A Linearly Quasi-Anticipatory Autonomous Agent
Architecture: Some preliminary experiments

Paul Davidsson

Dept. of Computer Science, Lund University, Box 118, S-221 00 Lund, Sweden

Abstract. This report presents some initial results from simulations of a linear
quasi-anticipatory autonomous agent architecture (ALQAAA), which correspond
to a special case of a previously suggested general architecture of anticipatory
agents. It integrates|ow-level reaction with high-level deliberation by embedding
an ordinary reactive system based on situation-action rules, called the Reactor, in
an anticipatory agent forming alayered hybrid architecture. By treating all agents
inthedomain (itself included) asreactive agents, this approach drastically reduces
the amount of search needed while at the sametime requiring only asmall amount
of heuristic domain knowledge. Instead it relies on a linear anticipation mecha-
nism, carried out by the Anticipator, to achieve complex behaviours. The Antici-
pator uses aworld model (in which the agent is represented only by the Reactor)
to make a sequence of one-step predictions. After each step it checkswhether the
simulated Reactor has reached an undesired state. If thisis the case it will mod-
ify the actual Reactor in order to avoid this state in the future. Results from both
single- and multi-agent simulationsindicate that the behaviour of ALQAAA agents
issuperior to that of the corresponding reactive agents. Some promising resultson
cooperation and coordination of teams of agents are also presented. In particular,
the linear anticipation mechanismis successfully used for conflict detection.

1 Introduction

In this report we will present some initial results from experiments on alinearly quasi-
anticipatory autonomous agent architecture. This architecture corresponds to a special
case of the genera architecture of anticipatory agents suggested by Astor, Davidsson,
and Ekdahl [1, 4].

1.1 Hybrid Agent Architectures

In the last couple of years it has become widely acknowledged that an intelligent au-
tonomous agent must have the capability of both high-level deliberation and low-level
reaction. Thisinsight can be seen as a synthesis of two earlier rival lines of thought: the
first argued that agent cognition should be based on sophisticated deliberation, typicaly
planning, and the second that it should be based only on primitive reactive behaviour
specified for instance by situation-action rules. As it turns out, the weaknesses of re-
active approach correspond closedly to the strengths of deliberative approach and vice
verss, i.e, reactive agentsare fast but “dumb” (and do not need an explicit world model)
whereas deliberative agents are “smart” but dow (and need a detailed world modd!).

Moreover, a combined, or hybrid, approach seems to model human functioning closer
than the purely reactive approach, which resembles that of more primitive animals.

AsHanksand Firby [8] point out, two categories of hybrid agent architectures can be
distinguished: uniform architectures employ a single representation and control scheme
for both reaction and deliberation, whereas layered architectures use different represen-
tations and a gorithms implemented in separate layers to perform these functions. Most
uniform architectures, for example PRs [10], do not make any specific commitmentson
how reaction and deliberation should be interleaved. In addition, Ferguson [5] argues
that “There are a number of other reasons for advocating a layered control approach,
including increased behavioura robustness and operational concurrency, aswell asim-
proved program comprehensibility and system testability and analysability.” (p.48)

However, as pointed out by Wooldridgeand Jennings[17] thereisaweaknessin the
existing suggestionsfor hybrid architectures. They argue that:

One potentia difficulty with such architectures, however, isthat they tend to be
ad hoc in that while their structures are well-motivated from a design point of
view, itisnot clear that they are motivated by any deep theory. (p.26)

In order to improvethissituation, alayered hybrid approach based on the theory of an-
ticipatory systems will be presented in the next section.

1.2 Anticipatory Agents

According to Rosen [15], an anticipatory systemis” ... asystem containing apredictive
model of itself and/or of itsenvironment, which allowsit to change state at an instant in
accord with the model’s predictions pertaining to a latter instant.” (p.339) Thus, such a
system uses the knowledge concerning future states to decide which actions to teke in
the present.

Let us describe a simple class of anticipatory systems suggested by Rosen [14]. It
contains an ordinary causa (i.e., non-anticipatory) dynamic system, S. With S he as-
sociates another dynamical system, M, which isa modd of S. It is required that the
sequence of states of M are parameterized by atime variable that goes faster than real
time. (That is, if M and S are started out at some time ¢, then after an arbitrary time
interval At, M’s sequence of states will have proceeded ¢, + At.) In thisway, the be-
haviour of M predictsthe behaviour of S: by looking at the state of M at timet, we get
information about the state that S will bein a some later timethan ¢. In addition, M is
equipped witha set £ of effectors which alowsit to operate either on S itself, or on the
environmental inputsto S, in such away as to change the dynamica properties of S.
If S ismodified the effectors must also update A . This class of anticipatory systemsis
illustrated in Fig. 1. Rosen argues that thiswould be an anticipatory system inthe strict
senseif M wereaperfect model of .S (and if the environment were constant or periodic).
However, as M in genera isnot a perfect model of S, he calls the behaviour of such a
system quasi-anticipatory.

Then, how should these predictions be used to modify the properties of .S? Rosen
[14] argues that this could be done in many ways, but suggests that the following isthe
simplest:

environment

=]

Fig. 1. The basic architecture of a class of anticipatory systems.

Let usimaginethe state space of S (and hence of A1) to be partitioned into re-
gionscorresponding to “desirable” and “undesirable”’ states. Aslong asthetra
jectory in M remainsina“desirable’ region, no action istaken by M through
the effectors £. As soon as the M -trgjectory moves into an “undesirable’ re-
gion (and hence, by inference, we may expect the S-trgjectory to moveintothe
corresponding region at some later time, calculable from a knowledge of how
the M - and S-trgjectories are parameteri zed) the effector system is activated to
change the dynamics of S in such away asto keep the S-trgectory out of the
“undesirable” region. (p.248)

However, to transfer the concept of anticipatory systems into an agent framework
there are some additions and changes that we have found necessary. First, we need a
meta-level component that “runs’” and “monitors’ the model, and eval uates the predic-
tions made to decide how to change S (or the input to .S, we will in the following re-
gard also such changes as changes to S). Thus, we also include the effectors, F, inthis
meta-level component that we here will call the Anticipator. Second, in order to pre-
dict future environmental inputsto .S we need to extend the model M to include also
the environment. Thisinclusionisin linewith later work of Rosen (cf. [15]). In sum, an
anticipatory agent consists mainly of three entities: an object system (.5), a meta-level
component (Anticipator),and aworld model (/). Theobject systemisan ordinary (i.e.,
non-anticipatory) dynamic system. M is adescription of the environment including S,
but excluding the Anticipator. The Anticipator should be able to make predictions us-
ing M and to usethese predictionsto change the dynamic propertiesof S. Althoughthe
different parts of an anticipatory agent certainly are causal systems, the agent taken asa
wholewill neverthel ess behave in an anticipatory fashion.

When implementing an anticipatory agent, what should the three different compo-
nents correspond to, and what demands shoul d be made upon these components? To be-
ginwith, it seems natural that .S should correspond to some kind of reactive system sim-
ilar to the ones mentioned above. We will therefore refer to thiscomponent as the Reac-

World ici
Model Anticipator

modifications

Effectors

Sensors

Reactor

Fig. 2. The basic architecture of an anticipatory agent.

tor. It should be afast system in the sense that it should be able to handle routine tasks
instinctively and, moreover, it should have an architecture that is both easy to model
and to change. The Anticipator would then correspond to amore deliberative meta-level
component that isable to “run” the world model faster than rea time. When doing this
it must be able to reason about the current situation compared to the predicted situations
and itsgoalsin order to decide whether (and how) to change the Reactor.

The resulting architectureisillustrated in Fig. 2. To summarize, the sensors receive
input from the environment. This datais then used in two different ways: (1) to update
the World Model and (2) to serve as stimuli for the Reactor. The Reactor reacts to these
stimuli and provides aresponse that is forwarded to the effectors, which then carry out
the desired action(s). Moreover, the Anticipator uses the World Model to make predic-
tionsand on the basis of these predictionsthe Anticipator decides if, and what, changes
of thedynamical propertiesof the Reactor are necessary. Every timethe Reactor ismod-
ified, the World Model should, of course, be updated accordingly. Thus, the working
of an anticipatory agent can be viewed as two concurrent processes, one reactive at the
object-level and one more deliberative at the meta-level.

2 A SimpleClassof Anticipatory Agents

Inthissection someinitia resultsfrom experimentswith A Linearly Quasi-Anticipatory
Agent Architecture(ALQAAA) will bepresented. ALQAAA correspondsto aspecia case
of the architecture described in thelast section. In particular, it follows Rosen’s sugges-
tion of the simplest way of deciding when to change the Reactor, i.e., by dividing the
state space into desired and undesired regions.

Some simple ALQAAA-agents and a testbed has been implemented.! The problem

! They have been implemented in the object-oriented language Simula on Sun SparcStation run-
ning Solaris 2.3. Local class packageswere used to achieve concurrency (Simlib |OProcesses)
and graphical interface to X (WindowPackage).

domain has deliberately been made as simpleas possiblein order to make the principles
of anticipatory behaviour as explicit as possible.

2.1 Agent Implementation

The Reactor and the Anticipator are run (asynchronously) as two separate processes.
The Reactor process is given a high priority whereas the Anticipator is alow priority
processthat runswhenever the Reactor is“waiting” (e.g., for an actionto be performed).
Since the Reactor is able to preempt the Anticipator at any time, reactivity is dways
guaranteed. Thus, the Anticipator has to be a kind of anytime algorithm[2], or rather
anytimeprocess, inthat it should always be ableto return aresult when it isinterrupted.?
The appropriateness of using anytime algorithms in autonomous agent contexts where
real-time requirements are common has been pointed out by, for example, Zilberstein
and Russell [18] and Bresina and Drummond [3].

The Reactor carries out anever ending cycle of: perception of the environment (i.e.,
the situation), action selection by situation-action (stimuli-response) rules, and perfor-
mance of action. Rather than having explicit goas, the Reactor’s goas are implicitly
represented initscollection of situation-actionrules. The basic a gorithm of the Reactor
isgiven below:

procedure REACTOR,;

whiletruedo
Percepts «— Percieve;
Action — SelectAction(Percepts);
Perform(Action);

The Anticipator, on the other hand, carries out a never ending cycle of anticipation
sequences. Each such sequence beginswith making acopy of theWorld Modd, whichas
mentioned earlier is a description of the environment containing the agent as a physical
entity in the environment, and a copy of the agent’s current set of reaction rules. These
are then used to make a sequence of one-step predictions. After each prediction step, it
ischecked whether the simulated agent has reached an undesired state, or whether it has
achieved the godl. If it has reached an undesired state, the Reactor will be manipulated
in order to avoid reaching this state. Thus, this functioning corresponds to that of the
simplest kind of anticipatory system suggested by Rosen. The basic agorithm of the
Anticipator isas follows:

2 According to Dean and Boddy [2], the main characteristics of anytime algorithms are that “...
(i) they lend themselves to preemptive scheduling techniques (i.e., they can be suspended and
resumed with negligible overhead), (ii) they can be terminated at any time and will return some
answer, and (iii) the answers returned improve in some well-behaved manner as a function of
time.” (p.52)

procedure ANTICIPATOR,;
whiletruedo
WorldM odel Copy < WorldModd!;
ReactorCopy — Reactor;
UndesiredState < falseg;
while not UndesiredState and not Goal Achieved(WorldM odel Copy) do
Percepts — WorldM odel Copy.Percieve;
Action — ReactorCopy.Sel ectAction(Percepts);
WorldM odel Copy.Perform(Action);
UndesiredState < Evaluate(WorldM odel Copy);
if UndesiredState then
Manipul ate(Reactor);

Notethat since the behaviour of the Reactor in each situationis determined by situation-
action rules, the Anticipator always “knows” which action the Reactor would have per-
formed. Alsotheenvironment (includingall other agents) istreated asbeing purely reac-
tive. Thus, sinceeverythingisgoverned by situation-actionrules, the anticipation mech-
anism requires no search, or in other words, the anticipationislinear. It should aso be
noted that the goa of the agent is not limited to pick up only one target (i.e., a sSingu-
lar god). In a multi-goa scenario, some of the changes (manipulations) of the Reac-
tor should only hold for alimited interval of time (e.g., until the current goal has been
achieved). Otherwise, there is a danger that these changes might prevent the agent to
achieve other goals.

In more formal terms a linearly quasi-anticipatory agent can be specified asatuple:

(R, U, M)
where

R isthe set of situation-action rules defining the Reactor.
W isthe description of the environment (the world model).
U isthe set of undesired states.

M isthe set of rules describing how to modify R.

The Anticipator is defined by ¢/ and M. For each element in ¢/ there should be a cor-
responding rulein A, which should be applied when an undesired state of thiskind is
anticipated. Thus, we need in fact also afunction, f : U — M, that determines which
rulefor modifying the Reactor that shoul d be applied given aparticul ar typeof undesired
state. However, as thisfunction typically isobvious, it will not be described explicitly.
Moreover, in al simulations described below, W will consist of the positionsof al ob-
stacles, targets, and agents present in the environment.

Using these terms, the function Evaluate can be described as checking whether the
current anticipated state belongsto ¢4, and Manipulate as first applying f on the antici-
pated undesired state and then using the resulting rule from M to modify R.

2.2 TheTestbed

The agent’s environment is a two-dimensional grid (10x 10) in which anumber of unit-
sized square obstacles forms a maze. In addition to these static objects, there are two
kindsof dynamic objects: agents, which can move about in the maze, and targets, which
can be removed by an agent.

Thegoal of an agent isto pick up thetarget(s). To beableto pick up atarget, the agent
must be in the same position as the target. The agent is able to move in four directions
(north, south, east, and west), unlessthere is an obstacle that blocksthe way. The agent
isalways ableto perceive the target (i.e., the angleto the target), and whether there are
any obstaclesimmediately north, south, east, or west of the agent. (You can think of the
obstacles as being made of glass: it is possible to see the targets through the obstacles
but not the obstacl es themselves, which only can be perceived by tactile sensors.)

Almost identical environments have been used in other experiments, for instance by
Sutton[16]. It isaso similar to the Tileworld [13] (if we interpret the targets as holes)
except for that: (i) following Kinny and Georgeff [11] our testbed has no tiles as they
only make the simulations unnecessarily complex and (ii) some randomness have been
excluded (e.g., the pattern-less appearance and disappearance of holes) since it makes
much of the deliberation pointless (i.e., prediction becomes impossible, cf. Hanks [9]).
In Section 2.4 the environment is generalized into a multi-agent scenario (as suggested
by, for instance, Zlotkin and Rosenschein [19]). The advantages and disadvantages of
thiskind of testbeds have been discussed at length by Hanks, Pollack and Cohen[9].

2.3 Single Agent Simulations

In this section some experiments on single agents will be presented. We will compare
the performance of reactive agentswith that of ALQAAA agents containing such agents
astheir Reactor.

Let usconsider asimplereactive agent that hasonly onesimplesituation-actionrule;
move to the free position closest to the target. In other words, it first triesto move to the
adjacent position that reduces the distance to the target the most. If thereisablock in
thisposition, it triesthe direction of the remaining threethat reducesthe distanceif there
areone, elseit triesthe position that increases the distance theleast and so on. A reactive
agent of thiskind will behave rather well in many not too complicated mazes. However,
asillustrated in Fig. 3 (a) there are aso very simple mazes in which it behaves poorly.
Starting out in the position marked A, it will move two positionstowards thetarget (7)
and then “loop” between two positions as marked in the figure.

Let us now consider an ALQAAA agent that has this reactive agent as its Reactor.
That is, R = {move to the free position closest to the target}. We define the undesired
statesas thosein whichtheagentistrappedinaloop, and if such astateisdetected by the
Anticipator, the Reactor is manipulated in such away that it will not enter thisstatefrom
now on. Thus, we have that: &/ = {beingin aloop} and M = {avoid the positionin the
loop closest to thetarget}.> An ALQAAA agent of thiskind will then behave as showed
inFig. 3 (b). The Anticipator will by anticipation detect the loop before entering it and

Which position in the loop to avoid can, of course, be selected according to other principles.

T
L B
A

@ (b)

Fig. 3. Thebehaviour of (a) the Reactiveagent and (b) the ALQAAA agent. A indicatestheagent’s
present position and 7" the position of the target.

make the Reactor avoid the position closest to thetarget (marked by adashed box). This
issufficient for the Reactor to find itsway to the target.

We have compared the performance of areactiveand an ALQAAA agent of thekinds
described abovein aseries of experiments. There was onetarget in the environment and
the number of obstacles varied between 0 and 35. In each experiment the positions of
the agent, thetarget and the obstacl eswere randomly chosen. In order to avoid too many
trivial scenariosthere was also arequirement that the distance between the agent and the
target should beat least five unit-lengths. Moreover, only scenariosinwhichitispossible
for the agent to reach the target were selected. From theresult in Fig. 4, we see that the
more complex the environment gets, the more useful is the anticipatory behaviour. If
there are no obstacles at al, even the Reactor will, of course, ways find the target.

% Successful 19

ALQAAA agent
80 .
Reactive agent
60
40
20
0 10 20 30 Number of obstacles

Fig. 4. Comparison between Reactive and ALQAAA agents. (200 runs of each multiple of five)

This ALQAAA agent is able to reach the target (when thisis possible) in amost al
kinds of mazes. However, as Fig. 4 shows, there are some in which it will not succeed
and they aretypically of thekind depicted Fig. 5 (8). The reactive agent will inthis case

= [

A .
@ (b)
Fig. 5. The behaviour of (a) Reactive agent and (b) ALQAAA agent.

be trapped in a loop whereas the ALQAAA agent will detect thisloop beforehand and
block the position as shown in Fig. 5 (b). Thisimpliesthat the only possibleway to the
target is blocked and the agent will never reach the target.

The problem with this Anticipator isthat it istoo eager to block aposition. The rea
sonfor thisisthat the Reactor isinclined to “turn around” as soon asit is not decreasing
the distanceto thetarget. If we just augment the Reactor’ s situation-action rule with the
condition that it should only change its direction 180° when there are no other alterna-
tives(i.e, if there are obstaclesin thethree other directions), we will get areactive agent
that solvesthisproblem. If we take thisReactor and the same Anticipator as used in the
last example, we get an ALQAAA agent which seems aways to reach the target (if the
Anticipator is given enough time to anticipate, that is). This Reactor (i.e,, R = {moveto
the free position closest to the target, but do not turn around if not forced to}) will be
used in al the experiments that follows.

2.4 Multi-Agent Simulations

In this section some experiments in multi-agent domains are presented. We will point
out the advantages of being anticipatory, both when competing and when cooperating
with other agents. While the experiments have been carried out with two competing or
cooperating agents in order to make thingsas clear as possible, it istrivial to extend the
experimentsto permit alarger number of agents.

Competing Agents Themain ideahereisthat an ALQAAA agent should useits model
of other agents in order to detect future situationsin which other agents interfere with
theagent’sown intentions(i.e., goals). When such asituationisdetected, the Anticipator

should mani pul atethe Reactor in order to minimizethe probability that thissituationwill
ever occur.

Wewill evaluate thisapproach in the same testbed as above but with two agents and
more than one target in the environment. Agent A should be regarded as “our” agent,
whereas agent B representsthe agent withwhichit competes. Thegoal of boththeagents
is to pick up as many targets as possible. In addition to the basic algorithm described
above, the Anticipator needs amodel of theagent B whichit usesto predict B’s actions
inthe same manner asit predictsitsown (i.e., A’s) actions. When the Anticipator realizes
that B will reach atarget before A, it notifiesthe Reactor that it should ignorethistarget.
Thus, we havethat: &/ = {beingin aloop, pursuing targetsthat presumablywill be picked
up by another agent} and M = {avoid thepositionintheloop closest to thetarget, avoid
the target that presumably will be picked up by another agent}.

However, let us start with two reactive agents of the kind described above. An envi-
ronment containing three targetsisdescribed in Fig. 6 (a). If the agents start at the same

B
T3 T2 TS T2
T B
A
A
@ (b)

Fig. 6. The behaviour of two competing reactive agents: (a) the initial state (b) the situation after
8 time steps, agent B has picked up target 77 .

time the following will happen. Both agents perceive that 7} istheir closest target and
they both head towards it. As B is somewhat closer to 77 than A, it will reach it first
and pick it up (see Fig. 6 (b)). B will then head for 7% which now isthe closest target.
A will dso head for 75 following B. B then reaches 75, picksit up, and heads for the
last target 75 with A still behind. Eventually B will pick up aso 75. Thus, B getsall the
targets and A getsnone.

If we, on theother hand, let A bean ALQAAA agent and start in the same position as
above, it will soon detect that B will bethefirst to reach 77 . So, A will avoid thistarget
and instead head towards 75 (whichisthenext closest target to A). It will reach 75 at the
same time as B reaches 7. When the agents have picked up their targets, thereis only
one target left (7%). Since A is closest to 7%, it will reach it first. Thus, by anticipating
the behaviour of both itself and the other agent, A will pick up two targets whereas B
only picks up one.

Number of targets |
3

AReact BReact AAnti BReact Type Of agen’[s

Fig. 7. Comparison between two sets of competing agents. To the left are both A and B reactive
agents and to theright is A an ALQAAA agent and B areactive agent. The vertical axis
indicatesthe number of targets picked up by an agent (averagesover 1000 runs). The opti-
mal number of targetsthat A isableto pick upin thissituation (i.e., given B’s behaviour)
isillustrated by the dashed line.

We have also some quantitative results on the superiority of ALQAAA agents when
competingwith reactive agents. In theexperimentstherewere 30 obstacles, 5targetsand
two agents. In thefirst session both the agents were reactive and in the second there was
one ALQAAA agent competing with areactive one. The results shown in Fig. 7 tell us
that the performance indeed isimproved (being a most optimal) when the agent behaves
in an anticipatory fashion.

Cooperating Agents We shall now see how ALQAAA agents can be used for cooper-
ating. The task for the two agentsisto pick up al the targetsin shortest possibletime.
It does not matter which agent that picks up a particular target.

To begin with, we apply the agentsin thelast example (i.e., A isan ALQAAA agent
and B areactive agent) to the situation described in Fig. 8 (a). As these agents are not
cooperating, their global behaviour will (as one might expect) not be optimal. What will
happen is that both agents initialy head towards the same target (71). When agent A
reaches 1 we have the situation depicted in Fig. 8 (a). The other targets will then be
approached in the same fashion, with one agent following the other. As aresult, it will
take these non-cooperating agents 15 time-steps to pick up al the targets.

Cooperating agents, on the other hand, should be able to make use of thefact that the
ALQAAA agent knowsthat itwill pick up thetwo closest targets. Oneway of doingthisis
tolet agent A send amessage to agent B (which still isareactive agent) whenit believes
that it will pick up a particul ar target. This message contains the information that agent
B should avoid thistarget. Thus, we add “other agent pursuing target that presumably
will be picked up by me” tol/ and “send message to other target that it should avoid the
target” to M.

When this method is applied to the previous example, agent A will detect that it
will pick up targets 737 and 7% and sends therefore messages to B that these should be
avoided. B then directly heads towards 7%, which the only remaining target that A will

T2 T2

1) A B

T3 TS

@ (b)

Fig. 8. The behaviour of two non-cooperating agentsone ALQAAA (A) and onereactive (B). (a)
theinitial state (b) the situation after 4 time steps, agent A has picked up target 77 .

not reach before B. Asaresult, this system of cooperating agents will use only 6 time-
steps to pick up dl the targets.

The quantitative results (using 30 obstacles, 5 targets and two agents) are summa
rized in Fig. 9. We see that when the two agents are cooperating they come close to op-
timal behaviour.

Total time
20

10

R/R A/ Reomp A Reoop Type of agents

Fig. 9. Comparison between three setsof agentsin terms of the total timeit takesto collect al the
five targets (averages over 1000 runs). R/ R denotestwo reactive agents, A/ Rcomp, ONE
reactiveand one ALQAAA agent competing, and A/ R...p, Onereactiveandone ALQAAA
agent that are cooperating. The optimal time for two agents to collect al targets in this
situation isillustrated by the dashed line.

In the scenario described here, itisonly agent A that isan ALQAAA agent whereas
B isan ordinary reactive agent. Even if we also let B be an ALQAAA agent with the
same model of the world, we would not increase the performance. The reason for this
isthat both agents would have made the same predictions and therefore send messages
to each other about things that both agents have concluded by themselves. However,
in a more redigtic setting where the agents do not have exactly the same information

about the world, such an approach would probably befruitful. In such a case thingsgets
quitecomplicated if one ALQAAA agent simulatesthe anticipatory behaviour of another
ALQAAA agent which in turn simulates first agent’s anticipatory behaviour. The solu-
tion we suggest isto simulate only the reactive component of agents and let the agents
communicate (e.g., broadcast) their modificationsof their reactive component when they
are performed to the other agents. In thisway we are still able to make linear anticipa
tions. This approach can be contrasted with the Recursive Modeling M ethod suggested
by Gmytrasiewicz and Durfee [7] in which an agent modeling another agent includes
that agent’smodels of other agents and so on, resulting in arecursive nesting of models.
As we have seen the behaviour of the ALQAAA agents implemented has not been
optimal. However, we have deliberately chosen very simple Reactors and Anticipators
for the purpose of illustrating how easily the performance can improved by embedding
a Reactor in an ALQAAA agent. It should be clear that it is possible to develop more
elaborate R, U, and M components that produce behaviour closer to the optimal.

3 Discussion

We have shown the viability of an approach for designing autonomous agents based on
the concept of anticipatory systems called ALQAAA in asimple navigation task. Adap-
tation to the environment isperformed by |etting the Anticipator component of the agent
mani pul ate the Reactor component according to anticipated future states.

Compared to traditiona planning, anticipation as described here (there may be other
ways to anticipate) isamore passive way of reasoning. The ALQAAA agent just triesto
predict what will happen if nothing unexpected occurs, whereas a planning agent ac-
tively evaluates what will happen when a number of different actions are performed.
Theresult isthat planning agents will rely heavily on search, whereas ALQAAA agents
will not. Themain reason for thisisthat al agentsintheenvironment (alsothe ALQAAA
agent itself) are treated as being reactive.

In addition, it isinteresting to note the small amount of heuri stic domain knowledge
that is given to the Reactor and the Anticipator (i.e., R, i, and M). Thus, thisapproach
drastically reduces the amount of search needed while at the sametimerequiringonly a
small amount of heuristic domain knowledge. Instead, it relies on alinear anticipation
mechanism to achieve complex behaviours.

3.1 Reated Work

The main task of the Anticipator isto avoid undesired states whereas the main task of
the Reactor isto reach the desired state(s). In other words, the Anticipator’'s goals are
goals of maintenance and prevention rather than of achievement. Compare thisto Min-
sky'’s suppressor-agents, discussed within his Society of Mind framework [12], which
waitsuntil a“bad idea’ issuggested and then prevents the execution of the correspond-
ing action. However, thereis abig difference, suppressor-agents are not predictive. The
Anticipator takes actions beforehand so that the bad idea never will be suggested! Thus,
an Anticipator can be regarded as predictive suppressor-agent.

In conformity with the Sequencer component in Gat’s ATLANTIS architecture [6],
the Anticipator can be viewed as being based on the notion of cognizant failures (i.e.,, a
failure that can be detected by the agent itself). However, an Anticipator detects these
failuresin a simulated redlity (i.e., amodel of the world), whereas a Sequencer has to
deal with real failures.

The notions of Reactor and Anticipator have some similaritieswith the Reactor and
Projector componentsin the ERE architecture suggested by Bresinaand Drummond [3].
In particular, the Reactor in ERE is able to produce reactive behaviour in the environ-
ment independently, but also takes advise from the Projector based on the Projector’s
explorations of possible futures. However, the Projector is more similar to atraditional
planner in that it is based on search through a space of possible Reactor actions (athird
component, the Reductor, i sintroduced to constrain thissearch), whereas the Anticipator
simulates the behaviour of the Reactor initsenvironment linearly (i.e., without search).
Moreover, the Anticipator’smain task isto avoid undesired states, whereas the Proj ector
in the ERE triesto achieve desired states.

There are also some similaritiesto the Dy NA architecture[16] if welet the Reactor
correspond to DY NA’sPolicy component and the Anticipator to its Evaluation function.
In DYNA two kinds of rewards can be identified: external rewards, which are those that
the Eval uation function gets from the environment (thiskind of rewardsis not required
by an ALQAAA agent), and internal rewards, which are those that the Policy gets from
the Eval uation function (these can be compared with the manipulationsthat the Antici-
pator performs on the Reactor). However, there are many disadvantageswiththe Dy NA
architecture compared to ALQAAA agents: (i) The planning process in DYNA requires
search (infact, random search) when it internally teststhe outcome of different actions.
Moreover, severd triad saretypically necessary whereas ALQAAA agentsonly need one.
(i1) Evenif thegod is changed only dightly (e.g., the target is moved one position), the
learning in DYNA must start again from scratch. (iii) It is not clear how to implement
the Evaluation function. In the initial experiments (cf. [16]), it was implemented using
tables where each possible state isrepresented. Thisapproach isclearly not viableinre-
alistic environments. A more appropriate approach isthe one used in ALQAAA agents
where only categoriesof undesired states haveto be defined, which isoften much easier
than to define complex reward functions.

3.2 Limitationsof Experiments

The problems that the ALQAAA agents solved above can certainly be solved by other
methods, but the point to be made is that we can qualitatively enhance the abilities of a
reactive agent by embeddingitinan ALQAAA agent. However, there are severa obvious
limitationsto the application presented in this paper: (i) the environment is quite static
(the only eventsthat take place not caused by the agent itself are those caused by other
agents), (ii) the agents have perfect mode's of the world,* (iii) the agents have perfect
sensors and the outcome of an action is deterministic, and (iv) thisisjust a smulation

* Thus, the behaviour of the agents in the experiments could be regarded as anticipatory rather
than quasi-anticipatory.

(the agent is neither embodied nor situated) and thus escaping the hard problems of per-
ception and uncertainty. Moreover, only a single domain has been investigated. Future
work includes evaluation of the approach in other domainsto see in which types of ap-
plicationsit performswell and whether there any in which it is not appropriate.

References

1.

10.

11

12.
13.

14.

15.

16.

17.

18.

19.

P. Davidsson, E. Astor, and B. Ekdahl. A framework for autonomous agents based on the
concept of anticipatory systems. In Cyberneticsand Systems’ 94, pages 1427-1434. World
Scientific, 1994.

T. Dean and M. Boddy. An analysis of time-dependent planning. In AAAI-88, pages49-54,
1988.

M. Drummond and J. Bresina. Anytime synthetic projection: Maximizing the probability of
goal satisfaction. In AAAI-90, pages 138-144, 1990.

B. Ekdahl, E. Astor, and P. Davidsson. Towards anticipatory agents. In M. Wooldridge and
N.R. Jennings, editors, Intelligent Agents— Theories, Architectures, and Languages, Lecture
Notesin Artificial Intelligence 890, pages 191-202. Springer Verlag, 1995.

I.A. Ferguson. TouringMachines: An Architecture for Dynamic, Rational, Mobile Agents.
PhD thesis, University of Cambridge, 1992.

E. Gat. Integrating planning and reacting in a heterogeneous asynchronousarchitecture for
controlling real-world mobile robots. In AAAI-92, pages 809815, 1992.

PJ. Gmytrasiewicz and E.H. Durfee. Rational coordination in multiagent environments
through recursive modeling. (submitted for publication), 1995.

S. Hanks and R.J. Firby. Issues and architectures for planning and execution. In DARPA
Workshop on Innovative Approachesto Planning, Scheduling and Control, pages59-70, San
Mateo, CA, 1990. Morgan Kaufmann.

S. Hanks, M. Pollack, and P. Cohen. Benchmarks, testbeds, controlled experimentation, and
the design of agent architectures. Technical Report 93-06-05, Department of Computer Sci-
ence and Engineering, University of Washington, 1993.

F.F. Ingrand, M.P. Georgeff, and A.S. Rao. Anarchitecturefor real-time reasoning and system
control. IEEE Expert, 7(6):34—44, 1992.

D.N. Kinny and M.P. Georgeff. Commitment and effectiveness of situated agents. In 1JCAI-
91, pages 82-88, 1991.

M. Minsky. The Society of Mind. Simon and Schuster, 1986.

M.E. Pollack and M. Ringuette. Introducing the Tileworld: Experimentally evaluating agent
architectures. In AAAI-90, 1990.

R. Rosen. Planning, management, policies and strategies: Four fuzzy concepts. Interna-
tional Journal of General Systems, 1:245-252, 1974.

R. Rosen. Anticipatory Systems— Philosophical, Mathematical and Methodological Foun-
dations. Pergamon Press, 1985.

R.S. Sutton. First results with Dyna, an integrated architecture for learning, planning and
reacting. In W.T. Miller, R.S. Sutton, and P.J. Werbos, editors, Neural Networksfor Control,
pages 179-189. MIT Press, 1990.

M.J. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice. Knowledge
Engineering Review, 10(2):115-152, 1995.

S. Zilberstein and S.J. Russell. Anytime sensing, planning and action: A practical model for
robot control. In 1JCAI-93, pages 1402-1407, 1993.

G. Zlotkin and J.S. Rosenschein. Coalition, cryptography, and stability: Mechanisms for
coalition formation in task oriented domain. In AAAI-94, pages 432437, 1994.

This article was processed using the IATEX macro packagewith LLNCS style

