
A Linearly Quasi-Anticipatory Autonomous Agent
Architecture: Some preliminary experiments

Paul Davidsson

Dept. of Computer Science, Lund University, Box 118, S–221 00 Lund, Sweden

Abstract. This report presents some initial results from simulations of a linear
quasi-anticipatory autonomous agent architecture (ALQAAA), which correspond
to a special case of a previously suggested general architecture of anticipatory
agents. It integrates low-level reaction with high-level deliberation by embedding
an ordinary reactive system based on situation-action rules, called the Reactor, in
an anticipatory agent forming a layered hybrid architecture. By treating all agents
in the domain (itself included) as reactive agents, this approach drastically reduces
the amount of search needed while at the same time requiring only a small amount
of heuristic domain knowledge. Instead it relies on a linear anticipation mecha-
nism, carried out by the Anticipator, to achieve complex behaviours. The Antici-
pator uses a world model (in which the agent is represented only by the Reactor)
to make a sequence of one-step predictions. After each step it checks whether the
simulated Reactor has reached an undesired state. If this is the case it will mod-
ify the actual Reactor in order to avoid this state in the future. Results from both
single- and multi-agent simulations indicate that the behaviourof ALQAAA agents
is superior to that of the corresponding reactive agents. Some promising results on
cooperation and coordination of teams of agents are also presented. In particular,
the linear anticipation mechanism is successfully used for conflict detection.

1 Introduction

In this report we will present some initial results from experiments on a linearly quasi-
anticipatory autonomous agent architecture. This architecture corresponds to a special
case of the general architecture of anticipatory agents suggested by Astor, Davidsson,
and Ekdahl [1, 4].

1.1 Hybrid Agent Architectures

In the last couple of years it has become widely acknowledged that an intelligent au-
tonomous agent must have the capability of both high-level deliberation and low-level
reaction. This insight can be seen as a synthesis of two earlier rival lines of thought: the
first argued that agent cognition should be based on sophisticated deliberation, typically
planning, and the second that it should be based only on primitive reactive behaviour
specified for instance by situation-action rules. As it turns out, the weaknesses of re-
active approach correspond closely to the strengths of deliberative approach and vice
versa, i.e., reactive agents are fast but “dumb” (and do not need an explicit world model)
whereas deliberative agents are “smart” but slow (and need a detailed world model).



Moreover, a combined, or hybrid, approach seems to model human functioning closer
than the purely reactive approach, which resembles that of more primitive animals.

As Hanks and Firby [8] point out, two categories of hybrid agent architectures can be
distinguished: uniform architectures employ a single representation and control scheme
for both reaction and deliberation, whereas layered architectures use different represen-
tations and algorithms implemented in separate layers to perform these functions. Most
uniform architectures, for example PRS [10], do not make any specific commitments on
how reaction and deliberation should be interleaved. In addition, Ferguson [5] argues
that “There are a number of other reasons for advocating a layered control approach,
including increased behavioural robustness and operational concurrency, as well as im-
proved program comprehensibility and system testability and analysability.” (p.48)

However, as pointed out by Wooldridge and Jennings [17] there is a weakness in the
existing suggestions for hybrid architectures. They argue that:

One potential difficulty with such architectures, however, is that they tend to be
ad hoc in that while their structures are well-motivated from a design point of
view, it is not clear that they are motivated by any deep theory. (p.26)

In order to improve this situation, a layered hybrid approach based on the theory of an-
ticipatory systems will be presented in the next section.

1.2 Anticipatory Agents

According to Rosen [15], an anticipatory system is “ ... a system containing a predictive
model of itself and/or of its environment, which allows it to change state at an instant in
accord with the model’s predictions pertaining to a latter instant.” (p.339) Thus, such a
system uses the knowledge concerning future states to decide which actions to take in
the present.

Let us describe a simple class of anticipatory systems suggested by Rosen [14]. It
contains an ordinary causal (i.e., non-anticipatory) dynamic system, S. With S he as-
sociates another dynamical system, M , which is a model of S. It is required that the
sequence of states of M are parameterized by a time variable that goes faster than real
time. (That is, if M and S are started out at some time t0, then after an arbitrary time
interval �t, M ’s sequence of states will have proceeded t0 +�t.) In this way, the be-
haviour ofM predicts the behaviour of S: by looking at the state ofM at time t, we get
information about the state that S will be in at some later time than t. In addition,M is
equipped with a set E of effectors which allows it to operate either on S itself, or on the
environmental inputs to S, in such a way as to change the dynamical properties of S.
If S is modified the effectors must also update M . This class of anticipatory systems is
illustrated in Fig. 1. Rosen argues that this would be an anticipatory system in the strict
sense ifM were a perfect model of S (and if the environment were constant or periodic).
However, as M in general is not a perfect model of S, he calls the behaviour of such a
system quasi-anticipatory.

Then, how should these predictions be used to modify the properties of S? Rosen
[14] argues that this could be done in many ways, but suggests that the following is the
simplest:



environment S

E

M

- -

-

?
6

?

?

Fig. 1. The basic architecture of a class of anticipatory systems.

Let us imagine the state space of S (and hence of M ) to be partitioned into re-
gions corresponding to “desirable” and “undesirable” states. As long as the tra-
jectory in M remains in a “desirable” region, no action is taken by M through
the effectors E. As soon as the M -trajectory moves into an “undesirable” re-
gion (and hence, by inference, we may expect the S-trajectory to move into the
corresponding region at some later time, calculable from a knowledge of how
theM - and S-trajectories are parameterized) the effector system is activated to
change the dynamics of S in such a way as to keep the S-trajectory out of the
“undesirable” region. (p.248)

However, to transfer the concept of anticipatory systems into an agent framework
there are some additions and changes that we have found necessary. First, we need a
meta-level component that “runs” and “monitors” the model, and evaluates the predic-
tions made to decide how to change S (or the input to S, we will in the following re-
gard also such changes as changes to S). Thus, we also include the effectors, E, in this
meta-level component that we here will call the Anticipator. Second, in order to pre-
dict future environmental inputs to S we need to extend the model M to include also
the environment. This inclusion is in line with later work of Rosen (cf. [15]). In sum, an
anticipatory agent consists mainly of three entities: an object system (S), a meta-level
component (Anticipator), and a world model (M ). The object system is an ordinary (i.e.,
non-anticipatory) dynamic system. M is a description of the environment including S,
but excluding the Anticipator. The Anticipator should be able to make predictions us-
ingM and to use these predictions to change the dynamic properties of S. Although the
different parts of an anticipatory agent certainly are causal systems, the agent taken as a
whole will nevertheless behave in an anticipatory fashion.

When implementing an anticipatory agent, what should the three different compo-
nents correspond to, and what demands should be made upon these components? To be-
gin with, it seems natural that S should correspond to some kind of reactive system sim-
ilar to the ones mentioned above. We will therefore refer to this component as the Reac-



S
en

so
rs

E
ff

ec
to

rs

Reactor

World
Model

Anticipator

-

-

-

-

-

-

-

-

�

?
modifications

Fig. 2. The basic architecture of an anticipatory agent.

tor. It should be a fast system in the sense that it should be able to handle routine tasks
instinctively and, moreover, it should have an architecture that is both easy to model
and to change. The Anticipator would then correspond to a more deliberative meta-level
component that is able to “run” the world model faster than real time. When doing this
it must be able to reason about the current situation compared to the predicted situations
and its goals in order to decide whether (and how) to change the Reactor.

The resulting architecture is illustrated in Fig. 2. To summarize, the sensors receive
input from the environment. This data is then used in two different ways: (1) to update
the World Model and (2) to serve as stimuli for the Reactor. The Reactor reacts to these
stimuli and provides a response that is forwarded to the effectors, which then carry out
the desired action(s). Moreover, the Anticipator uses the World Model to make predic-
tions and on the basis of these predictions the Anticipator decides if, and what, changes
of the dynamical properties of the Reactor are necessary. Every time the Reactor is mod-
ified, the World Model should, of course, be updated accordingly. Thus, the working
of an anticipatory agent can be viewed as two concurrent processes, one reactive at the
object-level and one more deliberative at the meta-level.

2 A Simple Class of Anticipatory Agents

In this section some initial results from experiments with A Linearly Quasi-Anticipatory
Agent Architecture (ALQAAA) will be presented. ALQAAA corresponds to a special case
of the architecture described in the last section. In particular, it follows Rosen’s sugges-
tion of the simplest way of deciding when to change the Reactor, i.e., by dividing the
state space into desired and undesired regions.

Some simple ALQAAA-agents and a testbed has been implemented.1 The problem

1 They have been implemented in the object-oriented language Simula on Sun SparcStation run-
ning Solaris 2.3. Local class packages were used to achieve concurrency (Simlib IOProcesses)
and graphical interface to X (WindowPackage).



domain has deliberately been made as simple as possible in order to make the principles
of anticipatory behaviour as explicit as possible.

2.1 Agent Implementation

The Reactor and the Anticipator are run (asynchronously) as two separate processes.
The Reactor process is given a high priority whereas the Anticipator is a low priority
process that runs whenever the Reactor is “waiting” (e.g., for an action to be performed).
Since the Reactor is able to preempt the Anticipator at any time, reactivity is always
guaranteed. Thus, the Anticipator has to be a kind of anytime algorithm [2], or rather
anytime process, in that it should always be able to return a result when it is interrupted.2

The appropriateness of using anytime algorithms in autonomous agent contexts where
real-time requirements are common has been pointed out by, for example, Zilberstein
and Russell [18] and Bresina and Drummond [3].

The Reactor carries out a never ending cycle of: perception of the environment (i.e.,
the situation), action selection by situation-action (stimuli-response) rules, and perfor-
mance of action. Rather than having explicit goals, the Reactor’s goals are implicitly
represented in its collection of situation-action rules. The basic algorithm of the Reactor
is given below:

procedure REACTOR;

while true do
Percepts Percieve;

Action SelectAction(Percepts);

Perform(Action);

The Anticipator, on the other hand, carries out a never ending cycle of anticipation
sequences. Each such sequence begins with making a copy of the World Model, which as
mentioned earlier is a description of the environment containing the agent as a physical
entity in the environment, and a copy of the agent’s current set of reaction rules. These
are then used to make a sequence of one-step predictions. After each prediction step, it
is checked whether the simulated agent has reached an undesired state, or whether it has
achieved the goal. If it has reached an undesired state, the Reactor will be manipulated
in order to avoid reaching this state. Thus, this functioning corresponds to that of the
simplest kind of anticipatory system suggested by Rosen. The basic algorithm of the
Anticipator is as follows:

2 According to Dean and Boddy [2], the main characteristics of anytime algorithms are that “...
(i) they lend themselves to preemptive scheduling techniques (i.e., they can be suspended and
resumed with negligible overhead), (ii) they can be terminated at any time and will return some
answer, and (iii) the answers returned improve in some well-behaved manner as a function of
time.” (p.52)



procedure ANTICIPATOR;

while true do
WorldModelCopy WorldModel;

ReactorCopy Reactor;

UndesiredState false;

while not UndesiredState and not GoalAchieved(WorldModelCopy) do
Percepts WorldModelCopy.Percieve;

Action ReactorCopy.SelectAction(Percepts);

WorldModelCopy.Perform(Action);

UndesiredState Evaluate(WorldModelCopy);

if UndesiredState then
Manipulate(Reactor);

Note that since the behaviour of the Reactor in each situation is determined by situation-
action rules, the Anticipator always “knows” which action the Reactor would have per-
formed. Also the environment (includingall other agents) is treated as being purely reac-
tive. Thus, since everything is governed by situation-action rules, the anticipation mech-
anism requires no search, or in other words, the anticipation is linear. It should also be
noted that the goal of the agent is not limited to pick up only one target (i.e., a singu-
lar goal). In a multi-goal scenario, some of the changes (manipulations) of the Reac-
tor should only hold for a limited interval of time (e.g., until the current goal has been
achieved). Otherwise, there is a danger that these changes might prevent the agent to
achieve other goals.

In more formal terms a linearly quasi-anticipatory agent can be specified as a tuple:

hR;W;U ;Mi

where

R is the set of situation-action rules defining the Reactor.
W is the description of the environment (the world model).
U is the set of undesired states.
M is the set of rules describing how to modifyR.

The Anticipator is defined by U andM. For each element in U there should be a cor-
responding rule inM, which should be applied when an undesired state of this kind is
anticipated. Thus, we need in fact also a function, f : U ! M , that determines which
rule for modifying the Reactor that should be applied given a particular type of undesired
state. However, as this function typically is obvious, it will not be described explicitly.
Moreover, in all simulations described below,W will consist of the positions of all ob-
stacles, targets, and agents present in the environment.

Using these terms, the function Evaluate can be described as checking whether the
current anticipated state belongs to U , and Manipulate as first applying f on the antici-
pated undesired state and then using the resulting rule fromM to modifyR.



2.2 The Testbed

The agent’s environment is a two-dimensional grid (10�10) in which a number of unit-
sized square obstacles forms a maze. In addition to these static objects, there are two
kinds of dynamic objects: agents, which can move about in the maze, and targets, which
can be removed by an agent.

The goal of an agent is to pick up the target(s). To be able to pick up a target, the agent
must be in the same position as the target. The agent is able to move in four directions
(north, south, east, and west), unless there is an obstacle that blocks the way. The agent
is always able to perceive the target (i.e., the angle to the target), and whether there are
any obstacles immediately north, south, east, or west of the agent. (You can think of the
obstacles as being made of glass: it is possible to see the targets through the obstacles
but not the obstacles themselves, which only can be perceived by tactile sensors.)

Almost identical environments have been used in other experiments, for instance by
Sutton [16]. It is also similar to the Tileworld [13] (if we interpret the targets as holes)
except for that: (i) following Kinny and Georgeff [11] our testbed has no tiles as they
only make the simulations unnecessarily complex and (ii) some randomness have been
excluded (e.g., the pattern-less appearance and disappearance of holes) since it makes
much of the deliberation pointless (i.e., prediction becomes impossible, cf. Hanks [9]).
In Section 2.4 the environment is generalized into a multi-agent scenario (as suggested
by, for instance, Zlotkin and Rosenschein [19]). The advantages and disadvantages of
this kind of testbeds have been discussed at length by Hanks, Pollack and Cohen [9].

2.3 Single Agent Simulations

In this section some experiments on single agents will be presented. We will compare
the performance of reactive agents with that of ALQAAA agents containing such agents
as their Reactor.

Let us consider a simple reactive agent that has only one simple situation-action rule:
move to the free position closest to the target. In other words, it first tries to move to the
adjacent position that reduces the distance to the target the most. If there is a block in
this position, it tries the direction of the remaining three that reduces the distance if there
are one, else it tries the position that increases the distance the least and so on. A reactive
agent of this kind will behave rather well in many not too complicated mazes. However,
as illustrated in Fig. 3 (a) there are also very simple mazes in which it behaves poorly.
Starting out in the position marked A, it will move two positions towards the target (T )
and then “loop” between two positions as marked in the figure.

Let us now consider an ALQAAA agent that has this reactive agent as its Reactor.
That is, R = fmove to the free position closest to the targetg. We define the undesired
states as those in which the agent is trapped in a loop, and if such a state is detected by the
Anticipator, the Reactor is manipulated in such a way that it will not enter this state from
now on. Thus, we have that: U = fbeing in a loopg andM = favoid the position in the
loop closest to the targetg.3 An ALQAAA agent of this kind will then behave as showed
in Fig. 3 (b). The Anticipator will by anticipation detect the loop before entering it and

3 Which position in the loop to avoid can, of course, be selected according to other principles.



(a)

A

�

�

s
k

�

T

(b)

A

� �

� �

�

��

�T

Fig. 3. The behaviourof (a) the Reactive agent and (b) the ALQAAA agent.A indicates the agent’s
present position and T the position of the target.

make the Reactor avoid the position closest to the target (marked by a dashed box). This
is sufficient for the Reactor to find its way to the target.

We have compared the performance of a reactive and an ALQAAA agent of the kinds
described above in a series of experiments. There was one target in the environment and
the number of obstacles varied between 0 and 35. In each experiment the positions of
the agent, the target and the obstacles were randomly chosen. In order to avoid too many
trivial scenarios there was also a requirement that the distance between the agent and the
target should be at least five unit-lengths.Moreover, only scenarios in which it is possible
for the agent to reach the target were selected. From the result in Fig. 4, we see that the
more complex the environment gets, the more useful is the anticipatory behaviour. If
there are no obstacles at all, even the Reactor will, of course, always find the target.

Number of obstacles

-
0 10 20 30

% Successful

20

40

60

80

100 ALQAAA agent

Reactive agent

Fig. 4. Comparison between Reactive and ALQAAA agents. (200 runs of each multiple of five)



This ALQAAA agent is able to reach the target (when this is possible) in almost all
kinds of mazes. However, as Fig. 4 shows, there are some in which it will not succeed
and they are typically of the kind depicted Fig. 5 (a). The reactive agent will in this case

(a)

A � � �

s
k

�

T

(b)

A � �

T

Fig. 5. The behaviour of (a) Reactive agent and (b) ALQAAA agent.

be trapped in a loop whereas the ALQAAA agent will detect this loop beforehand and
block the position as shown in Fig. 5 (b). This implies that the only possible way to the
target is blocked and the agent will never reach the target.

The problem with this Anticipator is that it is too eager to block a position. The rea-
son for this is that the Reactor is inclined to “turn around” as soon as it is not decreasing
the distance to the target. If we just augment the Reactor’s situation-action rule with the
condition that it should only change its direction 180� when there are no other alterna-
tives (i.e., if there are obstacles in the three other directions), we will get a reactive agent
that solves this problem. If we take this Reactor and the same Anticipator as used in the
last example, we get an ALQAAA agent which seems always to reach the target (if the
Anticipator is given enough time to anticipate, that is). This Reactor (i.e.,R = fmove to
the free position closest to the target, but do not turn around if not forced tog) will be
used in all the experiments that follows.

2.4 Multi-Agent Simulations

In this section some experiments in multi-agent domains are presented. We will point
out the advantages of being anticipatory, both when competing and when cooperating
with other agents. While the experiments have been carried out with two competing or
cooperating agents in order to make things as clear as possible, it is trivial to extend the
experiments to permit a larger number of agents.

Competing Agents The main idea here is that an ALQAAA agent should use its model
of other agents in order to detect future situations in which other agents interfere with
the agent’s own intentions (i.e., goals). When such a situation is detected, the Anticipator



should manipulate the Reactor in order to minimize the probability that this situation will
ever occur.

We will evaluate this approach in the same testbed as above but with two agents and
more than one target in the environment. Agent A should be regarded as “our” agent,
whereas agentB represents the agent with which it competes. The goal of both the agents
is to pick up as many targets as possible. In addition to the basic algorithm described
above, the Anticipator needs a model of the agentB which it uses to predictB’s actions
in the same manner as it predicts its own (i.e.,A’s) actions. When the Anticipator realizes
thatB will reach a target beforeA, it notifies the Reactor that it should ignore this target.
Thus, we have that:U = fbeing in a loop, pursuing targets that presumably will be picked
up by another agentg andM= favoid the position in the loop closest to the target, avoid
the target that presumably will be picked up by another agentg.

However, let us start with two reactive agents of the kind described above. An envi-
ronment containing three targets is described in Fig. 6 (a). If the agents start at the same

(a)

A

B

T1

T2T3

(b)

A

B

T2T3

Fig. 6. The behaviour of two competing reactive agents: (a) the initial state (b) the situation after
8 time steps, agentB has picked up target T1.

time the following will happen. Both agents perceive that T1 is their closest target and
they both head towards it. As B is somewhat closer to T1 than A, it will reach it first
and pick it up (see Fig. 6 (b)). B will then head for T2 which now is the closest target.
A will also head for T2 followingB. B then reaches T2, picks it up, and heads for the
last target T3 withA still behind. EventuallyB will pick up also T3. Thus,B gets all the
targets and A gets none.

If we, on the other hand, letA be an ALQAAA agent and start in the same position as
above, it will soon detect that B will be the first to reach T1. So, Awill avoid this target
and instead head towards T3 (which is the next closest target toA). It will reach T3 at the
same time as B reaches T1. When the agents have picked up their targets, there is only
one target left (T2). Since A is closest to T2, it will reach it first. Thus, by anticipating
the behaviour of both itself and the other agent, A will pick up two targets whereas B
only picks up one.



Type of agentsAReactBReact AAnti BReact

Number of targets
6

1

2

3

Fig. 7. Comparison between two sets of competing agents. To the left are bothA andB reactive
agents and to the right is A an ALQAAA agent and B a reactive agent. The vertical axis
indicates the number of targets picked up by an agent (averages over 1000 runs). The opti-
mal number of targets thatA is able to pick up in this situation (i.e., givenB’s behaviour)
is illustrated by the dashed line.

We have also some quantitative results on the superiority of ALQAAA agents when
competing with reactive agents. In the experiments there were 30 obstacles, 5 targets and
two agents. In the first session both the agents were reactive and in the second there was
one ALQAAA agent competing with a reactive one. The results shown in Fig. 7 tell us
that the performance indeed is improved (being almost optimal) when the agent behaves
in an anticipatory fashion.

Cooperating Agents We shall now see how ALQAAA agents can be used for cooper-
ating. The task for the two agents is to pick up all the targets in shortest possible time.
It does not matter which agent that picks up a particular target.

To begin with, we apply the agents in the last example (i.e., A is an ALQAAA agent
and B a reactive agent) to the situation described in Fig. 8 (a). As these agents are not
cooperating, their global behaviour will (as one might expect) not be optimal. What will
happen is that both agents initially head towards the same target (T1). When agent A
reaches T1 we have the situation depicted in Fig. 8 (a). The other targets will then be
approached in the same fashion, with one agent following the other. As a result, it will
take these non-cooperating agents 15 time-steps to pick up all the targets.

Cooperating agents, on the other hand, should be able to make use of the fact that the
ALQAAA agent knows that it will pick up the two closest targets. One way of doing this is
to let agentA send a message to agent B (which still is a reactive agent) when it believes
that it will pick up a particular target. This message contains the information that agent
B should avoid this target. Thus, we add “other agent pursuing target that presumably
will be picked up by me” to U and “send message to other target that it should avoid the
target” toM.

When this method is applied to the previous example, agent A will detect that it
will pick up targets T1 and T2 and sends therefore messages to B that these should be
avoided. B then directly heads towards T2, which the only remaining target that A will



(a)

A B

T1

T2

T3

(b)

A B

T2

T3

Fig. 8. The behaviour of two non-cooperating agents one ALQAAA (A) and one reactive (B). (a)
the initial state (b) the situation after 4 time steps, agentA has picked up target T1.

not reach before B. As a result, this system of cooperating agents will use only 6 time-
steps to pick up all the targets.

The quantitative results (using 30 obstacles, 5 targets and two agents) are summa-
rized in Fig. 9. We see that when the two agents are cooperating they come close to op-
timal behaviour.

Type of agentsR=R A=Rcomp A=Rcoop

Total time
6

10

20

Fig. 9. Comparison between three sets of agents in terms of the total time it takes to collect all the
five targets (averages over 1000 runs). R=R denotes two reactive agents, A=Rcomp, one
reactive and one ALQAAA agent competing, andA=Rcoop, one reactive and one ALQAAA

agent that are cooperating. The optimal time for two agents to collect all targets in this
situation is illustrated by the dashed line.

In the scenario described here, it is only agent A that is an ALQAAA agent whereas
B is an ordinary reactive agent. Even if we also let B be an ALQAAA agent with the
same model of the world, we would not increase the performance. The reason for this
is that both agents would have made the same predictions and therefore send messages
to each other about things that both agents have concluded by themselves. However,
in a more realistic setting where the agents do not have exactly the same information



about the world, such an approach would probably be fruitful. In such a case things gets
quite complicated if one ALQAAA agent simulates the anticipatory behaviour of another
ALQAAA agent which in turn simulates first agent’s anticipatory behaviour. The solu-
tion we suggest is to simulate only the reactive component of agents and let the agents
communicate (e.g., broadcast) their modifications of their reactive component when they
are performed to the other agents. In this way we are still able to make linear anticipa-
tions. This approach can be contrasted with the Recursive Modeling Method suggested
by Gmytrasiewicz and Durfee [7] in which an agent modeling another agent includes
that agent’s models of other agents and so on, resulting in a recursive nesting of models.

As we have seen the behaviour of the ALQAAA agents implemented has not been
optimal. However, we have deliberately chosen very simple Reactors and Anticipators
for the purpose of illustrating how easily the performance can improved by embedding
a Reactor in an ALQAAA agent. It should be clear that it is possible to develop more
elaborateR, U , andM components that produce behaviour closer to the optimal.

3 Discussion

We have shown the viability of an approach for designing autonomous agents based on
the concept of anticipatory systems called ALQAAA in a simple navigation task. Adap-
tation to the environment is performed by letting the Anticipator component of the agent
manipulate the Reactor component according to anticipated future states.

Compared to traditional planning, anticipation as described here (there may be other
ways to anticipate) is a more passive way of reasoning. The ALQAAA agent just tries to
predict what will happen if nothing unexpected occurs, whereas a planning agent ac-
tively evaluates what will happen when a number of different actions are performed.
The result is that planning agents will rely heavily on search, whereas ALQAAA agents
will not. The main reason for this is that all agents in the environment (also the ALQAAA

agent itself) are treated as being reactive.
In addition, it is interesting to note the small amount of heuristic domain knowledge

that is given to the Reactor and the Anticipator (i.e.,R, U , andM). Thus, this approach
drastically reduces the amount of search needed while at the same time requiring only a
small amount of heuristic domain knowledge. Instead, it relies on a linear anticipation
mechanism to achieve complex behaviours.

3.1 Related Work

The main task of the Anticipator is to avoid undesired states whereas the main task of
the Reactor is to reach the desired state(s). In other words, the Anticipator’s goals are
goals of maintenance and prevention rather than of achievement. Compare this to Min-
sky’s suppressor-agents, discussed within his Society of Mind framework [12], which
waits until a “bad idea” is suggested and then prevents the execution of the correspond-
ing action. However, there is a big difference, suppressor-agents are not predictive. The
Anticipator takes actions beforehand so that the bad idea never will be suggested! Thus,
an Anticipator can be regarded as predictive suppressor-agent.



In conformity with the Sequencer component in Gat’s ATLANTIS architecture [6],
the Anticipator can be viewed as being based on the notion of cognizant failures (i.e., a
failure that can be detected by the agent itself). However, an Anticipator detects these
failures in a simulated reality (i.e., a model of the world), whereas a Sequencer has to
deal with real failures.

The notions of Reactor and Anticipator have some similarities with the Reactor and
Projector components in the ERE architecture suggested by Bresina and Drummond [3].
In particular, the Reactor in ERE is able to produce reactive behaviour in the environ-
ment independently, but also takes advise from the Projector based on the Projector’s
explorations of possible futures. However, the Projector is more similar to a traditional
planner in that it is based on search through a space of possible Reactor actions (a third
component, the Reductor, is introduced to constrain this search), whereas the Anticipator
simulates the behaviour of the Reactor in its environment linearly (i.e., without search).
Moreover, the Anticipator’smain task is to avoid undesired states, whereas the Projector
in the ERE tries to achieve desired states.

There are also some similarities to the DYNA architecture [16] if we let the Reactor
correspond to DYNA’s Policy component and the Anticipator to its Evaluation function.
In DYNA two kinds of rewards can be identified: external rewards, which are those that
the Evaluation function gets from the environment (this kind of rewards is not required
by an ALQAAA agent), and internal rewards, which are those that the Policy gets from
the Evaluation function (these can be compared with the manipulations that the Antici-
pator performs on the Reactor). However, there are many disadvantages with the DYNA

architecture compared to ALQAAA agents: (i) The planning process in DYNA requires
search (in fact, random search) when it internally tests the outcome of different actions.
Moreover, several trials are typically necessary whereas ALQAAA agents only need one.
(ii) Even if the goal is changed only slightly (e.g., the target is moved one position), the
learning in DYNA must start again from scratch. (iii) It is not clear how to implement
the Evaluation function. In the initial experiments (cf. [16]), it was implemented using
tables where each possible state is represented. This approach is clearly not viable in re-
alistic environments. A more appropriate approach is the one used in ALQAAA agents
where only categories of undesired states have to be defined, which is often much easier
than to define complex reward functions.

3.2 Limitations of Experiments

The problems that the ALQAAA agents solved above can certainly be solved by other
methods, but the point to be made is that we can qualitatively enhance the abilities of a
reactive agent by embedding it in an ALQAAA agent. However, there are several obvious
limitations to the application presented in this paper: (i) the environment is quite static
(the only events that take place not caused by the agent itself are those caused by other
agents), (ii) the agents have perfect models of the world,4 (iii) the agents have perfect
sensors and the outcome of an action is deterministic, and (iv) this is just a simulation

4 Thus, the behaviour of the agents in the experiments could be regarded as anticipatory rather
than quasi-anticipatory.



(the agent is neither embodied nor situated) and thus escaping the hard problems of per-
ception and uncertainty. Moreover, only a single domain has been investigated. Future
work includes evaluation of the approach in other domains to see in which types of ap-
plications it performs well and whether there any in which it is not appropriate.

References

1. P. Davidsson, E. Astor, and B. Ekdahl. A framework for autonomous agents based on the
concept of anticipatory systems. In Cybernetics and Systems ’94, pages 1427–1434. World
Scientific, 1994.

2. T. Dean and M. Boddy. An analysis of time-dependent planning. In AAAI-88, pages 49–54,
1988.

3. M. Drummond and J. Bresina. Anytime synthetic projection: Maximizing the probability of
goal satisfaction. In AAAI-90, pages 138–144, 1990.

4. B. Ekdahl, E. Astor, and P. Davidsson. Towards anticipatory agents. In M. Wooldridge and
N.R. Jennings, editors, Intelligent Agents — Theories, Architectures,and Languages,Lecture
Notes in Artificial Intelligence 890, pages 191–202. Springer Verlag, 1995.

5. I.A. Ferguson. TouringMachines: An Architecture for Dynamic, Rational, Mobile Agents.
PhD thesis, University of Cambridge, 1992.

6. E. Gat. Integrating planning and reacting in a heterogeneous asynchronous architecture for
controlling real-world mobile robots. In AAAI-92, pages 809–815, 1992.

7. P.J. Gmytrasiewicz and E.H. Durfee. Rational coordination in multiagent environments
through recursive modeling. (submitted for publication), 1995.

8. S. Hanks and R.J. Firby. Issues and architectures for planning and execution. In DARPA
Workshop on Innovative Approaches to Planning, Scheduling and Control, pages 59–70, San
Mateo, CA, 1990. Morgan Kaufmann.

9. S. Hanks, M. Pollack, and P. Cohen. Benchmarks, testbeds, controlled experimentation, and
the design of agent architectures. Technical Report 93–06–05, Department of Computer Sci-
ence and Engineering, University of Washington, 1993.

10. F.F. Ingrand, M.P. Georgeff, and A.S. Rao. An architecture for real-time reasoning and system
control. IEEE Expert, 7(6):34–44, 1992.

11. D.N. Kinny and M.P. Georgeff. Commitment and effectiveness of situated agents. In IJCAI-
91, pages 82–88, 1991.

12. M. Minsky. The Society of Mind. Simon and Schuster, 1986.
13. M.E. Pollack and M. Ringuette. Introducing the Tileworld: Experimentally evaluating agent

architectures. In AAAI-90, 1990.
14. R. Rosen. Planning, management, policies and strategies: Four fuzzy concepts. Interna-

tional Journal of General Systems, 1:245–252, 1974.
15. R. Rosen. Anticipatory Systems – Philosophical, Mathematical and Methodological Foun-

dations. Pergamon Press, 1985.
16. R.S. Sutton. First results with Dyna, an integrated architecture for learning, planning and

reacting. In W.T. Miller, R.S. Sutton, and P.J. Werbos, editors, Neural Networks for Control,
pages 179–189. MIT Press, 1990.

17. M.J. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice. Knowledge
Engineering Review, 10(2):115–152, 1995.

18. S. Zilberstein and S.J. Russell. Anytime sensing, planning and action: A practical model for
robot control. In IJCAI-93, pages 1402–1407, 1993.

19. G. Zlotkin and J.S. Rosenschein. Coalition, cryptography, and stability: Mechanisms for
coalition formation in task oriented domain. In AAAI-94, pages 432–437, 1994.



This article was processed using the LATEX macro package with LLNCS style


