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Abstract

This paper is atreatment of the problem of concept ac-
quisition by autonomous agents, primarily from an Al
point of view. However, as this problem is not very
well studied in Al and as humans are indeed a kind of
autonomous agent, the problem is aso studied from a
psychologica point of view to see if the research in
human concept acquisition can be of any help when
designing artificial agents. However, the acquisition
cannot be studied in isolation since it is dependent on
more fundamenta aspects of concepts. Consequently,
these are studied as well. Thus, this paper will give a
review of some of the research done in cognitive psy-
chology and Al (and to some extent philosophy) on
different aspects of concepts. Some proposals for how
central problems should be attacked and some pointers
for further research are a so presented.

1 Introduction

In order to pursue goals and to plan future actions effi-
ciently, an intelligent system (human or artificia) must
be able to classify and reason about objects, behaviour
and events. Asabasisfor thisit needs concepts. More-
over, since the system’s environment often cannot be
totally predicted in advance, al necessary knowledge
about the environment cannot be innate (humans) or
preprogrammed (artificia systems). Thus, it must aso
be able to acquire concepts.

In some sense we can say that concepts refer to cat-
egories, where we by category mean a class of entities
united by some principle(s). Such a principle may be
rather concrete, like having similar perceptua charac-
teristics, or more abstract, like having the same rolein
atheory or having similar functions.

Theuseof theterm“concept” israther ambiguous. In

everyday languageit usually refersto the name' (desig-
nator) of a category. However, the main concern of this
paper is not the linguistic task of learning the names
of categories.® Therefore, | will in what follows use
the term in a different way, more in line with uses in
Cognitive Psychology and in Al. In Cognitive Psychol -
ogy theterm “concept” sometimes refers to the mental
representation of the category, and in Al the term often
refers to the description of the intension® of a concept.
Inshort, | will by “category” refer toaclassof entitiesin
the world and by “concept” refer to an agent’s internal
representation of thisclass.

There are two mgor approaches to the studying of
computational concept acquisition (Michalski, 1987a) :

¢ Cognitive modeling, which strives to develop the-
oriesof the actua concept acquisition processesin
humans (or animals). (i.e. Cognitive Psychology)

e The engineering approach, which attempts to ex-
ploreall possibleconcept acquisition mechanisms,
irrespectiveof their occurrenceinliving organisms.
(i.e Al)

The engineering approach has often been successful in
acquiring artificial conceptsinrestricted domains, butin
more realistic scenarios success has been limited. One
such scenario, probably the most natural, genera and

1A word in anatural language

2As amatter of fact, this paper is not about traditional linguistics
at al (not deliberately at least). Thus, | make an assumption that
conceptsare independent of language (or at least can be studied inde-
pendently of language). By language| mean here a natural language,
not an internal (mental) language (language of thought, mentalese).
Therejection of any assumption of languageasa prerequisitefor con-
cepts has been made by a number of scientists, for instance Edelman
(Edelman, 1989) who cites chimpanzees as an example of animals
which lack linguistic abilities but can have and acquire concepts.

SThat is, if we by intension mean something that includes criteria
for determining category membership, but not properties that specify
the concept’srelationsto other concepts (which sometimesisincluded
in the concept of intension).



realistic, isaconcept-learning autonomousagent acting
in area-world environment. It isfrom this perspective
that | propose to view the problem of concept acquisi-
tion.

1.1 Autonomous Agents

An autonomousagent can be seen asasystemthat isca
pable of interacting independently and effectively with
itsenvironment viaitsown perceptors (transducers, sen-
sors) and effectors in order to accomplish some given
or self-generated task.* Asl seeit, an ultimate goal for
Al isto construct intelligent autonomous agents. How-
ever, a the moment we are quite far from achieving
this goal, partly because the problem of learning has
not been solved. Learning isimportant because without
it an agent is unable to adapt to unforeseen situations,
and cannot take advantage of its experience in order to
increase itsperformance. Animportant kind of learning
isthe acquisition of concepts. The sub-field of Al that
studieslearning is called Machine Learning (ML).

All computer-based autonomous agents have, more
or less, the same basic architecture, which isillustrated
in Figure 1.5 The arrows in the figure symbolize data

/ Perceptors \

KB Reasoner

K Effectors /

Figure 1. The basic architecture of a computer-based
autonomous agent.

flows. The perceptors receive input from the environ-
ment and provide (sensor) data for the reasoner. The
reasoner refines thisdata and storesit in the knowledge
base (KB). When the reasoner isplanning or doing other
kindsof reasoning, it retrieves the appropriate informa-
tionfrom the KB. When the reasoner has decided which
action to perform it commands the effectorsto carry out
the action.

Asmentioned above, thisisavery rough description.
Usually, the reasoner is further divided into severa in-
dependent parts. Moreover, the reasoner may control
the perceptors.

4Thus, humans(most of us, at |east) can beregarded asautonomous
agents.

SExcept from some primitive reactive agents, such as Pengi (Agre
and Chapman, 1987) and system based on neural networks, that do
not have explicitly separated reasoners and knowledge bases.

1.1.1 Scenarios for an Autonomous Agent

There are in principletwo scenarios for an autonomous
agent.

e The agent isaoneinits environment.
o There are other agentsin the environment.

An agent on an exploration mission on Marsis a (pro-
totypical) instance of an agent being done in its envi-
ronment. In the case where other agents exist they can
either be humans or machines (or both), as on afactory
floor. When | say that other agents exist | suppose that
our agent is able to communicate with them®, other-
wise it can be seen as being aone in its environment,
for instance, an agent on a factory floor that cannot
communicate with the other workers. Another possible
scenario isacombination of these two scenarios, where
the agent is trained by other agents in an initia stage
and then put in an environment where it is alone. For
instance, first trained &t NASA and then sent away to
Mars.

Which of these situationstheagent isplaced in has, of
course, consequences for how concepts can be acquired.

1.1.2 Some Consequences of the Autonomous
Agent Perspective

Most of our information about concepts, we get from
some kind of observation. Since we are here dealing
with autonomous agents that receive information di-
rectly from the environment we need another notion of
observation than the one that is often used in Al (and
in ML in particular), where an observation is alinguis-
tic description in some specified language. 1t might be
useful to follow Géardenfors (Gérdenfors, 1992), who
distinguishes three levels of describing observations.’
The highest level is the aready mentioned linguistic
level, where observations are described in some lan-
guage. The second level is the conceptual level where
observations are not defined in relation to some lan-
guage. Rather, they are characterized in terms of some
underlying conceptual space, which consists of a num-
ber of quality dimensions(some of thesedimensionsare
closely related to what is produced by our sensory re-
ceptors, like temperature, colour and size, while others
are more abstract, like time). On the conceptua level
an observation can be defined as “an assignment of a
location in a conceptual space”’. The lowest level isthe
subconceptual level where observations are character-
ized in terms of the “raw” (not processed in any way)
inputs from sensory receptors. This input, however, is
too rich and unstructured to be useful in any concep-
tual task. It must be transformed to suit the conceptual

6o reducethe complexity | will inwhat follows supposethat com-
munication is done, more or less, on the agent’s conditions (terms).
Thus, | will not bother about such difficult topics as natural language
understanding.

A similar distinction is made by Harnad (Harnad, 1987).



or the linguigtic level. To do this the subconceptual
information must be organized and its complexity re-
duced. The work of Musgrove and Phelps (Musgrove
and Phelps, 1990) isone of the few ML-approaches that
treat observations on the subconceptua level. Harnad
(Harnad, 1987) calls learning based on such perceptua
observations learning by acquaintance and contrasts it
with learning by description that bases the learning on
observations on the linguisticlevel .8

This three-level perspective raises several more or
less philosophical questions. For instance, is it conve-
nient or even possible, to do any useful cognitive tasks
(e.g. reasoning) on a sub-linguisticlevel, or do we need
some kind of language?® |If we assume that some kind
of language is necessary for reasoning (as| tend to do),
then observations must be described on some linguistic
level inthe reasoner. It seems clear that at some (early)
stage in the perceptors observations must be described
on the subconceptua level. Concerning the concep-
tual level descriptions, it is not that obviouswhere they
should belong. The transitions from subconceptua to
conceptual and from conceptual to linguistic descrip-
tions might be done in the perceptors or in the reasoner
or onetransitionin each.

Moreover, it is not computationally tractable to pro-
cess dl theinput data. The system needs to know what
input information is relevant, some kind of mechanism
that controls the focus of attention. This givesriseto a
further question: on which level is it most appropriate
(or even possible) to have such a mechanism? Is the
“filter” between the subconceptua and the conceptual
level sufficient or do we need further “filters’ at higher
levels?

Finally, it seems reasonable to suppose that an au-
tonomous agent encountersonly afew instances of some
categories. Thus, it needsto learn arather good concept
representation based on relatively few instances. Thisis
in contrast to trying to learn a perfect descriptionfroma
vast number of instances, which isoften thetask intra-
ditional Al, whereit is often supposed that the learning
system has alot of examplesto learn from.

1.2 Motivation and Disposition

Since humans obviously are autonomous agentsthat are
able to acquire concepts by interacting with the real
world, it may be agood idea to become inspired by the
research done in cognitive modeling. However, when
adopting this approach, there are some things we must
keep in mind. The most important is perhaps that the
task of creating an autonomous agent is not identical
with cognitive modeling. For instance, if there are no
advantages of adopting a particular feature of human

8Thisdistinction is probably inspired by Russell’s (Russell, 1912),
but is not equivalent to his.

9Here “language” refers to awider class than the class of natural
languages, including internal (mental) languages. Thus, this question
raises another still more fundamental question: What do we mean by
alanguage?

concept acquisition then we have no reason to do so
(humans are not optimal). On the other hand, a cog-
nitive model does not have to be a true model of hu-
man cognition to be useful in Al. Thus, | will not care
about the biological and psychologica plausibility of
the cognitive models presented in this paper. More-
over, it is important to remember that we only have a
limited insight into the ways in which humans really
acquire concepts. A problem fromthe Al point of view
isthat in experimenta psychol ogy, cognitive processes
concerning concept acquisition are often not described
agorithmically.

Since the topic of conceptsis rather complex, | have
chosen to divideit into four aspects:

1. The functions of concepts

2. The nature of categories

3. Representation of concepts

4. Concept acquisition processes

The primary focus of thispaper istheacquisition of con-
cepts, but thisis clearly dependent on how concepts are
represented. The representation, in turn, is dependent
on what functionsthe concepts should serve. Moreover,
the choi ce of representation is constrained by the nature
of theactual categories. Thus, we haveto examinethese
aspects a so.

The god of this paper is to review some of the re-
search done in Cognitive Psychology on the four as-
pects and the work of the corresponding aspectsin Al,
and hopefully to compare them in ameani ngful manner.
Moreover, by doing this | hope to be able draw some
conclusions for the construction of computer-based au-
tonomous agents. However, already at this point the
reader should bewarned that these conclusionsin some
cases will be rather specul ative (and maybe néive).

2 The Functions of Concepts

Why does an agent need to have concepts in the first
place? In thissection | am going to try to answer this
guestion, mainly by investigating what functions con-
cepts have, or should have.

2.1 The Functions of Human Concepts

To begin with, we can state that concepts seem to be the
very stuff out of which reasoning and other cognitive
processes have as their basis. However, it ispossibleto
distinguish severa functions of human concepts, some
of them are'®:

o Stability functions

o Cognitive economical functions

10The list isinspired by worksin cognitive psychology, linguistics
and philosophy, in particular (Rey, 1983) and (Smith, 1988)



Linguisticfunctions

Metaphysical functions

Epistemological functions

Inferential functions

Concepts give our world stability in the sense that we
can comparethe present situation with similar past expe-
riences. For instance, when confronted with a wasp,*!
we can compare this situation with a situation some
years ago when we were stung by another wasp and
consequently take the appropriate measures. Actualy,
there are two types of stability functions, intrapersonal
and interpersonal. Intrapersona stability is the basis
for comparisons of cognitive states within an agent,
wheress interpersonal stability is the basis for compar-
isons of cognitive states between agents.

By partitioning the world into categories, in contrast
to dways treating each individua entity separately, we
decrease the amount of information we must perceive,
learn, remember, communicate and reason about. In
this sense we can say that categories (and thus con-
cepts) promote cognitive economy. For instance, by
having one representation of the category wasp instead
of having arepresentation for every wasp we have ever
experienced, we do not have to remember that the wasp
we saw yesterday has a stinger (or that it has guts).

Thelinguisticfunctionismainly providing semantics
for linguistic entities (words), so that they can betrans-
lated and synonymy relationsbe revealed. For instance,
the fact that the English word “wasp” and the Swedish
word “geting” have the same meaning enables us to
trandate “wasp” into “geting” and vice versa. Further-
more, it seems that it is the linguistic function together
with the interpersonal stability function that make it
possiblefor usto communicate (by using alanguage).

In philosophy, metaphysics deals with issues con-
cerning how theworldis, whileepistemol ogy deal swith
i ssues concerning how we know (believe, infer) how the
world is. Thus, we might say that the metaphysical
functions of a concept are those that determine what
makes an entity an instance of a particular category. For
example, we say that something actually is awasp if it
has a particular genetic code or something like that.2
The epistemological functions then, are those that de-
termine how we decide whether the entity isan instance
of a particular category. For instance, we recognize a
wasp by colour, bodyshape and so on.*3

Here, and in the following, “wasp” refers to the most common
kind, the black- and yellow-striped wasp (or yellow-jacket).

2We use the word “metaphysic” in a more pragmatic way than in
philosophy. In my notion that which makes an entity an instance of
aparticular category is decided by some kind of consensus amongst
the agentsin the domain. The examplewith thewasp is rather unfor-
tunate though, since there exist several competing views of biological
taxonomy. For instance, the cladistic view, which categorize species
according to shared derived features, and the phenetic view, which
categorizethem on the basis of overall similarity.

13For human conceptsthisdistinctionis maybenot asclean-cut and
unproblematic as described here, see (Lakoff, 1987), but nevertheless

Finally, concepts allow usto infer non-perceptual in-
formation from the perceptua information we get from
an entity, and to make predictions concerning it. Thus,
we can say that concepts enable us to go beyond the
information given. For instance, by perceptually recog-
nizing awasp we can infer that it is able to hurt us.

2.2 Functions of Concepts in Artificial
Autonomous Agents

The functions of concepts are never realy subject to
discussion in the Al-literature. However, there is often
an assumption made that the concepts acquired areto be
used for some classification task. Thus, the function is
mainly of an epistemol ogical nature. Thereason for this
limitation is probably that Al researchers often do not
study problems from an autonomous agent perspective.
Consequently, they, in some respect, lose thewhol eness
of the problem. Therefore, it seems that | have to base
the discussion on my own reflections.

The functionsof intrapersonal stability and cognitive
economy are of course important, but they are trivia in
the sensethat they emerge moreor lessautomatically for
the agent just by having concepts, independently of the
choice of representation. By anaogy with the stability
functions, we can say that an agent can have bothintrap-
ersonal and interpersona linguistic functions. Where
theintrapersonal functionisarather weak one, implied
only by thefact that the concepts have namesinternal to
theagent. Thisfunctionis, of course, aso trivial in the
same sense as above. But what about the interpersonal
stability and linguistic functions? They are clearly not
necessary in a one-agent scenario. However, if we are
interested in amulti-agent scenari o with communi cating
agents, the concepts must have a so these functions.

However, itistheremaining threefunctions, themeta
physical, the epistemol ogical andtheinferential,that are
the most interesting, and the ones | will concentrate on
intheremaining part of thispaper. Sincean autonomous
agent should be able to classify objectsin ordinary sit-
uations, the epistemological function is necessary. The
metaphysical functions can of course be useful for an
agent to have, but in most cases it seems that it can
manage without them. Finaly, if theagent isto be able
to reason and plan about objects it is necessary that it
have at least some inferentia functions.

3 The Nature of Categories

What can be said about categories in general? In this
section | will try to answer this question, not taking into
account how concepts are represented or acquired.

it suites my purposesvery well.



3.1 The Nature of Human Categories

To begin with, we should make a distinction between
categoriesthat we normally useand artificial categories.
Artificial categories are typicaly categories that are
constructed for aparticul ar psychol ogical experiment,*4
whereas natural categories are those that have evolved
in a natural way through everyday use. Artificia cat-
egories are constructed to be specified by a short and
simple definition in terms of necessary and sufficient
conditions, while thisis not aways possible with natu-
ra categories. Until quite recently cognitive psycholo-
gistshave studied the different aspects of conceptsusing
only artificial categories. We who investigate psycho-
logical theoriesin order to build machines that are able
to learn concepts efficiently, find this state of affairs
rather unfortunate, since machines learn artificia con-
ceptsrelatively easily. However, duringthelast decades
it has become apparent that this approach does not have
much to say about how humans really acquire concepts.
Therefore, some researchers have begun to use natu-
ral categories for their experiments. This movement
towards a more ecologically sound approach is further
elaborated in (Neisser, 1987).

Natural categories can have members that are either
concrete, such as physical objects, or abstract, such as
emotions. Inwhat follows| will concentrate on concrete
object categories. (This is probably difficult enough.)
While dealing with autonomous agents trying to learn
about their environment, it isalso aquite natura initial
assumption. As we will see later, humans use other
types of categories that cannot be classified as natu-
ral, namely derived (Smith, 1986) or ad-hoc (Barsalou,
1986) categories. Moreover, natural categories can be
divided into natural kinds and artifacts (Smith, 1986).
However, let usbegin by examining amorefundamental
topic: the properties of objects.

3.1.1 Properties

Itis commonly accepted that the basis for the represen-
tation and categorization of an object is the properties'®
that characterize the object. Some properties are per-
ceptual, in the sense that they (in some sense) are di-
rectly available from the perceptua system, while oth-
ers are more abstract (functiona, for instance). Fur-
thermore, some features are structurd (for instance, a
table has legs). However, what is considered a feature
is relative. Some features can be thought of as cat-
egories themselves (not necessarily a concrete object
category, though). Asa matter of fact, we have akind
of tree-hierarchy of categories (wheretheleaves arejust

141n some sense al'so some scientific categories, such as mathemat-
ical categories, are artificial.

15Sometimes a distinction is made between quantitative properties
(dimensions), such as temperature in °C, and qualitative properties
(features), such as hot and cold. Since it is possible to transform a
qualitative property into a quantitative and vice versa, | will in most
cases not hold on to this distinction, and just speak of properties
(sometimes however calling them features or attributes).

features).!® An example of such a hierarchy is shown
in Figure 2. (Observe that only asmall part of the hier-
archy is shown. Applesobviously have more than three
properties.)

apple

edible has seeds round

T

Figure 2: Part of the property-hierarchy of the category
“apple’.

Some of theleaves (the branch end-points, edibleand
round) of the resulting tree structure are perceptua fea-
tures (round).'” These are the features we normally use
to determine which category an object belongsto. They
are sometimes said to congtitute a considerable part of
the identification procedure (Smith and Medin, 1981)
and are closely related to the epistemologica function.
Moreover, the features on the second level (edible, has
seeds, round) are called the core of the concept and are
together with the rest of the features more connected to
the metaphysical and inferential functions.!® It is also
important to noticethat thesehierarchiesimply that most
categories are, in some way or another, dependent on
other categories.

Given the distinction between perceptua and abstract
features we can say that concepts allow usto go beyond
the information given and thus make possible the in-
ferential function. Because, once we have assighed an
object to a class on the basis of its perceptual features,
we can infer or predict its non-perceptual features.

3.1.2 Natural Kinds and Similarity

It seems natura to assume that categories emerge as
a consequence of the correlational structure of the en-
vironment, where the properties of the instances of a
category make them stand out as anatura class, distinct
from other categories. For instance, take the situation
where you see an el ephant for the first time. Because of
itsdistinct (perceptua) features, you create a new cate-
gory. Moreover, if you see another elephant you decide
that it belongs to the same category because of the fea
turesit shares with the first one. Quine (Quine, 1969)
has termed this type of category natural kinds. Rosch
and her colleagues (Rosch et d., 1976) a so emphasi zed
that natura categories emerge in this way, assuming

16This structure is rather messy though. It is mostly the structural
features (has seeds) that can be thought of as a category. (Actually, it
is “seed” that are the category.) The functional features (edible) and
perceptual features are best thought of as just features.

17Whether round is a perceptual feature or not may be open for
discussion, but let us supposethat it is.

180r like Smith (Smith, 1988) (p.29) putsit: “When reasoning we
usethecores, when categorizing we usetheidentification procedures.”



that the environment constrained the categorizations, in
that human knowledge could not provide correlational
structure where there was none at al.

However, itisarather strong metaphysica claimtoar-
guethat thereexist objectivecategoriesintheworld. We
must remember that all human categorization depends
(at least partially) on human physiology: observations
on the perceptua level are furnished by the sensory
projections of objects, whereas observationson the lin-
guisticlevel arefurnished by symbolic statements about
objectsthat in turn are furnished by sensory projections
of these objects. A more sensible and somewhat less
strong, rather epistemological, claim is that categories
“through human perception” stand out as natura cate-
gories.

The natura kind categories seem to depend on a no-
tion of similarity, where similarity isarelation between
two objects. Similar objects are grouped together to
form a natural kind. This state of affairs forces usto
analyze the concept of similarity and how it can be
measured. The theoretical treatment of similarity has
been dominated by two kinds of models: geometric and
set-theoretical. *°

In geometric models (see, for instance, (Shepard,
1974)) objects are represented as points in some co-
ordinate space. The similarity between two objects is
then measured (defined) by the metric distance between
them. However, pure geometric models are inadequate
for severa reasons, for instance:

e The measure isonly meaningful if the selected at-
tributesare relevant for describing perceived object
similarity. (Michaski and Stepp, 1983)

o All selected attributes are given equa weight
(Michalski and Stepp, 1983) (or an arbitrary
weight, as | would liketo put it).

o Itismore appropriateto represent somefeaturesas
qualitative. (Tversky, 1977)

The geometric models seems related, in some way or
another, to Gardenfors' conceptual spaces. | will try
to make this relation explicit. It is possible to see the
subconceptua level as a (low-level) feature space of a
high dimensionality. Thus, it can be said to correspond
to a“pure’ geometric model. A conceptual space can
then be seen as the resulting space when the two first
problems have been taken care of, corresponding to a
“refined” geometric modd.

In set-theoretical models objects are represented as
collections of features. The most well-known set-
theoretical model is Tversky's (Tversky, 1977) contrast
model. It expresses the similarity between two objects
as alinear combination of the measures of their com-
mon and distinctive features. However, set-theoretical
models (Tversky’s at least) have, more or less, the same

191t seems that geometric models tend to treat all features as
quantitative, whereas set-theoretic models tend to treat features as
qualitative.

problems as geometric models. They do not specify
how relevant attributes are selected. The attributes are
weighted, but how thisisdoneisonly loosely specified.
That thefeature must beweightedisimplied (I think) by
the theorem of the ugly duckling (Watanabe, 1969).%°
Moreover, any two objects can be arbitrarily similar or
dissimilar by changing the weights. Finaly, it is prob-
ably true that it is more appropriate to represent some
features as quantitative.

Aswe have seen there are problems with “pure” sim-
ilarity models, especialy with the selection of relevant
features. Schank and his colleagues (Schank et d.,
1986) go one step further by stating that a“simple” the-
ory for specifying the relevant features is impossible.
Mainly because the relevance of features depends on
the goals of the agent having the concept. They con-
clude (p. 640): “The process of determining which
aspects of instances to be generalized are relevant must
be based on an explanation of why certain features of
a category took on the values they did, as opposed to
other values that might a priori have been considered
possible”

Thus, it seems that not all categories that humans
normaly use arise in the purely bottom-up fashion
(Holyoak and Nisbett, 1988) described above. Thissug-
gests that even the weak claim that categories “through
human perception” stand out as natural categories may
be too strong, not covering al natura categories. For
instance, Rosch herself (Rosch, 1978) argues (taking
back her earlier claim) that some types of attributes
present problem for these claims. For instance, there
exist attributesthat appear to have names not meaning-
ful prior to knowledgeof the category (e.g. seat - chair).
Moreover, there exist functional attributes that seemed
to require knowledge of humans, their activities, and
the real world to be understood (e.g. “you eat on it” -
table). From these examples she concludes: “That is,
it appeared that the analysis of objects into attributes
was arather sophisticated activity that our subjects (and
indeed a system of cultura knowledge) might well be
considered to be able to impose only after the develop-
ment of the category system.” Moreover, she states that
attributes are defined so that the categories once given,
would appear maximally distinct from one another.

Similarly, Murphy and Medin (Murphy and Medin,
1985) have claimed that peopl €' sintuitivetheoriesabout
the world guide the representational process. They
made the demand upon categoriesthat they must exhibit
something called conceptual coherence. A coherent cat-
egory is one “whose members seem to hang together, a
grouping of objects that makes sense to the perceiver.”

Thus, the problem with a purely “syntactical” model
of similarity is that it ignores both the perceptual and
the theory-related constraints that exist for, at least, a

2Thijs theorem, that is formally proved, shows that whenever ob-
jects are described logically, no two objects can be inherently more
similar than any other pair. In other words, for similarity to be
meaningful, the predicates describing an object must be censored
or weighted.



certain kind of categories.?!

3.1.3 Derived Categories

As pointed out earlier natural kind categories arise in
a bottom-up fashion. In contrast, top-down category
formation istriggered by the goals of the learner.

The categoriesformed in atop-down manner are often
characterized in terms of functional festures, whereas
bottom-up categories are characterized in terms of their
structure.

As Corter (Corter, 1986) points out, the two types of
categories seem to be characterized by different kinds
of features and feature relationships. Bottom-up cate-
gories tend to group instances that share co-occurring
properties (they are “similar”), whereas top-down cate-
goriesoften consist of digunctivegroupingsof different
typesof objectsthat may not sharemany properties (they
do not have to be “similar”). For instance, the category
“things-in-my-apartment” may include such things as
records, books, chairs, apples, and so forth.

Barsalou (Barsalou, 1986) suggests that many of the
top-down categories, which he calls ad-hoc categories,
do not have the same static nature as bottom-up cate-
gories. While bottom-up categories generaly are be-
lieved to be represented by relatively permanent repre-
sentationsin long-term memory,?? he states that “many
ad-hoc categories may only be temporary constructsin
working memory crested once to support decision mak-
ing related to current goal -directed behaviour.” As an
example of aad-hoc category hetakes* activitiestodoin
Mexico with one's grandmother”. Other top-down cat-
egories, like“food”, are relatively permanent though.

3.1.4 Artifact Categories

Not all natural categories are natural kinds. A natural
division can be made between species (natura kinds)
and artifacts. Rosch’sexamples above, “chair” and “ta-
ble”, (which certainly are natural categories) are typical
artifacts. Characterigtics for artifacts are that they are
made by humans to have a certain function, implying
that they should be characterized in terms of their func-
tiona features. However, it seems that the instances of
most artifact categories also have structural, and thus
perceptua, similarities. Moreover, some objects made
for one purpose may be used for another purpose, it is
possible for instance to use a chair as atable. Thus,
we can say that artifact categories differ from natura
kindsin that they seem to arise both in a bottom-up and
atop-down fashion.

2'However, aperceptual system must havesomebuilt-in constraints
that determinewhat will count asan attribute and the salience (weight)
an attribute will have. Thus, in an autonomous system the perceptual
constraints are determined by its perceptors.

2The representations can, of course, be modified but they are
permanentin the sensethat there always existsa representation of the
category.

3.1.5 Taxonomies

Categories (natural categories at least) are aso hierar-
chically organized inadifferent sensethan“the property
hierarchies’ described above, namely, in taxonomies.?3
A part of ataxonomy isillustratedin Figure 3.

fruit
banana apple pear
/\
Granny Smith Red Ddlicious

Figure 3: Part of ataxonomy of fruits

Taxonomies al so serve an important function by pro-
moting cognitive economy. How this is possible is
demonstrated by Figure 4 and Figure 5. In Figure 4
we have a part of the fruit-taxonomy augmented with
some features of the categories.

fruit (sweet)

apple (swest, round, seeds)

/

Granny Smith (sweet, round, seeds, green)

Figure 4: Part of a part of a taxonomy of fruits aug-
mented with features.

By noticing that categories on one level inherit the
features from the (parent) category on the level above
we can reduce the amount of information that we must
storeon each level. Thisisillustratedin Figure 5.

fruit (sweet)

apple (round, seeds)

/

Granny Smith  (green)

Figure 5: Part of a part of a taxonomy of fruits aug-
mented with features (optimized).

Roschetd. (Roschet a., 1976) arguethat thereexists
inthesetaxonomiesa“basic level”. They write: “Basic
categories are those which carry the most information,
possess the highest cue validity®* and are thus, the most
differented from one another ... Basic-level categories

BThisis arather strong idealization, since some categories do not
belong to any taxonomy at all while othersbelong to several.

24The cue validity of afeature F with respect to a category C isthe
vaidity with which F is apredictor of this category. The cue validity
of an entire category may be defined as the summation of the cue
validities for that category of each of the attributes of the category.



possess the greatest bundle of features ... Basic objects
are the most inclusive categories which delineate the
correlationa structure of the environment.” In our tax-
onomy of fruits (Figure 3) bananas, apples and pears
constitutethe basic level.

The basic level has some interesting properties that
have consequences for both the epistemol ogical and the
inferential function. Since the basic level is the one
we prefer (is the easiest) for categorization, the epis-
temological function is, in some sense, maximized at
thislevel. Also the inferential function is maximized
at the basic level. The basic categories have “the great-
est bundle of features’ (perceptua and non-perceptual)
and many of thefeatures aredistinctive, permitting usto
infer a substantial number of properties without much
perceptual effort. In contrast superordinate categories
(fruit) have relatively few properties and hence can-
not enable us to make that many inferences. Although
subordinate categories (Granny Smith) have many prop-
erties they have so few distinctive properties that they
are more difficult to categorize perceptually. Finaly,
we should notethat which level that actually isthe basic
level iscontext dependent, inthesensethat it isthe most
appropriatein most situationsbut not all.

3.2 The Nature of Al Categories

In traditional Al, categories are often presumed to be
artificia inthe sense that al aspects of the category can
be summarized by ashort and simpledefinitionin terms
of necessary and sufficient conditions. This, of course,
makes thingsalot easier than they redly are.

Most work in Al isconcerned with bottom-up concept
formation (similarity-based learning, SBL), although
exceptions exist, for example explanation-based |earn-
ing (EBL) (DeJong and Mooney, 1986; Mitchdl et al.,
1986).°> For SBL both geometric and set-theoretic
models have been used. Geometric models are often
used by conceptual clustering systems, such as CLUS-
TER/2 (Michaski and Stepp, 1983; Stepp and Michal-
ski, 1986), whereassupervised learning systems, such as
version spaces (Mitchell, 1977), often use set-theoretic
models.

Michaski and Stepp (Michaski and Stepp, 1983)
propose an approach for measuring similarity in geo-
metric model s that, besides the objects (seen as points),
takes into account other objects and “the set of con-
cepts which are available for describing” the objects
“together”. They cal this measure conceptual cohe-
siveness.

In Al the problem of selecting relevant festuresis of-
ten solved by letting the user select them. The choice
of features is called the bias?® of the learning system.

SHowever, categories are not formed in EBL. The categories are
formed beforehand and ahigh-level description of themisgivenasin-
puttothelearner. Thetask isonly to transformthe (abstract) high-level
characterization into alow-level (often perceptual) characterization.

B Actually, thisis one of several types of bias. Other typesare, for
instance, (Utgoff, 1986), the space of hypothesesthat the system can

However, sometimes the learning system has to select
among the user-selected features. Several, more or less
statistical, approaches for the selection of relevant at-
tributes have been proposed, for instance, multidimen-
sional scaling (Kruskal and Wish, 1978) and neural net-
works (Gardenfors, 1992).2 Another approach could
be to use the algorithms presented in (Matthews and
Hearne, 1991). A related task iswhat is sometimes la-
belled constructive induction. In (Subramanian, 1989)
this task is described as: “finding a compact and sim-
ple concept representation given a labeled description
of the instances of the concept”. Moreover, “The chief
problem is the generation of high-level features from
the lower level featuresthat characterize theinstances.”
(Rendell, 1989) provides an overview of this problem.
Experiments have been conducted that use explana-
tionsto select relevant attributes when doing top-down
concept formation (EBL). However, the success has
been limited, probably due to the difficulties in spec-
ifying the appropriate background knowledge.
Taxonomies and their propertiesare rather well stud-
ied bothin Al and in computer science in general. Take
object-oriented languages, such as Smalltalk and Sim-
ula, where the classes are members of taxonomies and
where features are inherited from super-classes, for in-
stance. The topic of taxonomiesin Al and computer
science is further elaborated in (Jansson, 1987). How-
ever, among the existing concept learning systemsiit is
only the conceptua clustering systems (Fisher and Lan-
gley, 1985) that actually construct taxonomies. Some
of these systems, for instance (Hanson and Bauer, 1989;
Fisher, 1988), also try to include basic-level aspects.

3.3 Conclusions

In contrast to traditional Al where artificial categories
are often used, an autonomous agent in a real-world
environment hasto deal withthesame kind of categories
(natural and derived) as humans do.

As we have seen, objects have properties of different
types. Some properties, common to al objects of the
category,?® are characteristic or discriminant, these can
be used for metaphysical and epistemological classifi-
cation (e.g. for the category “human”, the genetic code
and “walking upright” respectively). Some properties
are common to al objectsin the category athough not
characteristic or discriminant, these can be used to make
inferences (e.g. having akidney). Themoreor lessuse-
less properties that are not common to all objectsin the
category (sometimes called irrelevant properties) (e.g.
hair colour) are then left over. Moreover, it seems that

consider, the order in that hypotheses are to be considered, and the
criteriafor deciding when a hypothesisis good enough.

2Z'Multidimensional scaling and neural networks are used more to
reduce the number of attributes, than to actually find the relevant
attributes. However, these tasks seem closely related.

2D not take“all” too literately. It may be the case that universal
regularities do not exist, implying that reasoning about categories
must be probabilisticin nature.



some festures are represented more naturally as quali-
tative and some as quantitative. Thus, it would be nice
if it were possiblefor the agent to have both types.

Somewhat carelessly one might say that bottom-up
categories arise due to curiosity, whereas top-down cat-
egories arise due to problem solving activities. Infor-
mation about bottom-up categories is to a great extent
derived from perceptual observations of the environ-
ment, whereas information about top-down comes from
more abstract observations. Thus, a passive agent (that
perhaps just tries to make a description of its environ-
ment) could manage with only bottom-up categories,
whereas a problem solving agent also needs top-down
categories.

As we have seen above, bottom-up category forma-
tion has been rather well studied in Al. However, some
problems remain to be solved. Top-down category for-
mation on the other hand is hardly studied at al. Unfor-
tunately, wedo not get much hel pfromthepsychol ogists
either. They have pointed out that there are categories
that are formed in a top-down manner, but they do not
give us ahint as to how the formation takes place.

Thereisaproblemwithartifact categoriesin that they
seem to be both bottom-up and top-down categories,
where thetop-down-ness, and the problem, isdueto the
emphasis on the function of the artifact objects. The
recognition of possiblefunctionsof an object from per-
ceptual observations seems like a very hard problem.?®
However, one approach to this problem is presented in
(Vainaand Jaulent, 1991). On the other hand, it would
require a very large knowledge base to be able to form
artifact categoriesin atop-down manner, and we still do
not know how this should be done.

The simplest solution may be to form artifact cat-
egories in a bottom-up fashion, making the assump-
tion that perceptual similarity is enough. Thus, having
bottom-up categories as the only permanent categories,
and maybe constructing temporal top-down (ad-hoc)
categories when convenient in problem solving tasks
(where it seems more likely that the right background
knowledgeis available).

Finally, we need to structure the categories into tax-
onomies to promote cognitive economy and inferential
functions. However, since this is a rather well stud-
ied topic, it is probably wise to concentrate on other
problems.

2Mainly because, “[one] must have some knowledge that is ca-
pable of mediating between the features at the two levels; that is,
to determine whether an abstract feature is perceptually instantiated
in an object, one must have recourse to ancillary knowledge about
the relation between abstract and perceptual features.” (Smith and
Medin, 1981) (p.19). Moreover, the functions must, of course, be
known in advance, preprogrammed or learned (which seemsto be an
even harder problem). It goeswithout saying that by letting the agent
have accessto observationson the linguistic level, wherethe function
isexplicitly given, the problemswith functional propertiesdisappear.
However, assuming that the agent has access to such observations
seems too generousfor most applications.

4 Representation of Concepts

The classes of objects which we call categories, whose
members exist externally, must of course be internaly
represented in some way. In thissection | will discuss
thefollowing questions, How do humans represent con-
cepts? How do present Al systems represent concepts?
How should Al systems represent concepts?

4.1 Human Representation of Concepts

In (Medin and Smith, 1984) three views of concepts
are presented: the classical, the probabilistic and the
exemplar. These views are to a great extent theories
about representation of concepts.

4.1.1 The Classical View and It's Problems

According to the classicd view dl instances of a con-
cept share common features that are singly necessary
and jointly sufficient for defining the category. Thus, it
would be possible to represent a concept by these fea
tures. Categorizationwouldthen beamatter of straight-
forward application of this*“definition”.

However, there are some problems with this view
(according to, for instance (Smith and Medin, 1981)
and (Smith, 1988)):

o Natural categories are, in contrast to artificial cat-
egories, often not representable by necessary and
sufficient features.

e Evenif acategory can be defined as above we tend
to not use this definition.

e There are unclear cases of category membership.

o |t isgeneraly believed that some exemplars of a
category are moretypical than others.

¢ We often think more concretely than the situation
demands.

The fact that some categories do not have a classica
definition is sometimes called the ontological problem
(Amsterdam, 1988). A nice and famous example, men-
tioned by Wittgenstein, is the category “game’. Aswe
shall see below, thisissueisrelated to the metaphysical
function of concepts.

Assuming that a classical definition existsfor a cate-
gory, it isinteresting to notice that instead of using the
classical definition we often use non-necessary features
to characterize a category or to categorize objects of the
category. As we shall see below, thisissue is closdy
related to the epistemol ogical function of concepts.

An example of unclear category membership is that
it is hard to decide for some objects whether they are
a bowl or a cup. In this example there is a relation
between an object and a category but the same prob-
lem arises between levelsin a taxonomy (subcategory-
category relations). For instance, is tomato a fruit or a
vegetable, or isarug apiece of furniture?



Prototype usually refers to the best representative(s)
or most typical instance(s) of a category as opposed to
thetreatment of categories as equivalence classes.*° For
instance, it has been shown that (at least for the exper-
iment subjects) robins are prototypica birds whereas
penguins are not.

It seems that we often think about specific objects
when we actualy refer to a category. For instance, if
someone saysthat he had to see adentist, we often think
of a specific dentist.

It has been suggested that instead of the strong de-
mand that category shal have a classica definition,
the instances of a category should only have to have a
sufficient amount of family resemblance (Wittgenstein,
1953; Rosch and Mervis, 1975). Family resemblance
usually refers to the number of features that are shared
by members of acategory. It can beviewed asameasure
of typicality. Typical members of acategory share many
attributes with other members of the category (and few
with members of other categories).

Thus, it seems clear that the classical view cannot
explain al aspects of human concepts. In response to
this, the probabilistic and the exemplar view have been
presented as views being more realistic and consistent
with empiricd findings.

4.1.2 The Probabilistic View

According to the probabilistic view, concepts are repre-
sented by asummary representation in terms of features
that may be only probable (or characteristic) of category
members. Membership in a category is graded rather
than all-or-none. Better members have more charac-
teristic properties than the poorer ones. An object will
then be categorized as an instance of some category if,
for example, it possesses some critical number of prop-
erties, or sum of weighted properties, included in the
summary representation of that category.

Thus, rather than applying adefinition, categorization
isamatter of assessing similarity.

4.1.3 The Exemplar View

Those in favor of the exemplar view argue that cate-
goriesmay be represented by (some of) their individual
exemplars, and that concepts thus are represented by
representations of these exemplars. A new instance is
categorized asamember of acategory if itissufficiently
similar to one or more of the category’s known exem-
plars. Thus, aso in this case categorization is a matter
of ng similarity rather than applying a definition.

Thereare several model s consi stent with the exemplar
view. One such modd is the proximity model which
simply storesall instances. Aninstanceiscategorized as
amember of thecategory which containsitsmost similar
stored exemplar. Another modedl is the best examples

30« Prototype” is ambiguousthough, it hasalso been used to refer to
adescription of a category that is more appropriate to some members
thanit isto others.
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model. It only stores selected, typica instances. This
model assumes that aprototypeexistsfor each category
and that it is represented as a subset of the exemplars
of the category. Another possible alternative isthat the
prototype is a non-existing “average’ instance that is
derived from the known instances.

4.1.4 Combining the Probabilistic and Exem-
plar View

Another possibility is that the representation of a con-
cept contains both a probabilistic summary representa-
tion and exemplars (Smith and Medin, 1981). It seems
reasonabl ethat when thefirst instances of acategory are
encountered we represent it in terms of these instances.
And when further instances are encountered we apply
abstraction processes to them to yield a summary rep-
resentation.

It seems that this approach has some interesting fea-
turesthat relatesto non-monotonic reasoning (Ginsberg,
1987). Consider apoint intimewhereaperson has both
asummary and aexemplar representation of theconcept
“bird”, where the summary representation contains the
feature “flies’ (as very probable). How should the rep-
resentation be updated when the person is confronted
with a penguin? It would not be wise to alter the old
summary representation too much because the fact that
arandom bird flies is very probable. A better solution
is probably to store the penguin as an exemplar as can
be done in a combined representation. However, there
are many detailsto work out before we have acomplete
theory about a such combined representation.3!

415 Comments

We must remember that the exi stence of prototypesdoes
not have any clear implicationsfor the construction of
models of human concept representation, processing
and learning. Thus, prototypes do not specify such
models, only impose constraints on them. Actualy, |
think that prototypesare only aproblem for theclassical
view if it states that categories are equivalence classes.
Clearly, there exists categories that have aclassica def-
inition but still have prototypes. For instance, some
triangles are more typical than others.

Another reflection isthat the classical view seemsto
try to capture the intension of concepts whereas the ex-
emplar view (at least partialy) describes the extension.

31The possible connection between prototype-based represen-
tations and non-monotonic reasoning has been pointed out in
(Géardenfors, 1990). It is suggested that concepts at the conceptual
level are represented as convex regionsin a conceptual space. When
an individual is first known as being abird, it isbelieved to be a pro-
totypical bird, located in the center of the region representing birds.
In this part of the region birds do fly. If it then is learned that the
individual is a penguin, the earlier location must be revised so that
the individual will be located in the outskirts of the “bird-region”,
where most birds do not fly. However, my reflection concerns the
acquisition of the representation, whereas in Gardenfors' case the
representation is already learned. Moreover, the combined approach
ison thelinguistic level and not restricted to convex regions.



4.2 Representation of Concepts in Al

Traditionallyin Al, categoriesaretrested as equivalence
classesthat can be described by necessary and sufficient
conditions. Thus, Al has adopted a rather strong ver-
sion of the classical view. Some of the representation
languagesthat have been used are: |ogic-based notation
(Michalski, 1980) , decision trees (Quinlan, 1986) and
semantic nets (Winston, 1975).

4.2.1 Non-traditional Representation

Within the last few years, some experiments with non-
classica representations have been done. Some re-
searchers are inspired by the exemplar view and some
by the probabilisticview.

Let us begin with those who are influenced by the
exemplar view. Kibler and Aha (Kibler and Aha, 1987)
have experimented with both the proximity model where
al instances are stored and selected examples model
where asubset of theinstances are stored. Systems that
use this kind of representation often use some version
of the nearest neighbor agorithm to classify unknown
instances. That is, anovel instanceis classified accord-
ing to its most similar known instance. Musgrove and
Phelps (Musgrove and Phelps, 1990) have chosen to
have a singular representation of the average member
(not necessarily an instance) of the category, which they
cal the prototype. Nagel (Nagel, 1987) presents a best
examples model that, in addition to the prototype(s),
stores transformations that transforms less typicd in-
stances to a prototype. Learning systems which use
specific instances rather than abstractions to represent
concepts have by Aha and his colleagues (Aha et al.,
1991) been labeled instance-based. They aso provide
atheoretical analysisof such algorithms.

Followers of the probabilistic view are, for instance,
de la Maza (de la Maza, 1991) who cdls his type of
representation augmented prototypes. Fisher’'s (Fisher,
1988) probabilistic concept tree represents a taxonomy
of probabilistic concepts.

An important reflection isthat, at least, the exemplar
view seemsto demand some kind of similarity measure.
But, as we have seen, similarity is not an unproblematic
topic. Moreover, the probabilistic representations seem
to have trouble with atypical instances. Therefore, it
would be interesting to experiment with implementa
tions of a combination of the probabilisticview and the
exemplar view, which seem to handle such instances
quitewell. Moreover, sinceacombination doesnot have
to store as many instances as an exemplar representa
tion, it requiresless memory and it probably categorizes
faster, since fewer comparisons between instances are
needed.

A quite different approach to non-traditional concept
representation is taken by Michalski and his colleagues
(Michalski, 1987b; Bergadano et a., 1992). Their rep-
resentation has two components, the base concept rep-
resentation (BCR) and the inferential concept interpre-
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tation (ICl). The BCR isaclassica representation that
issupposed to capturetypical and relevant aspects of the
category, whereas the I Cl should handle exceptional or
borderline cases. When categorizing an unknown ob-
ject, the object isfirst matched against the BCR. Then,
depending on the outcome, the ICI either extends or
specializes the base concept representation to see if the
object really belongs to the category. This approach is
similar to Nagel's, but she uses a prototype asthe BCR,
not a classica definition.

4.2.2 Subsymbolic Representation

Recall Gardenfors' three levels of observation from the
first section. In the same way that observations can be
described on different levels, it is possible to represent
conceptson differentlevels. Themethods of representa-
tion described above are al on thelinguistic (symbolic)
level. A method of representing (and acquiring) con-
cepts on alower level isto use neurd networks. These
were initially meant to be cognitive models of the brain
at thelevel of neurons.

Pylyshyn (Pylyshyn, 1984) has distinguished three
levels of cognitive modeling. The lowest level is con-
cerned with the physiological mechanisms underlying
thought. The highest level isconcerned with thecontent
of thought, the aspects of the world that are encoded in
the mind. Between these levels are the mechanics of
how a representation is formed without regard to the
content of the representation. Newell (Newell, 1990)
refers to this level as the symbol manipulation level.
Thus, neural networks belong to the lowest of these
levels.

In the last years there has been a growing optimism
about the capability of neural networks, both as cog-
nitive models (e.g. the works of Grossberg (Carpenter
and Grossberg, 1986) and of Edel man (Edel man, 1989))
and as toolsfor pattern recognition (e.g. backpropaga
tion networks (Rumelhart et a., 1986)). However, one
must keep in mind that neural networksthat can be sim-
ulated on a computer, as most neural networks can, are
of course at the most Turing-machine-equivalent. They
might be better suited (more efficient or easier to pro-
gram) than symbolic agorithms (computers) for some
problems, but are not a more powerful tool in general.

Clearly, neura networks are adequate for cognitive
modeling of the physiologica mechanisms underlying
thought, but since they do not represent knowledge ex-
plicitly, which seems crucid for the implementation
of the metaphysical and inferential functions, they do
not seem suitable for such purposes. The functions
that the subsymbolic methods will be able to handle
seem, for the moment, limited to tasks like perceptual
categorization.3? Thus, there is a possibility that they
might be able to implement the epistemologica func-
tion. But for at least three reasons | will not discuss

32Even though the opposite opinion is sometimes held, see for
instance (Balkenius and Gardenfors, 1991).



them further in this paper. First, it is difficult to in-
troduce background (a priori) knowledge.3® Second, it
is difficult to exploit and reason about both the learned
knowledge and the learning process. Third, they learn
too slowly inthe sense that they need many instancesto
learn afairly good representation and since the weights
often are randomly chosen, the behaviour of the net is
unpredictable in early stages and cannot be used for
classification.®*

For a more detailed discussion about possibilities
and limitations of connectionist models in genera, see
(Smolensky, 1988).

4.3 Conclusions

So, how should autonomous agents represent concepts?
Let us anayze this question in terms of the functions
that the concepts should be able to serve.

Some categories can be characterized by a clas-
sical definition (necessary and sufficient conditions).
However, such a definition is often based on features
that under normal circumstances are non-perceptua,
such as atomic structure, genetic code or functional-
ity. Thus, these definitionsare not adequate for percep-
tual classification,®® and consequently not appropriate
representati onsfor supporting the epi stemol ogical func-
tion. Instead, theimpl ementation of the epistemol ogical
function seems to demand some kind of prototypical (or
maybe subsymbolic) representation.

The implementation of the metaphysical function, on
the other hand, demands by definition a classical defi-
nition. However, it seems amost impossiblefor a non-
communi cating autonomous agent to learn such a defi-
nition, since it islimited to perceptua observations. To
find the metaphysical definition can be seen as a very
sophisticated version of classical induction (as studied
in philosophy), since we do not only have to induce one
rule but possibly several. Moreover, we need to know
that these rules are necessary and sufficient.

To implement the inferential function we must have
some*“encyclopedic” knowledge about the category and
its members. This knowledge can probably be seen as
a collection of universal or probabilistic rules. Kirsh
(Kirsh, 1986) has called this collection “a package of
associated glop”. The acquisition of this knowledge
seems like a hard learning problem, involving classical
induction.

Traditional work on concept representation in Al has
assumed that a single and simple structure (such as a

33There have been experiments with introducing symbolic knowl-
edgeinto “knowledge-based” neural networks, seefor instance (Tow-
ell etal., 1990). However, as| seeit thesenetworksarerather symbolic
than subsymbolic representations since every node represents some-
thing. This implies moreover that the knowledge in these kinds of
nets are not distributed, which is one of the characteristic features of
neural networks.

3Moreover, | simply likethe symbolic level more.

3SHowever, in traditional Al it is very common to try to make a
classical definition of acategory based directly on the perceptual data.

12

logic-based description, adecision tree, or an instance-
based description) could capture al the rel evant aspects
of a concept. However, the above discussion makes
clear that this is not possible except for in very re-
stricted domains. We need a richer composite repre-
sentation that isstructured according to the functions of
the represented concept.

Supported by the research reviewed in this paper |
proposethe structureillustrated in Figure 6 as areason-
able representation of concepts by autonomous agents.
The dashed boxes in the figure indicate optional fields.

epistemol ogical rep.

associated glop

internal designator

Figure 6: Composite Concept Representation

All parts of the representation are not always necessary
or even adequate. Metaphysical representation only
exists for some concepts and might, moreover, beirrel-
evant for an autonomousagent, and external designators
are only necessary for communicating agents.

Let usillustrate theidea of composite representation
by using the category “wasp”. The kind of informa
tion that the epi stemol ogi cal representation may include
is that wasps are black and yellow striped, cylinder-
shaped, approximately two centimeters long and half a
centimeter in diameter, that they hum, have two wings,
and so on. As concluded above thisinformation is best
represented by some kind of prototypical representa
tion, probabilisticor instance-based or a combination of
these, or possibly a neural net. The metaphysical rep-
resentation may include information about the genetic
code of wasps expressed in a logic-based notation or
maybe by a decision tree. The kind of encyclopedic
knowledgethat the associated glop would includeisfor
instance: can hurt other animates withitssting, livesin
collectives, and so on. Thiskind of informationisprob-
ably best expressed in alogic-based notation. Internal
designator: organism.animate.xxx3 External designa-
tor: wasp.

Thereis of course no sharp distinction between what
information isincluded in these representations. Thus,
there may be redundant information. For example, in
additionto being an essentia part of the epistemol ogical
representation, the fact that wasps have wingsisaquite
natural part of the encyclopedic knowledge represented

38The choice of theinternal designator is entirely up to the system,
it should be as convenient and effective as possible for the system.



intheassociated glop. However, thefact isprobably not
represented in the same way in these representations. It
may be rather implicit in a prototype for the epistemo-
logical representation and moreexplicitin alogic-based
notion for the associated glop.

This composite structure enables concepts to serve
all the functionslisted before. The epistemologica and
metaphysical representations support the epistemol ogi-
cal and metaphysical functionsrespectively. Theassoci-
ated glop supportsthe inferential function. The internal
designator supports the intrapersonal stability, whereas
the externa designator supports both the interpersonal
stability and the linguistic function.

Depending on the situation, the composite concept
representation is accessed (or retrieved) in different
ways. Externa “stimuli” in the form of direct percep-
tion of objects access the concept via the epistemolog-
ical representation. If, on the other hand, the externa
stimuli is on the linguistic level, as when communicat-
ing with other agents, the concept is accessed via the
externa designator. Findly, if the stimulusisinternal,
likein the case of reasoning, the concept isaccessed via
the internal designator.

Inthisexampletaxonomical knowledgeisexpected to
be stored outside the actua concept-structure. Another
possibility isto storesuch knowledgeinsi dethe concept-
structure.

Aswe have seen, the Al community has already stud-
ied al of the well developed psychological models of
concept representation. The only psychological model
that has not been implemented yet (at least as far as
I know) is the combined exemplar and probabilistic
model. Even thoughit has not been studied in any depth
in cognitive psychology either, it might be a candidate,
at least from the Al point of view, for the epistemologi-
cal representation of concepts.

In the following | will concentrate on the learning of
the epistemological representation and to some extent
the metaphysical representation. The learning of the
associated glop, on theother hand, has morein common
with traditiona induction than concept acquisition, and
istherefore not discussed in the rest of this paper.

5 Concept Acquisition
Finally, we have reached the stage were we are able to

discuss how concepts, these internal representations of
external categories, can be acquired.

5.1 Human Concept Acquisition

According to Atkinson et a. (Atkinson et a., 1987),
humans learn about categories in two different ways:

o by being explicitly taught

¢ by learning through experience
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Unfortunately, the authors do not further elaborate this
distinction, and | have not found any other discussions
concerning this topic, so | will try to elaborate it my-
saf. As| takeit, it is possible to be explicitly taught
about categories on both the linguistic level (learning
by description) and on asublinguistic (perceptud) level
(learning by acquaintance). Examples of learning on
the linguisticlevel are when you learn something read-
ing a book or being told something by some kind of
teacher. It seems likely that we learn the metaphysical
aspects of conceptsinthisway. Asan example of being
explicitly taught on the perceptual level we havethe sit-
uation when ateacher shows an exemplar of a category
(ostensive definition).3”

When you learn from experience, there is no teacher
available to help you with the classification. For in-
stance, if you are confronted with an instance of a cate-
gory you know rather well, but thisinstance is different
in some aspect from those you have experienced, you
might nevertheless “guess’ what category it belongsto
and, thus, learn something about the category. Another
situation is when you are confronted with an instance
of a category you know nothing about. You may then
form anew category based on that instance. Thus, there
are two cases of learning from experience, it can either
be |earning something about a known category or about
an unknown category. It isimportant to notice that the
input when learning through experience is often on the
perceptua level.

Thereisyet another way of learning about categories
that is, inaway, orthogona to the others, namely, learn-
ing by experimentation. It could be performed by ac-
tually making experiments or, maybe more common,
by asking questions. Asking questions belongs to the
linguistic level whereas learning by actual experiments
seems to belong to the perceptua level. This type of
learning bears resemblance to scientific discovery.

Itisimportant to remember that in redl lifewe do not
acquire aconcept in just one of these ways. Instead, we
use them all interchangeably. Which kind of learning
that isappropriate in a particular situation is, of course,
to agreat extent determined by the environment.

There are several other restrictions that the environ-
ment imposes on the concept acquisition process. For
instance, it must be incremental, since we do not en-
counter all instances of a category at one point in time.
Instead, we encounter an instance now and then, incor-
porating it into our “bulk of knowledge of concepts’.
Thus, concepts are acquired in agradual fashion, by in-
teracting with the environment over time. Moreover, we
do not learn one concept a a time, concepts are rather
acquired in parallel .38

3 Theexplicitnessinthelast exampleisweaker thanintheexamples
of linguistic level learning. Thus, it would be more appropriate to
placethis type of learning between the two categoriesabove.

BHere we refer to the normal, rather passive, concept acquisition
process. However, in some situationswe adopt a more active strategy,
where we concentrate on one concept at the time.



As Schank et a. (Schank et a., 1986) point out, any
dynamic and autonomoustheory of concept acquisition
must specify at least three processes:

1. Deciding when to create anew concept.
2. Deciding when to modify a concept.
3. Deciding what part of the concept to change.

5.1.1 Theories of Concept Acquisition

As pointed out in the introduction of this paper, al our
knowledge about categories cannot be innate. However,
itispossible, and even plausible, that some knowledge
about categoriesisinnate. Different researchers empha
size thisto different degrees. Fodor’s theories (Fodor,
1975), for instance, rely heavily on innate knowledge.

If al concepts are not innate then some of them must
be acquired in some way. How this is done has, of
course, been the subject of research in cognitive psy-
chology. The three most predominant psychological
theories of human concept acquisition are:

e Theassociation theory
e The hypothesistesting theory
e Theexemplar strategy

The association theory as described in (Solso, 1991)
seems rather outdated, with its roots in stimulus-
response psychology. It holds that the learning of a
concept isaresult of (1) reinforcing the correct pairing
of astimuluswith the response of identifyingit asacon-
cept, and (2) non-reinforcing (punishment) theincorrect
pairing of a stimulus with a response of identifying it
as a concept. Thistheory seems only to cover the case
of being explicitly taught something about the category
on the perceptual level. Moreover, itisextremely vague
and thus consistent with most theories. However, it is
interesting to notice its resembl ance with the backprop-
agation algorithm for teaching neural nets.

The theory of hypothesis testing states that “we hy-
pothesize what properties are critical for determining
whether an item belongsto a category, analyze any po-
tential instance for these critical properties, and then
maintain our hypothesisif it leadsto correct decisions.”
(Atkinson et a., 1987) Thus, it assumes that the cate-
gory can be characterized by a classica definition, and
it seems to assume that al instances of the category
are concurrently available for analysis. These assump-
tions are too strong for most learning situations. The
theory does not specify when to create a new concept.
Moreover, it is non-incremental and only learns one
concept at thetime. In my opinion, the hypothesistest-
ing theory is a sort of model of some kind of learning
by experimentation, such as when a scientist is doing
experiments.

Finally, theexemplar strategy smply statesthat when
encountering aknown instance of acategory arepresen-
tation of it is stored. Thistheory is consistent with the
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exemplar view of representation and thus inherits its
limitations (for instance, covers only the epistemologi-
cal aspects). However, several questions remains open,
for example: How many, and which, instances should
be memorized? Moreover, the strategy isonly specified
for learning from preclassified instances. However, it
seems possible to extend the theory to include learning
from experience, but then, when to create a new con-
cept must be specified. Advantages with the exemplar
strategy are, that it isincremental in nature and that it
accounts for the acquisition of many concepts at the
time.

5.2 Al Methods for Concept Acquisi-
tion

The concept acquisition process of an autonomous agent
is of course restricted by the environment in the same
way asahumanis. Thus, fromtheearlier discussionwe
can conclude that for artificial autonomous agents the
concept acquisition must also be incremental, concepts
must be acquired in parallel, and several methods must
be employed simultaneoudly.

5.2.1 Al Methods for Concept Acquisition Us-
ing Traditional Representation

In Al, severa ways of learning about categories have
been studied. The most studied are;

Direct implanting of knowledge

Learning from examples

Learning by observation

Learning by discovery

Learning by deduction

Direct implanting of knowledgeistheextreme, amost
trivial, case of concept acquisition in which the learner
does not performany inference at al on theinformation
provided. It includes learning by direct memorization
of given concept descriptions and the case when the
descriptions are programmed into the computer. The
latter can, from the perspective of an autonomousagent,
be seen as a way of incorporating innate, or a priori,
knowledge about concepts into the agent. In learning
by instruction (learning by being told), which is rather
similar to direct implanting of knowledge, the learner
acquires concepts (explicitly described on thelinguistic
level) from ateacher, database, textbook or some other
organized source. This form of learning, in contrast
to direct implanting of knowledge, requires selecting
the relevant information and/or transformation of this
information to an usable form.

Learning from examples is by far the most studied
type of learning in Al and can be seen as learning by
being explicitly taught. In this kind of learning the



learner induces a concept description from preclassi-
fied examples (and, in most cases, counterexamples) of
the category that are provided by some kind of teacher.
Since there is a teacher present to guide the learning
process, this type of learning is sometimes called su-
pervised learning. Thus, it is the teacher who decides
when to create a new concept. The task for thistype of
learning can be seen as finding adefinition (description)
consistent with all positive examples but no negative ex-
amples, if there are any, in thetraining set. Most of the
systems learning from examples can be viewed as car-
rying out a search through a space of possible concept
descriptions. This space can be partialy ordered, with
themost general descriptionat oneend and themost spe-
cific at the other. The most general description has no
features specified, corresponding to the set of al possi-
bleinstances, whereasthemost specific have al features
specified, corresponding to instances. There are basi-
caly two strategies for searching the space of concept
descriptions. Inthe genera -to-specific strategy, one be-
ginswiththe most general description as the hypothesis
of the correct concept description, and as new instances
are encountered, more specific descriptions (hypothe-
ses) are produced. In the specific-to-generd strategy,
one begins with a very specific description, typicaly a
description of thefirst instance, moving to more general
descriptions as new instances are observed. Some sys-
tems use oneor the other of these strategies, whilemore
sophisticated systems, like Version Spaces (Mitchdl,
1977), combine the two strategies. Since there is no
inherent non-incrementality in this approach, it seems
possible to make systems based on this approach that
learn incrementally.®

A different kind of learning-from-examples systems
are the so caled top-down induction of decision trees
(TDIDT) systems (Quinlan, 1986). These systems need
both positive and negative instances of the category to
be learned, with each instance represented as alist of
attribute-value pairs. The output is a decision tree that
can be used to decide if an instance is a member of
the category or not. TDIDT systems begin with the
root of the tree and create the decision tree in a top-
down manner, one branch at a time. At each node
they use an information theoretic evaluation function
to determine the most discriminating attribute. The
evaluation function is based on the number of positive
and negativeinstancesassoci ated with theval ues of each
attribute. An advantage of TDIDT systems isthat they
carry out very little search, relying on the evaluation
functioninstead. However, a serious limitation of these
systemsistheir non-incrementa nature. To incorporate
new instances, the tree has to often be recomputed from
scratch.

3However, some systems, version spaces for instance, have at
some stages in the learning process several competing hypotheses.
Having several hypotheses makes it difficult to use the concept and
requiresmorememory space. However, thememory requirementsare
substantially less than for systems that must memorize all instances,
such as Winston's (Winston, 1975).
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Thelearning-from-examplessystemstypically learns
just one concept at the time, without considering other
known concept descriptions. An exception to this is
AQ11 (Michalski and Larson, 1978; Michal ski and Chi-
lausky, 1980) by Michalski and his colleagues, which
learns multiple concepts. Another exception is a sys-
tem by Gross (Gross, 1988) which incrementally learns
multiple concepts. The current concept description that
islearned is constrained by the descriptions of the other
concepts. However, this system can aso be described
as learning by experimentation, since it selects the next
instance to be analyzed from a given description space
itself. Thisinstanceisthen classified by an oracle. The
introduction of an oracle being able to classify every
possibleinstance makes the learning easier and less re-
aigtic.

In learning by observation the learner forms cate-
goriesitself, through direct interactionwith theenviron-
ment. Thus, it can be seen as learning through experi-
ence. Sinceitistheenvironment, not ateacher, that pro-
vides the examples, thistype of learning is sometimes
called unsupervised learning. Typically, the learner is
given a number of entities (that are not preclassified)
described by a number, n, of features. Based on their
features it groups the entities into categories (aggrega
tion). Thisis often done by treating the instances as
pointsin an-dimensional space and employing statisti-
cal methods (cluster analysisand numerical taxonomy),
augmented with a preference criterion concerning the
concept description language. Thus, it is the learner
that decides when to create a new concept. When the
aggregation is done, the system creates descriptions of
the categories (characterization). This is done much
in the same way as the systems that learn from ex-
amples. These types of systems are commonly called
conceptual clustering systems. Some of the most well-
known are CLUSTER/2 (Michaski and Stepp, 1983;
Stepp and Michalski, 1986) and RUMMAGE (Fisher
and Langley, 1985). Noticethat al conceptual cluster-
ing systems form concepts in parallel. Moreover, they
structure the created concepts into taxonomies, while
other types of systems usually learn concepts at asingle
level. CLUSTER/2 and RUMMAGE learn in a non-
incremental fashion, but incremental systemsexig, like
UNIMEM (Lebowitz, 1986).

All of these conceptual clustering systems use some
kind of similarity measure, which dependson somekind
of distance metric, for the aggregation task. As pointed
out earlier, such ametric has severa disadvantages, for
instance, there exists no natural distance metric since it
is dependent on the relative scaling of the axes of the
space (which is arbitrary). Moreover, a distance met-
ric can take into account totally irrelevant features. An
interesting clustering (aggregation) technique that does
not use adistance metric is presented in (Matthews and
Hearne, 1991). The clusterings are instead optimized
on the prediction of feature values, which the authors
believeisthe intended function of the clustering. Thus,



thisapproach aims at maximizing the utility of the clus-
tering.

Learning by discovery is aso atype of unsupervised
learning. However, systems that learn by discovery
are more active in their search for new categories than
systems learning by observation. They exploit their do-
main, sometimes by experiments, rather than passively
observe it. The most famous system of this kind is
Lenat's AM system (Lenat, 1976; Lenat, 1977). An-
other well-known system is GLAUBER (Langley et d.,
1983). AM works in the domain of mathematics and
searches for and devel ops new “interesting” categories
after being given a set of heuristic rules and basic con-
cepts. It uses a “generate-and-test” strategy to form
hypotheses on the basis of a small number of exam-
ples and then tests the hypotheses on alarger set to see
if they appear to hold. Surprisingly, the AM system
works very well. From a few basic categories of set
theory it discovered a good portion of standard num-
ber theory. However, outside thisdomain AM does not
work very well. Two of the reasons are that there are
difficultiesin specifying heuristics for other less well-
known domains, and that in the implementation of AM
implicit knowledge about number theory was built-in.
Moreover, even though AM initially performed well in
thedomain of number theory, its performance decreased
after awhile and it was not able to discover any new in-
teresting categories. This was due to the static nature
of the heuristics, which did not change when the sys-
tem’s knowledge about the domain increased, resulting
in a static system. Thus, for such a system to be more
dynamic, it must also be able to reason and manipulate
with the heuristics.

In deductive learning, the learner acquires a con-
cept description by deducing it from the knowledge
given and/or already possessed (background knowl-
edge). Themost investigated kind of deductivelearning
is explanation-based learning (EBL) (Mitchell et a.,
1986; DeJong and Mooney, 1986) which transforms a
given abstract concept description (often based on non-
perceptud features) to an operational description (often
based on perceptua features) using a category exam-
ple (described by operationa (perceptual) features) and
background knowledge for guidance.

The standard example of EBL is about the concept
“cup”. In thisexample the abstract concept description
includesthefactsthat acup isan open, stableand liftable
vessel. Moreover, the background knowledge includes
information such as: if something is light and has a
handlethen it isliftable, if something has a flat bottom
then it is stable, and so on. Given thisand an example
of a cup in terms of more perceptua features (such as,
light, has a handl€) and the operationality criterion that
the concept description must be expressed in terms of
the perceptual features used in the example, the EBL-
system produces a description of the concept “cup” that
includesthefacts that acup islight, hasahandle, hasa
flat bottom, and so on.
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This form of learning is clearly a kind of top-down
learning, since the learning is triggered by the goal s of
the learner. It can, as has pointed out earlier, be seen as
just a reformulation of concept descriptions, since the
abstract description is given. Thus, no new categories
are created.

5.2.2 Al Methods for Concept Acquisition Us-
ing Non-traditional Representation

As mentioned in the previous section, there have been
some experiments involving non-classical representa
tionsduring thelast years. However, these experiments
have been limited to learning from examples and learn-
ing by observation.

Kibler and Aha (Kibler and Aha, 1987) describes
three algorithmsthat learn from examples, using an ex-
emplar representation of concepts. The proximity algo-
rithm simply stores al training instances. The growth
(additive) algorithm stores only those traininginstances
that would not be correctly classified. These two a-
gorithms are incremental in contrast to the third, the
shrink (subtractive) algorithm. Instead, the shrink algo-
rithm begins by placing al the training instances into
the concept representation, and then continues by test-
ing each instance in turn to see if it would be correctly
classified by the remaining instances. In (Nagel, 1987)
Nagel presents another system that learns incremen-
tally from examples, using an exemplar representation.
When a positiveinstanceis presented to the system, the
system will try to find a sequence of transformations
that transformstheinstanceinto a prototypical instance.
The new transformations are then stored as a part of
the concept description to be used for assimilating new
instances*® De la Maza's PROTO-TO system (de la
Maza, 1991) also learns incrementally from examples
but uses a probabilistic representation. It groups the
instances according to their categories and then builds
aprototype (some kind of an average member) for each
category. The prototypes are then augmented, weight-
ing each attributein order to form a probabilistic repre-
sentation.

The PLANC system by Musgrove and Phelps (Mus-
grove and Phelps, 1990) learns from observation by a
clustering agorithm that first applies multidimensiona
scaling to reduce the dimensionality of the input data.
When the clusters are detected, their members are used
to produce the prototype (a hypothetical average mem-
ber). The system uses an exemplar representation and
isnon-incremental. A system that learns from observa-
tion incrementally is Fisher's COBWEB (Fisher, 1987;
Fisher, 1988), which builds a probabilistic concept tree.
Asan evaluation measure of clusteringsin the aggregea-
tion task, COBWEB uses category utility instead of a
distance metric. It was originaly developed by Gluck
and Corter (Gluck and Corter, 1985) as ameans of pre-

“OHow the prototypes are learned in the first place is not described
in the material that, for the moment, is available to me.



dictingthebasiclevel inhumantaxonomies. Itissimilar
to Matthewsand Hearne's approach inthat it maximizes
the predictive ability of the clustering.

Finally, we can notice that the typicality of the in-
stances is not given explicitly in these systems. (I am
not sure about Nagel’s system, though.)

5.3 Conclusions

As we have seen, the issue of concept acquisition, in
contrast to functional and representationa issues, is
more elaborated in Al than in Cognitive Psychology.
In fact, for al the psychological models presented in
this section, there exist corresponding Al methods. For
instance, one can compare the association theory with
backpropagation learning, the hypothesis testing the-
ory with Gross' system, and the exemplar strategy with
Kibler and Aha's experiments on instance-based learn-
ing. Thus, thetheoriesabout human concept acquisition
have already been tested as Al methods, implying that
thereisnot much we can gain by studying these psycho-
logical models. However, one result of the study is, as
pointed out several timesbefore, that approachesto con-
cept acquisition by autonomous agents are constrained
by several demands, they must:

e beincremental
e beabletolearn many concepts at the time
o apply several methods simultaneously

Towhat extent have these demands been met by existing
Al systems? In early machine learning research, learn-
ing systems were typically non-incrementa. In recent
years however, many incremental systems have been
constructed.

There exist systems that learn many concepts a a
time, for instance conceptua clustering systems and
some non-traditiona learning-from-example systems.
However, intraditional learning-from-examplesystems,
knowledge about known categories and taxonomies are
typicaly not used to constrain the hypothesis space.
How this should be done seems like an important area
of research (if oneisinterested inthe metaphysical func-
tions of concepts).

Still, the requirement that several methods of learn-
ing must be applied simultaneoudly indicates where the
grestest need for more research can befound. It may be
truethat there already exist systemsthat integratetwo or
morelearning methods. However, most of thesesystems
integratelearning from exampl es and expl anati on-based
learning, see for instance (Lebowitz, 1990).

The types of learning that are adequate to integrate
depends heavily on the environment in which the agent
works. As mentioned earlier, there are two possible
scenarios for an autonomous agent. It can either be
aloneinitsenvironment or beamong other agentswhich
it can communicate with.
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An agent that is alone can, of course, have prepro-
grammed knowledge about concepts (direct implanting
of knowledge). Apart from this, it seems to be limited
to learning by observation. The kind of knowledge it
can learn in thisway is mainly epistemologica and to
somedegreeinferential. But sincethe agent isrestricted
to perceptual information it can hardly learn any meta
physical knowledge.

In the case where other agents exist, it may be possi-
ble for the agent to learn from examples in addition to
learning by observation and direct implanting of knowl-
edge. Thisisdone by letting some other agent act as a
teacher. Thus, for this kind of agent, an integration of
learning from examples and learning from observation
may befruitful.

One of the key problems for an agorithm that inte-
grates learning from examples and learning by obser-
vation is to decide when to create a new concept. It
needs to know when it encounters an instance of an un-
known category. Somewhat surprisingly, this demand
radically constrains the choice of representation. An
(implicit) assumption that is often made when learning
from examples, isthat al categories in the universe are
exemplified inthelearning set. Thisassumption hasled
to the construction of algorithmsthat learn to discrimi-
nate between categories. By concentrating onthediffer-
ences between the categories rather than the categories
themselves, they just learn the boundaries between cat-
egories. Moreover, they partition the entire description
space into regions, so that every region belongs to a
certain category. Thus, when instances of unknown cat-
egories are encountered the algorithm cannot detect this
fact, and the instances are categorized in a rather un-
predictable manner. This problem is treated by Smyth
and Mélstrom in (Smyth and Mellstrom, 1992) where
they take decision trees and multi-layer neural networks
as examples of discriminative models. Asasolutionto
this problem they suggest generative or characteristic
(Dietterich and Michal ski, 1981) models, which are in-
tended to discriminatetheinstancesof thecategory from
all other possibleinstances. These kind of models con-
centrate on the similarities between the members of the
category, so that category boundariesarejust animplicit
by-product. Examples of such models are logic-based
(depending on the learning agorithm, both discrimi-
nate and characteristic exist, see (Micha ski, 1977)) and
instance-based representations. Moreover, Smyth and
Mélstrom make quite a provoking statement: “In fact
one could even conjecture that only generative models
can betruly adaptive and that discriminative modelsare
impossible to adapt in an incremental on-line manner.
This is certainly true in the general case for the class
of discriminative models which includes decision trees
and fixed-structure neural networks.”

What about |earning from discovery then? The exper-
iments conducted so far have shown that such systems
might work inasmall, well understood, and predictable
domain, but that it is very hard to make such systems



suitable for real-world domains. Thus, despite the fact
that learning by discovery is a very powerful learning
method, it seems that (at |east at the present stage of re-
search) autonomous agentswill have to manage without
it.

The dgorithms that learn from examples and by
observation seem more adequate for learning bottom-
up categories than top-down categories, whereas
explanation-based |earning algorithmsare, more or | ess,
designed to learn top-down concepts. Thus, a problem-
solving agent may benefit from using EBL. However,
as pointed out earlier, EBL do not form any new cate-
gories. The actua category formation step iswhen the
high-level description is created during problem solv-
ing. Thisis, | believe, a not very well studied topic.
EBL isthen used to get arepresentation that can support
theepistemol ogical function. However, asLebowitz has
pointed out (Lebowitz, 1986), it isquestionablewhether
thereexist real-world situationswhere it can be applied,
where the agent possesses al the background knowl-
edge that is required to make the transformation into a
low-level description.

A problemthat | have not addressed isnoiseinthein-
put. Noiseisaninescapable problemin most real-world
domainsand hasbeen addressed by somelearning-from-
examples systems. The solutionsare often based on the
assumption that the members of a category are rather
similar. The problem with this assumption isthat it is
not compatible with the existence of atypical instances,
in the sense that it becomes impossible to discriminate
noise-laden instances from atypica ones.

6 Summary of Conclusions

The goal of this paper is, besides the reviewing of re-
search in cognitive psychology and Al on different as-
pects of concepts, to investigate the issue whether psy-
chologica theories of concept acquisition can help us
in constructing algorithms for concept acquisition by
computer-based autonomous agents. However, as is
evident from theresearch reviewed, itisfrom more fun-
damental aspects than acquisition, that influence from
psychology has the potential of being most fruitful.

For instance, the functiona aspects of concepts are
hardly ever discussed within the Al society. Never-
theless, it seems clear that it is necessary to make a
distinction between, a least, the epistemological, the
metaphysical and the inferential function, whereas the
other functions emerge, more or less, automatically.

Al researchers a so have avery simplified view of the
nature of categories. An autonomous agent in a rea-
world environment has to deal with real categories, not
artificial ones. Furthermore, it is important to make a
distinction between natura and derived categories since
they must be acquired in different ways. Natural cat-
egories (natura kinds in particular) often arise merely
when observing the world, whereas derived categories
arise during problem solving activities. Concepts for
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representing natural categoriesareprobably best |earned
by a similarity-based algorithm, whereas derived cate-
gories need a top-down algorithm. EBL is, in a sense,
atop-down approach, but does not address the problem
of formation of concepts.

As for the representation of concepts, we can con-
clude that a single and simple structure does not suf-
fice to account for all the functionsthat concepts might
have. Thus, an autonomous agent must have a com-
plex (composite) concept representation. A suggestion
for such a structure that supports the most important
functionswas presented in Section 4.3. It has an episte-
mological representation for perceptua (normal) cate-
gorization and an optiona metaphysical representation
for more“scientific” categorization. Aswe have seen, it
seems that some kind of prototype-based representation
isthe best aternative for the epistemological represen-
tation, whereas alogic-based classical representationis
the most appropriatefor the metaphysical. To beableto
reason and make predictions about the category and its
members, the agent needs alarge amount of encyclope-
dic knowledge. Thisis stored in the “associated glop”.
How this should be represented has not been discussed
in detail, but some kind of logic-based representation
seems appropriate. Moreover, to support stability and
linguisticfunctions, the structure a so includes an inter-
nal and an external designator.

As for the actual acquisition, it seems that the agent
has to rely on learning from examples (if there some
kind of teacher available), learning by observation and
some method for forming derived (top-down) concepts.
Learning from discovery seemstoo difficult for an agent
inarea-world domain. Moreover, thelearning must be
incremental and not only concern one concept at the
time. However, the most urgent topic for research is
theintegration of the different acquisition methods that
already exist. The most interesting combination is per-
haps learning from examples and learning from obser-
vation. Another demand on the learning agorithmsis
that they should learn characteristic concept represen-
tations, not discriminative. This demand disgudifies
several popular algorithms such as TDIDT and back-
propagation.

Finally, as has been pointed out earlier, the input to
thelearner in present Al-systemsisusually descriptions
of instances, consequently they deal with linguistic de-
scriptions of the real world. Thus, the observations
are on the linguistic level. Autonomous agents, on the
other hand, have to deal with redlity itself, making ob-
servations also on the perceptual level 4! Especialy,
agents that are alone rely heavily on such observations,
whereas communicating agents al so make observations
on thelinguisticlevel.

“IHow these observationsactually should bemadeis a problemthat
normally is studied within other fields such as computer vision (see
for instance (Fischler and Firschein, 1987)). However, asthe problem
of concept acquisitionis approached in this paper, it overlapsto some
extent with these fields.
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