no negative ex-
amples, if there are any, in the training set. Most of the
systems learning from examples can be viewed as car-
rying out a search through a space of possible concept
descriptions. This space can be partially ordered, with
the most general description at one end and the most spe-
cific at the other. The most general description has no
features specified, corresponding to the set of all possi-
ble instances, whereas the most specific have all features
specified, corresponding to instances. There are basi-
cally two strategies for searching the space of concept
descriptions. In the general-to-specific strategy, one be-
gins with the most general description as the hypothesis
of the correct concept description, and as new instances
are encountered, more specific descriptions (hypothe-
ses) are produced. In the specific-to-general strategy,
one begins with a very specific description, typically a
description of the first instance, moving to more general
descriptions as new instances are observed. Some sys-
tems use one or the other of these strategies, while more
sophisticated systems, like Version Spaces (Mitchell,
1977), combine the two strategies. Since there is no
inherent non-incrementality in this approach, it seems
possible to make systems based on this approach that
learn incrementally.39

A different kind of learning-from-examples systems
are the so called top-down induction of decision trees
(TDIDT) systems (Quinlan, 1986). These systems need
both positive and negative instances of the category to
be learned, with each instance represented as a list of
attribute-value pairs. The output is a decision tree that
can be used to decide if an instance is a member of
the category or not. TDIDT systems begin with the
root of the tree and create the decision tree in a top-
down manner, one branch at a time. At each node
they use an information theoretic evaluation function
to determine the most discriminating attribute. The
evaluation function is based on the number of positive
and negative instances associated with the values of each
attribute. An advantage of TDIDT systems is that they
carry out very little search, relying on the evaluation
function instead. However, a serious limitation of these
systems is their non-incremental nature. To incorporate
new instances, the tree has to often be recomputed from
scratch.

39However, some systems, version spaces for instance, have at
some stages in the learning process several competing hypotheses.
Having several hypotheses makes it difficult to use the concept and
requires more memory space. However, the memory requirementsare
substantially less than for systems that must memorize all instances,
such as Winston’s (Winston, 1975).

The learning-from-examples systems typically learns
just one concept at the time, without considering other
known concept descriptions. An exception to this is
AQ11 (Michalski and Larson, 1978; Michalski and Chi-
lausky, 1980) by Michalski and his colleagues, which
learns multiple concepts. Another exception is a sys-
tem by Gross (Gross, 1988) which incrementally learns
multiple concepts. The current concept description that
is learned is constrained by the descriptions of the other
concepts. However, this system can also be described
as learning by experimentation, since it selects the next
instance to be analyzed from a given description space
itself. This instance is then classified by an oracle. The
introduction of an oracle being able to classify every
possible instance makes the learning easier and less re-
alistic.

In learning by observation the learner forms cate-
gories itself, through direct interaction with the environ-
ment. Thus, it can be seen as learning through experi-
ence. Since it is the environment, not a teacher, that pro-
vides the examples, this type of learning is sometimes
called unsupervised learning. Typically, the learner is
given a number of entities (that are not preclassified)
described by a number, n, of features. Based on their
features it groups the entities into categories (aggrega-
tion). This is often done by treating the instances as
points in a n-dimensional space and employing statisti-
cal methods (cluster analysis and numerical taxonomy),
augmented with a preference criterion concerning the
concept description language. Thus, it is the learner
that decides when to create a new concept. When the
aggregation is done, the system creates descriptions of
the categories (characterization). This is done much
in the same way as the systems that learn from ex-
amples. These types of systems are commonly called
conceptual clustering systems. Some of the most well-
known are CLUSTER/2 (Michalski and Stepp, 1983;
Stepp and Michalski, 1986) and RUMMAGE (Fisher
and Langley, 1985). Notice that all conceptual cluster-
ing systems form concepts in parallel. Moreover, they
structure the created concepts into taxonomies, while
other types of systems usually learn concepts at a single
level. CLUSTER/2 and RUMMAGE learn in a non-
incremental fashion, but incremental systems exist, like
UNIMEM (Lebowitz, 1986).

All of these conceptual clustering systems use some
kind of similaritymeasure, which depends on some kind
of distance metric, for the aggregation task. As pointed
out earlier, such a metric has several disadvantages, for
instance, there exists no natural distance metric since it
is dependent on the relative scaling of the axes of the
space (which is arbitrary). Moreover, a distance met-
ric can take into account totally irrelevant features. An
interesting clustering (aggregation) technique that does
not use a distance metric is presented in (Matthews and
Hearne, 1991). The clusterings are instead optimized
on the prediction of feature values, which the authors
believe is the intended function of the clustering. Thus,
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this approach aims at maximizing the utility of the clus-
tering.

Learning by discovery is also a type of unsupervised
learning. However, systems that learn by discovery
are more active in their search for new categories than
systems learning by observation. They exploit their do-
main, sometimes by experiments, rather than passively
observe it. The most famous system of this kind is
Lenat’s AM system (Lenat, 1976; Lenat, 1977). An-
other well-known system is GLAUBER (Langley et al.,
1983). AM works in the domain of mathematics and
searches for and develops new “interesting” categories
after being given a set of heuristic rules and basic con-
cepts. It uses a “generate-and-test” strategy to form
hypotheses on the basis of a small number of exam-
ples and then tests the hypotheses on a larger set to see
if they appear to hold. Surprisingly, the AM system
works very well. From a few basic categories of set
theory it discovered a good portion of standard num-
ber theory. However, outside this domain AM does not
work very well. Two of the reasons are that there are
difficulties in specifying heuristics for other less well-
known domains, and that in the implementation of AM
implicit knowledge about number theory was built-in.
Moreover, even though AM initially performed well in
the domain of number theory, its performance decreased
after a while and it was not able to discover any new in-
teresting categories. This was due to the static nature
of the heuristics, which did not change when the sys-
tem’s knowledge about the domain increased, resulting
in a static system. Thus, for such a system to be more
dynamic, it must also be able to reason and manipulate
with the heuristics.

In deductive learning, the learner acquires a con-
cept description by deducing it from the knowledge
given and/or already possessed (background knowl-
edge). The most investigated kind of deductive learning
is explanation-based learning (EBL) (Mitchell et al.,
1986; DeJong and Mooney, 1986) which transforms a
given abstract concept description (often based on non-
perceptual features) to an operational description (often
based on perceptual features) using a category exam-
ple (described by operational (perceptual) features) and
background knowledge for guidance.

The standard example of EBL is about the concept
“cup”. In this example the abstract concept description
includes the facts that a cup is an open,stable and liftable
vessel. Moreover, the background knowledge includes
information such as: if something is light and has a
handle then it is liftable, if something has a flat bottom
then it is stable, and so on. Given this and an example
of a cup in terms of more perceptual features (such as,
light, has a handle) and the operationality criterion that
the concept description must be expressed in terms of
the perceptual features used in the example, the EBL-
system produces a description of the concept “cup” that
includes the facts that a cup is light, has a handle, has a
flat bottom, and so on.

This form of learning is clearly a kind of top-down
learning, since the learning is triggered by the goals of
the learner. It can, as has pointed out earlier, be seen as
just a reformulation of concept descriptions, since the
abstract description is given. Thus, no new categories
are created.

5.2.2 AI Methods for Concept Acquisition Us-
ing Non-traditional Representation

As mentioned in the previous section, there have been
some experiments involving non-classical representa-
tions during the last years. However, these experiments
have been limited to learning from examples and learn-
ing by observation.

Kibler and Aha (Kibler and Aha, 1987) describes
three algorithms that learn from examples, using an ex-
emplar representation of concepts. The proximity algo-
rithm simply stores all training instances. The growth
(additive) algorithm stores only those training instances
that would not be correctly classified. These two al-
gorithms are incremental in contrast to the third, the
shrink (subtractive) algorithm. Instead, the shrink algo-
rithm begins by placing all the training instances into
the concept representation, and then continues by test-
ing each instance in turn to see if it would be correctly
classified by the remaining instances. In (Nagel, 1987)
Nagel presents another system that learns incremen-
tally from examples, using an exemplar representation.
When a positive instance is presented to the system, the
system will try to find a sequence of transformations
that transforms the instance into a prototypical instance.
The new transformations are then stored as a part of
the concept description to be used for assimilating new
instances.40 De la Maza’s PROTO-TO system (de la
Maza, 1991) also learns incrementally from examples
but uses a probabilistic representation. It groups the
instances according to their categories and then builds
a prototype (some kind of an average member) for each
category. The prototypes are then augmented, weight-
ing each attribute in order to form a probabilistic repre-
sentation.

The PLANC system by Musgrove and Phelps (Mus-
grove and Phelps, 1990) learns from observation by a
clustering algorithm that first applies multidimensional
scaling to reduce the dimensionality of the input data.
When the clusters are detected, their members are used
to produce the prototype (a hypothetical average mem-
ber). The system uses an exemplar representation and
is non-incremental. A system that learns from observa-
tion incrementally is Fisher’s COBWEB (Fisher, 1987;
Fisher, 1988), which builds a probabilistic concept tree.
As an evaluation measure of clusterings in the aggrega-
tion task, COBWEB uses category utility instead of a
distance metric. It was originally developed by Gluck
and Corter (Gluck and Corter, 1985) as a means of pre-

40How the prototypes are learned in the first place is not described
in the material that, for the moment, is available to me.
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dicting the basic level in human taxonomies. It is similar
to Matthews and Hearne’s approach in that it maximizes
the predictive ability of the clustering.

Finally, we can notice that the typicality of the in-
stances is not given explicitly in these systems. (I am
not sure about Nagel’s system, though.)

5.3 Conclusions

As we have seen, the issue of concept acquisition, in
contrast to functional and representational issues, is
more elaborated in AI than in Cognitive Psychology.
In fact, for all the psychological models presented in
this section, there exist corresponding AI methods. For
instance, one can compare the association theory with
backpropagation learning, the hypothesis testing the-
ory with Gross’ system, and the exemplar strategy with
Kibler and Aha’s experiments on instance-based learn-
ing. Thus, the theories about human concept acquisition
have already been tested as AI methods, implying that
there is not much we can gain by studying these psycho-
logical models. However, one result of the study is, as
pointed out several times before, that approaches to con-
cept acquisition by autonomous agents are constrained
by several demands, they must:

� be incremental

� be able to learn many concepts at the time

� apply several methods simultaneously

To what extent have these demands been met by existing
AI systems? In early machine learning research, learn-
ing systems were typically non-incremental. In recent
years however, many incremental systems have been
constructed.

There exist systems that learn many concepts at a
time, for instance conceptual clustering systems and
some non-traditional learning-from-example systems.
However, in traditional learning-from-example systems,
knowledge about known categories and taxonomies are
typically not used to constrain the hypothesis space.
How this should be done seems like an important area
of research (if one is interested in the metaphysical func-
tions of concepts).

Still, the requirement that several methods of learn-
ing must be applied simultaneously indicates where the
greatest need for more research can be found. It may be
true that there already exist systems that integrate two or
more learning methods. However, most of these systems
integrate learning from examples and explanation-based
learning, see for instance (Lebowitz, 1990).

The types of learning that are adequate to integrate
depends heavily on the environment in which the agent
works. As mentioned earlier, there are two possible
scenarios for an autonomous agent. It can either be
alone in its environment or be among other agents which
it can communicate with.

An agent that is alone can, of course, have prepro-
grammed knowledge about concepts (direct implanting
of knowledge). Apart from this, it seems to be limited
to learning by observation. The kind of knowledge it
can learn in this way is mainly epistemological and to
some degree inferential. But since the agent is restricted
to perceptual information it can hardly learn any meta-
physical knowledge.

In the case where other agents exist, it may be possi-
ble for the agent to learn from examples in addition to
learning by observation and direct implanting of knowl-
edge. This is done by letting some other agent act as a
teacher. Thus, for this kind of agent, an integration of
learning from examples and learning from observation
may be fruitful.

One of the key problems for an algorithm that inte-
grates learning from examples and learning by obser-
vation is to decide when to create a new concept. It
needs to know when it encounters an instance of an un-
known category. Somewhat surprisingly, this demand
radically constrains the choice of representation. An
(implicit) assumption that is often made when learning
from examples, is that all categories in the universe are
exemplified in the learning set. This assumption has led
to the construction of algorithms that learn to discrimi-
nate between categories. By concentrating on the differ-
ences between the categories rather than the categories
themselves, they just learn the boundaries between cat-
egories. Moreover, they partition the entire description
space into regions, so that every region belongs to a
certain category. Thus, when instances of unknown cat-
egories are encountered the algorithm cannot detect this
fact, and the instances are categorized in a rather un-
predictable manner. This problem is treated by Smyth
and Mellstrom in (Smyth and Mellstrom, 1992) where
they take decision trees and multi-layer neural networks
as examples of discriminative models. As a solution to
this problem they suggest generative or characteristic
(Dietterich and Michalski, 1981) models, which are in-
tended to discriminate the instances of the category from
all other possible instances. These kind of models con-
centrate on the similarities between the members of the
category, so that category boundaries are just an implicit
by-product. Examples of such models are logic-based
(depending on the learning algorithm, both discrimi-
nate and characteristic exist, see (Michalski, 1977)) and
instance-based representations. Moreover, Smyth and
Mellstrom make quite a provoking statement: “In fact
one could even conjecture that only generative models
can be truly adaptive and that discriminative models are
impossible to adapt in an incremental on-line manner.
This is certainly true in the general case for the class
of discriminative models which includes decision trees
and fixed-structure neural networks.”

What about learning from discovery then? The exper-
iments conducted so far have shown that such systems
might work in a small, well understood, and predictable
domain, but that it is very hard to make such systems
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suitable for real-world domains. Thus, despite the fact
that learning by discovery is a very powerful learning
method, it seems that (at least at the present stage of re-
search) autonomous agents will have to manage without
it.

The algorithms that learn from examples and by
observation seem more adequate for learning bottom-
up categories than top-down categories, whereas
explanation-based learning algorithms are, more or less,
designed to learn top-down concepts. Thus, a problem-
solving agent may benefit from using EBL. However,
as pointed out earlier, EBL do not form any new cate-
gories. The actual category formation step is when the
high-level description is created during problem solv-
ing. This is, I believe, a not very well studied topic.
EBL is then used to get a representation that can support
the epistemological function. However, as Lebowitz has
pointed out (Lebowitz, 1986), it is questionable whether
there exist real-world situations where it can be applied,
where the agent possesses all the background knowl-
edge that is required to make the transformation into a
low-level description.

A problem that I have not addressed is noise in the in-
put. Noise is an inescapable problem in most real-world
domains and has been addressed by some learning-from-
examples systems. The solutions are often based on the
assumption that the members of a category are rather
similar. The problem with this assumption is that it is
not compatible with the existence of atypical instances,
in the sense that it becomes impossible to discriminate
noise-laden instances from atypical ones.

6 Summary of Conclusions

The goal of this paper is, besides the reviewing of re-
search in cognitive psychology and AI on different as-
pects of concepts, to investigate the issue whether psy-
chological theories of concept acquisition can help us
in constructing algorithms for concept acquisition by
computer-based autonomous agents. However, as is
evident from the research reviewed, it is from more fun-
damental aspects than acquisition, that influence from
psychology has the potential of being most fruitful.

For instance, the functional aspects of concepts are
hardly ever discussed within the AI society. Never-
theless, it seems clear that it is necessary to make a
distinction between, at least, the epistemological, the
metaphysical and the inferential function, whereas the
other functions emerge, more or less, automatically.

AI researchers also have a very simplified view of the
nature of categories. An autonomous agent in a real-
world environment has to deal with real categories, not
artificial ones. Furthermore, it is important to make a
distinctionbetween natural and derived categories since
they must be acquired in different ways. Natural cat-
egories (natural kinds in particular) often arise merely
when observing the world, whereas derived categories
arise during problem solving activities. Concepts for

representing natural categories are probably best learned
by a similarity-based algorithm, whereas derived cate-
gories need a top-down algorithm. EBL is, in a sense,
a top-down approach, but does not address the problem
of formation of concepts.

As for the representation of concepts, we can con-
clude that a single and simple structure does not suf-
fice to account for all the functions that concepts might
have. Thus, an autonomous agent must have a com-
plex (composite) concept representation. A suggestion
for such a structure that supports the most important
functions was presented in Section 4.3. It has an episte-
mological representation for perceptual (normal) cate-
gorization and an optional metaphysical representation
for more “scientific” categorization. As we have seen, it
seems that some kind of prototype-based representation
is the best alternative for the epistemological represen-
tation, whereas a logic-based classical representation is
the most appropriate for the metaphysical. To be able to
reason and make predictions about the category and its
members, the agent needs a large amount of encyclope-
dic knowledge. This is stored in the “associated glop”.
How this should be represented has not been discussed
in detail, but some kind of logic-based representation
seems appropriate. Moreover, to support stability and
linguistic functions, the structure also includes an inter-
nal and an external designator.

As for the actual acquisition, it seems that the agent
has to rely on learning from examples (if there some
kind of teacher available), learning by observation and
some method for forming derived (top-down) concepts.
Learning from discovery seems too difficult for an agent
in a real-world domain. Moreover, the learning must be
incremental and not only concern one concept at the
time. However, the most urgent topic for research is
the integration of the different acquisition methods that
already exist. The most interesting combination is per-
haps learning from examples and learning from obser-
vation. Another demand on the learning algorithms is
that they should learn characteristic concept represen-
tations, not discriminative. This demand disqualifies
several popular algorithms such as TDIDT and back-
propagation.

Finally, as has been pointed out earlier, the input to
the learner in present AI-systems is usually descriptions
of instances, consequently they deal with linguistic de-
scriptions of the real world. Thus, the observations
are on the linguistic level. Autonomous agents, on the
other hand, have to deal with reality itself, making ob-
servations also on the perceptual level.41 Especially,
agents that are alone rely heavily on such observations,
whereas communicating agents also make observations
on the linguistic level.

41How these observationsactually should be made is a problem that
normally is studied within other fields such as computer vision (see
for instance (Fischler and Firschein, 1987)). However, as the problem
of concept acquisition is approached in this paper, it overlaps to some
extent with these fields.
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