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Preface

The task of constructing composite systems, that is systems composed of more than
one part, can be seen as interdisciplinary area which builds on expertise in different
domains. The aim of this workshop is to explore the possibilities of constructing such
systems with the aid of Machine Learning and exploiting the know-how of Data Mining.
One way of producing composite systems is by inducing the constituents and then by
putting the individual parts together.

For instance, a text extraction system may be composed of various subsystems,
some oriented towards tagging, morphosyntactic analysis or word sense disambigua-
tion. This may be followed by selection of informative attributes and finally generation
of the system for the extraction of the relevant information. Machine Learning tech-
niques may be employed in various stages of this process.

The problem of constructing complex systems can thus be seen as a problem of
planning to resolve multiple (possibly interacting) tasks. So, one important issue that
needs to be addressed is how these multiple learning processes can be coordinated. Each
task is resolved using certain ordering of operations. Meta-learning can be useful in this
process. It can help us to retrieve previous solutions conceived in the past and re-use
them in new settings.

Of particular interest are methods and proposals that address the following issues:

– Planning to construct composite systems,
– Exploitation of ontologies of tasks and methods,
– Representation of learning goals and states in learning,
– Control and coordination of learning processes,
– Recovering / adapting sequences of DM operations,
– Meta-learning and exploitation of meta-knowledge,
– Layered learning,
– Multi-task learning,
– Transfer learning,
– Multi-predicate learning (and other relevant ILP methods),
– Combining induction and abduction,
– Multi-strategy learning,
– Learning to learn.

The aim of the workshop is to explore the possibilities of this new area, offer a
forum for exchanging ideas and experience concerning the state-of-the art, permit to
bring in knowledge gathered in different but related and relevant areas and outline new
directions for research.

Warsaw, September 2007 Pavel Brazdil
Abraham Bernstein
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20 Years of Planning to Learn

Lawrence Hunter
Center for Computational Pharmacology

University of Colorado School of Medicine
Box 6511, Mail stop 8303, Aurora, CO 80045­9802, USA

Larry.Hunter@uchsc.edu, +1 303 724 3399

Abstract. To my knowledge, the first publication that described the idea of planning 
to   learn   was   my   paper  Knowledge   Acquisition  Planning   in   the   Third   Knowledge 
Acquisition for Knowledge Based Systems Workshop (Banff, Canada, 1988); it won 
the “best student paper” award at the workshop.  That paper, as well as the following 
PhD thesis [Hunter, 1989] conference publications [Hunter 1990a, 1990b, Hunter & 
Ram 1991], journal articles [Hunter 1992, Hunter & Ram 1992] and book chapters 
[Hunter 1993, Hunter 1994, Hunter & Ram 1995] explored how explicit  goals for 
knowledge could be used to select  among and organize the application of  a  wide 
variety of machine learning and other computational methods to address particular 
needs.  

That work made what I still believe to be compelling theoretical arguments about the 
importance   of   goals   in   controlling   inference,   the   need   for   sequences   of   distinct 
although inter­related activities for learning (data gathering, data transformations, data 
selections,  model selection,  model   fitting,  model evaluation),   the many alternative 
choices available for  each activity,   the dependence of   the outcome of   learning on 
subtle interactions among those choices, and the value of AI planning methods for 
selecting   (and   monitoring   and   revising)   sequences   of   activities   likely   to   achieve 
specific goals for knowledge.  A theory of the origins of specific goals for knowledge 
was also described in that body of work, as was the application of  these ideas to 
building systems to aid scientific discovery in molecular biology.

Despite all of those efforts, systems based on this theory with the goal of generating 
novel scientific insights had not been particularly successful. By 1996, my interest in 
applying machine learning (and other methods) to advance human understanding of 
molecular biology had superceded my interest in learning theory.  Genomic and other 
high throughput molecular data was overwhelming biologists with more valuable data 
than   could   be   assimilated   in   traditional   ways.     Computational   (and   statistical) 
approaches to extracting knowledge relevant to human health from this tidal wave of 
data   was   (and   remains!)   a   pressing   concern.     While   planning   to   learn   remained 
theoretically attractive, it was very difficult to devise principled ways to prefer any 
particular sequence of learning actions over any other when the goals for knowledge 
were   so   difficult.     I   developed   a   more   bottom­up   approach,   called   Coevolution 
Learning   [Hunter,   1996;   Abramson   &   Hunter,   1996],   which   used   an   evaluation 
function   for   alternative   representation   schemes   combined   with   a  more   traditional 
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induction accuracy based evaluation to explore the space of possible combinations of 
induction   and   representational   schemes.     The   method   was   patented   [US   Patents 
6,449,603 and 6,917,926] and remains in use in industry, although to my knowledge 
no meaningful scientific discoveries arose from its application, either.   By now there 
have been a large number of successful applications of machine learning to molecular 
biology   (e.g.   most   molecular   biologists   now   know   how  to   apply   hidden   Markov 
models to molecular sequence data), and I like to think that I have made some useful 
contributions along the way, even if the theory has not.

For the last five years or so, my research has focused on the extraction of knowledge 
from   the   biomedical   literature   using   natural   language   processing   techniques. 
Extensive development work has resulted in the creation of the OpenDMAP concept 
recognition system (see http://opendmap.sourceforge.net),  which  recently   turned  in 
the   best   performance   in   a   global   biomedical   information   extraction   evaluation 
[Krallinger,   et  al.,  2007].    The OpenDMAP system recognizes  concepts   (and slot 
fillers within concepts) through the use of patterns which can include other concepts, 
text  strings,  and the output  of a wide variety of  text analysis  tools—ranging from 
named entity finders to full syntactic parsers [Hunter et al., submitted].     In the first 
applications [Lu, 2007] these patterns were created by hand.   In more recent work 
[Caporaso,   et   al.,   2007],   systematic   approaches   to   corpus   analysis   were   used   to 
produce patterns.   Our near­term research goal is to develop increasingly automated 
approaches to inducing these patterns from lightly annotated training data and modest 
input from experts.   Since the concepts for which patterns need to be produced are 
taken from a community curated ontology [GO Consortium, 2000] which has been 
used to annotated tens of thousands of genes and is thereby linked to the literature, it 
is our belief that planning to learn these patterns may turn out to be more effective 
than any other approach.   It is very gratifying both to find an application area where 
this nearly 20 year old theory seems likely to succeed in application, and to participate 
in the workshop where so many others see the value in the approach.
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Towards Intelligent Assistance for a Data Mining
Process

Abraham Bernstein

University of Zurich, Department of Informatics,
8050 Zürich, Switzerland

bernstein@ifi.uzh.ch

Joint work with
Foster Provost, New York Univ., Stern School of Business, New York NY, USA,

Shawndra Hill, The Wharton School, Univ. of Pennsylvania, Philadelphia PA, USA
and Michael Dänzer Univ. of Zürich, Dep. of Informatics, 8050 Zürich, Switzerland

Abstract. A data mining (DM) process involves multiple stages. A simple, but typ-
ical, process might include preprocessing data, applying adata-mining algorithm, and
post-processing the mining results. There are many possible choices for each stage,
and only some combinations are valid. Because of the large space and non-trivial in-
teractions, both novices and data-mining specialists needassistance in composing and
selecting DM processes.

Extending notions developed for statistical expert systems we present a prototype
Intelligent Discovery Assistant (IDA), which provides users with (i) systematic enu-
merations of valid DM processes, in order that important, potentially fruitful options
are not overlooked, and (ii) effective rankings of these valid processes by different cri-
teria, to facilitate the choice of DM processes to execute. We use the prototype to show
that an IDA can indeed provide useful enumerations and effective rankings in the con-
text of simple classification processes. We discuss how an IDA could be an important
tool for knowledge sharing among a team of data miners. Furthermore, we illustrate
the claims with a comprehensive demonstration of cost-sensitive classification using a
more involved process and data from the 1998 KDDCUP competition.

Finally, we discuss, how new technologies arising in the Semantic Web domain
might help to build IDAs more efficiently. Specifically, we briefly discuss how semantic
data and data mining operator descriptions can help to leverage off-the-shelf semantic
web service functionality to build easy to use IDAs.

References

1. Bernstein, Abraham and Provost, Foster and Hill, Shawndra. Towards Intelligent Assistance
for a Data Mining Process: An Ontology-based Approach for Cost-sensitive Classification.
IEEE Transactions on Knowledge and Data Engineering, vol. 17, n. 4, pag. 503-518, 2005.

2. Bernstein, Abraham and Daenzer, Michael. The NExT System: Towards True Dynamic
Adaptions of Semantic Web Service Compositions (System Description). In Proceedings of
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Designing Complex Systems: Role of Learning

and Domain Specific Meta-knowledge

Pavel Brazdil1 2

1 LIAAD - INESC Porto L.A., University of Porto, Rua de Ceuta, 118-6, 4050-190,
Porto, Portugal; pbrazdil@liacc.up.pt

2 Faculty of Economics, University of Porto, Porto, Portugal

Abstract. Our aim is to discuss the problem of employing learning methods
in the design of complex systems. The term complex systems is used here to
identify systems that cannot be learned in one step, but rather require several
phases of learning. Our aim will be to show how domain specific meta-knowledge
can be used to facilitate this task.

As we will see, dynamic selection of bias plays an important role here. But
let us review first what is meant by bias. According to DesJardins and Gordon
[2], bias is any factor that influences the definition or selection of inductive

hypotheses.
So if meta-knowledge acquired in the course of dealing with a set of problems

is used to pre-select a subset of learning algorithms (e.g. as in [1]), we can consider
this as dynamic selection of bias. By eliminating some Machine Learning (ML) /
Data Mining (DM) algorithms we are, in effect, excluding some forms of inductive
hypotheses from consideration.

Let us now consider another possible interpretation of bias when applying
ML/DM algorithms. Without loss of generality, let us simply focus just on one
ML algorithm to simplify the exposition. Let us further assume that the aim is
to predict a categorical (or a numeric) value of some variable, but the rest of the
data includes potentially a very large number of attributes. So a question arises
what should be done in this case.

A typical solution adopted is to gather the data first and then use some stan-
dard feature elimination methods to reduce the number of features as appropriate
(e.g. [7]). However, this approach has the following shortcoming. Someone has to
decide which attributes / features are potentially relevant for the task at hand.
If a wrong decision is made, this can have a negative impact on the outcome
of learning. If the relevant attributes are not included, a sub-optimal hypoth-
esis may be generated. If on the other hand the set of attributes is too large
and includes unnecessary information, it may again be difficult for the system
to generate the right hypothesis (the search space of inductive hypotheses may
be too large). So, obviously it is advantageous to have methods that help us to
determine this automatically.

Determining which attributes should be used can be considered as the prob-
lem of dynamic selection of bias, as it satisfies the definition given earlier. So,
our aim in this talk is to discuss this issue in more detail, clarify the relationship
to meta-learning and suggest how the issue of dynamic selection of bias could
be handled.
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This problem has been noted by innumerous people in AI and ML in the
past. Various researhers (Hunter and Ram [4], [5], Michalski [6]) have argued
that it is important to define explicit goals that guide learning. Learning is seen
as search through a knowledge space guided by the learning goal. Learning goals
determine which parts of prior knowledge are relevant, what knowledge is to be
acquired and in which form, how it is to be evaluated and when to stop learning.
The importance of planning in this process was also identified ([3]).

In our view the issue of dynamic selection of bias is important in the con-
struction of complex systems. In these tasks we need not only to identify the
attributes / features that are potentially relevant, but also identify one or more
subproblems (concepts) that constitute the final solution. Typically, it is ad-
vantageous to define also some ordering in which (some of) the subproblems
(concepts) should be acquired. This problem can be seen as the problem of
learning multiple interdependent concepts. In effect, defining the ordering can
be regarded as defining the appropriate procedural bias, as it determines how
the hypotheses space should be searched. The aim of this talk is to present more
details on how these kind of problems could be handled, concentrating mainly
on case studies. More details concerning this issue can be found in [1].
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Meta-Learning Rule Learning Heuristics

Frederik Janssen and Johannes Fürnkranz

TU Darmstadt, Knowledge Engineering Group
Hochschulstraße 10, D-64289 Darmstadt, Germany
[janssen,juffi]@ke.informatik.tu-darmstadt.de

Abstract. The goal of this paper is to investigate to what extent a rule
learning heuristic can be learned from experience. Our basic approach
is to learn a large number of rules and record their performance on the
test set. Subsequently, we train regression algorithms on predicting the
test set performance from training set characteristics. We investigate
several variations of this basic scenario, including the question whether
it is better to predict the performance of the candidate rule itself or
of the resulting final rule. Our experiments on a number of independent
evaluation sets show that the learned heuristics outperform standard rule
learning heuristics. We also analyze their behavior in coverage space.

1 Introduction

It is well-known that learning a classification rule is essentially a search problem
[10, 4], where the states are rules and the successor function is a refinement
operator that returns all minimal specializations of a rule. The goal is to find a
rule that maximizes the predictive performance in a domain. As this performance
cannot be directly measured, an evaluation function is used to estimate the
quality of a rule. Typically, the same evaluation function is also used as a search
heuristic that allows a greedy search algorithm to focus on interesting parts of
the hypothesis space. The long-term goal of our research is to understand the
properties of such search heuristics. The underlying (implicit) assumption is that
a rule with high quality will also produce good refinements. There has not been
much work on trying to characterize the behavior of good heuristics. Notable
exceptions include [9], which proposed weighted relative accuracy (WRA) as a
novel heuristic, and [6], in which a wide variety of rule evaluation metrics were
analyzed and compared by visualizing their behavior in ROC space.

In previous work [7], we adjusted parameters of three heuristics, whose shape
was predetermined. The key idea of this work is to meta-learn such a heuristic
from experience, without a bias towards existing measures. To this end, we
create a large meta data set which we use to learn a function that predicts
the performance of a rule on an independent test set. In order to address the
issue that a good rule evaluation function does not necessarily coincide with a
good search heuristic for finding a rule that optimizes the evaluation function, we
also analyze a setting in which the learner attempts to predict the performance
of a complete rule from its incomplete predecessors.
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The rule learner, which is used for generating the meta data and for evaluat-
ing the learned heuristics, is described in Section 2, after which we continue with
a brief discussion of rule learning heuristics (Section 3). The meta data genera-
tion and the experimental setup is described in Section 4. The main results are
presented in Section 5.

2 Rule Learning Algorithm

For the purpose of this empirical study, we implemented a simple Separate-
and-conquer or Covering rule learning algorithm [4] within the Weka machine
learning environment [16]. Both the outer loop (the covering procedure) and the
top-down refinement inside the learner are fairly standard. For details about the
implementation, see [3, 4].

Separate-and-conquer rule learning can be divided into two main steps: First,
a rule is learned from the training data by a greedy search (the conquer step).
Second, all examples covered by the learned rule are removed from the data set
(the separate step). Then, the next rule is learned on the remaining examples.
Both steps are repeated as long as positive examples are left in the training set.
The refinement procedure, which is used inside the conquer step of the algorithm,
returns all possible candidate refinements that can be obtained by adding a
single condition to the body of the rule. For nominal attributes, conditions test
for equality with a domain value, for numerical attributes they use > and ≤.
The best among all refinements is selected.

Our implementation continues to greedily refine the current rule until no
more negative examples are covered. In this case, the search stops and the best
rule encountered during the refinement process is added to the theory (which is
initialized as the empty theory). Note that this is not necessarily the last rule
searched. We use random tie breaking for rules with equal evaluation, and filter
out candidate rules that do not cover any positive examples. Rules are added to
the theory as long as this increases the accuracy of the theory on the training
set (this is the case when the best rule found covers more positive than negative
examples).

We do not use any specific pruning technique, but solely rely on the evaluation
of the rules by the used rule learning heuristic. Note, however, that this does not
mean that we learn an overfitting theory that is complete and consistent on the
training data (i.e., a theory that covers all positive and no negative examples),
because many heuristics will prefer impure rules with a high coverage over pure
rules with a lower coverage.

Multi-class problems are tackled by sorting the classes according to their
frequency (least frequent first), and training binary classifiers that discriminate
a class from all subsequent classes. The classifiers are then used in this order,
which essentially means that a decision list is formed, in which the rules for each
class appear in blocks of increasing class frequencies.
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Table 1. Rule learning heuristics used in this paper (∼ denotes order equivalency)

precision = p
p+n

∼ p−n
p+n

accuracy = p+(N−n)
P+N

∼ p− n

Laplace = p+1
p+n+2

WRA = p+n
P+N

( p
p+n

− P
P+N

) ∼ p
P
− n

N

correlation = p(N−n)−(P−p)n√
PN(p+n)(P−p+N−n)

3 Rule Learning Heuristics

Numerous heuristics have been provided for inductive rule learning, a general
survey can be found in [4]. Most rule learning heuristics can be seen as functions
of the following four arguments:

– P and N : the number of positive/negative examples in the training set
– p and n: the number of positive/negative examples covered by the rule

Examples of heuristics of this type are the commonly used heuristics that
are shown in Table 1. Precision is known to overfit the data, WRA [14] has a
tendency to over-generalize. In [6] it was shown that the m-estimate, which is

defined by
p+m· P

P+N

p+n+m , forms a trade-off between these two extremes.
As P and N are constant for a given learning problem, these heuristics ef-

fectively only differ in the way they trade off completeness (maximizing p) and
consistency (minimizing n), and may thus be viewed as a function h(p, n). As a
consequence, each rule can be considered as a point in coverage space, a variant
of ROC space that uses the absolute numbers of true positives and false positives
as its axes. The preference bias of different heuristics may then be visualized by
plotting the respective heuristic values of the rules on top their locations in cov-
erage space, resulting in a 3-dimensional plot (p, n, h(p, n)). A good way to view
this graph in two dimensions is to plot the isometrics of the learning heuristics,
i.e., to show contour lines that connect rules with identical heuristic evaluation
values [6]. Another method is to plot both contour lines and the surface of the
function which is done in our visualization (cf. Section 5.4).

The goal of our work is to automatically learn a function ĥ(p, n), which allows
to predict the quality of a learned rule. However, note that most of the functions
in Table 1 contain some non-linear dependencies between these values. In order
to make the task for the learner easier, we will not only characterize a rule by
the values p, n, P , and N , but in addition also use the following parameters as
input for the meta-learning phase:

– tpr = p
P , the true positive rate of the rule

– fpr = n
N , the false positive rate of the rule

– Prior = P
P+N , the a priori distribution of positive and negative examples

– prec = p
p+n , precision, the fraction of positive examples covered by the rule

Thus, we characterize a rule r by an 8-tuple <P,N, Prior, p, n, tpr, fpr, prec>.
Some heuristics use additional components, such as the length of the rule,

or the number of positive and negative examples that are covered by the rule’s
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predecessor. We have also performed experiments that include the length or the
rule (which can be found in the long version of this paper [8]), but this did not
have a noticable effect on the performance. We think that the main goal of using
the length of a rule is to indirectly capture the degree of generality of a rule
(shorter rules cover more examples), which can be directly measured with p and
n.

We will not consider statistics about a rule’s predecessor, as our goal is to
find a function that allows to evaluate a rule, irrespective of how it has been
learned. Including them may result in different evaluations for the same rule,
depending on the order in which its conditions have been added to the rule
body. An example of such a heuristic is Foil’s information gain. We will also
not include it in our performance measures because it actually measures the
quality of refinements and not the quality of rules, which means that it cannot
be used to select an optimal rule without the use of additional stopping criteria.

4 Meta-Learning Scenario

4.1 Definition of the Meta-Learning Task

We frame the rule learning process as a search problem in the following way:
Each (incomplete) rule is a state, and all possible refinements (e.g., all possible
conditions that can be added to the rule) are the actions. The rule-learning
agent repeatedly has to pick one of the possible refinements according to their
expected utility until it has completed the learning of a rule.

In this framework, the problem of meta-learning a rule learning heuristic may
be considered as a reinforcement learning problem: After learning a complete
theory, the learner receives a reinforcement signal (e.g., the estimated accuracy
of the learned theory), which can then be used to adjust the utility function.
After a (presumably large) number of learning episodes, the utility function
should converge to a heuristic that evaluates a candidate rule with the quality
of the best rule that can be obtained by refining the candidate rule. However, for
practical purposes this scenario appears to be too complex. In [2] a reinforcement
learning algorithm was applied on this problem, but with disappointing results.

For this reason, we redefine the problem as a supervised learning task: Each
rule is evaluated on a separate test set, in order to get an estimate of its true
performance. This information is then used as the target value for rules that are
characterized with the eight features discussed in Section 3. We studied both,
immediate reward (where rules are trained on their own test set performance)
and delayed reward (where rules are trained on the performance of their best
refinement; cf. Section 5.3).

4.2 Meta Data Generation

As explained above, we try to model the relation of the rule’s statistics mea-
sured on the training set and its ”true” performance, which is estimated on an
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independent test set. Therefore, we used the rule learner described above for ob-
taining the above-mentioned characteristics for each learned rule. These form a
training instance in the meta data set. The training signals are the performance
parameters of the rule on the test set.

As we want to guide the entire rule learning process, we need to record this
information not only for final rules — those that would be used in the final
theory — but also for all their predecessors. Therefore all candidate rules which
are created during the refinement process are included in the meta data as well.
The Algorithm for creating the meta data is described in detail in [8].

It should be noted, that we ignore all rules that do not cover any instance
on the test data, because, on the one hand, we do not have training information
for such rules (the test precision that we try to model is undefined), and, on the
other hand, such rules will not do any harm (they won’t have an impact on test
set accuracy as they do not classify any example).

To ensure that we obtain a set of rules with varying characteristics, the fol-
lowing parameters were modified:

Datasets: We used 27 datasets with varying characteristics (different num-
ber of classes, attributes, instances) from the UCI Repository [12] (for a list see
[8]).

5x2 Cross-validation: For each dataset, we performed 5 iterations of a 2-
fold cross-validation. 2-fold cross-validation was chosen because in this case the
training and test sets have equal size, so that we don’t have to account for statis-
tical variance in the precision or coverage estimates. We performed five iterations
with different random seeds. Note that our primary interest was to obtain a lot
of rules which characterize the connection between training set statistics and the
test set precision. Therefore, we collected statistics for all rules of all folds.

Classes: For each dataset and each fold, we generated one dataset for each
class, treating this class as the positive one and the union of all the others as the
negative class. Rules were learned for each of the resulting two-class datasets.

Heuristics: We ran the rule learner several times on the binary datasets,
each time using a different search heuristic (displayed in Table 1). The first
four form a representative selection of search heuristics with linear ROC space
isometrics [5], while the correlation heuristic has non-linear isometrics. These
heuristics represent a large variety of learning biases.

In total, our meta dataset contains 87, 380 examples.

4.3 Regression Methods

We use two standard regression methods for learning functions on the meta data,
in their default parametrizations in Weka [16]. First, we apply a simple linear
regression based on the Akaike criterion [1] for model selection. A key advantage
of this method is that we obtain a simple, comprehensible form of the learned
heuristic function. Note that the learned function is nevertheless non-linear in
the basic dimensions p and n because of the non-linear terms that are used
as basic features (e.g., p/(p+n)). In order to be able to address a wider class of
functions, we also employ multilayer perceptrons with back-propagation training
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and sigmoid nodes. We apply various sizes of the hidden layer (1, 5, and 10),
and train for one epoch (i.e., we go through the training data once). We have
also tried to train the networks with a larger number of epochs, but the results
do not further improve.

4.4 Evaluation methods

A straight-forward approach to measure the fit of the learned function to the
target values is to estimate its mean absolute error by a 10-fold cross validation
on the meta data set.

MAE(f, f̂) =
1
m

m∑
i=0

|f̂(i)− f(i)|

where m denotes the number of instances, f(i) the actual value, and f̂(i) the
predicted value of instance i.

Note, however, that a low prediction error on the meta data set does not
necessarily imply that the function works good as heuristic (cf. Table 2). Thus,
our primary method for evaluating the learned heuristics is to use these heuristics
inside the rule learner. To this end, we evaluate the rule learner on 30 UCI data
sets, which have not been used during the training phase (for a list see [8]).
Like the 27 data sets on which the rules for the meta data are induced, these
30 sets have varying characteristics to ensure that our method will perform well
under a wide variety of conditions. On each dataset, the rule learner with the
learned heuristics was evaluated with one iteration of a 10-fold cross validation.
The performance over all sets was then averaged. We also evaluated the length
of the learned theories in terms of number of conditions.

5 Results

5.1 Predicting Test-Set Precision

We are first interested in how accurately the out-of-sample precision of a rule
can be predicted. We train a linear regression model and a neural network on the
eight measurements that we use for characterizing a rule (cf. Section 3) using
the test set precision as the target function. Table 2 displays results for the
Linear Regression and three different neural networks, with different numbers
of nodes in the hidden layer. The performances of the four algorithms are quite
comparable, with the possible exception of the neural network with 5 nodes in

Table 2. Accuracies and theory complexities for several methods

method MAE Accuracy # conditions

LinearRegression 0.22 77.43% 117.6
MLP (1 node) 0.28 77.81% 121.3
MLP (5 nodes) 0.27 77.37% 1085.8
MLP (10 nodes) 0.27 77.53% 112.7
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Table 3. Coefficients of the Linear Regression

P N P
P+N

p n p
P

n
N

p
p+n

constant

0.0001 0.0001 0.7485 -0.0001 -0.0009 0.165 0.0 0.3863 0.0267

the hidden layer, which induced very large theories (over 1000 conditions on
average), and also had a somewhat worse performance in predictive accuracy.

Table 3 shows the coefficients of the learned regression model. The most
important feature was the a priori distribution of the examples in the training
data followed by the precision of the rule. Interestingly, while the tpr has a non-
negligible influence on the result, the fpr is practically ignored. Both the current
coverage of a rule (p and n) and the total example counts of the data (P and N)
have comparably low weights. This is not that surprising if one keeps in mind
that the target value is in the range [0, 1], while the absolute values for p and
n are in a much higher range. We nevertheless had included them because we
believe that in particular for rules with low coverage, the absolute numbers are
more important than their relative fractions. A rule that covers only a single
example will typically be bad, irrespective of the size of the original dataset.

In order to see whether we can completely ignore the absolute values, we
learned another function which only used P

P+N , p/P , n/N and p
p+n as input values.

The linear regression function trained on this dataset performed insignificantly
worse than the one that is computed on the original set (77.43% accuracy vs.
77.20% accuracy). For the neural networks, the performance degradation was
somewhat worse.

5.2 Predicting Positive and Negative Coverage

So far we focused on directly predicting the out-of-sample precision of a rule,
assuming that this would be a good heuristic for learning a rule set (cf. Section 3).
However, this choice was somewhat arbitrary. Ideally, we would like to repeat this
experiment with out-of-sample values for all common rule learning heuristics. In
order to cut down the number of needed experiments, we decided to directly
predict the number of covered positive (p̂) and negative (n̂) examples. We then
can combine the predictions for these values with any standard heuristic h by
computing h(p̂, n̂) instead of the conventional h(p, n). Note that the heuristic h
only gets the predicted coverages (p̂ and n̂) as new input, all other statistics (e.g.,
P ,N) are still measured on the training set. This is feasible because we designed
the experiments so that the training and test set are of equal size, i.e., the values
predicted for p̂ and n̂ are predictions for the number of covered examples on an
independent test set of the same size as the training set.

Table 4 compares the performance of various heuristics with measured and
predicted coverage values on the 30 test sets. In general, the results are disap-
pointing. For three of the five heuristics, no significant change could be observed,
but for WRA and the Correlation heuristic, the performance degrades substan-
tially.
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Table 4. Accuracy and theory complexity comparison of various heuristics with
training-set (p, n) and predicted (p̂, n̂) coverages (number of conditions in brackets)

args Accuracy Precision WRA Laplace Correlation

(p, n) 75.6% (104.77) 76.22% (129.17) 75.8% (12.13) 76.89% (118.83) 77.57% (47.5)
(p̂, n̂) 75.39% (110.8) 76.53% (30) 69.89% (29.97) 76.8% (246.8) 58.09% (40.4)

A rather surprising observation is the complexity of the learned theories. For
instance, the heuristic Precision produces very simple theories when it is used
with the out-of-sample predictions, and, by doing so, increases the predictive
accuracy. Apparently, the use of the predicted values of p̂ and n̂ allows to prevent
overfitting, because the predicted positive/negative coverages are never exactly
0 and therefore the overfitting problem observed with Precision does not occur
any more.

In summary, it seems that the predictions of both the linear regression and the
neural network are not good enough to yield true coverage values on the test set.
A closer look at the predicted values reveals that on the one hand both regression
methods predict negative coverages and that on the other hand for the region of
low coverages (which is the important one) too optimistic values are predicted
(for both the positive and the negative coverage). The acceptable performance
is caused by a balancing of the two imprecise predictions (as observed with the
two precision-like metrics) or rather by an induced bias which tries to omit the
extreme values in the evaluations (which are responsible for overfitting).

5.3 Predicting the Value of the Final Rule

Rule learning heuristics typically evaluate the quality of the current, incomplete
rule, and use this measure for greedily selecting the best candidate for further
refinement. However, as discussed in Section 4.1, if we frame the learning problem
as a search problem, a good heuristic should not evaluate a candidate rule with its
discriminatory power, but with its potential to be refined into a good final rule.
Such a utility function could be learned with a reinforcement learning algorithm
as described in Section 4.1.

As an alternative, we apply a supervised method which may be viewed as
an ”offline” version of reinforcement learning. We associate each candidate rule
with the precision value of its best refinement encountered during the search.
As a consequence, in our approach all candidate rules of one refinement process
have the same target value, namely the value of the rule that has eventually
been selected. Because of the deletion of all final rules that do not cover any
example on the test set, we decided to remove all predecessors of such rules as
well. Thus, the new meta data set contains only 77,240 examples in total.

The neural network performs best with an accuracy of 78.37% followed by
the Linear Regression which achieves 77.95% on the 30 test data sets. The neural
network also learns simpler theories than the Linear Regression (53.97 vs. 95.63
conditions).

Both induced heuristics outperform all of the standard heuristics (cf. Ta-
ble 4). The Linear Regression was trained on the meta data set that only contains
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Fig. 1. Isometrics of the functions (final rule precision)

the 4 most important features which yield the best model. In terms of theory
complexity it seems that about 50 conditions in average are necessary to obtain
an accurate classifier. WRA, for example, learns simpler theories (as observed in
[14]), but seems to over-generalize. The neural network classifier performs best
with the third-smallest theory.

5.4 Isometrics of the Heuristics

To understand the behavior of the learned heuristics, we follow the framework
introduced in [6] and analyze their isometrics in ROC or coverage space. Figure 1
shows a 3d-plot of the surface of the learned heuristic in a coverage space with
60x48 examples (the sizes were chosen arbitrarily). The bottom of the graph,
shows isometric lines that characterize this surface. The left part of the figure
displays the isometrics of the heuristic that was learned by linear regression on
the data set that used only the relevant features (see Section 5.1). The right part
shows the best-performing neural network (the one that uses only one node in
the hidden layer).

Apparently, both functions learn somewhat different heuristics. Although the
3d-surfaces looks fairly similar to each other (except for the non-linear behavior
of the neural net and the stronger degradation when covering more negative
examples as the linear regression), the isometric lines reveal that the learned
heuristics are, in fact, quite different. Those for the linear regression are like a
variant of weighted relative accuracy, but with a different cost model (i.e. false
negatives are more costly than false positives). The isometrics for the neural net
seems to employ a trade-off similar to those of the F -measure. The shift towards
the N -axis is reminiscent of the F -measure (for an illustration see [7]), which
tries to correct the undesirable property of precision that all rules that cover no
negative examples are evaluated equally, irrespective of the number of positive
examples that they cover.

However, both heuristics have a non-linear shape of the isometrics in com-
mon, which bends the lines towards the N -axis. Effectively, this encodes a bias
towards rules that cover a low number of positive examples (compared to regular
precision). This seems to be a desirable property for a heuristic that is used in a
covering algorithm, where incompleteness (not covering all positive examples) is
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less severe than inconsistency (covering some negative examples), because incom-
pleteness can be corrected by subsequent rules, whereas inconsistency cannot.

6 Conclusion

The most important result of this work is that we have shown that a rule learning
heuristic can be learned that outperforms standard heuristics in terms of predic-
tive accuracy on a collection of databases that were not used in the meta-learning
phase. Our first results, which used a few obvious features to predict the out-
of-sample precision of the current rule, were already en par with the correlation
heuristic, which performed best in our experiments (cf. Table 2 and Table 4).
Subsequently, we tried to modify several parameters of this basic setup with
mixed results. In particular, predicting the positive and negative coverage of a
rule on a test set, and using these predicted coverage values inside the heuristics
did not prove to be successful. Also, more complex neural network architectures
did not seem to be important, linear regression and neural networks with a single
node in the hidden layer performed best. On the other hand, a key result of this
work is that evaluating a candidate rule by its potential of being refined into a
good final rule works better than evaluating the quality of the candidate rule
itself. This indicates that a clear separation of rule evaluation metrics (which
characterize which rules we should look for) and search heuristics (which guide
the process of finding such rules) is important. We intend to further investigate
this issue.

A visualization of the learned heuristics in coverage space gave some insight
into the general functionalities of the learned heuristics. In comparison to heuris-
tics with linear isometrics, the learned heuristics have non-linear isometrics that
implement a particularly strong bias towards rules with a low coverage on neg-
ative examples. This makes sense for heuristics that will be used in a covering
loop, because incompleteness can be compensated by subsequent rules, whereas
inconsistency cannot. Correlation, the standard heuristic that performed best in
our experiments, implements a similar bias [6]. Thus, the results of this paper
also contribute to our understanding of the desirable behavior of rule-learning
heuristics.

Our results may also be viewed in the context of trying to correct overly
optimistic training error estimates (resubstitution estimates). In particular, in
some of our experiments, we try to directly predict the out-of-sample precision
of a rule. This problem has been studied theoretically in [13, 11]. In other works,
it has been addressed empirically. For example, empirical data was used in [15]
to measure the VC-Dimension of learning machines. In [3] meta data was also
created in a quite similar way, and the authors have tried to fit various functions
to the data. But the focus there is the analysis of the obtained predictions for
out-of-sample precision, which is not the key issue in our experiments.
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Abstract. We propose a learning algorithm that reuses knowledge ac-
quired in past learning sessions to improve its performance on a new
learning task. The method concerns visual learning and uses genetic pro-
gramming to represent hypotheses, each of them being a procedure that
processes visual primitives derived from the training images. The process
of recognition is generative, i.e., a procedure is supposed to restore the
shape of the processed object by drawing its reproduction on a separate
canvas. This basic method is extended with a knowledge reuse mecha-
nism that allows learners to import genetic material from hypotheses that
evolved for the other decision classes (object classes). We compare both
methods on a task of handwritten character recognition, and conclude
that knowledge reuse leads to signi�cant improvement of classi�cation
accuracy and reduces the risk of over�tting.

1 Introduction

Most of contemporary machine learning (ML) algorithms are designed to pro-
cess isolated learning tasks. Usually, a learning algorithm (inducer) produces a
classi�er based exclusively on the training data provided for particular learning
task. In that process, the inducer relies on �xed inductive bias (priors) that does
not change from task to task. There is no way of reusing the knowledge that the
inducer could have acquired when inducing classi�ers in the past.

This limitation is conspicuously inconsistent with the human way of learning,
which is always based on individual's past experience. Priors in human learning
come from one's history of dealing with similar tasks. More than that, acquiring
new skills in isolation from past experience is impossible for humans. By reusing
knowledge, humans can successfully learn in demanding conditions, e.g., when
the number of training examples is small or in presence of data inconsistency.

The ability to reuse knowledge would be de�nitely a virtue for a machine
learning system, speeding up the convergence of the learning process, reduc-
ing the risk of over�tting, and keeping down the number of training examples
required to learn the concept. Some of these bene�ts have been already demon-
strated in related studies on, e.g., multitask learning [1]. However, the last decade
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did not bring breakthrough in this topic, and knowledge reuse is still listed among
the most challenging issues in ML [14].

Incapability of ML systems to reuse knowledge is due to several reasons.
Firstly, in the most popular paradigm of inductive learning from examples de-
scribed by attribute-value pairs, it is di�cult to identify universal, or even
domain-speci�c knowledge. Attributes describing examples are highly task-speci�c,
which reduces chances of �nding their counterparts in another learning task.
Secondly, many knowledge representations used in ML make it di�cult to mod-
ularize or transfer knowledge. For instance, there is little chance for a fragment
of a neural network to be useful in another network taught to solve a di�erent
learning task.

Challenged by these limitations, in this paper we exploit the paradigm of ge-
netic programming (GP, [7]) as a vehicle for knowledge reuse. We demonstrate
that GP is a convenient platform for this purpose, due to, among others, the
symbolic knowledge representation and the ability of abstraction from a spe-
ci�c context. In particular, we use our method presented in [5] that implements
knowledge reuse between evolving learners by allowing them to cross over parts
of their genetic material. We apply the method to a large-scale task of visual
learning (handwritten character recognition) and show that knowledge reuse im-
proves the convergence of the learning process and prevents over�tting.

2 Related Work

Reported research on knowledge reuse concerns mostly knowledge reuse within
a single learning task, with the exception of multitask learning [1] and meta-
learning [19], which mostly concern learning from �xed-length attribute-value
representation. In the context of GP, knowledge reuse is often connected with
knowledge encapsulation [8,17,2,4], which is however not used in the approach
presented here. Among reported approaches, the Case Injected Genetic Algo-
rithm (CIGAR) by Louis et al. [11] resembles our contribution the most. In
CIGAR, the experience of the system is stored in a form of solutions to problems
solved earlier (`cases'). When confronted with a new problem, CIGAR evolves a
new population of individuals and injects it periodically with such remembered
cases. Experiments demonstrated CIGAR's superiority to standard GA in terms
of search convergence. However, CIGAR injects complete solutions only, works
in a strictly sequential way, and does not involve GP, making it signi�cantly
di�erent from our approach.

In this paper, we investigate visual learning. As image interpretation is in-
herently complex, it is di�cult to devise a learning method that solves such a
task as a whole. Rather than that, most methods proposed so far introduce some
learning or adaptation at a particular stage of image processing and analysis,
which enables easy interfacing with the remaining components of the recognition
system. For instance, training a machine learning classi�er on some prede�ned
image features is a typical example of such an approach. In this paper, we pro-
pose a learning method that spans the entire processing chain, from the input
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image to the �nal decision making, and produces a complete recognition system.
Former research on such systems is rather scant [18,16,13,10,3].

3 Generative Visual Learning

The approach, originally proposed in [9] and further developed in [6], may be
shortly characterized as generative visual learning, as our evolving learners aim
at reproducing the input image using some simpler means. Reproduction takes
place on a virtual canvas spanned over the input image. On that canvas, the
learner (genetic programming individual) is allowed to perform some elementary
drawing actions (DAs for short) in response to the input image. In particular, we
consider handwritten characters and, to enable learners to restore their shapes,
our DAs line sections. Fitness function compares the contents of the canvas to the
input image, and rewards individuals that provide high quality of reproduction.
Thus, an individual is here awarded not for the �nal result of decision making
only, but for its `understanding' of the pattern being analyzed.

Such an evaluation method allows us to examine the processing performed by
an individual-learner in a more thorough way than in non-generative approach,
where individuals are expected to produce a scalar feature or a binary decision in
response to the input image. Thanks to that, the risk of over�tting, so immense
in learning from high-dimensional image data, becomes signi�cantly smaller.

To reduce the amount of data that has to be processed, our approach ab-
stracts from raster data and relies only on selected salient features found in the
input image s. The features correspond to prominent local luminance gradients
derived from s using a straightforward procedure described in [5]. For each de-
tected feature, we build a visual primitive (VP), described by three scalars called
hereafter attributes; these include two spatial coordinates of the edge fragment
and the local gradient orientation. The complete set of VPs derived from s, de-
noted in the following by P , is usually several orders of magnitude more compact
than the original image s, yet it well preserves the sketch of s.

On the top level, the proposed method uses evolutionary algorithm that
maintains a population of visual learners (individuals, solutions), each of them
implemented as GP expression. Each learner L is a procedure written in a form of
a tree, with nodes representing functions that process sets of VPs. The terminal
nodes (named ImageNodes) fetch the set of primitives P derived from the input
image s, and the consecutive internal nodes process the primitives, all the way
up to the root node. We use strongly-typed GP (cf. [7]), which implies that two
nodes may be connected to each other only if their input/output types match.
The following types are used: numerical scalars, sets of VPs, attribute labels,
binary arithmetic relations, and aggregators.

The GP functions may be divided into scalar functions, selectors (select some
VPs based on their attributes), iterators (process VPs one by one), and group-
ing operators (group VPs based on their attributes and features, e.g., spatial
proximity). Given these operators, an individual-learner L applied to an input
image s builds a hierarchy of VP sets derived from s. Each invoked tree node
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creates a new set of VPs that includes other elements of the hierarchy. In the
end, the root node returns a nested VP hierarchy built atop of P , which re�ects
the processing performed by L for s. A more detailed description of this process,
including the full list of GP functions, may be found in [9].

Individual's �tness is based on DAs (drawing actions) that it performs in re-
sponse to visual primitives P derived from training images s ∈ S. To reconstruct
the essential features of the input image s, the learner is allowed to perform DAs
that boil down to drawing sections on the output canvas c. To implement that
within the GP framework, we introduce an extra GP function called Draw. It
expects as an argument one VP set T and returns it unchanged, drawing on can-
vas c sections connecting each pair of VPs from T . Evaluation of L consists in
comparing the contents of c to s and assumes that the di�erence between c and
s is proportional to the minimal total cost of bijective assignment of lit pixels of
c to lit pixels of s. The total cost is a sum of costs for each pixel assignment. The
cost of assignment depends on the distance between pixels: when the distance is
less than 5, the cost is 0; maximum cost equals 1 when the distance is greater
than 15; between 5 and 15 the cost is a linear function of the distance. For pixels
that cannot be assigned (e.g., because there are more lit pixels in c than in s),
an additional penalty of value 1 is added to the total cost. In order to compute
the minimal total cost of assignment, an e�ective greedy heuristic was applied.

The (minimized) �tness of L is de�ned as the total cost of the assignment
normalized by the number of lit pixels in s ∈ S, averaged over the entire training
set of images S. An ideal learner perfectly restores shapes in all training images
and its �tness amounts to 0. The more the canvas c produced by L di�ers from
s, the greater (worse) its �tness value. Thus, �tness function rewards individu-
als that exactly and completely reproduce as many images from S as possible,
therefore promoting discovery of similarities between the training images.

In terms of ML, this generative visual learning (GVL) procedure performs
one-class learning [15], as it uses training examples from the positive class only
and tries to describe it, having no idea about the existence of other decision
classes (object classes in case of visual learning). To handle a k-class classi�-
cation problem, we run in parallel k independent evolutionary processes for n
generations, each of them devoted to one object class. The k best individuals ob-
tained from particular runs form the complete multi-class classi�er (recognition
system), ready to recognize new images using a straightforward voting procedure
detailed in Section 5.

4 Knowledge Reuse

Given the similar visual nature of learning tasks related to particular decision
classes in GVL, we expect them to require some common knowledge. There-
fore, running them in isolation may be redundant, as many decision classes may
need similar fragments of GP code to, e.g., detect the important features like
stroke junctions. For instance, locating the lower end of the shape of letter Y
presented in an image may require similar subtree of GP operators as locat-
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Fig. 1. The architecture of CCKR. Fig. 2. Examples of handwritten runes.

ing the lower ends of letter X. To exploit such commonalities, we enable GVL
to involve cross-class knowledge reuse (CCKR) between evolutionary processes
devoted to particular classes. For the initial m generations (m < n), called here-
after primary run, evolution proceeds exactly as in GVL. As the run devoted to
ith decision class (i = 1...k) reaches the mth generation, we store its population
in a pool Pi, so that Pi constitutes a snapshot of ith evolutionary run at mth

generation. Next, the population is re-initialized (in the same way as the initial
population of the primary run), and the evolution continues for the remaining
n−m generations, referred to as secondary run.

The secondary run slightly di�ers from the primary one in that it activates an
extra crossbreeding operator that is allowed to import genetic material from the
pools Pi. Crossbreeding works similarly to GP crossover, however, it interbreeds
an individual from the current population (a `native') with an individual from
one of the pools Pj , j 6= i (an `alien'). First, it selects a native parent from the
current population using the same selection procedure as crossover. Then, it picks
out an alien parent by �rst randomly choosing one of the pools Pj , j 6= i, and
then randomly selecting an individual from Pj , disregarding its �tnesses. Finally,
crossbreeding randomly selects two nodes Nn and Na in the native and the alien
parent, respectively, and replaces Nn by the subtree rooted in Na. The modi�ed
native parent (o�spring) is injected into the subsequent population (provided it
meets the constraints optionally imposed on GP trees). Thus, crossbreeding may
involve large portions of code as well as small code fragments.

Figure 1 outlines the CCKR approach. Each column composed of primary
and secondary run relates to learning one decision class, and arrows depict the
transfer of genetic material between them. As GVL requires k runs lasting n
generations each, while CCKR involves k runs lasting m generations and k runs
lasting n−m generations, the total number of �tness function calls (the e�ort)
is the same. Thus, if we ignore the cost of re-initialization of k populations
and the cost of cross-breeding, which are in fact very low compared to overall
computation, the time complexity of CCKR is the same as that of GVL on the
average (though the actual evolution time may vary due to variability of �tness
computation time). As the pools Pis, once created, remain unchanged, the runs
do not have to work in parallel, but may be carried out sequentially.
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5 The Experiment

In experimental part, we approach a real-world multiclass problem of handwrit-
ten character recognition. The task is to recognize letters from the Elder Futhark,
the oldest form of the runic alphabet, which consists of the following characters:

f U þ a r k g w h n i j I p R s t b e m l ­ d o

Elder Futhark letters are written with straight pen strokes only, which makes
them a good testbed for our generative recognition approach that uses sections
to reconstruct the recognized shapes. Using a TabletPC computer, we prepared a
training set containing 240 images (examples, objects) of k = 24 runic alphabet
characters, each character class represented by 10 examples written by 7 persons
(three of them provided two character sets). Figure 2 shows examples of selected
handwritten characters.

The purpose of the experiment is to compare CCKR, the method with knowl-
edge reuse, to the basic approach (GVL) that provides us with control results.
Technically, we use generational evolutionary algorithm maintaining a popula-
tion of 10,000 GP individuals for n = 600 generations. The initial population
is created using Koza's ramped half-and-half operator with ramp from 2 to 6
[7]. We apply tournament selection with tournament of size 5, using individu-
als' sizes for tie breaking and thus promoting smaller GP trees and alleviating
the problem of code bloat. For GVL runs, o�spring are created by crossing over
selected parent solutions from previous generation (with probability 0.8), or mu-
tating selected solutions (with probability 0.2). For CCKR, the primary run lasts
for m = 300 generations with the same settings as GVL, while in the secondary
run the mutation probability is lowered to 0.1 to yield 0.1 to the crossbreeding
operator. The GP tree depth limit is set to 10; the mutation and crossover op-
erations may be repeated up to 5 times if the resulting individuals do not meet
this constraint; otherwise, the parent solutions are copied into the subsequent
generation. Except for the �tness function implemented for e�ciency in C++,
the algorithm has been implemented in Java with help of the ECJ package [12].
For evolutionary parameters not mentioned here, ECJ's defaults have been used.

To intensify the search, we split the population into 10 islands and exchange
individuals between them every 20th generation starting from the 50th gen-
eration. During exchange, each odd-numbered island donates 10% of its well-
performing individuals (selected by tournament of size 5) to �ve even-numbered
islands, where they replace the poorly-performing individuals selected using an
inverse tournament of the same size. The even-numbered islands donate their
representatives to the odd-numbered islands in the same way. The islands should
not be confused with the boxes depicting evolutionary runs in Fig. 1 � the island
model is implemented within each evolutionary process independently.

Using these settings, we evolve and compare CCKR recognition systems to
GVL recognition systems, with the latter serving as control results. In both
cases, this involves running k = 24 evolutionary processes, each of them using
training examples from one character class for �tness computation. The ensemble
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(a)

(b)

Fig. 3. Examples of letter reconstructions. The original images are drawn with a thin
dotted line. In (a) each letter was reconstructed by a individual taught on a appropriate
class, whereas in (b) an attempt was made to reconstruct all shapes using an individual
taught on class I .

of all 24 best-of-run individuals constitute the complete recognition system. The
recognition system undergoes evaluation on the testing set of characters, which
is disjoint with the training set and contains 1440 images, that is 60 images for
each character class. The system classi�es an example t by computing �tnesses
(responses) of all individuals for t and indicating the class associated with the
individual that responded in the smallest (the best) value. Such procedure is
motivated by an obvious observation, that a learner is taught to perform well on
images from one class and its raw (minimized) �tness should be near 0 only for
images of this class. For example, in Fig. 3a, each character was reconstructed
using individual taught on its coresponding class, so all the reconstructions are
good. On the other hand, in Fig. 3b, where each shape was reconstructed using
the individual taught on class I , only the restoration of character I is correct1.

Such a simple recognition system may be obtained at a relatively low compu-
tational expense of k evolutionary runs. Given more runs, recognition accuracy

1 Though also restoration of i seems correct, closer examination reveals surplus over-
lying strokes that will be penalized by the �tness measure.
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Table 1. Test-set classi�cation accuracy for di�erent voting methods.

Voting method simple vote-2 vote-3 vote-4 vote-5 vote-30

GVL 69.79±1.66 78.50±1.12 82.50±1.02 85.21±0.79 86.66±0.61 91.32

CCKR 81.94±0.89 87.88±0.49 91.19±0.41 92.58±0.31 93.18±0.27 95.56

Table 2. True positive (TP) and false positive (FP) ratios for vote-30 CCKR method.

Letter f U þ a r k g w h n i j

TP 90.0% 80.0% 100% 95.0% 98.3% 100% 98.3% 81.7% 100% 93.3% 98.3% 98.3%

FP 0.0% 18.3% 21.7% 1.7% 0.0% 1.7% 3.3% 3.3% 0.0% 6.7% 8.3% 0.0%

Letter I p R s t b e m l ­ d o

TP 100% 98.3% 93.3% 100% 95.0% 100% 100% 96.7% 80.0% 100% 100% 96.7%

FP 3.3% 1.7% 0.0% 1.7% 3.3% 0.0% 3.3% 0.0% 21.7% 6.7% 0.0% 0.0%

may be further boosted by employing more voters per each decision class, as
opposed to one voter per class in the above scheme. This is especially appealing
in the context of evolutionary computation, as each evolutionary run usually
produces a di�erent best-of-run individual, so their fusion may result in syn-
ergy. Table 1 presents the test-set classi�cation accuracy of GVL and CCKR for
the simple recognition system and the voting method with a di�erent number
of voters. The table shows averages with .95 con�dence intervals; for vote-30,
con�dence intervals cannot be provided as, with 30 independent runs for each
character class, only one unique vote-30 recognition system can be built. Quite
obviously, the more voters, the better the performance. But more importantly,
no matter what the number of voters is, CCKR impressively outperforms the
corresponding GVL approach. The gap between them narrows when the number
of voters increases, but remains signi�cant even for the vote-30 case.

Table 2 presents detailed test set results for the vote-30 CCKR experiment.
Nine out of 24 characters were recognized perfectly. Overall, only three characters
were recognized in less than 90% of cases: U , w , and l . Basing on the complete
confusion matrix (not shown here due to the lack of space), we can conclude
that U is sometimes mistaken for l , hence both yield high false positive errors.
Similarly, the recognition system occasionally incorrectly classi�es w as þ . Since
these pairs of letters are very similar to each other and even a human might �nd
them troublesome, this result may be considered appealing.

6 Conclusions

Despite the large number of decision classes (24), low number of training exam-
ples per class (10), variability of handwriting styles (7 persons), and, last but
not least, one-class learning (learners have no idea what the negative examples
look like), the presented approach of GP-based generative visual learning per-
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forms surprisingly well, attaining near-to-perfect classi�cation accuracy on the
large and diversi�ed test set. This encouraging result should be attributed to
the generative trait of the proposed approach, which does not allow the evolving
learners to `skim' the training data for any discriminating feature, but forces
them to fully `understand' the recognized pattern.

The additional mechanism of cross-class knowledge reuse (CCKR) further
boosts the recognition accuracy, even when the base approach (GVL) already
uses an extensive voting procedure like vote-30. Most of erroneous recognitions
concern character classes that are hard to tell apart also for humans. With the
di�cult character classes excluded (U and l , w and þ ), CCKR attains 98.0%
recognition accuracy on the test set.

CCKR is straightforward and may be implemented by a relatively simple
extension of canonical genetic programming. The method does not increase the
computational e�ort of the learning process, and provides a signi�cant perfor-
mance improvement at the same computational expense as GVL. Thanks to
one-class learning, recognition system may be easily extended by a new decision
class by separately evolving an extra learner; the existing components of the
recognition system do not have to be modi�ed.

At the current stage, it is di�cult to conclude if the results obtained here gen-
eralize to other variants of GP-based learning. The conservative answer should
be probably negative: many other GP-based learning methods would bene�t
less from this form of knowledge reuse. For instance, GP expressions operating
in the space of attributes in conventional learning from examples, would prob-
ably be not bene�ciary of CCKR, for the reasons stated earlier in Introduction
(low probability of usefulness of GP subexpressions in other learning tasks).
However, this tentative conclusion should not restrain us from further investi-
gation of the topic. Quite on the contrary, it may be a useful hint for building
GP representations that are susceptible to knowledge reuse. In other words, it
would be interesting to pose an inverse problem: instead of trying to devise a
knowledge reuse method for a particular knowledge representation, try to de�ne
a knowledge representation that makes the knowledge reuse possible.

Acknowledgments

This work was supported by grant DS 91-443. Computations were carried out
in Pozna« Supercomputing and Networking Center.

References

1. R. Caruana. Multitask learning. Mach. Learn., 28(1):41�75, 1997.

2. E. Galvan Lopez, R. Poli, and C. A. Coello Coello. Reusing code in genetic pro-
gramming. In M. K. et al., editor, Genetic Programming 7th European Conference,
EuroGP 2004, Proceedings, volume 3003 of LNCS, pages 359�368. Springer-Verlag,
2004.

29



3. D. Howard, S. C. Roberts, and C. Ryan. Pragmatic genetic programming strategy
for the problem of vehicle detection in airborne reconnaissance. Pattern Recognition
Letters, 27(11):1275�1288, 2006.

4. W. H. Hsu, S. J. Harmon, E. Rodriguez, and C. Zhong. Empirical comparison
of incremental reuse strategies in genetic programming for keep-away soccer. In
M. Keijzer, editor, Late Breaking Papers at the 2004 Genetic and Evolutionary
Computation Conference, Seattle, Washington, USA, 26 July 2004.

5. W. Ja±kowski, K. Krawiec, and B. Wieloch. Knowledge reuse in genetic program-
ming applied to visual learning. In D. Thierens, editor, Genetic and Evolutionary
Computation Conference GECCO, pages 1790�1797. Association for Computing
Machinery, 2007.

6. W. Ja±kowski, K. Krawiec, and B. Wieloch. Learning and recognition of hand-
drawn shapes using generative genetic programming. In M. G. et al., editor,
EvoWorkshops 2007, volume 4448 of LNCS, pages 281�290, Berlin Heidelberg,
2007. Springer-Verlag.

7. J. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.
8. J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane. Reuse, parameterized

reuse, and hierarchical reuse of substructures in evolving electrical circuits using
genetic programming. In T. H. et al., editor, Proceedings of International Confer-
ence on Evolvable Systems: From Biology to Hardware (ICES-96), volume 1259 of
Lecture Notes in Computer Science. Springer-Verlag, 1996.

9. K. Krawiec. Learning high-level visual concepts using attributed primitives and
genetic programming. In F. R., editor, EvoWorkshops 2006, LNCS 3907, pages
515�519, Berlin Heidelberg, 2006. Springer-Verlag.

10. K. Krawiec and B. Bhanu. Visual learning by coevolutionary feature synthesis.
IEEE Transactions on System, Man, and Cybernetics � Part B, 35(3):409�425,
June 2005.

11. S. Louis and J. McDonnell. Learning with case-injected genetic algorithms. Evo-
lutionary Computation, IEEE Transactions on, 8(4):316�328, 2004.

12. S. Luke. ECJ evolutionary computation system, 2002. (http://cs.gmu.edu/
eclab/projects/ecj/).

13. M. Maloof, P. Langley, T. Binford, R. Nevatia, and S. Sage. Improved rooftop
detection in aerial images with machine learning. Mach. Learn., 53:157�191, 2003.

14. T. M. Mitchell. The discipline of machine learning. Technical Report CMU-ML-
06-108, Machine Learning Department, Carnegie Mellon University, July 2006.

15. K. M. W. Moya, M. R. and L. D. Hostetler. One-class classi�er networks for target
recognition applications. In Proceedings world congress on neural networks, pages
797�801, Portland, OR, 1993. International Neural Network Society.

16. M. Rizki, M. Zmuda, and L. Tamburino. Evolving pattern recognition systems.
IEEE Transactions on Evolutionary Computation, 6:594�609, 2002.

17. S. C. Roberts, D. Howard, and J. R. Koza. Evolving modules in genetic pro-
gramming by subtree encapsulation. In J. F. M. et al., editor, Genetic Pro-
gramming, Proceedings of EuroGP'2001, volume 2038 of LNCS, pages 160�175.
Springer-Verlag, 2001.

18. A. Teller and M. Veloso. PADO: A new learning architecture for object recognition.
In K. Ikeuchi and M. Veloso, editors, Symbolic Visual Learning, pages 77�112.
Oxford Press, New York, 1997.

19. R. Vilalta and Y. Drissi. A perspective view and survey of meta-learning. Artif.
Intell. Rev., 18(2):77�95, 2002.

30



An Iterative Pro
ess for Building LearningCurves and Predi
ting Relative Performan
e ofClassi�ersRui Leite and Pavel Brazdilrleite�lia

.up.pt, pbrazdil�lia

.u.ptLIAAD-INESC Porto L.A./Fa
ulty of E
onomi
s,University of Porto, Rua de Ceuta, 118-6,4050-190 Porto, PortugalAbstra
t. This paper 
on
erns the problem of predi
ting the relativeperforman
e of 
lassi�
ation algorithms. Our approa
h requires that ex-periments are 
ondu
ted on small samples. The information gathered isused to identify the nearest learning 
urve for whi
h the sampling pro-
edure was fully 
arried out. This allows the generation of a predi
tionregarding the relative performan
e of the algorithms. The method auto-mati
ally establishes how many samples are needed and their sizes. Thisis done iteratively by taking into a

ount the results of all previous ex-periments - both on other datasets and on the new dataset obtained sofar. Experimental evaluation has shown that the method a
hieves betterperforman
e than previous approa
hes.1 Introdu
tionThe problem of predi
ting the relative performan
e of 
lassi�
ation algorithms
ontinues to be an issue of both theoreti
al and pra
ti
al interest. There aremany algorithms that 
an be used on any given problem. Although the user
an make a dire
t 
omparison between the 
onsidered algorithms for any givenproblem using a 
ross-validation evaluation, it is desirable to avoid this, as the
omputational 
osts are signi�
ant.It is thus useful to have a main method that helps to determine whi
h algo-rithms are more likely to lead to the best results on a new problem (dataset).The 
ommon approa
h of many methods is to store previous experimental resultson di�erent datasets. The datasets, in
luding the one in question, are 
hara
-terized using a set of measures. A (meta-)learning method is used to generate apredi
tion, for instan
e, in the form of a relative ordering of the algorithms.Some methods rely on dataset 
hara
teristi
s su
h as statisti
al and information-theory measures [5, 3℄. However, these measures need to be identi�ed beforehand,whi
h is a non-trivial task.These di�
ulties have led some resear
hers to explore alternative ways toa
hieve the same goal. Some authors have used simpli�ed versions of the algo-rithms referred to as landmarks [1, 10℄. Other resear
hers have proposed to use
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the algorithms performan
e on simpli�ed versions of the data, whi
h are some-times referred to as sampling landmarks. The performan
e of the algorithms onsamples 
an be used again to estimate their relative performan
e. The use of pre-vious information about learning 
urves on representative datasets is essential.Without this, sampling may lead to poor results [9℄.Our previous approa
h [7℄ used the performan
e information given by partiallearning 
urves to predi
t the relative performan
e on the whole dataset. Thismethod performed better than the one that uses dataset 
hara
teristi
s. How-ever, this had one short
oming. It required the user to 
hoose the sizes of thepartial learning 
urves, i.e. the number and sizes of the samples used by the basealgorithms.This 
hoi
e is not trivial sin
e there is a tradeo� between using more infor-mation (more samples and larger samples) leading to better predi
tions and the
ost of obtaining this information.In this paper we des
ribe an improved version of a previously developedmethod that determines the size of the samples used to 
reate the partial learning
urves. The method uses performan
e information 
on
erning learning 
urves onother datasets and also involves 
ondu
ting some experiments on a new dataset.The planning of these experiments is built up gradually, by taking into a
-
ount the results of all previous experiments � both on other datasets and onthe new dataset obtained so far. This is one important novelty of our approa
h.Experimental evaluation has shown that the new method 
an a
hieve higherperforman
e levels when 
ompared to other approa
hes.2 Using Sampling to Predi
t the Out
ome of LearningThe aim is to de
ide whi
h of the two algorithms (Ap and Aq) is better on anew dataset d. The performan
e of the algorithms on a set of samples shedssome light to the �nal results of the learning 
urves (see Fig. 1). Intuitivelythis approa
h should work better if several samples of di�erent sizes are usedfor ea
h algorithm, letting us per
eive the shape of the two learning 
urves.We assume the existen
e of available information about how both algorithmsperform on di�erent datasets d1 · · · dn for several samples with sizes s1 · · · sm.This information de�nes the relation between the performan
e of the algorithmson partial learning 
urves and the relative performan
e on the whole dataset.The method previously developed [7℄ and the enhan
ed version presented hereare both based on this intuitive idea. The main di�eren
e between the methodsis that the new method establishes the sizes of the samples. More samples areintrodu
ed if it improves the 
on�den
e of the predi
tion. This method alsotries to minimize the 
osts asso
iated with the training of the algorithms on the
hosen samples.The improved method 
omprises two fun
tions: fun
tion AMDS whi
h usesthe performan
e of the algorithms on given samples; and fun
tion SetGen whi
hestablishes the sample sizes that should be used by AMDS. Both are des
ribedin more detail in the following se
tion.
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Fig. 1. Partially known learning 
urves2.1 Using performan
e on samples of spe
i�ed sizes for de
isionmaking (ADMS)The fun
tion AMDS a

epts a sequen
e of sample sizes 1 as an input. For exam-ple, 
onsider the 
ase shown in Figure 1. The input 
an be represented as {Ap1,
Ap2, Ap3, Aq1, Aq2, Aq3} 
orresponding to samples of sizes s1, s2, s3 for bothalgorithms. Bellow we give an overview of the method.1. Des
ribe the new dataset d. This step involves the estimation of the algo-rithms performan
e when trained on several samples of given sizes.2. Compute the distan
es between d and all the other datasets d1 · · · dn. Identifythe subset of k nearest datasets.3. Adapt the identi�ed pair of learning 
urves to the new partial learning 
urvesbuilt for dataset d. There is a pair of 
urves for ea
h identi�ed dataset.4. For ea
h pair of adapted 
urves de
ide whi
h algorithm is better. This isde
ided by looking at the relative performan
e at the end of the 
urves.5. Identify the algorithm to use on the new dataset d, by 
onsidering the resultson all k neighbour datasets.The reader 
an �nd additional details about this method in our previouswork [7℄.2.2 Generator of Attribute Sequen
es (SetGen)We have a method (AMDS) that predi
ts the relative performan
e of 
lassi�
a-tion algorithms using the performan
e of those on di�erent samples. The samplesare randomly drawn from the given datasets and 
an only assume some spe
i�
sizes (s1, s2, · · · , sm). The sample sizes are passed to AMDS as an input (e.g.<s1,s2,s3> related to Ap and <s2,s5> related to Aq).The aim of the algorithm SetGen is to determine how many samples shouldbe used and what their sizes should be. This is not solved using a regular feature1 The sequen
es of possible sample sizes are �nite (e. g.{s1, s2, · · · , sm}) and the sizesgrow as a geometri
 sequen
e a0 × rn. Here we have used sizes 91, 128 et
.
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sele
tion method (a forward sele
tion) that try to improve the method a

ura
y.In our 
ase it also deals with feature 
osts.The samples are 
hosen taking into a

ount the improvement of the predi
-tion 
on�den
e. At the same time the system tries to identify those 
andidatesolutions that in
rease the 
omputational 
osts by the least amount. The desiredsequen
e of samples is identi�ed using a hill 
limbing approa
h.An overview of the method is presented in Fig.2. It starts with a given se-quen
e of meta-features for the two algorithms (Ap, Aq). Ea
h sequen
e 
onsistsof performan
e values on a given sequen
e of samples. The algorithm works in aniterative fashion. In ea
h step it tries to determine how the sequen
e should beextended. Various alternatives are 
onsidered and evaluated. As we have pointedout before, the aim is to improve the 
on�den
e of the predi
tion (whi
h algo-rithm to use). The best extension is sele
ted and the pro
ess is repeated whilethe 
on�den
e of the predi
tion in
reases.

Fig. 2. Iterative pro
ess of 
hara
terizing the new dataset and determining whi
h al-gorithm is betterFig. 3 shows more details about how the sear
h is 
ondu
ted. The algorithmstarts with an initial set of attributes (a0). At ea
h step it expands the 
urrentstate into its su

essors. The su

essor states are the sets of attributes obtained
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Fig. 3. An example of sear
h in the attribute spa
eby adding a new attribute to the 
urrent set. In the example the su

essors of
(a0) are (a0, a1), (a0, a2) et
. For simpli
ity we use aj to represent a generi
attribute. For ea
h state (represented by the parti
ular set of attributes) the(meta-)a

ura
y of the method is estimated, as well as the 
ost of obtaining theattributes.On
e a state is de�ned the next one is 
hosen among the su

essors thatimprove the meta�a

ura
y by at least ∆ (for instan
e, the value 0.01). Finally,the one with the minimum 
ost is 
hosen. In our example (Fig. 3) the algorithmmoves from state (a0) to state (a0, a2). In the next step it 
hooses the state
(a0, a2, a4). This 
ontinues until none of the su

essors improves the a

ura
yby at least ∆.Let us 
larify the issue of what the generi
 attributes used here represent.Ea
h parti
ular aj represents either a parti
ular attribute of algorithm Apj (rep-resenting the performan
e of Ap on sample of size sj), or some attribute of al-gorithm Aqk or a 
ombination of both attributes (for instan
e (Ap4 and Aq6)).This means that on ea
h iteration the SetGen method 
an either insert a newattribute related to one parti
ular algorithm (say Ap) or insert two attributesone related to Ap and another related to Aq. This allow the method to extendeither one of the partial learning 
urves or the two at the same time.Another aspe
t needs still to be 
lari�ed. When the method attempts to ex-tend a parti
ular state, it veri�es whether the extension is valid. Valid extensionsintrodu
e attributes that are in general more informative 2 than those used sofar. In Fig. 3 some extensions of states that were 
onsidered, but are in fa
tinvalid, are marked by �X�.Evaluation of Attribute Sequen
es2 For instan
e, the attribute Ap3 is 
onsidered more informative than Ap2, as the 
or-responding sample is larger. Therefore, the system 
an, add Ap3 to the set 
ontaining

Ap2, but the opposite is not possible.
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As des
ribed earlier, ea
h state is 
hara
terized by two di�erent values, a

u-ra
y and 
omputational 
ost. The algorithm needs to anti
ipate what would bethe a

ura
y of the method if it used a spe
i�
 set of attributes (
andSet). Thisestimate, evaluated using EA

 fun
tion, expresses the 
han
es of su

ess of themethod on the new dataset. It is 
al
ulated using a leave�one�out evaluation onthe existing datasets in the meta-knowledge base. Let us assume that it 
ontainsinformation about D datasets. The method is applied to ea
h dataset di of Dby using the given set of attributes 
andSet. The predi
tion 
on
erning the algo-rithm to use is 
ompared with the 
orre
t de
ision stored in the meta-knowledgebase. The method su

eeds on di if its de
ision on this dataset is the same asthe 
orre
t de
ision retrieved.After repeating this pro
edure for all D datasets it is ne
essary to aggregatethis information in order to obtain an estimate of the a

ura
y of the method forthe attribute set 
andSet on di�erent datasets. This 
ould be done by 
al
ulatingan average. However, this would give equal importan
e to all datasets, withoutregarding whether they are similar to the dataset in question or not. For thisreason the method uses a weighted average that 
orre
ts this short
oming. Thefollowing equations de�ne the EA

 fun
tion.
EAcc(c) = (1 +

∑

di∈D

[success(di, candSet)× wi])/2 (1)whereD is the set of known a datasets, wi represents a weight and success(. . .)is +1 (-1) if the method gives the 
orre
t (wrong) answer for di using the at-tributes indi
ated in 
andSet. The weight is 
al
ulated as follows:wi = w′

i/
∑

k w′

kwhere w′

i = 1/(dist(d, di) + 1).The 
omputational 
ost estimate is 
al
ulated by using a similar leave�one�out mode. For ea
h dataset di the meta�database is used to retrieve the trainingtime spent on evaluating all the attributes in 
andSet. The �nal value is theweighted average of times for the spe
i�ed attributes.
ECost(candSet) =

∑

di∈D

Cost(di, candSet)× wi (2)This provides an estimate for the training time needed to 
ompute the sameattributes on a new dataset.3 Empiri
al EvaluationThe de
ision problem 
on
erning whether algorithm Ap is better than Aq 
anbe seen as a 
lassi�
ation problem whi
h 
an have three di�erent out
omes: 1(or -1) if algorithm Ap gives signi�
antly better (or worse) results than Aq, or 0if they are equivalent (not signi�
antly di�erent).In the experimental study our �rst aim was to determine the a

ura
y andthe 
omputational 
ost of our approa
h (AMDS�SetGen). Additionally we also
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aimed at 
omparing these results to a previous method (MDC)[3℄ whi
h relieson dataset 
hara
teristi
s instead. This method 
an be bree�y des
ribed by:1. Compute the 
hara
terization measures for all datasets (in
luding the newone).2. Compute the distan
e between the new dataset and the stored ones.3. Choose the k stored datasets (neighbours) that are �nearest� to the newdataset (a

ording to the distan
e).4. Use the algorithm that was most often the best one on the identi�ed nearestdatasets.The predi
ted 
lass was 
ompared with the true 
lassi�
ation determinedby a usual 
ross�validation evaluation pro
edure on ea
h dataset for the twogiven algorithms. A statisti
al test (t�test) was used to 
ompute the statisti
alsigni�
an
e.Instead of using the usual a

ura
y measure, we have used a di�erent measurethat is more suited for our 
lassi�
ation task with 3 possible out
omes. Theerrors are 
alled penalties and are 
al
ulated as follows. If a parti
ular method(e.g. AMDS�SetGen) 
lassi�es some 
ase as +1 (or -1), while the true 
lass is 0(the given algorithms are not signi�
antly di�erent) then, from a pra
ti
al pointof view the method did not fail, be
ause any de
ision is a good one. Therefore thepenalty is 0. However if the method 
lassi�es the dataset as 0, while the true 
lassis +1 (or -1) then we 
onsider that the method partially failed. The penalty is0.5. If the 
lassi�
ation is +1 (or -1), while the true 
lass is -1 (or +1), this 
ountsas a 
omplete failure, and the penalty is set to 1. The 
orresponding a

ura
y,referred to as meta�a

ura
y, is 
omputed using this formula 1−
∑

i∈D
penalty(i)

#D. In this empiri
al study we have used the following 5 
lassi�
ation algorithms,all implemented within Weka [11℄ ma
hine learning tools: J48 (C4.5 implementedin weka), JRip - rule set learner (RIPPER [4℄), logisti
 [6℄, MLP - multi-layerper
eptron, and Naive Bayes. Using this setting we get 10 
lassi�
ation problems,one for ea
h pair of algorithms. We have used 40 datasets in the evaluation. Some
ome from UCI [2℄, others were used in the proje
t METAL [8℄. The evaluationpro
edure used to estimate the a

ura
y of the methods is the leave�one�out 3to on the datasets.In Figure 4 we present the performan
e rea
hed by the methods in termsof meta�a

ura
ies. The AMDS�SetGen results have been obtained with theparameter ∆=0.07. The �gure also shows the performan
e of MDC and thedefault a

ura
y on ea
h meta-
lassi�
ation problem.On average with AMDS-SetGen the a

ura
y improves by 12.2% (from 79.6%to 91.8%) when 
ompared to the default a

ura
y. Moreover, our method im-proves the performan
e by 11% when 
ompared to MDC (that rea
hes 80.8%),while MDC only improves the performan
e by 1.2% when 
ompared to the de-fault a

ura
y. Our method gives better results than MDC on all problems. The3 We plan to use a Bootstrap-based error estimator to redu
e the varian
e usuallyasso
iated with leave-one-out error estimators.
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Fig. 4. Result 
on
erning meta�a

ura
ieslargest improvements are observed on the hardest problems where the defaulta

ura
y is 
lose to 50%. In su
h situations our method 
an attain nearly 25%of improvement.Regarding 
omputational 
osts the results of ADMS-SetGen and MDC are
ompared to the 
ost of de
iding whi
h algorithm is better using 
ross�validation(CV). To express the run�time savings, Figure 5 shows the ratio between of thetime spent by AMDS�SetGen and the time spent by CV. In most 
ases AMDS�SetGen is mu
h faster than CV (the ratio is on average about 0.2).
MDC
AMDS−SetGen

0.0

0.1

0.2

0.3

0.4

0.5

Meta−classification problemsFig. 5. Results 
on
erning 
osts3.1 Further Experimental Results and Dis
ussionVariation of ∆ and its e�e
ts:We brie�y dis
uss why we have 
hosen ∆=0.07.We have 
ondu
ted further experiments by using the following values for the ∆parameter: 0.2, 0.1, 0.07, 0.05, 0.02, 0.01, 0.005, 0.002, 0.001. If we use small
∆ values the meta�a

ura
y in
reases, at the same time as the in
reasing of
omputational time. The value of ∆ = 0.07 seems to be the best 
ompromise,
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leading, on average, to a meta�a

ura
y of 0.92 and to a 
omputational time(expressed as a ratio) of 0.2. 4AMDS using �xed samples: The user 
an 
hoose some simple sampleslike sj and also 
ombinations like (s1,s2), (s1,s2,s3) et
. Although the methodperforms reasonably well the SetGen method is generally more a

urate.A typi
al 
ase of sele
ted samples: Typi
ally the samples sele
ted bySetGen are not the same for both algorithms and the sample sequen
es 
an havegaps. The following example shows the sele
ted samples obtained for J48 vsJRip while making the predi
tion for dataset musk : J48 samples=(s1, s5) JRipsamples=(s1, s4). This is a typi
al 
ase. Having gaps whi
h happens frequentlyrepresents a useful feature as it allows time savings.Extension to N 
lassi�ers: Although this paper fo
uses on the problemof determining whi
h of the 2 given 
lassi�
ation algorithms should be used ona new dataset, it does not represent a serious limitation. If we had N 
lassi�
a-tion algorithms and wanted to �nd out whi
h one(s) should be used, one 
ould
ondu
t pairwise tests and use the one that wins more often. If the number ofalternatives is larger, it is advisable to divide the algorithms into subgroups andestablish a winner of ea
h subgroup and then repeat the pro
ess. However, thisissue ex
eeds the aims of this paper.4 Con
lusionsIn this paper we have des
ribed a meta-learning s
heme that exploits sampling todetermine whi
h of the two given methods is better. The method automati
allyestablishes how many samples are needed and their sizes.The method uses stored performan
e information 
on
erning learning 
urveson other datasets to guide the 
onstru
tion of the sequen
es of samples to beused on a new dataset. The method involves 
ondu
ting some experiments onthe new dataset. The plan of these experiments is built up gradually, by takinginto a

ount the results of all previous experiments - both on other datasets andon the new dataset obtained so far.The method extend the sequen
e of samples to improve the results. It triesto determine whether this would improve the 
on�den
e of the predi
tion, while
ontrolling the pro
ess and looking for extensions with minimal 
osts. This isone important novelty of this approa
h.Experimental evaluation has shown that the new method a
hieves good per-forman
e. The (meta-)a

ura
y is on average 91.8% , whi
h is higher than anyof the approa
hes reported before. Besides, the user does not have to be 
on-
erned with the problem of determining the sizes of the samples. This representsa signi�
ant improvement over previous methods in dealing with the problemof predi
ting the relative performan
e of learning algorithms in a systemati
manner.4 If the ∆ is set to 0.05 the meta�a

ura
y remains almost the same (0.92) but the timein
reases (ratio 0.3). If on the other hand ∆ is adjusted to 0.1, the meta�a

ura
yde
reases to 0.88 and the method be
omes faster (ratio 0.16).
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Abstract. A number of computational tools exist to perform parts of
the task of constructing knowledge-based systems. These tools come from
research and development in Machine Learning and Knowledge Acqui-
sition. More fully automating this process requires a language for spec-
ifying the goal of the construction process and knowledge for when and
how to invoke a tool. This paper presents a language, LML, for formu-
lating what we call learning goals, in the sense of descriptions of target
systems. LML can also be used to express functional models of learn-
ing and acquisition tools. These models can be used to select tools to
achieve a goal and to prove that the resulting knowledge system satisfies
the goal. To demonstrate the use of the language, we present a system
that effectively uses these functional models to select combinations of
tools for automated construction of knowledge-based systems.

1 Introduction

In this paper we view learning as constructing a system that satisfies certain
constraints and we consider the problem of selecting and combining learning
systems and applying them to available systems to achieve a learning goal. Most
learning systems construct systems that are generalizations of existing systems
(we view training examples in combination with a database lookup procedure
as a “system”). Some learning systems do not (only) perform generalization but
(also) speedup or change of representation language. For many learning tasks,
several learning systems need to be combined to achieve a learning goal.

A key problem is he nature of learning goals. Here we define concepts and a
language for (a) expressing learning goals, in the form of constraints of a target
system to be produced by learning and (b) defining functional models of learning
systems. The models of learning systems will be used to select a useful learning
system and to infer if the goal of learning has been achieved. Below we also
describe a system (GDL for Goal-Driven Learner) that achieves learning goals
by selecting knowledge or data and tools, applying the tools and using the results
to construct a knowledge system that provably satisfies its learning goal.
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2 Models of knowledge systems

A knowledge system can consist of a single “knowledge base” with a single “prob-
lem solver” or a compound system (see section 7). Problem data can be entered
to the knowledge system and then the problem solver is run on the problem data
and the knowledge base to produce a “solution” (or failure). The meta-language
LML (Learning Modelling Language) is based on the properties of knowledge
systems listed in Table 2. Examples of problem solvers are: decision tree in-
terpreter, prologSolve (acts like Prolog), table lookup and nearest neighbour
matcher. We illustrate the properties with a toy knowledge system (Figure 1).

tree(thrombosis,

[yes : tree(pneumonia,

[yes : leaf(medication1),

no : leaf(medication2)]),

no : tree(lungEmbolia,

[yes: leaf(medication3),

no : leaf(medication1)])])

Fig. 1. exampleKS

The values of LML properties are obtained in different ways. The problem
solver is recognised by its label. kbGrammar and pGrammar are recognised by
language recognisers. pVocabulary, kbVocabulary, kbLexicon, solutions and size
are recognised by a parser/recogniser using the kbGrammar. SolutionTime is
found by benchmarking: generating problems, solving them and measuring time.
Function and minSolutionTimeForFunction are not measured and can only be
inferred. Learning goals only involve relative constraints on the function and
therefore this need not be computed.

3 Learning Goals

A learning goal is a description of a target knowledge system, represented as
constraints on the values of LML properties. Constraints can be relative, referring
to one or more other knowledge systems. For example, a constraint on the target
system can be size below 120 (words) or size below size system-2 or size below
sum(size(system-2), size(system-3)).

Learning goals are expressed in a simple constraint language with constraints
on sets, grammars and numbers. A special relation is best generalization of. It is
useful to distinguish between any subsumption relation between two functions
and best generalization of. For example, by joining two knowledge systems we
may obtain a new system with a function that subsumes the functions of the
input systems but this is different from applying induction to generalize the
function of one of the systems.
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Property Meaning Value in example

kbGrammar the most specific of a set of predefined decision tree grammar
grammars that recognises the knowledge
base; the primitive elements of a
grammar are the lexical categories

problem solver a (predefined) problem solver decision tree interpreter
kbVocabulary the set of words in knowledge base {thrombosis, pneumonia, medication1,

medication2, lungEmboli, medication3}
kbLexicon the words associated with their lexical {attribute: {thrombosis, pneumonia,

category lungEmboli}, value {yes, no}}
pGrammar the most specific grammar that recognises flat-attribute-value

the problem data
pLexicon assigns problem vocabulary to grammatical

categories
pVocabulary set of words that can appear in a problem {thrombosis, pneumonia}

and can be used by the knowledge system
solutions set of solutions that can be found {medication1/2/3}

for at least one problem
size number of words in knowledge base 23
function relation between problems and solutions -
solutionTime average time for solving a problem 0.01
minSolutionTime- Boolean that holds if the solution yes
ForFunction time of a system is minimal (for function)

Table 1. Overview of LML properties

Consider the following example of a learning goal, adapted from an actual
practical problem [1]. Several knowledge systems are available: initial) built be-
fore the current project, patients records of patients with their diagnoses, and
several human experts. The target system is required to cover the function of
initial and patients. The patient records are specific must be generalized. During
the initial stage an inventory was made of symptoms and complaints and other
data about a patient such as age, sex, conditions under which the complaints be-
gan, medical history and of relevant diagnostic categories. For example, the user
requires the target system to diagnose cases of thrombosis that share symptoms
with initial and patients. Regulations (for ambulance dispatching) required the
system to find solutions in less than 30 seconds. The representation language
for the target system is a language based on rules, to make the knowledge base
comprehensible. This learning goal can be expressed in LML as follows:

Relations between properties of different knowledge systems (as appear in
goals) can be inferred (a) from the LML models of tools and input and output
knowledge systems and (b) by applying general knowledge about relations and
properties. For example, GDL uses subsumption relations between grammars,
symmetry and transitivity of set and numerical relations, knowledge about pos-
sible combinations of knowledge base grammars, problem solvers and problem
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Find a knowledge system KS3 such that:

1. There is a knowledge system KS1 such that:
– bestGeneralization of the function of patients
– problemVocabulary equal to those of patients
– solutions equal to those of patients

2. and a knowledge system KS2 such that:
– solutions include thrombosis
– overlap in pVocabulary with the pVocabulary of KS1

3. and then such that for KS3:
– solutions include the union of solutions of KS1 and KS2
– kbGrammar subsumed by hornGrammar
– problem solver is prologSolve
– problemVocabulary includes the union of the
– problemVocabularies of KS1 and KS2
– function subsumes the function of KS1, KS2 and initial
– solutionTime below 30 seconds

Table 2. Example learning goal

grammars. GDL also knows that:

for all KS, F: bestGeneralization(F1, KS1) & equal(F1, F2) &
function(F2, KS2) → bestGeneralization(F1, KS2)

and

minSolutionTimeForFunction(KS1, F1) & equal(F1, F2) &
function(F2, KS2) → minSolutionTimeForFunction(KS1, F2)

4 Functional models of tools

LML properties and relations are also used for functional models of learning
tools. Tool models are represented as LML relations between input and output
knowledge systems. Table 3 gives an example. The model consists of precondi-
tions on the input data and a model that specifies the form of the knowledge
system that is produced by the learner. The most important effect is that the
function of the decision tree will be a best generalization of the function of the
input but also problem solving will take less time and the size will be reduced.
The precondition for applying this tool is: kbGrammar of InputKS subsumed by
attValExamples. Table 3 gives the functional model.

This model is used in GDL to to infer some properties of the result of applying
the tool and to evaluate if applying it to a knowledge system will produce a new
knowledge system that is closer to the goal.

44



kbGrammar subsumed by decisionTreeGrammar
problem solver is decisionTreeInterpreter
pGrammar subsumed by attValExamples
solutions setequal to solutions of InputKS
kbVocabulary setequal to kbVocabulary of InputKS
pVocabulary subset of pVocabulary of InputKS
function is best generalization of function of InputKS
size below size of InputKS
solutionTime below solutionTime of InputKS
solutionTime minimal for function

Table 3. LML model of a decision tree learner

5 Human experts and knowledge elicitation

Knowledge can be elicited from a human expert. To include this in our model and
system we assume that (the knowledge of) a human expert can be modelled like
the knowledge of a system, using LML properties. By applying an elicitation
tool to a human expert, a knowledge system is obtained. Selection of experts
and elicitation tools can be included by constructing LML models of experts
and tools.

6 The GDL system

The purpose of building the GDL system is to evaluate if LML can be used to
control learning processes. The task of GDL is, given a repository of knowledge
systems, a set of LML profiles of experts (and access to them), a learning goal
and a collection of tools with their LML models, to construct a knowledge system
that satisfies the learning goal.

The implementation of GDL includes a collection of tools. There are tools for
generalization (constructing a system with a function that subsumes the function
of its input), speedup (reducing solution time) and conversion (changing the
grammar). GDL also includes two simple tools for the elicitation, analogous to
structured editors for e.g. Repertory Grids. New tools can easily be included but
GDL needs an LML model of their function.

Figure 2 summarizes the algorithm.
GDL first constructs LML models of all knowledge systems in the reposi-

tory. Next, knowledge systems that are relevant for the goal (because they share
problem or knowledge base vocabulary) are selected from the repository. If the
learning goal refers to words about which no knowledge system is available at all
then immediately a relevant expert is located and elicitation about this word is
initiated. The relevant knowledge systems are ordered by the number of unsatis-
fied goal constraints. GDL then selects the best knowledge system and searches
for the best applicable (by its preconditions and LML model) tool. If there are
no applications of tools that achieve any improvement then GDL can transform
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GDL(input: Goal, Knowledge systems; output: OutputKS):

1. Find Relevant Systems(input: Solutions, pVocabulary,

KbVocabulary, Knowledge systems; output: Relevant systems)

2. IF Missing Words(input: Solutions, pVocabulary,

KbVocabulary, Relevant systems; output: Missing)

AND available(Expert, Missing)

THEN elicit(input: Expert, Missing, pVocabulary,

Solutions; output: ExtraKS)

3.

3.1 Order(Relevant systems, ExtraKS, OrderedRefs)

3.2 UNTIL test(ConjGoal, OrderedRefs) succeeds DO:

3.2.1 select best(OrderedRefs, CurrentBest);

3.2.2 select(CurrentBest, ConjGoal, MLTool);

3.2.3 IF applicable(CurrentBest, MLTool) AND

predicted Improvement(CurrentBest, MLTool,

ConjGoal)

THEN (apply(MLtool, CurrentBest, NewKS)

Fig. 2. Toplevel algorithm of GDL

a knowledge system into its preferred default kbGrammar, Horn clauses. This
trick enables steps that do not directly approximate the goal but that can be
useful intermediate steps. GDL does not apply the same operator twice. If there
is no (new) step possible and the goal is not achieved, GDL stops with failure.

Consider again the learning goal in Table 3. This goal involves two subgoals
that are expressed referring to another knowledge system. Assume that initially
GDL has access to seven knowledge systems (see Table 10) and two sources:
a human expert on lung diseases (lung expert) and one on psychosomatic dis-
eases (psyc). For this problem, the knowledge systems contra indications, causal
knowledge, classification, therapy and the expert psyc are not needed.

Figure 3 shows how GDL addresses this learning goal. The boxes are knowl-
edge systems, the ellipses applications of the tool written inside. GDL is applied
to each subgoal. If a constraint is not achieved then GDL backtracks to an-
other tool or knowledge system. GDL first constructs LML models of all input
knowledge systems in the repository. The first subgoal is then to construct a
knowledge system that is a “best generalization” of patients. First the vocab-
ulary is extracted from the subgoal. This vocabulary is used to select relevant
knowledge systems. As it happens, all systems in the repository share vocabulary
and thus are possibly relevant. GDL now orders the knowledge systems by their
distance to the current learning goal. “Patients” itself is of course the knowledge
system that is nearest to the goal of being a generalization of patients. GDL then
searches for a tool that has not been applied to patients before and that will
produce a system that, according to its LML model, is closer to the (sub)goal
than patients itself. Using the functional model of tools, GDL predicts that the
decision tree learning tool idt will achieve the goal constraint best generalization
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and applies it. This results in a new knowledge system, a decision tree (ks21
in Figure 3). GDL constructs the LML model of the new ks21 and stores the
fact that the function of ks21 is a best generalization of the function of patients.
From this GDL infers that the ks21 satisfies the first subgoal.

patients lungexp

idt elicitHorn

ks21 ks22

initial

nonFlatProp
ClausesToPredCl

ks29

mergeClauses

ks67

nonFlatProp
ClausesToPredCl

ks74

nonFlatProp
ClausesToPredCl

ks173

ks235

treeToClauses

ks940

ks979

mergeClauses2

mergeClauses

Fig. 3. Example scenario

The next subgoal (b in Table 3) is to construct a knowledge system that in-
cludes thrombosis as a solution and that has a problem vocabulary that overlaps
with that of patients and initial. GDL selects the relevant knowledge systems
from the repository and finds that none of these includes the word thrombosis.
An elicitation goal is constructed: a knowledge system that includes thrombo-
sis in its solutions and that has a problem vocabulary that overlaps with that
of patients and initial. Only “lung expert” is relevant because this expert can
produce knowledge about thrombosis. GDL now searches for an elicitation tool
that can extract knowledge from this expert, elicits a set of Horn clauses and
adds a “prologSolve” problem solver producing a new knowledge system (ks22
in Figure 3) which directly satisfies the subgoal. The final subgoal (c in Table
3) is to construct a knowledge system that subsumes the functions of the two
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systems that satisfy the first two subgoals and also the function of initial, and
that solves problems within the time limit. GDL orders the relevant knowledge
systems (patients, initial, ks21 and ks22) by distance to this subgoal. The best
two knowledge systems are initial and ks22. Neither of these satisfies the learning
goal. No tool would produce any advance towards the goal and so GDL trans-
forms initial into this form, resulting in ks29. Merging initial with the elicited
system (ks22) can be an improvement because it includes thrombosis as a so-
lution. The new system (ks67) is now the best candidate. GDL again converts
this new system into its preferred language. The resulting system (ks74) could
be merged with some of the systems in its repository but this does not improve
it. There is also no other learning tool that would improve it. GDL considers
again its next best, ks67, the converted version of initial. This also cannot be
improved. The next possibility is to convert the elicited knowledge (ks22) into
the preferred language. This gives ks173 which, like ks22 just before, is now the
current best system in the repository and so it is considered for further learning.
Merging this with ks29 is possible because both have the same grammar and this
will improve ks173 (and also ks29) because it subsumes the function of initial
and includes thrombosis as solution. The result is ks235.

GDL evaluates the decision tree (ks21) very low because it is relatively far
from the goal: it has only part of the solutions, the wrong grammar and problem
solver and only part of the function. Because other systems cannot be improved,
at this point GDL now converts ks21 to Horn clauses. The result is ks940. GDL
then solves the problem by merging ks940 with ks235 and computes its LML
model. During the process GDL has stored the facts that the function of ks21
is a best generalization of that of patients, and the function of ks940 is equal
to that of ks21. The function of ks29 is equal to that of initial and the function
of ks235 subsumes that of ks29 (and of ks173). The function of ks979 subsumes
that of ks940 and ks235. From these facts GDL can derive that ks979 satisfies
the requirements on the function.

7 Structured or compound knowledge systems

Sofar we considered learning goals about a single knowledge system. Here we
extend this to structured, “compound” knowledge systems and goals. A “com-
pound knowledge system” consists of basic knowledge systems (each with its own
problem solver), a dataflow structure specifying their input-output relations and
a “dataflow problem solver”. The latter simply presents the output of one or
more components as input to the successors in the dataflow structure. A learn-
ing goal may specify a dataflow structure with “subgoals” for the components
and (optionally) additional constraints on the compound system as a whole.

For example, suppose that we have the following knowledge systems in the
repository: patients (patient records), initial (prototype diagnostic system), causal
knowledge (relations data between symptoms, patient properties and possible
causes), classification (classifies causes as a diagnosis), therapy (finds therapy
for causes) and contra indications (relates data about patients to possible ther-
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apies). A compound goal can be a target system with a dataflow structure that
connects a component for finding diagnoses of patient symptoms and complaints,
a component that uses the diagnoses to find therapies (medication and other
interventions) and a component that uses other patient information than symp-
toms and complaints to check if a therapy is appropriate for the patient. For
GDL a decomposition of the learning goal simplifies achieving it - if the decom-
position is correct. Because of space restrictions we do not discuss details and
examples of learning compound systems.

8 The efficiency of GDL

Is LML control knowledge (the LML models and the control methods included
in GDL) effective in controlling learning? Does GDL reduce the branching fac-
tor compared to blind search? To obtain an estimate, we performed experiments
with GDL on several learning problems. We analyse the effect of three control
heuristics: selection of relevant knowledge systems and experts, selecting knowl-
edge systems, preconditions of tools, selection of tools for knowledge systems (by
predicted improvement). The experiments consist of following the path through
the search space. At each state the number of successors is counted with and
without the heuristic filter of predicted improvement. A successor is a combina-
tion of knowledge system(s) and an applicable tool. Next we count the number
of predicted improvements. One of the combinations with the best prediction
is actually applied. This produces another knowledge system for the repository,
which results in general in more possible combinations of tools and knowledge
systems than before, because the new knowledge system can be input for learn-
ing tools. When a subgoal is achieved, the process starts from the beginning with
a new (sub)goal (and with a repository that contains the products of previous
learning).

For example, for the problem described in section 6 we find that GDL selects
7 knowledge systems as relevant for the first subgoal. The other systems are
(correctly) considered irrelevant because they do not share vocabulary with the
learning goal or with a relevant system. The first subgoal does not involve any
experts. There are 20 tools and some of these take more than one input. This
gives a total of 529 possible combinations of input knowledge systems with tools.
Of these only 34 combinations (6%) are applicable if the conditions for the
tools are applied. The preconditions of the learning tools leave less than 10
percent combinations and the LML model of the effect of the tool leaves about
10 percent of those. In the end about one half percent of the total number of
combinations of tool and available knowledge systems and about 10% of the valid
candidates (according to preconditions) is predicted to produce an improvement.
Response times are relatively independent of the size of the knowledge systems
because computation of LML properties and applications of learning operations
are performed only once for each knowledge system. This shows that GDL is
very effective in controlling search.
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9 Discussion

We presented a language, LML, for specifying requirements on a target system
in the form of constraints on properties of the target system. The GDL system
demonstrates that LML can be used to automatically and efficiently construct
systems that provably satisfy a set of constraints. This is achieved by the use
of models of knowledge systems and functional models of tools. Experiments
with GDL show that the control heuristics (selection of promising knowledge
systems and tools, avoiding redundant operations) are indeed effective in guiding
the search through the space that is defined by the learning tools and given
knowledge systems.

The approach of the MUSKRAT project (e.g. [2, 3, 3]) is very similar to
ours, especially the most recent formulations. MUSKRAT uses example prob-
lems (with their solutions) to find a knowledge system such that the constraints
of this system entail that this system can possibly solve the example problem.
From the perspective of LML and GDL, this is a different and perhaps comple-
mentary way to address the key problem of describing the (required) function
of a knowledge system. Where LML characterises the function of a knowledge
system in terms of solutions, problem vocabulary and (subsumption) relations
to other systems, MUSKRAT uses more precise descriptions of the function but
with a more ad hoc flavour and the need to construct these by hand. An advan-
tage of the MUSKRAT approach is that, unlike LML, MUSKRAT can express
different relations between the same problem vocabulary and solutions. On the
other hand, LML and GDL use properties of knowledge systems that can be
computed automatically (or relations that can be inferred from models of tools)
and uses a more principled approach to modelling knowledge systems and tools.

In the context of ML and Data Mining, LML and GDL are comparable
to systems like MLT-CONSULTANT (e.g. [4]) and knowledge acquired in the
STATLOG project (e.g. [5]). However, these systems are focused on advice about
aspects of inductive inference and do not include elicitation, data transforma-
tion, speedup learning, operations on data sets or explicit learning goals. By
including elicitation and effectively integrating learning tools we apply and ex-
tend Michalski’s model of inferential learning which distinguishes a wide range
of tools but does not use these to define a language for learning goals [6]. On the
other hand, LML does not include concepts for more detailed properties of tools
and knowledge systems, such as those used in MLT-CONSULTANT, STATLOG
and METAL (e.g. [7]. When enough knowledge about the effect of tools becomes
available then LML should be extended in this direction.

LML and GDL show how a language for learning goals and functional models
of learning tools provides a unified view of various types of ML and KA and how
this can be used to automatically control the application of a range of tools to
construct knowledge systems from systems that are available in a repository and
sources with a known profile of expertise.
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We study agents situated in partially observable environments, who do not have
sufficient resources to create conformant (complete) plans. Instead, they create plans
which are conditional and partial, execute or simulate them, and learn from experience
to evaluate their quality. Our agent employs an incomplete symbolic deduction system
based on Active Logic and Situation Calculus for reasoning about actions and their con-
sequences. An Inductive Logic Programming algorithm generalises observations and
deduced knowledge so that the agent can choose the best plan for execution.

To be fully rational, situated agents need to consciously alternate between reason-
ing, acting and observing their environment, or even do all those things in parallel. We
aim to achieve this by making the agents create short partialplans and execute them,
learning more about their surroundings throughout the process. They create several par-
tial plans and reason about usefulness of each one, including what knowledge can it
provide. They generalise their past experience to evaluatethe likelihood of plans lead-
ing to the goal. The plans are conditional (i.e. actions to betaken depend on observations
made during execution), which makes quality estimation less situation specific.

The architecture of our agent consists of four main functional modules. Each of
them is responsible for a different part of agent’s rationality, but the overall intelligence
is only achievable by the interactions of them all. TheDeductor module is the one re-
sponsible for classical “reasoning”. It uses a logical formalism based on combination
of Active Logic [1] and Situation Calculus [2] (as introduced in [3]) to find out con-
sequences of the agent’s current beliefs. Based on the domain knowledge and previous
observations, it analyses possible actions and predicts the effect of their execution.

The second module is aPlanner, which generates partial, conditional plans applica-
ble in the agent’s current situation. The third main module,Actor, oversees Deductor’s
reasoning process and evaluates plans the latter has come upwith, trying to find out
which is the most useful one to perform. For this paper, Actorwaits until Deductor
terminates and only executes plans after this happens, but in general it is Actor’s re-
sponsibility to balance acting and deliberation.

Finally, theLearner module analyses the agent’s past experience and induces rules
for estimating quality of plans. Results of learning process are used both by Deductor
and by Actor. In particular, since the plans Deductor reasons about are partial, it can be
very difficult to estimate whether a particular plan is a stepin the right direction or not.
Using machine learning techniques is one way in which this could be achieved.

Our initial experiments concerned learning how to detect “bad” plans early, so that
Deductor does not need to waste time deliberating about them. We have used the In-
ductive Logic Programming algorithm called PROGOL [4], since it is among the best
known ones. PROGOL is based on the idea ofinverse entailment and it employs a cov-
ering approach similar to FOIL, in order to generate hypothesis consisting of a set of
clauses which cover all positive examples and do not cover any negative ones.
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(a) Results in Wumpus domain.
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(b) Results in Chess domain.

In the first experiment (curve marked “Without mode declarations”), we used as lit-
tle domain-specific knowledge as possible, in particular wehave not provided anymode
declarations for PROGOL. The goal of mode declarations is to reduce the hypothesis
search space by limiting types of predicate arguments. The second curve (“With mode
declarations”) clearly shows that providing even such a small amount of domain knowl-
edge greatly improves quality of learned hypothesis. It canbe also easily seen that the
accuracy in the Wumpus domain is significantly higher than the one in the Chess do-
main. Nevertheless, the learning is still not fully successful. This is due to overfitting
and the fact that the search space is too large for PROGOL to handle sufficiently well.

Because of that, we have limited the amount of knowledge usedfor learning: seem-
ingly, presenting all of the agent’s knowledge to the ILP algorithm is not the best idea.
As a start, we have decided to use only the initial domain definition and the observations
that the agent made in previous situations. The results of learning can be seen on curve
marked “Excluding Deductor”, so named since they roughly correspond to an agent
who does not have a specialised deduction module and uses learning only. Finally, in
our fourth and final experiment, we have selected only the most relevant parts of knowl-
edge generated by Deductor and presented them to PROGOL. In the Wumpus case
this includedmaybeWumpus, noWumpus andknowsWumpus predicates, while in
Chess it includednotProtected, distanceTwo, anddistanceTwo predicates. As can
be seen from the curve marked “Including Deductor”, the agent managed to perfectly
identify bad plans from as few as 30 examples chosen at random, in both domains.

It is interesting to note that as few as fivehand-chosen example plans suffice for
PROGOL to learn the correct definition for the Wumpus domain,which opens up inter-
esting possibilities for an agent toselect learning examples in an intelligent way.
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