Knowledge Engineering in robotics

Herman Bruyninckx
K.U.Leuven, Belgium
BRICS, Rosetta, euRobotics

Västerås, Sweden
April 8, 2011
BRICS, Rosetta, euRobotics

BRICS:

Rosetta:

euRobotics:
BRICS, Rosetta, euRobotics

BRICS:
- software engineering for complex robotic systems
- **how** to do that in (Eclipse, **MDE**) tool support
 = lots of knowledge engineering

Rosetta:

euRobotics:
BRICS, Rosetta, euRobotics

BRICS:

- software engineering for complex robotic systems
- how to do that in (Eclipse, MDE) tool support = lots of knowledge engineering

Rosetta:

- intelligent skills for force-controlled robotic assembly
- skill to be described at several levels of abstraction = lots of knowledge engineering

euRobotics:
BRICS, Rosetta, euRobotics

BRICS:
- software engineering for complex robotic systems
- how to do that in (Eclipse, MDE) tool support = lots of knowledge engineering

Rosetta:
- intelligent skills for force-controlled robotic assembly
- skill to be described at several levels of abstraction = lots of knowledge engineering

euRobotics:
- semantic web for robotics portal
- need for open content robotics ontology
Examples in my research

Herman Bruyninckx, Knowledge Engineering in robotics
Knowledge representation

Knowledge needed is of various types:

- robot motion controllers
- geometry of objects + “scene graph”
- sensor capabilities & data interpretation
- (partial) ordering of actions in task
- common sense + physical laws
- relationships robot actions ↔ effects
- ...
Knowledge representation

Knowledge needed is of various types:

- robot motion controllers
- geometry of objects + “scene graph”
- sensor capabilities & data interpretation
- (partial) ordering of actions in task
- common sense + physical laws
- relationships robot actions \leftrightarrow effects
-

Representation of knowledge:

- (hyper)graphs (Topic Maps, RDF, . . .)
- rules (logic, OWL-x, . . .)
Knowledge representation

Knowledge needed is of various types:
- robot motion controllers
- geometry of objects + “scene graph”
- sensor capabilities & data interpretation
- (partial) ordering of actions in task
- common sense + physical laws
- relationships robot actions ↔ effects
- ...

Representation of knowledge:
- (hyper)graphs (Topic Maps, RDF, . . .)
- rules (logic, OWL-x, . . .)

How to integrate them...?
Types of ontologies

- **object** ontology

- **domain/system** ontology

- **profile** ontology
Types of ontologies

- **object** ontology
 - what knowledge do our robots need to become “intelligent”

- **domain/system** ontology

- **profile** ontology

Types of ontologies

- **object** ontology
 - what knowledge do our robots need to become “intelligent”

- **domain/system** ontology
 - what is “Field robotics”? Or “Assembly robotics”?

- **profile** ontology
Types of ontologies

- **object** ontology
 - what knowledge do our robots need to become “intelligent”

- **domain/system** ontology
 - what is “Field robotics”? Or “Assembly robotics”?

- **profile** ontology
 - what are the competences/expertise of a researcher?
MDE’s M0–M3 & ontology

Claim: MDE’s Domain Specific Language concept is pragmatic way to start robotics objects ontology, in particular for action representation.

Herman Bruyninckx, Knowledge Engineering in robotics
MDE’s M0–M3 & ontology

M0–M3 is ontology (not other way around!)
MDE’s M0–M3 & ontology

M0–M3 is ontology (not other way around!)

Claim: MDE’s Domain Specific Language concept is pragmatic way to start robotics objects ontology, in particular for **action representation**
DSL for assembly case
—Discrete behaviour: FSM—

move_up = apply(tff_motions.move_up, {zt=-0.3}) end
move_down = apply(tff_motions.move_down, {zt=0.1}) end
align = apply(tff_motions.push_down, {zt=10}) end
slide_x = apply(tff_motions.compliant_slide_x,
 {xt=0.2, zt=1}) end
trans:new{ src="initial", tgt="move_down" },
trans:new{ src="move_up", tgt="move_down",
 guard = return get_total_distance() > 0.2 end },
trans:new{ src="align", tgt="slide_x",
 guard = return get_move_duration() > 2 end },

Herman Bruyninckx, Knowledge Engineering in robotics 7
DSL for assembly case
—Continuous behaviour: control—

\[
\text{move_down} = \\
\quad \text{xt} = \text{tff.axis_spec:new} \{ \text{value}=0, \text{type='velocity'} \} \\
\quad \text{yt} = \text{tff.axis_spec:new} \{ \text{value}=0, \text{type='velocity'} \} \\
\quad \text{zt} = \text{tff.axis_spec:new} \{ \text{value}=0.01, \text{type='velocity'} \}
\]

\[
\text{compliant_slide} = \\
\quad \text{xt} = \text{tff.axis_spec:new} \{ \text{value}=0, \text{type='force'} \} \\
\quad \text{yt} = \text{tff.axis_spec:new} \{ \text{value}=-0.03, \text{type='velocity'} \} \\
\quad \text{zt} = \text{tff.axis_spec:new} \{ \text{value}=1, \text{type='force'} \}
\]
Robot systems: M2–M3 model

CompositeComponent

Component1

Communication1

Component2

Communication2

Component3

Communication3

Component4

Communication4

Structural model + Communication + Coordination
Robot systems: M2–M3 model

Components: control, learning, planning,…
M0–M1 framework DSLs: Orocos + ROS
3D perception stack: M1–M2 model

- Task
- Object 1 (obj1)
 - Feature 1 (fea1)
 - Sensor 1 (sen1)
- Object 2 (obj2)
 - Feature 2 (fea2)
 - Sensor 2 (sen2)
- Robot motion
- 3D object motion model
- Feature motion in sensor space
- Focus of attention

Bayesian probability excellent candidate for DSL!
3D perception stack: M1–M2 model

Bayesian probability excellent candidate for DSL!
Skills: M2–M3 model

The Skill is a probabilistic state machine:
- state machine encodes causality/(partial) ordering
- events couple the symbolic and continuous domains.

Herman Bruyninckx, Knowledge Engineering in robotics
Skills: M2–M3 model

The **Skill** is a **probabilistic state machine**:
- state machine encodes **causality/(partial) ordering**
- events couple the **symbolic and continuous domains**.
Skills: M2–M3 model (2)

To add knowledge on: robot, controller, sensor, learning algorithm, ...
Skills: M2–M3 model (3)

The platform constraints define parameters in the FSM behaviour.
The Skill states are instantiations of logic symbols, and run continuous time/space control & sensing algorithms.
Conclusions

- major challenge: not so much the amount but the variation of different types of knowledge

- our research: proposes probabilistic finite state machine(s) as key for integration:
 - focus about what knowledge and learning to use, at each moment in a robot’s task
 - grounding & closing the world: “obvious”
 - lends itself very well for DSL representation

- Need for open content publicly available ontology server!
 ⇒ multi-project cooperation can start now!
 ⇒ what license shall we use... (Creative Commons–Share alike!?)
Conclusions

- major challenge: not so much the *amount* but the *variation* of different *types* of knowledge
- our research: proposes *probabilistic finite state machine(s)* as key for *integration*:

⇒ multi-project cooperation can start now!
⇒ what license shall we use...? (Creative Commons–Share alike?)
Conclusions

- major challenge: not so much the *amount* but the *variation* of different *types* of knowledge
- our research: proposes *probabilistic finite state machine(s)* as key for *integration*:
 - focus about what knowledge and learning to use, at each moment in a robot’s task
 - grounding & closing the world: “obvious”
 - lends itself very well for *DSL* representation
- Need for *open content* publicly available *ontology server*!
Conclusions

- major challenge: not so much the amount but the variation of different types of knowledge
- our research: proposes probabilistic finite state machine(s) as key for integration:
 - focus about what knowledge and learning to use, at each moment in a robot’s task
 - grounding & closing the world: “obvious”
 - lends itself very well for DSL representation
- Need for open content publicly available ontology server!

⇒ multi-project cooperation can start now!
Conclusions

▶ major challenge: not so much the amount but the variation of different types of knowledge
▶ our research: proposes probabilistic finite state machine(s) as key for integration:
 ▶ focus about what knowledge and learning to use, at each moment in a robot’s task
 ▶ grounding & closing the world: “obvious”
 ▶ lends itself very well for DSL representation
▶ Need for open content publicly available ontology server!

⇒ multi-project cooperation can start now!
⇒ what license shall we use...?
(Creative Commons–Share alike!?)