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ABSTRACT

A novel method for learning characteristic decision trees
is applied to the problem of learning the decision mecha-
nism of coin-sorting machines. Decision trees constructed
by ID3-like algorithms are unable to detect instances of cat-
egories not present in the set of training examples. Instead
of being rejected, such instances are assigned to one of the
classes actually present in the training set. To solve this
problem the algorithm must learn characteristic, rather than
discriminative, category descriptions. In addition, the abil-
ity to control the degree of generalization is identified as an
essential property of such algorithms. A novel method us-
ing the information about the statistical distribution of the
feature values that can be extracted from the training exam-
ples is developed to meet these requirements. The central
idea is to augment each leaf of the decision tree with a sub-
tree that imposes further restrictions on the values of each
feature in that leaf.

1 INTRODUCTION

One often ignored problem for a learning system is how
to know when it encounters an instance of an unknown cat-
egory. In many practical applications it cannot be assumed
that every category is represented in the set of training ex-
amples (i.e., they are open domains [Hut94]) and some-
times the cost of a misclassification is too high. What is
needed in such situations is the ability to reject instances of
categories that the system has not been trained on.

In this article we will concentrate on an application con-
cerning a coin-sorting machine of the kind often used in
bank offices.1 Its task is to accept and sort (and count) a lim-
ited number of different types of coins (for instance, a par-
ticular country’s), and to reject all other coins. The vital part
of the machine is a sophisticated sensor that the coins pass

1The work presented in this paper has in part been carried out in col-
laboration with Scan Coin AB (Malmö, Sweden), a manufacturer of such
machines.

one by one. The sensor measures electronically five prop-
erties (diameter, thickness, permeability, and two kinds of
conductivity) of each coin, which all are given a numerical
value. Based on these measurements the machine decides
of which type the current coin is: if it is of a known type
of coin, it is sorted, otherwise it is regarded as an unknown
type and is rejected.

The present procedure for constructing the decision
mechanism is carried out mostly by hand. A number of
coins of each type are passed through a sensor and the mea-
surements are recorded. The measurements are then ana-
lyzed manually by an engineer, who chose a minimum and
a maximum limit for each property of each type of coin. Fi-
nally, these limits are loaded into the memory of the ma-
chine. When the machine is about to sort a new coin, it
uses the limits in the following way: if the measurement
is higher than the minimum limit and lower than the maxi-
mum limit for all properties of some type of coin, the coin
is classified as a coin of this type. If this is not true for any
known type of coin, the coin is rejected.

Thus, in the present method, which is both complicated
and time consuming, it is the skill of the engineer that de-
cides the classification performance of the coin-sorting ma-
chine. Moreover, this procedure must be carried out for ev-
ery new set of machines (e.g., for each country’s). In addi-
tion, there are updating problems when a new kind of coin
is introduced. This is not only applicable when a new de-
nomination is introduced, or when the appearance of an old
denomination is changed. It is, for instance, not unusual
that the composition of the alloy is changed. In fact, this
happens often undeliberately as it is difficult to get exactly
the same composition every time and, moreover, there are
sometimes trace elements of other metals in the cauldron.
Another kind of problems comes from the fact that it is diffi-
cult to make all the sensors exactly alike. As a consequence
of this and the fact that all machines used for the same set
of coins use the same limits, each sensor must be calibrated.
Moreover, this calibration is not always sufficient and ser-
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Figure 1: Discriminative (left) versus characteristic (right) category descriptions.

vice agents must sometimes be sent out to adjust the limits
on particular machines.

However, if we construct a method which automatically
learns the decision mechanism, it would be possible to bring
down the effects of these problems. In short, the task to
be solved can be described as follows: develop a system
that computes the decision mechanism of a coin-sorting ma-
chine automatically from a number of examples of coins.

2 CHARACTERISTICS OF THE APPLICATION

To begin with, this is a case of learning from examples
in that we can safely assume that there is a number of coins
with known identities which can be used to train the sys-
tem. Moreover, as the working of the machine has been
described above, we can clearly divide it into two sepa-
rate phases, the initial training phase and the classification
phase. Thus, there is no need to make demands on incre-
mentality upon the learning algorithm.

There are also some demands on performance. The
method must be time-efficient both in the learning phase,
since the long-term goal is to let the end users themselves
adapt the machine to a set of coins of their choice and
we cannot expect the bank clerks to be willing to spend
much time training the machine, and in the classification
phase, since the machine must be able sort approximately
800 coins per minute. Moreover, as the current hardware
is rather limited the method also must be memory-efficient.
However, as the hardware probably will be upgraded in the
near future, we will not bother much about the space prob-
lem. The demands on classification performance that must
be met by the learning system before it can be used in a real
world application are rather tough: not more than 5% of
known types of coins are allowed to be rejected and very
few misclassifications (less than 0.5%) of any type of coins
are accepted. Consequently, more than 99.5% of unknown
types of coins should be rejected.

Another aspect of our learning task concerns a problem

that often has been ignored in the machine learning re-
search. Namely, how the learning system should “know”
when it encounters an instance of an unknown category.
It is for practical reasons impossible to train the learning
system on every possible kind of coin (genuine or faked).
Thus, we must assume that the system can be trained only
on the types of coins it is supposed to accept. As been
pointed out by Smyth and Mellstrom [SM92], the only way
of solving this problem is to learn generative, or charac-
teristic, category descriptions that try to capture the simi-
larities between the members of the category. This, in con-
trast to learning discriminative descriptions that can be seen
as representations of the boundaries between categories.
The difference between these kinds of descriptions is illus-
trated in Figure 1. It shows some instances of three known
categories (?, �, and �), and examples of possible cate-
gory boundaries of the concepts learned by a system us-
ing discriminative descriptions (to the left) and by a sys-
tem using characteristic descriptions (to the right). In this
case, a member of an unknown category (1) will be cate-
gorized wrongly by a system using discriminative descrip-
tions, whereas it will be regarded as a member of a novel
category by a system using characteristic descriptions.

3 RESULTS FROM A PRELIMINARY STUDY

A preliminary study was carried out by a Master’s stu-
dent (Mårtensson [Mar94]). Three methods were evalu-
ated: induction of decision trees using the ID3 algorithm
[Qui86], learning neural networks by the backpropagation
algorithm [RHW86], and computing Bayesian classifiers
[TG74]. However, since all these methods in their origi-
nal versions learn discriminative descriptions, they must be
modified in order to learn characteristic descriptions. For
instance, in the ID3 algorithm each leaf of the decision tree
was augmented with a subtree in order to impose further re-
strictions on the feature values. A lower and an upper limit
are computed for every feature. These will serve as tests:
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if the feature value of the instance to be classified is below
the lower limit or above the upper limit for one or more of
the features, the instance will be rejected, i.e., regarded as
belonging to a novel class, otherwise it will be classified ac-
cording to the original decision tree. Thus, when a new in-
stance is to be classified, the decision tree is first applied
as usual, and then, when a leaf would have been reached,
every feature of the instance is checked to see if it belongs
to the interval defined by the lower and the upper limits.
If all features of the new instance are inside their interval
the classification is still valid, otherwise the instance will
be rejected. In this method the lower and upper limits were
assigned the minimum and maximum feature value of the
training instances of the leaf respectively. Since this ap-
proach will yield a maximum specific description (cf. Holte
et al. [HAP89]), we will refer to it as ID3-Max.

The main result of Mårtensson’s study was that the per-
formance in terms of classification accuracy of three meth-
ods was almost equivalent. However, as it became clear
that the company wanted explicit classification rules (e.g.,
for service and maintenance reasons), the neural network
approach was given up. It also became apparent that the
method must be able to learn disjunctive concepts (i.e.,
classes that correspond to more than one cluster of training
instances in the feature space). In addition to the fact that
the actual appearance of a denomination change now and
then (and often both are valid as means of payment), angu-
lar coins will be in different positions in the sensor resulting
in different values in the diameter, and, as mentioned ear-
lier, the alloy is different in different batches. These irreg-
ularities will tend to divide the measurements of one type
of coin into two or more separate clusters. This was one of
the reasons why the Bayesian classifier approach was given
up. Another reason was that it does not provide explicit
minimum and maximum limits for each parameter, which
is what should be programmed into the decision mechanism
of the machine.

Since the decision tree approach (1) by far was the most
time-efficient in the classification phase, (2) was reasonable
fast in the learning phase, (3) learned explicit rules (and pro-
vides explicit min and max limits for each parameter), and
(4) was good at learning disjunctive concepts, it was se-
lected as the most promising candidate for solving the prob-
lem.

Although the ID3-Max algorithm showed promising re-
sults, an improvement was desired for mainly two reasons:
Firstly, the ID3-Max algorithm is not sufficiently robust,
e.g., an extremely low (or high) value of one parameter of
one coin in the training set could ruin the whole decision
mechanism. This problem is related to the problem of noisy
instances which will be discussed in the last section of this
paper. Secondly, and perhaps more important, it is not pos-
sible to control the degree of generalization (i.e., the po-

sition of the limits). For example, too many coins were
rejected as the ID3-Max algorithm did not generalize suf-
ficiently. For these reasons, a more dynamic and robust
method for computing the limits has been developed.

4 THE NOVEL LEARNING TECHNIQUE

The novel technique developed to solve these problems is
also based on the ID3 algorithm and constructs subtrees out
of lower and upper limits in a way similar to ID3-Max. The
central idea of the method is to make use of statistical infor-
mation concerning the distribution of the feature values of
the instances in the leaf. For every feature we compute the
lower and the upper limits so that the probability that a par-
ticular feature value (of an instance belonging to this leaf)
belongs to the interval between these limits is 1� �.

In this way we can control the degree of generalization by
choosing an appropriate �-value. The lesser the �-value is,
the more will the algorithm generalize. For instance, if it
is important not to misclassify instances and a high number
of rejected (not classified) instances are acceptable, a high
�-value should be selected.

If X is normally distributed stochastic variable, we have
that:

P (m� ��

2
� < x < m+ ��

2
�) = 1� �

wherem is the mean, � is the standard deviation, and some
common values of � are:

�0:05 = 1:6449; �0:025 = 1:9600; �0:005 = 2:5758

Thus, we have, for instance, that the probability of an ob-
servation being larger than m � 1:96� and smaller than
m+ 1:96� is 95%.

In order to follow this line of argument we have to as-
sume that the feature values of each category (or each leaf if
it is a disjunctive concept) are normally distributed. This as-
sumption seems not too strong for most applications. How-
ever, as we typically cannot assume that the actual values
ofm and � are known, they have to be estimated. A simple
way of doing this is to compute the mean and the standard
deviation of the training instances (belonging to the current
leaf):

m� = �xi
n
; �� =

q
�(xi�x)2

n�1

To get a nice interpretation of the interval between the up-
per and lower limit, we have to assume that these estimates
are equal to the actual values ofm and �. This is, of course,
too optimistic, but it seems reasonable to believe (and will
be shown in Section 6) that the method is of practical value
also without this interpretation. Anyway, the intended sta-
tistical interpretation suggests that the probability of a fea-
ture of an instance of a category being larger than lower
limit and smaller than upper limit for � = 0:01 is 99%.
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Figure 2: The feature space of the example. The boundary

between the two categories (? and �) induced by the ID3

algorithm is represented by the vertical dashed line.

5 A SIMPLE EXAMPLE

We will now present a very simple example to illustrate
the method. All instances are described by two numerical
features, and the training instances belong to either of two
categories: the ?-category or the �-category. The system is
given four training instances of each category.

The feature values of the training instances of the ?-
category are: (3.0, 1.2), (3.5, 0.9), (4.5, 1.1), (5.0, 0.8) and
the �-category training instances are: (11.5, 1.8), (12.5, 1.5),
(12.5, 1.8), (13.5, 2.1). Figure 2 shows the positions of the
instances in the feature space.

If these training-instances are given to the ID3 algorithm,
the output will be the decision tree shown in Figure 3. (Or
a similar one, depending on the cut-point selection strategy.
In all examples presented here the cut-point is chosen by
first sorting all values of the training instances belonging to
the current node. The cut-point is then defined as the aver-
age of two consecutive values of the sorted list if they be-
long to instances of different classes.) This tree represents
the decision rule: if f1 � 8.25 then the instance belongs to
the ?-category, else it belongs to the �-category. The classi-
fication boundary that follows from this rule is illustrated in
Figure 2 by a vertical dashed line. If we now apply the deci-

f1

� 8.25 > 8.25

?-category �-category

Figure 3: The decision tree induced by the ID3 algorithm.

f1
� 8.25 > 8.25

f1

< 3.0 > 5.0

reject reject

f1

< 11.5 > 13.5

reject rejectf2

< 0.8 > 1.2

reject reject

f2

< 1.5 > 2.1

reject reject?-category �-category

Figure 4: The decision tree induced by ID3-Max.

sion tree to an instance of another category (1) with the fea-
ture values (9.0,0.5), it will be (mis)classified as an instance
of the �-category.

Let us apply the method based on the maximum specific
description to this problem. Given the training instances it
will produce the decision tree in Figure 4 which will reject
all instances outside the dotted boxes in Figure 5.

If we now apply the augmented decision tree to the 1-
category instance, we first use the decision tree as before re-
sulting in a preliminary classification which, still as before,
suggests that it belongs to the �-category. However, as we
proceed further down the tree into the appended subtree, we
will eventually encounter a test that brings us to a reject-leaf
(i.e., we check whether the new instance is inside the dot-
ted box, and find out that it is not). As a consequence, the
instance is rejected and treated as an instance of a novel, or
unknown, category.
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Figure 5: The acceptance regions of the maximum speci�c de-

scription (dotted boxes) and those resulting from the method

based on statistical distribution with � = 0.05 (inner dashed

boxes), and with � = 0.001 (outer dashed boxes).
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Canadian Coins Foreign Coins
correct miss reject correct miss reject

ID3 99.7% 0.3% 0.0% 0.0% 100.0% 0.0%

ID3-Max 83.7% 0.0% 16.3% 0.0% 0.0% 100.0%

ID3-SD 0.1 62.1% 0.0% 37.9% 0.0% 0.0% 100.0%

ID3-SD 0.05 77.5% 0.0% 22.5% 0.0% 0.0% 100.0%

ID3-SD 0.01 92.2% 0.0% 7.8% 0.0% 0.0% 100.0%

ID3-SD 0.001 97.9% 0.0% 2.1% 0.0% 0.0% 100.0%

ID3-SD 0.0001 98.9% 0.0% 1.1% 0.0% 0.0% 100.0%

desired 100.0% 0.0% 0.0% 0.0% 0.0% 100.0%

Table 1: Result from training set containing Canadian coins (averages over 10 runs).

If we apply the method based on statistical distribution
with � = 0.05, the lower and upper limits will have the fol-
lowing values: for the ?-category 2.2 (f1 lower), 5.8 (f1
upper), 0.6 (f2 lower), and 1.4 (f2 upper), and for the �-
category 10.9, 14.1, 1.3, and 2.3 respectively. These limits
will yield a decision tree with the same structure as that of
the maximum specific method but with different values on
the rejection branches, and will cover the areas marked by
the inner dashed boxes in Figure 5. Such an area, which we
will call acceptance region, can be interpreted as meaning
that, if the assumptions mentioned above were correct and if
the features are independent, 90.2% (0.95�0.95) of the in-
stances of the category are inside the box. Just as with the
maximum specific tree this tree will reject the 1-category
instance. We can also see that the lesser �-value that is
chosen, the more will the algorithm generalize. The outer
dashed boxes correspond to the acceptance region for � =
0.001, i.e., 99.8% of all instances of the category are inside
the region.

6 TEST RESULTS

In our experiments two databases were used, one describ-
ing Canadian coins contains 7 categories (1, 5, 10, 25, 50
cent, 1 and 2 dollar), and one describing Hong Kong coins
that also contains 7 categories (5, 10, 20, 50 cent, 1, 2,
and 5 dollar). All of the 5 attributes (diameter, thickness,
conductivity1, conductivity2, and permeability) are numer-
ical. The Canada and Hong Kong databases were chosen
because when using the company’s current method for cre-
ating the rules of the decision mechanism, these coins have
been causing problems.

In each experiment 140 (7�20) instances were randomly
chosen for training and 700 (2�7�50) instances for testing.
This scenario is quite similar to the actual situation where
you in the training phase expose the system only to the coins

of one country, but in the classification phase also confront
it with coins of other countries. Each experiment was per-
formed with the original ID3 algorithm, the maximum spe-
cific tree algorithm (ID3-Max), and the algorithm based on
statistical distribution (ID3-SD) for the �-values: 0.1, 0.05,
0.01, 0.001, and 0.0001.

Table 1 shows the classification results when training on
the Canadian coin database. We can see that all foreign
coins (i.e., Hong Kong coins) are rejected, except of course
for the ID3 algorithm. Neither were there any problems
with misclassifications. In fact, the Canadian coins that are
misclassified by the ID3 algorithm are rejected by the al-
gorithms learning characteristic descriptions. However, the
requirements of classification accuracy (less than 5% re-
jects of known types of coins and very few misclassifica-
tions (less than 0.5%)) are met only by the ID3-SD algo-
rithm with � = 0.001 and 0.0001, which illustrates the ad-
vantage of being able to control the degree of generaliza-
tion.

In Table 2 the results when training on the Hong Kong
coin database are shown. As indicated by the percentages
of misclassifications of known types of coins, this is a more
difficult problem. Although there are two �-values (0.001
and 0.0001) that meet the requirements, they are very close
to the acceptable number of rejects (0.001) and misclassi-
fications (0.0001) respectively. Results from experiments
using other databases can be found in Davidsson [Dav95].

A potential problem for the ID3-SD algorithm is when
the training set consists of only a few training instances of
one or more of the categories (or clusters). One would think
that when the number of training examples of a category de-
creases there is a risk that the estimates of the mean value
and the standard deviation (which are fundamental for com-
puting the acceptance regions) will not be sufficiently good.
However, preliminary experiments indicate that the classifi-
cation performancedecreases only slowly when the training
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Hong Kong Coins Foreign Coins
correct miss reject correct miss reject

ID3 98.3% 1.7% 0.0% 0.0% 100.0% 0.0%

ID3-Max 79.7% 0.0% 20.3% 0.0% 0.0% 100.0%

ID3-SD 0.1 60.0% 0.0% 40.0% 0.0% 0.0% 100.0%

ID3-SD 0.05 74.8% 0.0% 25.2% 0.0% 0.0% 100.0%

ID3-SD 0.01 88.9% 0.0% 11.1% 0.0% 0.0% 100.0%

ID3-SD 0.001 95.1% 0.3% 4.6% 0.0% 0.0% 100.0%

ID3-SD 0.0001 96.3% 0.5% 3.2% 0.0% 0.0% 100.0%

desired 100.0% 0.0% 0.0% 0.0% 0.0% 100.0%

Table 2: Result from training set containing Hong Kong coins (averages over 10 runs).

examples get fewer. As can be seen in figure 6, it handles
the problem of few training instances much better than the
maximum specific description approach which, in fact, has
been suggested as a solution to the related problem of small
disjuncts (cf. Holte et al. [HAP89]). In the coin classifica-
tion domain small disjuncts could, for instance, be caused
by irregularities in the composition of the alloys.

7 NOISY AND IRRELEVANT FEATURES

The ID3-SD algorithm is better at handling noisy data
than the ID3-Max algorithm in the sense that an extreme
feature value for one (or a few) instance(s) will not influ-

No. training

instances

-

5 10

20

40

60

80

100

ID3-Max

�

�

�

ID3-SD 0.01

�

�

�

ID3-SD 0.001

�

�

�

Figure 6: The percentage of correctly classi�ed instances of

known categories (Canadian coins) as a function of the num-

ber of instances of each category in small training sets (aver-

ages over 10 runs). The remaining instances were rejected.

ence the positions of the limits of that feature in ID3-SD
as much as it will in ID3-Max. This is illustrated in Fig-
ure 7 where a single instance with a single noisy feature
value corrupts the acceptance region of the Max-algorithm
whereas the acceptance region of the SD-algorithm is af-
fected to a lesser extent.

A method for further reducing the problem of noisy in-
stances, would be to use the acceptance regions to remove
instances that are (far) outside their acceptance region and
then recalculate the region. For instance, if we remove the
noisy instance in the figure and recalculate the acceptance
region, we get the region shown in the right picture in the
figure. This method for outlier detection is currently under
evaluation.

However, in this paper we have used the traditional ID3
algorithm as a basis, an algorithm that is not very good at
handling noisy data in the first place. In fact, there is a triv-
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ial solution to the problem with noisy data: Use a prun-
ing method (cf. Mingers [Min89]) to cut off the undesired
branches, or use any other noise tolerant algorithm (e.g.,
C4.5 [Qui93]) for inducing decision trees, and then com-
pute the subtrees as before for the remaining leaves.

Moreover, the original ID3-algorithm is quite good at
handling the problem of irrelevant features (only features
that are useful for discriminating between the categories
in the training set are selected). But since the suggested
method computes upper and lower limits for every feature
and use these in the classification phase, also the irrelevant
features will be subject for consideration. However, this po-
tential problem will typically disappear since an irrelevant
feature often is defined as a feature which value is randomly
selected according to a uniform distribution on the feature’s
value range (cf. Aha [Aha92]). That is, the feature values
have a large standard deviation, which will lead to a large
gap between the lower and the upper limit. Thus, as most
values of the feature will be inside the acceptance region
with regard to this feature, the feature will still be irrelevant
for the classification.

8 THE GENERALITY OF THE SD APPROACH

The main limitation of the SD approach seems to be that
it is only applicable to numerical attributes. The maxi-
mum specific description method, on the other hand, re-
quires only that the features can be ordered. Thus, one way
of making the former method more general is to combine
it with the latter method to form a hybrid approach that is
able to handle all kinds of ordered features. We would then
use the statistical method for numerical attributes and the
maximum specific description method for the rest of the
attributes. Moreover, nominal attributes could be handled
by accepting those values present among the instances of
the leaf and reject those that are not. In this way we get
a method that learns characteristic descriptions using all
kinds of attributes. However, the degree of generalization
can, of course, only be controlled for numeric features.

The statistically based approach for creating characteris-
tic descriptions is a general method in the sense that we can
take the output from any decision tree induction algorithm,
compute a subtree for every leaf, and append them to their
leaf. In fact, the approach can, in principle, be applied to
any empirical learning method, supervised or unsupervised,
using the hybrid approach. However, if the instances of a
category corresponds to more than one cluster in the feature
space (cf. disjunctive concepts), the method will probably
work better for algorithms that explicitly separates the clus-
ters, i.e., where it is possible to find out which cluster a par-
ticular instance belongs to. If this is the case, the acceptance
regions can be computed separately for each cluster. Other-
wise, we must compute only one acceptance region for the
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Figure 8: The acceptance regions for the ?-category computed

by ID3-SD (dotted boxes) and by an algorithm that does not

explicitly separate clusters of category instances (dashed box).

(� = 0.05).

whole category, which probably will result in a too large ac-
ceptance regions (see Figure 8).

The problem with disjunctive categories is also a partial
answer to the question: Why bother building a decision tree
in the first place? Could we not just compute the lower and
the upper limits for every category and test unknown in-
stances against these? The main problem with such an ap-
proach would be that when a new instance is to be classi-
fied, it might be assigned to two or more classes. The reason
for this ambiguity is, of course, that the acceptance regions
of two or more categories may overlap. Moreover, even if
the regions do not overlap, there will be problems dealing
with disjunctive concepts for the reason mentioned above.
Thus, in either case, we must have an algorithm that is able
to find suitable disjuncts of the concept (which, in fact, is an
unsupervised learning problem), a task that ID3-like algo-
rithms normally are quite good at. However, Van de Mer-
ckt [dM93] has suggested that for numerical attributes a
similarity-based selection measure is more appropriate for
finding the correct disjuncts than the original entropy-based
measure used in the empirical evaluations presented here.

The procedure for augmenting an arbitrary empirical
learning algorithm X is as follows: train X as usual, then
compute the limits for every category (i.e., cluster) in the
training set as described earlier. When a new instance is to
be classified, first apply X’s classification mechanism in the
same way as usual, then check that all features values of the
new instance are larger than the lower limit and smaller than
the upper limit. Thus, it is not necessary to represent the
limits in the form of decision trees, the main point is that
there should be a method for comparing the feature values
of the instance to be classified with the limits.
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Figure 9: The acceptance regions for the ?-category computed

by IB1-SD (dotted boxes) and by an algorithm that takes into

account covariation among features (dashed ellipse). (� =

0.05).

To illustrate the generality of the SD approach some ex-
periments with its application to a nearest neighbour algo-
rithm very similar to IB1 [AKA91] are described in Davids-
son [Dav96]. Moreover, if we are not restricted to rep-
resenting concepts by decision trees, we are not forced to
have separate and explicit limits for each feature. As a con-
sequence, we do not have to assume that features are in-
dependent. If we are able to capture covariation among
two or more features we would be able to create accep-
tance regions that closer match the distribution of feature
values (i.e., regions that are smaller but still cover as many
instances). This is illustrated by the example shown in
Figure 9. The acceptance region for the ?-category com-
puted by IB1-SD does not fit the training instances very
well and does actually also cover all training instances of
the �-category despite that the members of the two cate-
gories forms clearly separated clusters. The acceptance re-
gion computed by the algorithm able to capture covariances
between features, on the other hand, do not cover any of the
�-instances.

To implement the latter algorithm it is necessary to ap-
ply multivariate statistical methods. In particular the fol-
lowing theorem is useful: assuming that feature values are
normally distributed within categories/clusters we have that
the solid ellipsoid of x values satisfying

(x� �)T��1(x� �) � �2p(�)

has probability 1 – �, where � is the mean vector, � is the
covariance matrix, �2 is the chi-square distribution and p is
the number features. (See for instance [JW92].) This theo-
rem can be used to compute a weighted distance from the in-
stance to be classified to the “center” of the category/cluster.

If this distance is larger than a critical value (dependent of
�) the instance is rejected. Thus, instead of estimating m
and�, we have to estimate� and� for each category/cluster
from the training set. An algorithm based on this idea to-
gether with some very promising experimental results are
presented in Davidsson [Dav96].

Unfortunately, such an algorithm is not applicable to the
coin sorting problem described above. There are two main
reasons for this: (i) the algorithm does not provide explicit
min and max limits for each feature, and (ii) the algorithm
is too slow in the classification phase; first, the instance to
be classified has to be compared to a large number of the
training instances, and then, a number of time consuming
matrix calculations are necessary in order to compute the
weighted distance.

9 CONCLUSIONS

We have applied a novel method for learning characteris-
tic decision trees, the ID3-SD algorithm, to the problem of
learning the decision mechanism of coin-sorting machines.
The main reason for the success of this algorithm in this ap-
plication was its ability to control the degree of generaliza-
tion (an ability which, of course, requires the learning of
characteristic descriptions). To author’s knowledge, ID3-
SD is the first algorithm in which this can be done both ex-
plicitly (i.e., by specifying a parameter, the �-value) and
without making any ad-hoc assumptions (i.e., it is based on
sound statistical reasoning).

In our experiments �-values about 0.0001 has given the
best results, but we do not know whether this holds gener-
ally. Development of methods to determine automatically
the appropriate degree of generalization belongs to future
research. Future work will also include an evaluation of
how other empirical learning methods can be improved by
the SD approach. In this perspective, we have in this paper
only described an application of the general method to the
ID-3 algorithm (i.e., it can be regarded a case study).
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