Extending Knowledge Base Update into First-Order Knowledge Bases

Witold Łukaszewicz* and Ewa Madalińska[†]

Lund, May 2008

*University of Warmia and Mazury, Olsztyn, Poland †Institute of Informatics, Warsaw University.

Plan of presentation

- Belief update operator
- Classical approach of Winslett (PMA)
- Modified approach of Doherty, Łukaszewicz and Madalińska (MPMA)
- The MPMA in first-order logic.

Belief update operator (Katsuno & Mendelzon, Winslett)

Given a knowledge base KB, representing the reasoner's belief set, and a piece of new information α , representing the *effect of a performed action*, determine the new reasoner's knowledge base $KB * \alpha$.

Note: belief update deals with dynamic environments in which new information reflects changes brought about by actions that have occurred.

Postulates (Katsuno & Mendelon, 1995)

- (1) $KB \star \alpha$ implies α .
- (2) If *KB* implies α , then *KB* $\star \alpha$ is equivalent to *KB*.
- (3) If both KB and α are satisfiable, then $KB \star \alpha$ is also satisfiable.
- (4) If $KB_1 \equiv KB_2$ and $\alpha_1 \equiv \alpha_2$, then $KB_1 \star \alpha_1 \equiv KB_2 \star \alpha_2$.
- (5) $(KB \star \alpha_1) \land \alpha_2$ implies $KB \star (\alpha_1 \land \alpha_2)$.
- (6) If $KB \star \alpha_1$ implies α_2 and $KB \star \alpha_2$ implies α_1 , then $KB \star \alpha_1 \equiv KB \star \alpha_2$.
- (7) If KB is complete, *i.e.* has at most one model, then $(KB \star \alpha_1) \wedge (KB \star \alpha_2)$ implies $KB \star (\alpha_1 \lor \alpha_2)$.
- (8) $(KB_1 \lor KB_2) \star \alpha \equiv (KB_1 \star \alpha) \lor (KB_2 \star \alpha).$

Example 1 Let KB = p and $\alpha = p \lor q$. Since $KB \models \alpha$, $KB * \alpha = KB$.

p = heads and q = tails.

A belief update formalism, called PMA (*pos-sible model approach*), satisfying postulates of Katsuno-Mendelzon was introduced by Wins-lett (1991).

Language of PMA

We start with a language \mathcal{L}_{pma} of classical propositional logic based on a finite fixed set $ATM = \{p, q, r, \ldots\}$ of atoms and two truth constants \top (truth) and \bot (falsity).

If α and β are formulas and p is an atom, then we write $\alpha[p \leftarrow \beta]$ to denote the formula which is obtained from α by simultaneously replacing all occurrences of p by β .

A literal is an atom or its negation.

Interpretations are maximal consistent sets of literals.

For any formula α , we write $|\alpha|$ to denote the set of all *models* of α .

Modified PMA (MPMA)

PMA — Minimal change with respect to all atoms

MPMA — Minimal change with respect to a subset of atoms.

Question: Which atoms should be released from the process of minimization?

Answer: All non-redundant atoms of the update formula α .

Definition 1 Let α be a formula. An atom p occurring in α is said to be *redundant* for α iff $\alpha[p \leftarrow \top] \equiv \alpha[p \leftarrow \bot]$.

An atom is redundant for a formula iff the logical value of the formula does not depend on the logical value of the atom.

Eliminants

Let p be an atom and suppose that α is a formula. We write $\exists p.\alpha$ to denote the formula $\alpha[p \leftarrow \top] \lor \alpha[p \leftarrow \bot]$. If $P = \{p_1, \ldots, p_n\}$ is a set of atoms and α is a formula, then $\exists P.\alpha$ stands for $\exists p_1 \cdots \exists p_n.\alpha$.

A formula $\exists P.\alpha$, where $P = \{p_1, \ldots, p_n\}$, is called an *eliminant of* $\{p_1, \ldots, p_n\}$ *in* α .

Intuitively, such an eliminant can be viewed as a formula representing the same knowledge as α about all atoms not in *P* and providing no information about the atoms in *P*.

Formal definition of MPMA

Definition 2 Let KB be a knowledge base, α be an update formula and suppose that P is the set of all non-redundant atoms occurring in α . Then

 $KB * \alpha \equiv \alpha \land \exists P.KB.$

Definition 2 shows that the MPMA works in three steps. First, we select the atoms that may vary their values when the action corresponding to the update formula α is performed. Next, we weaken the knowledge base *KB* by eliminating all those variable atoms. Finally, we strengthen $\exists P.KB$ by combining it with the update formula.

Relation between MPMA and logics for reasoning about action and change

- MPMA is a very simple form of Sandewall's temporal logic PMON, constructed to reason about action an change.
- MPMA can be reformulated in Dijkstra's semantics, originally developed to reason about programs, but also used to reason about action and change

First-order belief update

We deal with a first-order language with equality. Formulae are constructed in the usual way using sentential connectives $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$, quantifiers \forall, \exists , Boolean constants \top (true), \bot (false) and the equality sign =.

A sentence is a formula containing no free variables.

An *atom* is a formula of the form $P(\vec{t})$, where P is an n-ary predicate symbol and \vec{t} is an n-tuple of terms. A *literal* is an atom or its negation. A literal is said to be *ground* if it contains no variables.

If $\overrightarrow{t} = (t_1, \dots, t_n)$ and $\overrightarrow{t'} = (t'_1, \dots, t'_n)$ are tuples of terms then $\overrightarrow{t} = \overrightarrow{t'}$ is an abbreviation for $t_1 = t'_1 \wedge \dots \wedge t_n = t'_n$.

If A is a formula and $P(\vec{t})$ is a ground atom, then we write $A(P(\top/\vec{t}))$ (resp. $A(P(\bot/\vec{t}))$) to denote the formula obtained from A by replacing all occurrences of $P(\vec{t})$ by \top (resp. \bot).

A **knowledge base:** a finite set of sentences over a fixed first-order language with equality.

We shall never distinguish between a knowledge base KB and the sentence being the conjunction of all its members.

An **update formula:** a Boolean combination of ground literals

Eliminants of ground terms in first-order logic

We write $SEP(A, P(\vec{t}))$ to denote the result of replacing each occurrence of the form $P(\vec{t'})$ in A by

$$[\overrightarrow{t} = \overrightarrow{t'} \land P(\overrightarrow{t})] \lor [\overrightarrow{t} \neq \overrightarrow{t'} \land P(\overrightarrow{t'})].$$

A and $SEP(A, P(\vec{t}))$ are equivalent.

Definition 3 An *eliminant* of a ground atom $P(\vec{t})$ in a first-order formula A, denoted by $\exists P(\vec{t}).A$, is the formula

$$SEP(A, P(\overrightarrow{t}))[\top/P(\overrightarrow{t})] \lor$$
$$SEP(A, P(\overrightarrow{t}))[\perp/P(\overrightarrow{t})]$$

Definition 4 Let A be a first-order formula and suppose that $\overrightarrow{P} = (P_1(\overrightarrow{t_1}), \dots, P_n(\overrightarrow{t_n}))$ is an n-tuple of ground atoms. An eliminant of $P_1(\overrightarrow{t_1}), \dots, P_n(\overrightarrow{t_n})$ in A, written $\exists \overrightarrow{P} \cdot A$ is

 $\exists P_1(\overrightarrow{t_1})\cdots \exists P_n(\overrightarrow{t_n}).A.$

Definition 5 Let a knowledge base KB be a closed first order formula and let update formula α be a Boolean combination of ground atoms. Denote by $ATM(\alpha)$ the set of all nonredundant atomic formulae appearing in α .

 $KB \star \alpha \equiv \exists ATM(\alpha).KB \wedge \alpha.$

Example 2 Suppose that there are at least two green objects in the world and the performed action is to paint a house *h* into red. That is,

$$KB = \{\exists x. \exists y. x \neq y \land Green(x) \land Green(y)\}$$
$$\alpha = Red(h) \land \neg Green(h).$$

Since *Red* does not occur in *KB*, $\exists Red(h).KB$ is equivalent to *KB*. Thus, there remains to eliminate Green(h). It can be shown that

$$\exists Green(h).KB = \exists yh \neq y \land Green(y).$$

Thus

$$KB * \alpha = \exists y.h \neq y \land Green(y) \land Red(h) \land$$
$$\neg Green(h).$$

This agrees with our intuition. \blacksquare

Example 3 Assume that all objects in the considered world are blue and suppose that the performed action is to paint a house h into yellow. That is, $KB = \{\forall x.Blue(x)\}$ and $\alpha = Yellow(h) \land \neg Blue(h)$. Since Yellow does not occur in KB, $\exists Yellow(h).KB$ is equivalent to KB. Thus, we have to eliminate Blue(h) in KB.

$$\exists Blue(h).KB = \forall x.x \neq h \Rightarrow Blue(x).$$

Thus,

$$KB * \alpha = \forall x.x \neq h \Rightarrow Blue(x) \land$$
$$Yellow(h) \land \neg Blue(h).$$

Example 4 Suppose that there are at least two distinct objects: one is red and the other is green. The performed action is to paint a house h into yellow. That is, $KB = \{\exists x. \exists y. x \neq y \land Red(x) \land Green(y)\}$ and $\alpha = Yellow(h) \land \neg Red(h) \land \neg Green(h)$. Now we need to eliminate Red(h) and Green(h).

It can be shown that

$$\exists Red(h) \exists Green(h).KB = \exists x \exists y.x \neq y \land$$
$$(h = x \lor Red(x)) \land [y = h \lor Green(y)].$$

Thus

$$KB * \alpha = \exists x \exists y. x \neq y \land$$
$$(h = x \lor Red(x)) \land (y = h \lor Green(y)) \land$$
$$Yellow(h) \land \neg Red(h) \land \neg Green(h).$$

Future work

- Integrity constraints
- Comparing first-order MPMA with reasoning about action paradigm (prerequisites of actions)

Example 5 My initial belief is that either Alice or Jane is in the office (but not both). Now I see Bob going out of the office. What do I believe now? ■

Example 6 My initial belief is that either Alice or Jane is currently blond (but not both). Now I learn that Alice dyed her hair into red. What do I believe now? ■