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Plan of presentation

• Belief update operator

• Classical approach of Winslett (PMA)

• Modified approach of Doherty, !Lukasze-
wicz and Madalińska (MPMA)

• The MPMA in first-order logic.
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Belief update operator

(Katsuno & Mendelzon, Winslett)

Given a knowledge base KB, representing the
reasoner’s belief set, and a piece of new in-

formation α, representing the effect of a per-
formed action, determine the new reasoner’s

knowledge base KB ∗ α.

Note: belief update deals with dynamic en-
vironments in which new information reflects
changes brought about by actions that have

occurred.
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Postulates (Katsuno & Mendelon, 1995)

(1) KB " α implies α.

(2) If KB implies α, then KB " α is equivalent
to KB.

(3) If both KB and α are satisfiable, then KB"
α is also satisfiable.

(4) If KB1 ≡ KB2 and α1 ≡ α2, then KB1 "
α1 ≡ KB2 " α2.

(5) (KB " α1) ∧ α2 implies KB " (α1 ∧ α2).

(6) If KB " α1 implies α2 and KB " α2 implies
α1, then KB " α1 ≡ KB " α2.

(7) If KB is complete, i.e. has at most one
model, then (KB " α1) ∧ (KB " α2) implies
KB " (α1 ∨ α2).

(8) (KB1 ∨ KB2) " α ≡ (KB1 " α) ∨ (KB2 " α).
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Example 1 Let KB = p and α = p ∨ q.

Since KB |= α, KB ∗ α = KB.

p = heads and q = tails.

A belief update formalism, called PMA (pos-
sible model approach), satisfying postulates of

Katsuno-Mendelzon was introduced by Wins-
lett (1991).
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Language of PMA

We start with a language Lpma of classical

propositional logic based on a finite fixed set
ATM = {p, q, r, . . .} of atoms and two truth

constants % (truth) and ⊥ (falsity).

If α and β are formulas and p is an atom, then

we write α[p ← β] to denote the formula which
is obtained from α by simultaneously replacing

all occurrences of p by β.

A literal is an atom or its negation.

Interpretations are maximal consistent sets of
literals.

For any formula α, we write |α | to denote the
set of all models of α.
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Modified PMA (MPMA)

PMA — Minimal change with respect to all
atoms

MPMA — Minimal change with respect to a
subset of atoms.

Question: Which atoms should be released
from the process of minimization?

Answer: All non-redundant atoms of the up-
date formula α.

Definition 1 Let α be a formula. An atom p

occurring in α is said to be redundant for α iff
α[p ← %] ≡ α[p ← ⊥].

An atom is redundant for a formula iff the log-
ical value of the formula does not depend on
the logical value of the atom.
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Eliminants

Let p be an atom and suppose that α is a
formula. We write ∃p.α to denote the formula

α[p ← %]∨α[p ← ⊥]. If P = {p1, . . . , pn} is a set
of atoms and α is a formula, then ∃P.α stands

for ∃p1 · · ·∃pn.α.

A formula ∃P.α, where P = {p1, . . . , pn}, is

called an eliminant of {p1, . . . , pn} in α.

Intuitively, such an eliminant can be viewed as

a formula representing the same knowledge as
α about all atoms not in P and providing no
information about the atoms in P .
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Formal definition of MPMA

Definition 2 Let KB be a knowledge base, α

be an update formula and suppose that P is
the set of all non-redundant atoms occurring
in α. Then

KB ∗ α ≡ α ∧ ∃P.KB.

Definition 2 shows that the MPMA works in
three steps. First, we select the atoms that

may vary their values when the action corre-
sponding to the update formula α is performed.

Next, we weaken the knowledge base KB by
eliminating all those variable atoms. Finally,

we strengthen ∃P.KB by combining it with the
update formula.
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Relation between MPMA and

logics for reasoning about action

and change

• MPMA is a very simple form of Sandewall’s

temporal logic PMON, constructed to rea-
son about action an change.

• MPMA can be reformulated in Dijkstra’s

semantics, originally developed to reason
about programs, but also used to reason

about action and change
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First-order belief update

We deal with a first-order language with equal-

ity. Formulae are constructed in the usual
way using sentential connectives ¬,∧,∨,⇒,⇔,
quantifiers ∀,∃, Boolean constants % (true), ⊥
(false) and the equality sign =.

A sentence is a formula containing no free vari-

ables.

An atom is a formula of the form P(−→t ), where

P is an n-ary predicate symbol and −→
t is an

n-tuple of terms. A literal is an atom or its

negation. A literal is said to be ground if it
contains no variables.

If
−→
t = (t1, . . . , tn) and

−→
t′ = (t′1, . . . , t′n) are tu-

ples of terms then −→
t =

−→
t′ is an abbreviation

for t1 = t′1 ∧ . . . ∧ tn = t′n.
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If A is a formula and P(
−→
t ) is a ground atom,

then we write A(P(%/
−→
t )) (resp. A(P(⊥/

−→
t ))

to denote the formula obtained from A by re-
placing all occurrences of P(−→t ) by % (resp.

⊥).

A knowledge base: a finite set of sentences

over a fixed first-order language with equality.

We shall never distinguish between a knowl-

edge base KB and the sentence being the con-
junction of all its members.

An update formula: a Boolean combination
of ground literals
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Eliminants of ground terms in first-order

logic

We write SEP(A, P(−→t )) to denote the result

of replacing each occurrence of the form P(
−→
t′ )

in A by

[−→t =
−→
t′ ∧ P(−→t )] ∨ [−→t /=

−→
t′ ∧ P(

−→
t′ )].

A and SEP(A, P(−→t )) are equivalent.

Definition 3 An eliminant of a ground atom

P(
−→
t ) in a first-order formula A, denoted by

∃P(−→t ).A, is the formula

SEP(A, P(
−→
t ))[%/P(

−→
t )] ∨

SEP(A, P(−→t ))[⊥/P(−→t )].
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Definition 4 Let A be a first-order formula
and suppose that

−→
P = (P1(

−→
t1), · · · , Pn(

−→
tn)) is

an n-tuple of ground atoms. An eliminant of
P1(

−→
t1), · · · , Pn(

−→
tn) in A, written ∃−→P .A is

∃P1(
−→
t1) · · ·∃Pn(

−→
tn).A.

Definition 5 Let a knowledge base KB be a
closed first order formula and let update for-

mula α be a Boolean combination of ground
atoms. Denote by ATM(α) the set of all non-

redundant atomic formulae appearing in α.

KB " α ≡ ∃ ATM(α).KB ∧ α.
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Example 2 Suppose that there are at least
two green objects in the world and the per-

formed action is to paint a house h into red.
That is,

KB = {∃x.∃y.x /= y ∧ Green(x) ∧ Green(y)}
α = Red(h) ∧ ¬Green(h).

Since Red does not occur in KB, ∃Red(h).KB

is equivalent to KB. Thus, there remains to

eliminate Green(h). It can be shown that

∃Green(h).KB = ∃y.h /= y ∧ Green(y).

Thus

KB ∗ α = ∃y.h /= y ∧ Green(y) ∧ Red(h)∧
¬Green(h).

This agrees with our intuition.
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Example 3 Assume that all objects in the
considered world are blue and suppose that the

performed action is to paint a house h into
yellow. That is, KB = {∀x.Blue(x)} and α =

Y ellow(h) ∧ ¬Blue(h). Since Y ellow does not
occur in KB, ∃Y ellow(h).KB is equivalent to

KB. Thus, we have to eliminate Blue(h) in
KB.

∃Blue(h).KB = ∀x.x /= h ⇒ Blue(x).

Thus,

KB ∗ α = ∀x.x /= h ⇒ Blue(x)∧
Y ellow(h) ∧ ¬Blue(h).
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Example 4 Suppose that there are at least

two distinct objects: one is red and the other
is green. The performed action is to paint a
house h into yellow. That is, KB = {∃x.∃y.x /=
y ∧ Red(x) ∧ Green(y)} and α = Y ellow(h) ∧
¬Red(h) ∧ ¬Green(h). Now we need to elimi-

nate Red(h) and Green(h).

It can be shown that

∃Red(h)∃Green(h).KB = ∃x∃y.x /= y∧
(h = x ∨ Red(x)) ∧ [y = h ∨ Green(y)].

Thus

KB ∗ α = ∃x∃y.x /= y ∧
(h = x ∨ Red(x)) ∧ (y = h ∨ Green(y)) ∧
Y ellow(h) ∧ ¬Red(h) ∧ ¬Green(h).
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Future work

• Integrity constraints

• Comparing first-order MPMA with reason-

ing about action paradigm (prerequisites of
actions)

Example 5 My initial belief is that either Alice

or Jane is in the office (but not both). Now
I see Bob going out of the office. What do I

believe now?

Example 6 My initial belief is that either Alice

or Jane is currently blond (but not both). Now
I learn that Alice dyed her hair into red. What

do I believe now?
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