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ABSTRACT

This paper presents a new framework for autonomous agents that is based

on the concept of anticipatory systems. It is a hybrid approach that synthesizes

low-level reactive behavior and high-level symbolic reasoning. According to this

framework, an agent, i.e. an anticipatory agent, consists of three main entities: a

reactive system, a world model, and a meta-level component. The world model

should, in addition to the description of the agent's environment, also include a

description of the reactive part of the agent. The basic idea is that the meta-level

component makes use of the world model to make predictions of future states.

These predictions are then used by the meta-level to guide the agent's behavior on

a high-level, whereas the low-level behavior is controlled by the reactive component.

1 INTRODUCTION

Anticipation is a mental activity that humans, but also some other living organisms, are

capable of and one which is frequently practiced. A tennis player, for instance, has to

anticipate the trajectory of the ball in order to make a good hit. A stockbroker makes

forecasts of stock prices in order to make a good deal. In short, they use knowledge of

future states to guide their current behavior. To do this they make use of an internal model

of the particular phenomenon. The experienced tennis player's use of his model is probably

on an unconscious level and has been learned through tedious sensorimotor training. A

novice, on the other hand, has to use his model of the ball's trajectory in a more conscious

manner. Similarly, the stockbroker's model is probably on a conscious level, learned through

theoretical studies and experience of previous stock prices.

It is the authors' opinion is that this kind of anticipatory reasoning has not been su�-

ciently studied and, as a consequence, is not well-understood within the �eld of intelligent

autonomous systems. This is probably due to the strong inuence from the more traditional

sciences (e.g., physics) that have essentially been limited to the study of causal systems

which, in contrast to anticipatory systems, do not take knowledge of future states into ac-

count. We believe that autonomous systems with the ability to anticipate as described above

would exhibit novel, interesting and possibly unexpected properties that might enhance the

capacity of autonomous systems.
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1.1 Background

In the last decade, there has been a growing interest in the �eld of autonomous agents�

among computer scientists. The reason for this renewed interest is probably due to the

emergence of a new paradigm radically di�erent from the traditional one. Agents con-

structed following this new approach are often referred to as reactive, or behavior-based,

agents.

According to the earlier approach, the two main components of an agent are the world

model (i.e., an internal description of the agent's external environment) and some kind of

planner. The working of traditional agents can be described as following a sense-model-

plan-act cycle. The sensors sense the environment and produce sensor-data that are used

to update the world model. The world model is then used by the planner to decide which

actions to take. These decisions serve as input to the e�ectors that actually carry out the

actions. However, when actually embodying these kinds of agents (e.g., Shakey18) it was

noticed that even if they were able to do some \advanced" cognitive tasks such as planning

and problem solving, they had problems with more basic tasks like routine reaction that

require fast action but no extensive deliberation.6

As a reaction to the relative failure of this approach, the �rst reactive agents emerged

in the mid-eighties. They were inspired by the idea that most of our every-day activities

consist of routine action rather than of abstract reasoning. So, instead of doing world-

modeling and planning, it was argued that the agents should only have a collection of

simple behaviors that react to changes in the environment in a stimulus-response fashion.

Some of the most inuential agents of this kind are Brooks' robots based on the subsumption

architecture,5 Pengi,1 and situated automata.20 Probably the most controversial element of

this new approach concerns the representation of knowledge. Brooks, in particular, argues

that explicit representations of the world are not only unnecessary but also get in the way

when implementing actual agents. Instead the agent should use \...the world as its own

model | continuously referring to its sensors rather than to an internal world model."5

Behavior-based agents have been shown to be superior (in some situations) to traditional

in doing a limited number of simple tasks in real world domains. However, in addition to

not being particular versatile, they have problems with handling tasks that require knowl-

edge about the world that must be obtained by reasoning or from memory, rather than

perception. According to Kirsh11 some possible candidates for such tasks are activities

which require: (1) response to events beyond the agent's current sensory limits, (2) some

amount of problem solving, (3) understanding a situation from an objective perspective, or

(4) prediction of other agents' behavior.

There is also an evolution-based critique of the reactive paradigm that has seldom been

expressed. It seems reasonable to compare reactive agents to, for example, reptiles in the

sense that their cognition is based on stimulus-response behavior. For instance, Sjölander22

writes: \There is thus no true intermodality in the snake, just a number of separate systems,

involving speci�c behavioral patterns connected to a speci�c sensory input." Humans and

other more developed species, on the other hand, are equipped with central representations

and Sjölander suggests that this could be an explanation of why reptiles were superseded

�By autonomous agents we mean systems that are able to interact independently with its environment
through its own sensors and e�ectors.



by mammals and birds. He concludes: \To go from monosensorially governed constructions

of several internal representations to a centralized intermodal one must surely be one of the

most important breakthroughs in the evolution of mind." This suggests that agents based

on the reactive paradigm will never reach human-level performance.

Recently, several researchers have pointed out that an intelligent agent must have both

high-level reasoning and low-level reactive capabilities.8; 10; 14; 15; 17 The rationale behind

this hybrid approach is to utilize the reaction ability of reactive agents necessary for routine

tasks, but still have the power of planning necessary for more advanced tasks. In line with

this we will suggest a novel way of combining reactive and deliberate agents into hybrid

agents. This approach, called anticipatory agents, is based on the idea of anticipatory

planning3 which, in turn, is inspired by the concept of anticipatory systems.19

2 ANTICIPATORY AGENTS

According to Rosen19, an anticipatory system is \ ... a system containing a predictive model

of itself and/or of its environment, which allows it to change state at an instant in accord

with the model's predictions pertaining to a latter instant." (p.339) Thus, such a system

uses the knowledge concerning future states to decide which actions to take in the present.

In more formal terms, the next state of an anticipatory system would be a function of

past and future states:

sn+1 = f(s1; s2; :::; sn; sn+1; :::; sk); k > n

whereas a causal system only depends on past states:

sn+1 = f(s1; s2; :::; sn)

However, since an agent cannot normally have true knowledge of future states,y it is, of

course, not possible to implement an anticipatory system in this strict sense. The best we

can do is to approximate such a system by using predictions of future states. Thus, we have:

sn+1 = f(s1; s2; :::; sn; ŝn;1; :::; ŝn;k�n); k > n

where ŝn;i is the predicted value of sn+i.

2.1 Computational Framework

In the suggested framework, an anticipatory agent consists mainly of three entities: an

object system S, a meta-level component M , and a world model W . S is an ordinary

(non-anticipatory) dynamic system. W is a description of the environment including S, but

excluding M .z M should be able to make predictions using W and to use these predictions

to change the dynamic properties of S. Although the di�erent parts of an anticipatory

agent certainly are causal systems, the agent taken as a whole will nevertheless behave in

an anticipatory fashion.

yAn agent acting in a closed world and having a perfect world model, on the other hand, would be able
to have true knowledge of future states.

zThe importance of having an internal model that includes both the agent as a part of the environment

and (a large portion of) its abilities has been stressed by, for instance, Zeigler25 and Kohout.12



To get this approach working, it is essential that the sequence of states of W are pa-

rameterized by a time variable that goes faster than real time. That is, if W adequately

describes the environment (and S) at some time t0, then after an arbitrary time interval

�t, W 's sequence of states will have proceeded t0 +�t.

2.2 Implementational Issues

When implementing an anticipatory system, what should the di�erent components (S, M ,

and W ) correspond to, and what demands should be made upon these components? To

begin with, it seems natural that S should correspond to some kind of reactive system

similar to the ones described above. It must be a fast system in the sense that it should

be able to handle routine tasks instinctively and, moreover, it should have an architecture

that is both easy to model and to change.

M would then correspond to a more deliberative meta-level component that is able

to \run" the world model faster than real time. When doing this it must be able to

reason about the current situation compared to the predicted situations and its goals in

order to, among other things, detect undesirable situations that cannot be handled by the

reactive component. If such a situation is detected it should decide whether (and how)

to change the reactive component or to issue commands directly to the e�ectors. There

is a large body of work concerning di�erent aspects of meta-levels, but none of this work

seems readily applicable to the outlined approach. The closest is perhaps the studies on

reective architectures16 and some works on meta-reasoning architectures in the context of

autonomous agents.13

Since a world model is based on a representation, it can only approximately describe

any given subset of the real world. Thus, since world models are abstractions of reality,

we must decide on which level of abstraction is the most appropriate for the world model.

Gat9 argues that the debate concerning traditional agents versus reactive agents is really

an argument about the proper use of a world model (i.e., internal state information). He

writes that \... internal state should be maintained at a high level of abstraction and that

it should be used to guide a robot's action but not to control these actions directly." Thus,

local sensor information is necessary for the immediate control. He provides an example

to show that this is probably also the way humans work: We are able to �nd our house

and belongings because we have a world model at a high level of abstraction. We do not

know the exact location of our house or our belongings, but we use sensor data to �ll in

the details that the world model does not provide. We thus suggest that W should be on

a rather high level of abstraction. Moreover, there is certainly a trade-o� between how

detailed the world model is and the accuracy of the predictions made using it; the higher

the level of abstraction, the more accurate (i.e., probable) are the predictions.

It is important to make a distinction between two parts of the world model.21 We have

the environment model that describes the current state of the agent's surroundings (i.e.,

some kind of map), and the rest of the world model that includes more general knowledge

about other possible states and ways of achieving these states. An environment model is

often some kind of 3-D model, typically used for navigation tasks. It contains dynamic and

situation-dependent knowledge, whereas a world model contains more stable and general

knowledge, such as knowledge about objects, properties of objects, relationships between



objects, events, processes, and so on.

The resulting architecture is illustrated in Figure 1. (It is also possible to regard W as

a part of M .) To summarize, the sensors receive input from the environment. This data
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Figure 1: The basic architecture of an anticipatory agent.

is then used in two di�erent ways: (1) to update W and (2) to serve as stimuli for S. S

reacts to these stimuli and provides a response that is forwarded to the e�ectors, which then

carry out the desired action(s). Moreover,M uses W to make predictions and on the basis

of these predictions M decides if, and what, changes are necessary. Either it commands

the e�ectors directly to carry out some action(s), or it make some changes on the dynamic

properties of S. Every time S is modi�ed, W should, of course, be updated accordingly.

Thus, the working of an anticipatory agent can be viewed as two concurrent processes, one

reactive at the object-level and one more deliberative at the meta-level.

2.3 Learning

Since an autonomous agent is supposed to act in environments that are continually changing,

it is important that it can adapt its behavior according to these changes. In the approach

suggested there are two ways of making such adaptions: (1) by changing S, and (2) by

changing W .

As mentioned earlier, one way of changing S is to let M modify it directly based on M 's

predictions. It is, however, also desirable that S itself has a learning capacity for acquiring

low-level stimuli-response schemas. This kind of learning seems closely related to what has

been studied under the label of reinforcement learning.23 In addition, by letting M control

the training, the suggested framework seems to have a potential for performing this kind of

learning in a more systematic manner than in existing systems.

As M will rely heavily on W , it is important that both the environment model and the

world model are continually updated as the environment changes. While a considerable

amount of work has been done on building and maintaining environment models,2; 21 less

research has been carried out on updating the more general parts of a world model.



2.4 Perception

Even though the same sensors may be used both to update W and to provide stimulus for

S, they might be processed in rather di�erent ways. The updating of W would probably

rely on the methods from the traditional computer vision (i.e., perception) paradigm where

the goal is to construct a detailed symbolic representation of the world independent of the

tasks under consideration.

For S, as we have hinted earlier, it is probably a better choice to follow some reactive

approaches1; 5 and rely on task-driven perception, often referred to as purposive vision. The

goal for this kind of vision is to solve particular visual tasks. To do this it is necessary to

develop \fast visual abilities which are tied to speci�c behaviors and which access the scene

directly without intervening representations."4

3 RELATED RESEARCH

The only experiment on computer-based anticipatory systems known to the authors has

been carried out by Tsoukalas.24 He applied the approach to the diagnosis and control

of a nuclear reactor. His work is, however, not directly comparable to our framework,

mainly because it is not addressing autonomous agents. In addition, he makes several

simpli�cations. For instance, the system has no potential for updating its world model or

for learning in general. Moreover, his system has no explicit meta-level component which

we regard as a highly important feature for achieving a more powerful and exible system.

However, some systems in traditional AI-planning and control theory can, although in

a limited sense, be said to show anticipatory behavior. More closely related to our notion

of anticipation is some work done within the �eld of biology.

3.1 Anticipation in Traditional Agents

It can be argued that the planning component in a traditional system provides some amount

of anticipation by internally testing di�erent actions (or sequences of actions) to see which

future states can be achieved. This kind of anticipating is, however, limited in the sense that

it covers only state changes that are caused by the pursuing of a particular goal. Changes

that have other causes, such as other agents or independent physical processes, are typically

not taken into account. The present framework, on the other hand, has the potential to take

into consideration all kinds of changes in the environment, and in particular, it will be able

to detect unwanted situations in advance. It is a kind of passive and general anticipation

rather than the active and goal-directed anticipation of planning systems.

Goal-directed anticipation can (will) in some cases also be performed by an anticipatory

agent. For example, when an unwanted situation has been detected implying that M must

change the properties of S, or when the agent actively pursues a goal, M will be forced to

perform reasoning related to traditional planning.

3.2 Anticipation in Control Systems

Some control systems use a method called feedforward to eliminate disturbances that can be

measured. According to Åström and Wittenmark26, "the basic idea is to use the measured



disturbance to anticipate the inuence of the disturbance on the process variables and

to introduce suitable compensating control actions." (p.166) To do this, the feedforward

method requires an adequate model of the process to be controlled.

Thus, the feedforward method resembles the suggested approach in that a model is

used to predict future states and that these predictions are used to guide the behavior of

the system. However, the anticipation is limited to the prediction of just one future state

(i.e., the error in output that the disturbance would have caused) whereas anticipatory

systems are able to make predictions of arbitrary \time-steps" into the future. Moreover,

the process to be controlled is characterized by just a single numerical value, whereas in

autonomous agent contexts there is a need for qualitatively more powerful models (i.e.,

symbolic descriptions).

3.3 Anticipation in Biological Systems

It has been suggested that anticipation, in addition to causal relationships, should be taken

into account when analyzing biological phenomena.7 Sjölander22 provides an example of

such an analysis: a dog hunting a rabbit uses its internal world model to predict the

rabbit's future positions. These predictions can then be used to focus the attention on the

relevant aspects of the situation. This anticipatory behavior can also help in recognition

tasks. For example, the dog need not see the whole rabbit all of the time. Since it can

predict the rabbits current position, it needs only glimpses of parts of the rabbit to con�rm

its predictions. To make this possible within the suggested architecture requires, of course,

that M is able to control the sensors.

4 CONCLUSIONS AND FURTHER RESEARCH

As should be clear from the above, a shift of paradigm seems desirable for the further

development of autonomous agents. We believe that the framework of anticipatory agents

is a promising candidate for such a paradigm.

A prototype of an anticipatory agent is currently being developed. While initial experi-

ments, where very simple reactive components have been used, have shown some promising

results, we need to test more sophisticated reactive components in order to evaluate the

approach. Moreover, we have in this paper ascribed many di�erent functions to M , such

as using the world model to make predictions and interpret the results; modifying the dy-

namical properties of S; issuing commands directly to the e�ectors; controlling learning

and experimentation, and controlling the sensors. Since we have only studied most of these

functions super�cially, further studies of these topics are necessary.
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