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Game-Theoretical Semantics for
First Order Logic
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Background

GTS was first introduced formally in the 1950s by
Paul Lorenzen.

The idea was, however, mentioned already in
1890s by C. S. Peirce.

Nowadays GTS is being developed mainly by
Jaakko Hintikka.

Hintikka proposes that GTS is a “better”
semantics for FOL than Tarski’s model-theoretic
one.

But even if one doesn’t want to gothat far, there
are still some interesting notions in GTS.
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Basic Idea

Truth of a FOL sentence is determined by a play
of “logic game” between two players.

It is a simple perfect-information, zero-sum game.

Traditionally, those players are calledAbelard
andEloise.

Sentence is true if Eloise wins.

Sentence is false if Abelard wins.
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The Game - extensional view

Gameis a tuple(PA, PE,MA,ME,WA,WE),
where:

PA andPE are non-empty, disjoint sets of
positions,
MA andME are sets of moves
WA andWE are sets of winning positions.

MA ⊆ (PA \ (WA ∪WE)) × (PA ∪ PE)

ME ⊆ (PE \ (WA ∪WE)) × (PA ∪ PE)

Play is amaximalsequence of positions
s0, . . . , sn, . . . such that∀i(si, si+1) ∈MA ∪ME
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The Rules - intensional view

Players make moves depending on the shape of
the target sentence S:

if S = P ∨Q then Eloise chooses one of
{P,Q} as a new target sentence.
if S = P ∧Q then Abelard chooses one of
{P,Q} as a new target sentence.
if S = ∃xP then Eloise chooses a value which
is substituted forx in the sentenceP .
if S = ∀xP then Abelard chooses a value
which is substituted forx in the sentenceP .
if S = ¬P then the players swap roles and the
game goes on withP as target sentence.

* � 	 � + , - � � � � � � � � . � � 	 � 
 � � � / � � � 0 � � / � 1 � 2 � � 3 � � � � 4 � 5 ; 7 8 9



� � �

� � � � � � 	 � 
 � � �

 � 	 � � � � 
 � � � � � 
 � �

Winning Strategy

To repeat: sentence is true iff Eloise wins and
false iff Abelard wins.

Before semantic games can be used as a definition
of semantics for FOL, some of their properties
need to be established.

The games, as defined before, are:
Total – there is no draw.
Determined – there exists a winning strategy.

Those are basic results from game theory for
perfect-information, zero-sum games.
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Equivalence of Semantics

Due to the existence of winning strategies, every
logic sentence is either true or false.

It can be proven (by induction on complexity of
formula) that the game-theoretical semantics is
equivalent to Tarski’s model-theoretic semantics.

The proof requires Axiom of Choice – for
formulas in the form∀xϕ(x).

This requirement is due to the desire to have
explicit winning strategies.
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Game – Once More

Logic games corresponding to FOL have several
additional interesting features.

They arewell-founded.

Any particular game is offinite-length.

Strategies are Markov processes.
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Motivation

Game-Theoretical semantics can be more natural
for some domains than Tarski’s model-theoretic
semantics.

Semantics is fully independent on syntax of the
language.

It allows for many interesting extensions.

There supposedly are philosophical and
linguistics advantages of GTS over other
semantics.
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Extensions
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Indeterminable Sentences

The game-theoretical semantics can be naturally
extended to include the notion of indeterminable
sentences.

Actually, there is more than one such notion:
1. Unknown truth value – if, instead of saying

“exists winning strategy” we say “winning
strategy is known”.

2. No truth value – if we modify rules of the
games in such a way that winning strategy
does not exist.
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Multi-Valued Logics

Three valued logic – mentioned above.

To go further, ascorein single play can be any
value, not justwin or lose.

This leads to multi-valued logics, all the way up
to continuous-valued ones.

A different approach would be to consider
multiple-player games.

Thus, “truth values” doesn’t have to correspond to
numbers, they can represent more complicated
structures.
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Infinite Sentences

Consider a sentence:

∀x0∃x1∀x2∃x3 . . . R(x0, x1, x2, x3 . . .)

Tarski’s model-theoretic semantics doesn’t
provide any meaning for this kind of sentence.

Game-Theoretical semantics doesn’t have any
problems here.

However, games defined by such formulae arenot
necessarily well-founded.

Therefore, they can be non-determined, i.e. some
sentences do not have any truth value.
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Many-Sorted Logics

Different variables have different domains.

Game-Theoretical semantics can be easily
extended to deal with this kind of logic.

Modify rules concerning quantifiers in such a way
that a player who chooses value from outside
variable’s domain loses immediately.
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Modal Logics

Consider a setW of worldsand an accessibility
relationR ⊆W ×W .

The game takes place in chosen worldw ∈W .

Extend the FOL language syntax with two
modalities{♦,�} and the game with following
rules:

if S = ♦P then Eloise chooses a worldw′

such thatR(w,w′) and game proceeds withP
in worldw′.
if S = �P then Abelard chooses a worldw′

such thatR(w,w′) and game proceeds withP
in worldw′.
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Modal Logics, continued

Such a game is determined.

Not surprisingly, semantics described by this
game is equivalent to Kripke possible worlds
semantics.

It can also be easily extended to the case of more
than one modality type and combined with other
extensions.
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Other Logical Games

Back-and-Forth Games – Samson and Delilah (or
Spoiler and Duplicator) play a game to determine
whether two structures areelementarily
equivalent(Tarski, 1946).

Forcing games – a way of building infinite
structures with controlled properties. Eloise and
Abelard play to build an infinite formula
consistent with chosen axioms.

Cut-and-choose games – given a collection of
objectsA and set of propertiesS, Eloise and
Abelard play to establish therank of (A,S) – also
calledVapnik-Chervonenkis dimension.
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Independence-Friendly Logic
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The idea

Extend expressiveness of FOLwithoutexplicit
use of second-order quantifiers.

Introduce limited notion of imperfect knowledge
into the semantic game.

The IFL approach provides and defines the idea
of informational independenceamong quantifiers
and logical connectives.

IFL can be used to model concurrency, limited
(memory) resources, information flow, restricted
trust, etc.
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Henkin Quantifier

Non-linear ordering of quantifiers (1961):
(

∀x ∃y

∀z ∃u

)

R(x, y, z, u)

Can be easily expressed in Second Order Logic
usingSkolemfunctions:

HR(x, y, z, u) ⇔

∃f1∃f2∀x∀zR(x, f1(x), z, f2(z))
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Henkin Quantifier, continued

Is more expressive than First Order Logic,
though.

Henkin Quantifier can be used to express, for
example, Mostowski’s generalized quantifierQ0:

Q0xϕ(x) ⇔ ∃w(ϕ(w))

∧ H(x = z ↔ y = u)

∧ (ϕ(x) → ϕ(y) ∧ y 6= w)

There exist infinitely many elements such that . . .
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Information Independence

IFL uses slightly more general notation:

HR(x, y, z, u) ⇔

∀x∃y∀(z/x,y)∃(u/x,y)R(x, y, z, u)

∃(x/y) means “exists x independent of y”.

∀(x/y) means “for all x independent of y”.

P ∨(x) Q means “P or Q, independly of x”.

P ∧(x) Q means “P and Q, independly of x”.
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Imperfect Knowledge Game

Semantic for IFL is given byimperfect knowledge
game.

This game isnot determined.

It is, however, well-founded and (for any given
formula) finite-length game.

Strategies in this game need to reflex the
imperfect information.

One way of modeling this requirement is by sets
of indistinguishable statesI.

A player needs to choosethe sameactions for
every state inIi.
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True, False, Indeterminable

An IFL formula is true iff Eloise has a winning
strategy.

An IFL formula is false iff Abelard has a winning
strategy.

An IFL formula is indeterminable iff neither of
the players have a winning strategy.

Example:∀x∃(y/x)x 6= y.
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Signaling

Example:∀x∃z∃(y/x)x 6= y.
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Signaling

Example:∀x∃z∃(y/x)x 6= y.

Interesting, isn’t it?

One way of looking at it is to consider Eloise to
be, in fact, ateamof players.

One player from the team is aware of Abelard’s
choice forx, but cannot “directly” influencey.

Another player can decide up value ofy, but is
not aware of Abelard’s choice forx.
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Beyond-FOL expressiveness

IF logic is strictly more expressive than FOL.

IF logic is no more expressive than complete
Second Order Logic:

Every independence between quantifiers can
be easily modeled as a Skolem function.
In a similar manner, we can define a function
to chooseone element from each logical
connective independly of some variables.
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Second Order Logic

A monadic logic is one in which quantifiers only
range over sets.

Let us consider formulae in the form:Q1 . . . Qnϕ,
whereQi are blocks of quantifiers andQi is
existential iffQi+1 is universal.

Some examples:
Σ1

n logic is a class of formulae equivalent to
the above when the first block isexistential.
Π1

n logic is a class of formulae equivalent to
the above when the first block isuniversal.
∆1

1 = Σ1
1 ∩ Π1

1
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Σ
1
1 logic

Σ1
1 logic is monadic existential second order

logic.

That is, a second order logic in which only
existential quantifiers are allowed, and where
quantifiers can only range over sets.

The expressive powers of IFL andΣ1
1 coincide,

i.e. for every formula in one of them there exists
an equivalent formula in the other.
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IF Modal Logic

Propositional version.

A k-ary modal structure
M = (D,P, R0, . . . , Rk−1, h), where:

D is the domain (set of worlds);
P is the set of propositional atoms;
Ri are accessibility relations for modalities,
defined overD ×D.
h is an interpretation relation, assigning subset
of propositions to each domain element.
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IFML Semantics

GameG(ϕ,M, d) is defined by the following
rules:

If ϕ ∈ {p,¬p}, for p ∈ P, then no move is made
and:

Eloise wins if

ϕ = p ∧ d ∈ h(p), or

ϕ = ¬p ∧ d /∈ h(p)

Otherwise Abelard wins.

If ϕ = θ ∨ ψ then Eloise picks a disjunct.

If ϕ = θ ∧ ψ then Abelard picks a conjunct.
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IFML Semantics, continued

Let i < k

If ϕ = �iψ then Abelard picks out a stated′ such
thatRi(d, d

′) and the game continues as
G(ψ,M, d′)

If such choice is impossible, Eloise wins.

If ϕ = ♦iψ then Eloise picks out a stated′ such
thatRi(d, d

′) and the game continues as
G(ψ,M, d′)

If such choice is impossible, Abelard wins.
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Conclusions

Natural semantics for many applications, for
example for Model Checking.

Express formally interactive computational tasks.

Computability Logic.

Systems involving planning and re-planning.
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Questions?
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