
KER@EFR Västerås

Knowledge Engineering in Rosetta project
European Robotics Forum, Västerås

Jacek Malec, Lund University

Anders Björkelund, Herman Bruyninckx, Klas Nilsson

& many others

April 8, 2011

Björkelund, Bruyninckx, Malec, Nilsson 1(16)

KER@EFR Västerås

Questions we want to have answered

Terminology What are task descriptions, action recipes, skills and

other primitives, and what are their relationships?

Conventions Are there shared de�nitions, conventions (e.g.,

coordinate systems, units), and data structures?

Scene graphs How should data be represented (maps, objects,

actions)? What data should be annotated and how?

What kind of reasoning is performed or needed?

Reuse of knowledge How can a robot decide which knowledge

(e.g., map or skill) to reuse in a new situation?

Reuse of tools What existing software modules, algorithms,

libraries, or APIs can be reused?

Knowledge engineering How will/should the knowledge base

grow? What are the processes bootstrapping a

knowledge base useful in real applications?

Björkelund, Bruyninckx, Malec, Nilsson 2(16)

KER@EFR Västerås

Rosetta

Our aim is assembly:

Björkelund, Bruyninckx, Malec, Nilsson 3(16)

KER@EFR Västerås

Rosetta

Integration
Framework

Knowledge

 Station

Engineering

 Task
Execution

 Native
Controller

Björkelund, Bruyninckx, Malec, Nilsson 4(16)

KER@EFR Västerås

Target robots: IRb-140

Björkelund, Bruyninckx, Malec, Nilsson 5(16)

KER@EFR Västerås

Target robots: FRIDA

Björkelund, Bruyninckx, Malec, Nilsson 6(16)

KER@EFR Västerås

Vocabulary

Activities:
Motions

continuous spacetime activity of a robot �nishing on some

observable condition (detectable by sensors)

Actions

every other continuous time activity but a motion, e.g. image

processing or path-planning

Skills

Discretely interconnected set of activities (FSM, with states

possessing appropriate structure), may span several levels of

complexity (compound skills vs. primitive skills)

Tasks

Abstracted skills, providing information about the goal, but not

the means; e.g. an assembly graph for the stop button case

Björkelund, Bruyninckx, Malec, Nilsson 7(16)

KER@EFR Västerås

Conventions: Rosetta ontology

Origins:

SIARAS (2006�08,

assembly, sensing)

RoSta (2008�09,

manufacturing)

Undergoing modularisation:

NASA qudt ontology

OWL-S

statecharts

project-speci�c knowledge

Björkelund, Bruyninckx, Malec, Nilsson 8(16)

KER@EFR Västerås

Scene graph

By the scene graph we understand all information about the

objects in the work-cell related to the scene geometry. In particular,

for each object we need to know its shape (possibly as a function

of time if it moves or is being deformed), its physical properties, the

space it occupies and its relation to other objects.

Overall purpose of scene graph:

to share a world model between two or more components in

the system, so that

they can provide their piece of information about how the world

looks like, and how it is changing.

they can get information about those parts of the world they

are not able to provide their own information for.

Björkelund, Bruyninckx, Malec, Nilsson 9(16)

KER@EFR Västerås

Skills

Discretely interconnected set of activities: Finite State Machines,

where states correspond to activities

Motions

(sensing and processing) Actions

May span several levels of complexity (compound skills vs.

primitive skills)

May be treated as services (for task planning/decomposition

purposes)

Parametrised (to enable learning)

Contextualized (platform-speci�c solutions)

Björkelund, Bruyninckx, Malec, Nilsson 10(16)

KER@EFR Västerås

An example skill

SearchContactPhi_a
entry:

setPsiForceControl();
setPhiSearch();

 state = 8;
during:

calculations();

 eM setPsiForceControl

 eM setPhiSearch

 eM calculations

InitialState
entry:
 chains = setChain(chains, f_a, x_tr, y_tr, z_tr, z_rot, y_rot, x_rot, x_tr_c, y_tr_u, z_tr_c);
 chains = setChain(chains, f_b, x_tr, y_tr, z_tr, z_rot, y_rot, x_rot, x_tr_c, y_tr_c, z_tr_c);
 yu_hat = 18;
 zu_hat = 173;

%zu_hat = 200;
 chain_params = setChain(chain_params, f_a, 0, 0, 0, 0, 0, 0, 5, yu_hat, zu_hat);
 chain_params = setChain(chain_params, f_b, 0, 0, 0, 0, 0, 0, 5, 22, 173);

setDesiredPosition();
 state = 1;
during:

calculations();
 eM
setDesiredPosition eM

calculations

SearchContactPsi_a
entry:

setXForceControl();
setPsiSearch();

 state = 7;
during:

calculations();

 eM setXForceControl

 eM
setPsiSearch

 eM calculations

PutInPlace
entry:

setPhiForceControl();
pushHard();

 state = 9;
during:

calculations();

 eM setPhiForceControl

 eM pushHard

 eM calculations

SearchContactZ_a_fast1
entry:

setFastZSearch();
 state = 3;
during:

calculations();

 eM
setFastZSearch

 eM calculations

GotoStartPosition
entry:

setPositionControl();
 state = 2;
during:

calculations();

 eM
calculations eM

setPositionControl
SearchContactX_a
entry:

setYForceControl();
setXSearch();

 state = 6;
during:

calculations();

 eM setYForceControl

 eM setXSearch

 eM calculations

LiftUp
entry:

stopPressing();
liftUp();

 state = 10;
during:

calculations();

 eM stopPressing

 eM liftUp

 eM calculations

SearchContactZ_a_fast
entry:

setFastZSearch();
 state = 3;
during:

calculations();

 eM
setFastZSearch

 eM calculations

SearchContactY_a
entry:

setZForceControl();
setYSearch();

 state = 5;
during:

calculations();

 eM
setZForceControl

 eM
setYSearch

 eM
calculations

EndState
entry:

% Do nothing new
 state = 10;

SearchContactZ_a
entry:

setZSearch();
 state = 4;
during:

calculations();

 eM
setZSearch

 eM
calculations

SearchContactPsi_a1
entry:

setYForceControl();
setPsiSearch();

 state = 7;
during:

calculations();

 eM setYForceControl

 eM
setPsiSearch

 eM calculations

 eM
par =setParams(ctrlparams,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10)

 eM par =deActivate(ctrlparams,i)
SearchContactPhi_a1
entry:

setPsiForceControl();
%setPhiSearch();

 state = 8;
during:

calculations();

 eM setPsiForceControl

 eM setPhiSearch

 eM
calculations

 eM cf =setCf(controlpar)

 eM ref = setRef(controlpar,fref,pref,vref)

 eM chainOut = setChain(chain,nbr,a1,a2,a3,a4,a5,a6,a7,a8,a9)

[contactPsiDirection]

[contactPhiDirection]

[contactXDirection]

[startExecution]

[snappedIntoPlace]
[inStartPosition && 1>2]

1

[inStartPosition]
2

[contactYDirection && 1<2]

1

[liftedUp]

[beginZSearch]

[contactZDirection]

[contactYDirection && 1>2]

2

[contactPsiDirection]

Björkelund, Bruyninckx, Malec, Nilsson 11(16)

KER@EFR Västerås

An example skill

Björkelund, Bruyninckx, Malec, Nilsson 12(16)

KER@EFR Västerås

Reusable tools and results

What could we share?

ontology / ontologies

skill knowledge

log data (for learning purposes)

Some of Rosetta data is unfortunately not open: a good policy is

needed

Björkelund, Bruyninckx, Malec, Nilsson 13(16)

KER@EFR Västerås

Conclusions

Challenging questions

Hard knowledge extraction problem

Lots has been already done, sometimes under different names

White paper to be written...

THANK YOU!

Björkelund, Bruyninckx, Malec, Nilsson 14(16)

KER@EFR Västerås

Ontology extra 1

Björkelund, Bruyninckx, Malec, Nilsson 15(16)

KER@EFR Västerås

Ontology extra 2

Björkelund, Bruyninckx, Malec, Nilsson 16(16)

