
THE 18TH EUROPEAN CONFERENCE ON MACHINE LEARNING
AND

THE 11TH EUROPEAN CONFERENCE ON PRINCIPLES AND PRACTICE
OF KNOWLEDGE DISCOVERY IN DATABASES

PROCEEDINGS OF THE

SIXTH INTERNATIONAL

WORKSHOP ON

MULTI-RELATIONAL
DATA MINING

MRDM’07

September 17, 2007

Warsaw, Poland

Editors:
Donato Malerba
Department of Computer Science, University of Bari
Annalisa Appice
Department of Computer Science, University of Bari
Michelangelo Ceci
Department of Computer Science, University of Bari

Preface

The 6th International Workshop on Multi-Relational Data Mining (MRDM 2007) was
held in Warsaw, Poland, on September 17th 2007 in conjunction with ECML/PKDD
2007: the 18th European Conference on Machine Learning (ECML) and the 11th Eu-
ropean Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDD).

Data mining algorithms look for patterns in data. While most existing data min-
ing approaches look for patterns in a single data table, multi-relational data mining
(MRDM) approaches look for patterns that involve multiple tables (relations) from a
relational database. Mining data which consists of complex/structured objects also falls
within the scope of this field, since the normalized representation of such objects in a
relational database requires multiple tables. Following the mainstream of MRDM re-
search, the most common types of patterns and approaches considered in data mining
have been extended to the multi-relational case and MRDM now encompasses relational
association rule discovery, relational classification rules, relational decision and regres-
sion trees, and probabilistic relational models, among others. At same time, MRDM
methods have been successfully applied across many application areas, ranging from
the analysis of business data, through bioinformatics and pharmacology to Web min-
ing and Spatial Data mining. Our goal is to bring together researchers and practitioners
of data mining interested in methods for finding patterns in expressive languages from
multi-relational / structured data and their applications. The workshop is the sixth of its
kind. It follows the success of the workshops on Multi-Relational Data Mining, held
both in Europe (ECML/PKDD 2001) and in USA (KDD 2002, 2003, 2004 and 2005).

Sixteen contributions were originally submitted, twelve of which were accepted for
presentation. Each submission was evaluated by three independent referees. Besides
paper presentations, the scientific programme also featured an invited talk by Luc De
Raedt (Department of Computer Science, Katholieke Universiteit Leuven, Belgium).

We would like to thank the invited speaker, all the authors who submitted papers and
all the workshop participants. We are also grateful to members of the program commit-
tee members and external referees for their thorough work in reviewing submitted con-
tributions with expertise and patience. A special thank is due to both the ECML/PKDD
Workshop Chair and the members of ECML/PKDD Organizing Committee who made
this event possible.

Warsaw, September 2007 Donato Malerba
Annalisa Appice

Michelangelo Ceci

Workshop Organization

Workshop Chairs

Donato Malerba University of Bari - Italy
Annalisa Appice University of Bari - Italy
Michelangelo Ceci University of Bari - Italy

Program Committee

Hendrik Blockeel Katholieke Universiteit Leuven - Belgium
Jean-François Boulicaut INSA Lyon - France
Sašo Džeroski Jožef Stefan Institute - Slovenia
Peter Flach University of Bristol - UK
Thomas Gärtner Fraunhofer Institute for Autonomous Intelligent Systems - Germany
Lise Getoor University of Maryland - USA
David Jensen University of Massachusetts - USA
Kristian Kersting MIT Computer Science and Artificial Intelligence Laboratory - USA
Joerg-Uwe Kietz Kdlabs AG, Zurich - Switzerland
Arno Knobbe Universiteit Utrecht - The Netherlands
Joost Kok Leiden University - The Netherlands
Stefan Kramer Technical University Munich - Germany
Nada Lavrač Jožef Stefan Institute - Slovenia
Celine Rouveirol University Paris Sud XI - France
Michele Sebag University Paris Sud XI - France
Arno Siebes Universiteit Utrecht - The Netherlands
Stefan Wrobel Fraunhofer Institute for Autonomous Intelligent Systems / University of

Bonn - Germany

Additional Reviewers

Marenglen Biba University of Bari - Italy
Anton Dries Katholieke Universiteit Leuven - Belgium
Aneta Ivanovska Jožef Stefan Institute - Slovenia
Arne Koopman Universiteit Utrecht - The Netherlands
Christine Körner Fraunhofer Institute for Autonomous Intelligent Systems - Germany
Wannes Meert Katholieke Universiteit Leuven - Belgium
Jan Struyf Katholieke Universiteit Leuven - Belgium
Bernard Zenko Jožef Stefan Institute - Slovenia

Table of Contents

ProbLog and its Application to Link Mining in Biological Networks (Invited Talk) 1
Luc De Raedt

A Multi-Relational Approach to Clustering Trajectory Data 2
Gianni Costa, Alfredo Cuzzocrea, Giuseppe Manco, Riccardo Ortale and
Howard Scordio

Choosing the Right Patterns: An Experimental Comparison between Different
Tree Inclusion Relations . 10

Jeroen De Knijf and Ad Feelders

Mining Frequent Patterns from Multi-Dimensional Relational Sequences 22
Nicola Di Mauro, Teresa M.A. Basile, Stefano Ferilli and Floriana Esposito

ILP: Compute Once, Reuse Often . 34
Nuno A. Fonseca, Ricardo Rocha, Rui Camacho and Vı́tor Santos Costa

Mining Imbalanced Classes in Multirelational Classification 46
Hongyu Guo and Herna L. Viktor

Stratified Gradient Boosting for Fast Training of Conditional Random Fields 58
Bernd Gutmann and Kristian Kersting

A Restart Strategy for Fast Subsumption Check and Coverage Estimation 69
Ondřej Kuželka and Filip Železný

Relational Transformation-based Tagging for Human Activity Recognition 81
Niels Landwehr, Bernd Gutmann, Ingo Thon, Matthai Philipose and Luc De
Raedt

Learning Ground CP-logic Theories by means of Bayesian Network Techniques . 93
Wannes Meert, Jan Struyf and Hendrik Blockeel

Learning Ground ProbLog Programs from Interpretations 105
Fabrizio Riguzzi

Towards a Framework for Relational Learning and Propositionalization 117
Ulrich Rückert and Stefan Kramer

Distributed Relational State Representations for Complex Stochastic Processes . . 129
Ingo Thon and Kristian Kersting

Author Index . 141

ProbLog and its Application to Link Mining in
Biological Networks

(Invited Talk)

Luc De Raedt

Department of Computer Science
Katholieke Universiteit Leuven

Celestijnenlaan 200 A, B-3001 Heverlee, Belgium
luc.deraedt@cs.kuleuven.be

Abstract. ProbLog is a recently introduced probabilistic extension of Prolog [De
Raedt, Kimmig, Toivonen, IJCAI 07]. A ProbLog program defines a distribution
over logic programs by specifying for each clause the probability that it belongs to
a randomly sampled program, and these probabilities are mutually independent.
The semantics of ProbLog is then defined by the success probability of a query
in a randomly sampled program. It has been applied to link mining and discovery
in a large biological network. In the talk, I will also discuss various learning
settings for ProbLog and link mining, in particular, I shall present techniques for
probabilistic local pattern mining, probabilistic explanation based learning and
theory compression from examples [De Raedt et al, ILP 96].

A Multi-Relational Approach to Clustering
Trajectory Data

Gianni Costa, Alfredo Cuzzocrea, Giuseppe Manco,
Riccardo Ortale, and Howard Scordio

ICAR Inst., National Research Council, Italy
{costa,cuzzocrea,manco,ortale,scordio}@icar.cnr.it

Abstract. We propose a novel methodology for clustering multi-relational
trajectory data. Our methodology consists of two steps. Initially, tuple
linkages, defined in the database schema of the multi-relational trajecto-
ries, are leveraged to virtually organize the available route data into as
many transactions, i.e. as sets of feature-value pairs. The identified trans-
actions are then partitioned into homogeneous groups. Each discovered
cluster is equipped with a representative, that provides an explanation of
the corresponding group of trajectories, in terms of those feature-value
pairs that are most likely to appear in a transaction belonging to that
particular group. Outliers trajectories are placed into a trash cluster,
that is finally partitioned to mitigate the dissimilarity between the trash
cluster and the previously generated clusters.

1 Introduction

The wide exploitation of new techniques and systems for monitoring, collecting
and storing location-aware data, provided by a wealth of technological infras-
tructures, such as GPS positioning [5], sensor and mobile-device networks, has
made available various trajectory databases. This is at the basis of an increas-
ing demand for intelligent tools, targeted at effectively and efficiently discov-
ering actionable knowledge from such repositories, that are expected to foster
innovative, customized applications and services, i.e. serendipitous meetings, co-
location based interactions, intelligent interruptions [1], traffic engineering [2],
business data analysis, location model learning [9] and so forth.

In the present paper, we deal with trajectory clustering, which is of great
practical relevance in several applicative domains, ranging from the analysis of
storm behaviour, the enhancement of physical route planning, to the evaluation
of drug treatment effects on gene expression [7] and prediction systems [6, 8].

Traditional approaches to trajectory clustering generally assume a simple
spatio-temporal representation, and exploit a suitable distance measure for group-
ing similar trajectories. This requires to cope with challenging issues such as
differences in trajectory length or sampling rates, the incapability at taking into
account further details of route context (that may influence similarity computa-
tion), and lack of efficiency (primarily due to costly alignments).

As a preliminary research effort, we here propose an alternative approach
based on an underlying multi-relational representation, capable of modeling all

A Multi-Relational Approach to Clustering Trajectory Data 3

required aspects of trajectories. Precisely, the generic trajectory is described
by fragments of categorical data, suitably organized within multiple database
tables, each of which catches relevant features of the data at hand. Features cor-
respond to trajectory properties and divide into explicit and implicit. Explicit
features include traditional spatio-temporal data, i.e. coordinates of moving enti-
ties w.r.t. some reference system and position sampling times. Implicit features,
instead, involve further properties of trajectories, such as spatial aspects, mo-
tion dynamics and background knowledge (i.e., morphological and topological
descriptions of the traversed regions). Enabling a richer trajectory representa-
tion, such a multi-relational representation, allows more accurate evaluation of
similarity from multiple perspectives and at different levels of granularity.

Two problematic alternatives exist in the current literature for performing
multi-relational clustering. On one hand, the application of a single-table clus-
tering scheme to the outcome of integrating the original tuples within multiple
database tables, by means of joins or aggregations. This is a very expensive
strategy, since the generic tuple can be joined with a huge number of refer-
enced tuples. Moreover, joining typically yields a huge space of tuple features,
among which the ones actually relevant for the specific clustering target must
be identified. The other option consists in the design of suitable algorithms that
directly manipulate data within different tables. In such case, feature selection
is even more challenging, since feature relevance must be dynamically evaluated,
in order to ensure effective and efficient clustering.

We propose a hybrid approach, that consists of two main phases. In the first
step, tuple linkages defined in the original database schema are leveraged to
virtually organize the available multi-relational trajectories into as many trans-
actions, i.e. as sets of feature-value pairs. Such a preprocessing is fundamental
to avoid the prohibitively high time and space cost of physical table joins. In
the second step, the previously identified transactions are partitioned into ho-
mogeneous groups. The divisive scheme [3] considers all underlying features for
proximity evaluation, and simply relates similarity between any two trajectories
to their degree of overlap, i.e. to the commonality of values for corresponding
categorical features. This allows us to overcome the amount of computation and
possible inaccuracies typical of similarity measures, and also avoids the prior
identification of relevant features. Each discovered cluster is equipped with a
representative, which provides an explanation of the corresponding group of tra-
jectories, in terms of those feature-value pairs that are most likely to appear in
a transaction belonging to that particular group. Outlier trajectories are placed
into a trash cluster, that is finally partitioned to mitigate the effects of the dis-
similarity between the trash cluster and the other clusters previously generated.

The plan of the paper is as follows. Section 2 delineates the formal framework
of our approach. Section 3 discusses the method employed for representing multi-
relational trajectory data as transactions. Details about the clustering scheme
adopted for partitioning such transactions are provided within Section 4. Sec-
tion 5 draws conclusions and mentions promising directions of future research.

4 G. Costa et al.

2 Formal Framework

We here fix some notations used throughout the paper. We are given a collection
of database tables RM , R1, R2, . . . , Rm, such that (i) RM denotes the main table,
i.e. the one including the main information concerning the trajectories at hand,
and (ii) R1, . . . , Rm are supplementary tables including further objective route
details as well as domain-specific background knowledge. The information stored
within the generic table Rt conforms to the following scheme: At1, A

t
2, . . . , A

t
nt ,

where nt indicates the number of features (i.e. attributes) within Rt. By virtually
joining the above tables, it is possible to augment table tuples with suitable anno-
tations, that define an alternative view of the original data as D = {x1, . . . ,xn},
where xi = {Ah1 = vh1 , . . . , A

h
nh

= vhnh |h = M, 1, . . . ,m} is the conceptual repre-
sentation of a multi-relational trajectory in transactional form, and vhl indicates
the value assumed by the attribute Ahl in the context of transaction xi. Here, we
assume that vhl is in a range of nominal values: numeric values can be managed by
resorting to appropriate discretization techniques, which can be included either
as a preprocessing or by a tighter integration within the proposed approach.

Henceforth, for ease of notation, we refer to transactions in D rather than
to relational data within RM , R1, R2, . . . , Rm. However, we underline that data
actually exists only as tuples within RM , R1, R2, . . . , Rm and that the transac-
tional view of a trajectory denotes the focussed selection of linked tuples from
such tables, i.e. the ones annotated with the identifier of the specific trajectory.

Various schemes for clustering transactional data can now be applied to the
partition D. The most well-known partitional approaches to clustering data are
the centroid-based methods, such as the K-Means algorithm. In such approaches,
each object xi is assigned to a cluster j according to its distance d(xi,mj)
from a value mj representing the cluster itself. mj is called the centroid (or
representative) of the cluster. In this paper, we adopt the Transactional K-Means
scheme [3] to find a partition C = {C1, . . . , Ck}, of D, such that:

1. each Ci groups similar trajectories and is associated to a centroid mi;
2. xi ∈ Cj if d(xi,mj) ≤ d(xi,ml) for 1 ≤ l ≤ k, j 6= l;
3. the partition C minimizes

∑k
i=1

∑
xj∈Ci d

2(xj ,mi).
ut

The preprocessing and clustering steps are discussed in the next sections.

3 From Multi-Relational Data to Virtual Transactions

As already anticipated, the time and space cost for joining tablesRM , R1, R2, . . . , Rm
is prohibitively high. To avoid physically joining the original tables, we employ
the tuple ID propagation technique [10], a mechanism that virtually joins ta-
bles RM , R1, R2, . . . , Rm, by propagating the IDs (i.e., primary keys) of the
tuples within the main table, RM , to the tuples stored in the other tables,
R1, R2, . . . , Rm. The referential integrity constraint of available tuples is ex-
ploited, so that propagation flows along the links among tuples, represented by
the references between foreign and primary keys.

A Multi-Relational Approach to Clustering Trajectory Data 5

In details, the propagation mechanism consists in the identification of a fixed
join order for the tables, and in the annotation of each individual tuple within
the supplementary tables taken one by one according to that order. Consider,
e.g., the schema in fig. 1(a).

Duration

Type

Actor

ID

Trajectory

Duration

Type

Actor

ID

Trajectory

PlaceID

TrajectoryID

Traverses

PlaceID

TrajectoryID

Traverses

Type

Name

PlaceID

Place

Type

Name

PlaceID

Place

PlaceB

PlaceA

Contains

PlaceB

PlaceA

Contains

SurveyingDate

PlaceA

Pollution

SurveyingDate

PlaceA

Pollution

PlaceB

PlaceA

Intersect

PlaceB

PlaceA

Intersect

(a) Schema

Trajectory

ShortPedestrianBart#T2

LongVehicleJef#T1

ShortVehicleNed#T3

DurationTypeActorID

Trajectory

ShortPedestrianBart#T2

LongVehicleJef#T1

ShortVehicleNed#T3

DurationTypeActorID

Traverses

#P4#T2

#P2#T3

#P1#T1

#P2#T2

#P3#T1

PlaceIDTrajID

#P2#T1

#P4#T3

Traverses

#P4#T2

#P2#T3

#P1#T1

#P2#T2

#P3#T1

PlaceIDTrajID

#P2#T1

#P4#T3

BuildingMetropolis#P4

BuildingLunch area#P5

SquareSalisbury Hill#P1

RoadCarnaby Street#P2

RoadUniversity Campus#P3

TypeNameID

Place

BuildingMetropolis#P4

BuildingLunch area#P5

SquareSalisbury Hill#P1

RoadCarnaby Street#P2

RoadUniversity Campus#P3

TypeNameID

Place

PlaceBPlaceA

#P1#P3

#P5#P4

Contains

PlaceBPlaceA

#P1#P3

#P5#P4

Contains

(b) Instances

Fig. 1. Relational trajectory database

Traverses

#P4#T2

#P2#T3

#P1#T1

#P2#T2

#P3#T1

PlaceIDTrajID

#P2#T1

#P4#T3

Traverses

#P4#T2

#P2#T3

#P1#T1

#P2#T2

#P3#T1

PlaceIDTrajID

#P2#T1

#P4#T3

TID

<[Traj],{3}>

<[Traj],{3}>

<[Traj],{2}>

<[Traj],{2}>

<[Traj],{1}>

<[Traj],{1}>

<[Traj],{1}>

TID

<[Traj],{3}>

<[Traj],{3}>

<[Traj],{2}>

<[Traj],{2}>

<[Traj],{1}>

<[Traj],{1}>

<[Traj],{1}>

BuildingMetropolis#P4

BuildingLunch Area#P5

SquareSalisbury Hill#P1

RoadCarnaby Street#P2

RoadUniversity Campus#P3

TypeNameID

Place

BuildingMetropolis#P4

BuildingLunch Area#P5

SquareSalisbury Hill#P1

RoadCarnaby Street#P2

RoadUniversity Campus#P3

TypeNameID

Place

PlaceBPlaceA

#P1#P3

#P5#P4

Contains

PlaceBPlaceA

#P1#P3

#P5#P4

Contains

TID

<[Traj.Trav.Place.Contains],{2,3}>

<[Traj.Trav],{2,3}>

<[Traj.Trav],{1}>

<[Traj.Trav],{1,2,3}>

<[Traj.Trav],{1}>,<[Traj.Trav.Place.Contains],{1}>

TID

<[Traj.Trav.Place.Contains],{2,3}>

<[Traj.Trav],{2,3}>

<[Traj.Trav],{1}>

<[Traj.Trav],{1,2,3}>

<[Traj.Trav],{1}>,<[Traj.Trav.Place.Contains],{1}>

TID

<[Traj.Trav.Place],{2,3}>

<[Traj.Trav.Place],{1}>

TID

<[Traj.Trav.Place],{2,3}>

<[Traj.Trav.Place],{1}>

(a) Tuple ID Propagation

Trajectory

Traverses

Place

Contains Pollution Intersects

(b) FKL graph

Fig. 2. (a)Trajectories marked with virtual transaction IDs. (b) FKL-graph

This schema models several features of trajectories ranging from duration to
traversed places to geometrical relationships among places (e.g., containment,
intersection etc). Since we are interested in clustering trajectories, we consider
Trajectory as the main table of our analysis, and we fix the join order as in the
following foreign-key-linkage (FKL)-graph 2(b)

The tuple ID propagation then starts from the entry point in the FKL-
graph (in our case, the Trajectory table), and moves towards the other tables
accordingly. For each tuple t within any supplementary table Ri (i = 1, . . . ,m),
annotation augments t by a list of identifiers, which refer tuples of RM joinable

6 G. Costa et al.

with t (i.e., having foreign keys that point to t). The propagation process is
incremental: the annotations of a tuple ti within table Ri(6= RM) are propagated
to tuple tj within Rj(6= RM), if ti has a foreign key that references tj .

In the above example, edges in the FKL-graph drive the propagation process.
As a result, the table instances in fig. 1(b) are annotated as shown in fig. 2(a).
As an example, the first tuple of Traverses is annotated with 〈[Traj], {1}〉, as
it has a join with the tuple of Trajectory having ID equal to 1. Similarly, the
second tuple of the Place table is 〈[Traj.Trav], {1, 2, 3}〉 as the second tuple of
Place has joins with the tuples of Trajectory having ID equal to 1, 2, and 3
throughout the first, fourth, and sixth tuple of Traverses, respectively.

Notice that, for each propagated ID, information concerning the join path is
annotated as well. This allows us to effectively manage multiple references to a
same tuple due to cycles within the FKL-graph. In fig. 2(a), the first tuple of the
Place table is annotated twice by ID 1, as there are two join paths (Traj.Trav
and Traj.Trav.Place.Contains respectively) which link the two tuples.

At the end of identifier propagation, semantic connections between main
and supplementary tables are established, so that the transactional representa-
tion D = {x1, . . . ,xn} of the original trajectory data can be easily constructed
by a simple linear scan of each relation (i.e. without physically joining tables
RM , R1, R2, . . . , Rm). Each item of a transaction in D is modeled as Join-
Path.AttributeName.Value, such that (i) JoinPath is the join path originating
the actual item, (ii) AttributeName is the name of the attribute considered, and
(iii) Value is the value of such attribute. In particular, i -th transaction collects
all the attribute values of tuples annotated by value i. Within the transactional
representation, both primary and external key attributes are ignored, as they
do not provide significant information content. Figure 3 shows the transactional
representation of trajectory data of figure 1(b).

x1 = {Traj.Actor.Jef, T raj.T ype.V ehicle, T raj.Duration.Long, T raj.T rav.P lace.Name.SalisburyHill,

T raj.T rav.P lace.T ype.Square, T raj.T rav.P lace.Name.CarnabyStreet, T raj.T rav.P lace.Type.Road,

T raj.T rav.P lace.Name.UniversityCampus, T raj.T rav.P lace.Contains.P lace.Name.SalisburyHill,

T raj.T rav.P lace.Contains.P lace.T ype.Square}

x2 = {Traj.Actor.Bart, T raj.T ype.Pedestrian, T raj.Duration.Short, T raj.T rav.P lace.Name.CarnabyStreet,

T raj.T rav.P lace.T ype.Road, T raj.T rav.P lace.Name.Metropolis, T raj.T rav.P lace.Type.Building,

T raj.T rav.P lace.Contains.P lace.Name.LaunchArea, T raj.T rav.P lace.Contains.P lace.Type.Building}

x3 = {Traj.Actor.Ned, T raj.T ype.V ehicle, T raj.Duration.Short, T raj.T rav.P lace.Name.CarnabyStreet,

T raj.T rav.P lace.T ype.Road, T raj.T rav.P lace.Name.Metropolis, T raj.T rav.P lace.Type.Building,

T raj.T rav.P lace.Contains.P lace.Name.LaunchArea, T raj.T rav.P lace.Contains.P lace.Type.Building}

Fig. 3. Transactions obtained from virtual joining

4 Clustering Process

We adopt the transactional K-Means algorithm [3] to D = {x1, . . . ,xn} into K
homogeneous groups. The scheme is an effective and efficient enhancement of

A Multi-Relational Approach to Clustering Trajectory Data 7

the basic K-Means algorithm, capable to process volumes of (high-dimensional)
categorical data. In the following, we discuss how to derive transactional K-
Means from traditional K-Means.

The K-Means algorithm works as follows. First of all, K objects are randomly
selected from D. Such objects correspond to some initial cluster centroids, and
each remaining object in D is assigned to the cluster with the nearest cen-
troid. Next, the algorithm iteratively recomputes the centroid of each cluster
and re-assigns each object to the cluster of the nearest centroid. The algorithm
terminates when the centroids do not change anymore. In that case, in fact,∑k
i=1

∑
xj∈Ci d

2(xj , rep(Ci)) is minimized.
The general schema of K-Means is parametric w.r.t. both d and rep, that

respectively denote the notions of distance measure and cluster centroid. Such
concepts in turn are parametric to the domain of D. By suitably defining d and
rep, so that they fit to the transactional domain, we can obtain an effective
clustering scheme. In particular, we choose to compare transactions by means
of the Jaccard distance [4] (denoted by dJ in the following), that measures the
degree of overlap (i.e., the number of common feature-value pairs) between two
transactions. Within a high-dimensional feature space, this has a main advantage
of automatically preventing to consider irrelevant features for the comparison.

4.1 Cluster representative

Transactional data requires the computation of a cluster representative. In gen-
eral, given a transaction domain U equipped with a distance function d : U×U 7→
IR and a set S = {x1, . . . ,xl} ⊆ U , the centroid of S, rep(S), is the element that
minimizes the sum of the squared distances rep(S) = minv∈U

∑m
i=1 d

2(xi,v). In
general, computing a cluster representative is a computationally expensive pro-
cess. Moreover, optimal cluster centroids are not necessarily unique. To overcome
such issues, we here exploit a general property of representatives of transaction
clusters, grouped based on dJ , according to which frequent feature-value pairs
across transactions in a cluster are very likely to belong to the representative
of that cluster [3]. This enables the exploitation of the greedy heuristic repH ,
sketched in fig. 4, which initially computes an approximation of the representa-
tive of a given cluster as the intersection of all transactions in that cluster. The
approximation is iteratively refined by adding the most frequent feature-value
pairs in the cluster, until the sum of the distances can be minimized.

Computing repH can still be expensive, since feature-value pairs have to be
sorted on the basis of their frequencies. A more efficient approximation, repγ ,
can be defined by introducing a user-defined threshold value γ, representing the
minimum occurrence frequency that a feature-value pair must have to be inserted
into the approximation of the cluster representative.

Definition 1. Given a set S = {x1, . . . ,xm} of transactions and a threshold γ ∈
[0, 1], an approximate representative of S, repγ(S), can be defined as repγ(S) =
{v ∈ ⋃

i xi | freq(v,S)/m ≥ γ} where freq(v,S) = |{xi|v ∈ S}|. ut
The approaches repH(S) and repγ(S) represent two viable alternatives. repγ

represents an approximation that is extremely efficient to compute. However, it

8 G. Costa et al.

Algorithm repH(S)

Input : A set of transactions S = {x1, . . . ,xm}.
Output : A transaction m that minimizes f(m) =

∑
x∈S dJ

2(x,m).
Method :

– sort
⋃S by increasing frequency, obtaining the list a1, . . . , am such that

freq(ai,S) > freq(ai+1,S);
– let initially m =

⋂
x∈S x;

– while f(m) decreases
• add ah to m, for increasing values of h.

Fig. 4. The greedy technique for computing a representative trajectory

is influenced by the value of γ. Greater γ values correspond to a stronger intra-
cluster similarity, less populated clusters and low-cardinality representatives. By
the converse, lower γ values correspond to a weaker intra-cluster similarity, huge
clusters and high-cardinality representatives. On the other side, repH yields a
less efficient but parameter-free clustering scheme.

4.2 The Transactional K-Means Algorithm

The main scheme of the transactional K-Means algorithm is shown in Figure 5.
The algorithm divides into two main phases. In the first phase, it computes k+1
clusters. Trajectories are assigned to the first k clusters, according to the distance
measure dJ . The (k+1)-th cluster is referred to as trash, since it includes outlier
trajectories, i.e. those transactions of D that have empty intersection with the
representatives of first k clusters. According to the adopted notion of Jaccard
distance, such trajectories are equally distant from clusters C1, . . . , Ck, which
means that their assignment to any such a cluster is not significant. Therefore,
outliers are placed within the trash.

The second phase is targeted at appropriately mitigating the effects of the
high dissimilarity between the trash cluster and the other clusters previously
generated. The basic idea consists in trying to reiterate the partitional scheme
of the first phase on the trash cluster, in order to split the latter into l further
clusters. Of course, the resulting final partition may include clusters with a single
trajectory, since trajectories with substantially different transactional form can
remain within the trash, until they are chosen as cluster centroids.

5 Conclusions and Future Work

We discussed a hybrid methodology to clustering multi-relational trajectory
data. The approach initially exploits foreign-key linkages, defined in the schema
of the available data, to alternatively view original trajectories as transactions.
The latter are then partitioned into homogeneous groups by an effective cluster-
ing scheme, which also provides a proper management of outlier trajectories.

There are several lines of future research. First, an intensive empirical eval-
uation of the proposed technique has to be accomplished in order to investigate
its effectiveness on real-world data.

A Multi-Relational Approach to Clustering Trajectory Data 9

Algorithm TrK-Means(D,k,γ)

Input : A dataset D = {x1, . . . ,xn} of transactional trajectories, the desired number
k of clusters. A cluster representative threshold value γ.

Output : A partition C = {C1, . . . , Ck+l} of D in k + l clusters, where l ≥ 0.
Method :

– randomly choose xi1 , . . . ,xik and set mj = xij for 1 ≤ j ≤ k;
– repeat
• for each j, set Cj = {xi|dJ(xi,mj) < dJ(xi,ml), 1 ≤ l ≤ k};
• set Ck+1 = {xi| for each j dJ(xi,mj) = 1};
• set mj = rep(Cj) for 1 ≤ j ≤ k;

until mj do not change;
– recursively apply the algorithm to Ck+1, producing a partition of Ck+1 in l

clusters.

Fig. 5. Overall scheme of the transactional K-Means algorithm

Also, though crucial to ensure effective data clustering, the notion of cluster
representative is a transaction, which does not correspond to a true trajectory.
Hence, we need to develop a method for reconstructing trajectories from corre-
sponding representatives.

Finally, we plan to develop a suitable strategy for the dynamic selection
of trajectory features, that avoids to consider all basic table attributes in the
computation of trajectory proximity and still ensures clustering effectiveness.

References

1. D. Ashbrook and T. Starner. Using GPS to Learn Significant Locations and Predict
Movement Across Multiple Users. Personal Ubiquitous Computing, 7(5):275–286,
2003.

2. S. Dzeroski. Relational Data Mining. Springer-Verlag, 2001.
3. C. Gozzi, F. Giannotti and G. Manco. Clustering Transactional Data. In Procs. 6th

PKDD’02 Conf., 175–187, 2000.
4. J. Han and M. Kamber. Data Mining Techniques. Morgan Kaufman, 2001.
5. A. Harrington and V. Cahill. Route Profiling: Putting Context to Work.. ACM

Symposium on Applied Computing, 1567–1573, 2004.
6. K. Laasonen. Clustering and Prediction of Mobile User Routes from Cellular Data.

In Proc. of PKDD, 569–576, 2005.
7. Y. Liang, B. Tayo, X. Cai, and A. Kelemen Differential and Trajectory Methods

for Time Course Gene Expression Data. Bioinformatics, 21(13):3009–3016, 2005.
8. C. McCue. Data Mining and Predictive Analytics in Public Safety and Security. IT

Professional, 8(4):12–18, 2006.
9. T. Takada, S. Kurihara, T. Hirotsu and T. Sugawara. Proximity Mining: Finding

Proximity using Sensor Data History. Proc. of IEEE Workshop on Mobile Computing
Systems and Applications, 129–138, 2003.

10. X. Yin, J. Han, J. Yang and P.S. Yu. Efficient Classification across Multiple
Database Relations: A CrossMine Approach. In IEEE Transaction on Knowledge
and Data Engineering, 18(6): 770–783, 2006.

Choosing the Right Patterns
An Experimental Comparison between Different Tree Inclusion

Relations

Jeroen De Knijf ? and Ad Feelders

Algorithmic Data Analysis Group
Department of Information and Computing Sciences, Universiteit Utrecht

PO Box 80.089, 3508 TB Utrecht

Abstract. In recent years a variety of mining algorithms has been developed,
to derive all frequent subtrees from a database of labeled ordered rooted trees.
These algorithms share properties such as enumeration strategies and pruning
techniques. They differ however in the tree inclusion relation used and how at-
tribute values are dealt with. In this work we investigate the different approaches
with respect to ‘usefulness’ of the derived patterns, in particular, the performance
of classifiers that use the derived patterns as features. In order to find a good trade-
off between expressiveness and runtime performance of the different approaches,
we also take the complexity of the different classifiers into account, as well as
the run time and memory usage of the different approaches. The experiments are
performed on two real datasets. The results show that significant improvement
in both predictive performance and computational efficiency can be gained by
choosing the right tree mining approach.

1 Introduction

Frequent tree mining has become an important and popular problem in the field of
knowledge discovery and data mining. The main reasons for the increase in interest are
the growing amount of semi-structured data (e.g. XML databases) and the urge to ana-
lyze and mine these databases. Furthermore, the availability of tree mining algorithms
to exploit these databases, without losing information on the structure of the data, has
increased the interest of the research community. Frequent tree mining can be seen as
an extension of the apriori algorithm [1], to handle tree structured data in the mining
process. Briefly, given a set of tree data, the problem is to find all subtrees that satisfy
the minimum support constraint, that is, all subtrees that occur in at least n% of the data
records.

Due to the popularity of tree mining, different approaches to mine labeled ordered
trees have been proposed, see for example [2, 9, 12, 13]. Although, these methods share
enumeration strategy and pruning techniques, the fundamental differences lie in the dif-
ferent notions of when a tree matches another tree and how attributes are handled. Also,
when the notion of rooted ordered trees is broadened to unordered rooted trees, the
? Supported by the Netherlands Organisation for Scientific Research (NWO) under grant no.

612.066.304.

Choosing the Right Patterns: Comparison between Different Tree Inclusion Relations 11

existing mining algorithms [3, 10, 14] use different tree inclusion relations. The funda-
mental question arises which of the mining algorithms should be used, when analyzing
tree structured data. Comparisons between these methods are mainly based on time and
memory performance. But besides run time and memory usage, the effect of the differ-
ent tree inclusion relations and different approaches to handling attributes are of great
importance to the data analysis task. To compare the different approaches, we consider
the task of building a classifier from the frequent patterns produced by the tree miner.
We consider several aspects in the comparison: accuracy and complexity of the classier
produced, as well as runtime and memory usage of the tree miner.

In the next section we describe the basic notations and formally define the differ-
ent tree inclusion relations and the different ways to handle attribute value-pairs in the
mining process. In the following section the research questions are formulated. In sec-
tion 4 we describe how a classification model is constructed from frequent patterns. In
section 5 the experiments to answer the questions are carried out and evaluated. In the
final section, we answer the stated questions and discuss the conclusions drawn.

2 Preliminaries

In this section we provide the basic concepts and notation used in this paper. A labeled
rooted ordered tree T = {V,E,≤, L, v0,M} is an acyclic directed connected graph
which contains a set of nodes V , and an edge set E. The labeling function L is defined
as L : V → Σ, i.e., L assigns labels from alphabet Σ to nodes in V . The special node
v0 is called the root of the tree. If (u, v) ∈ E then u is the parent of v and v is a child
of u. For a node v, any node u on the path from the root node to v is called an ancestor
of v. If u is an ancestor of v then v is called a descendant of u. Furthermore there is a
binary relation ‘≤’ ⊂ V 2 that represents an ordering among siblings.

In some tree structured data, such as XML, attributes are used to describe properties
of nodes. To model this, we assume a set of attribute-value pairs, denoted by : A =
{(A1 : a1), . . . , (An : an)}, where each attribute-value has a finite domain. We further
assume that there is an ordering specified on the attribute-value pairs, which can be
arbitrary. To each node v in V , a subset of A is assigned; we call this set the attributes
of v. More formally, we define a mapping M : V → P(A). The size of a tree is defined
as the number of nodes it contains; we refer to a tree of size k as a k-tree.

The notion of tree inclusion is dependent on how to handle attributes, up till now
three different approaches are used:

– No attributes are associated with the data, or the attributes are considered irrelevant
and are ignored in the mining process [2].

– No distinction is made between attributes and nodes; attribute-value pairs are added
as child nodes of the corresponding original node [13].

– Attributes are modeled as properties of nodes. If a node has attributes associated
to it in the database, then this node can only occur in a frequent pattern if the
combination of the node with at least one of its attribute-value pairs is frequent [9].

In the remainder of this work, we will refer to these three cases as NOATR, NAIVE
and ATR respectively. The two most commonly used tree inclusion notions, that handle
attributes as described in the first two cases are:

12 J. De Knijf and A. Feelders

Definition 1 Given two labeled rooted trees T1 and T2 we call T2 an induced subtree
of T1 and T1 an induced supertree of T2, denoted by T2 �i T1, if there exists an
injective matching function Φ of VT2 into VT1 satisfying the following conditions for
any v, v1, v2 ∈ VT2:

1. Φ preserves the labels: LT2(v) = LT1(Φ(v)).
2. Φ preserves the order among the siblings: if v1 ≤T2 v2 then Φ(v1) ≤T1 Φ(v2).
3. Φ preserves the parent-child relation: (v1, v2) ∈ ET2 iff (Φ(v1), Φ(v2)) ∈ ET1 .

Definition 2 Given two labeled rooted trees T1 and T2 we call T2 an embedded subtree
of T1 and T1 an embedded supertree of T2, denoted by T2 �e T1, if there exists an
injective matching function Φ of VT2 into VT1 , satisfying the conditions 1 and 2 of
definition 1. Additionally, Φ has the following property for any v1, v2 ∈ VT2:

3’. Φ preserves the ancestor-descendant relation: if (v1, v2) ∈ ET2 then Φ(v1) is an
ancestor of Φ(v2) in T1.

The induced tree inclusion notion is used in the tree mining algorithm FREQT by
Asai et. al [2] and the work by Termier et al. [12]. The embedded subtree relation is
used in work by Zaki [13].

In the case were attributes are modeled as properties of nodes, an additional criterion
to the definitions 1 and 2 is that the subtree relation should preserve the attributes; i.e.,
we add to definitions 1 and 2:

4. ∀v ∈ VT2 : if M(v) 6= ∅ then M(v) ⊆M(Φ(v)).

These subtree relations are used in previous work of one of the authors [9].
In the remainder of this paper we use � to denote either an induced or embedded

subtree relation. LetD = {d1, . . . , dm} denote a database where each record di ∈ D, is
a labeled rooted ordered tree. For a given labeled rooted ordered tree T we say T occurs
in a transaction di if T is a subtree of di. Let σdi

(T) = 1 if T � di and 0 otherwise.
The support of a tree T in the database D is then defined as ψ(T,D) =

∑
d∈D σd(T),

that is the number of records in which T occurs one or more times. T is called frequent
if ψ(T,D)/|D| is greater than or equal to a user defined minimum support (minsup)
value. The goal of frequent tree mining is to find all frequently occurring subtrees in a
given database. Notice that ψ is an anti-monotone function: Ti � Tj ⇒ ψ(Ti, D) ≥
ψ(Tj , D). The anti-monotonicity property of ψ is used to efficiently compute all the
frequent subtrees of a database.

3 Research Question

The first question we consider is whether the predictive performance of a classifier con-
structed from the patterns is better when attributes are included in the mining process.
In previous work we claimed that the NAIVE approach produces lots of uninforma-
tive patterns [9]. In particular, if a node has attributes associated to it in the database, a
frequent pattern in which this node occurs without attributes is uninteresting. Clearly,
following the NAIVE approach, for every frequent pattern where some nodes have at-
tributes there is a corresponding frequent pattern without attributes attached to the node.

Choosing the Right Patterns: Comparison between Different Tree Inclusion Relations 13

Furthermore, every pattern from either the NOAT or the ATR approach is also a pat-
tern of the NAIVE approach. As such, one can expect that the predictive performance
achieved by the NAIVE approach, is as least as good as the predictive performance of
the other two approaches. So, the question arises if the patterns excluded by the “at
least one attribute per node” constraint are valuable in terms of predictive performance.
Finally, what is the added value of the embedded tree inclusion relation? Every pattern
derived with the induced tree inclusion relation is also part of the patterns derived with
the embedded tree inclusion relation. As such, in the ideal case the difference in perfor-
mance between the induced and the embedded approach is caused by the patterns that
are embedded patterns only. Summarizing, the questions are what effect it has on the
different performance measures whether we:

1. Include attribute-value pairs or not.
2. When including attribute-value pairs; use the NAIVE or the ATR approach.
3. Use the induced or the embedded tree inclusion relation.

4 Methodology

To compare the different approaches on the selected performance measures, we first
need to construct the classifiers. In this section we describe the procedure that, given
the tree mining algorithm, constructs a classification model.

In general, the goal of frequent tree mining algorithms is to find all frequently oc-
curring subtrees in a database. In case of constructing a classifier the objective is to find
discriminative patterns, i.e. patterns that discriminate between the different classes. To
do so, we use the support-confidence framework. Given a dataset D = {d1, . . . , dm}
consisting of m records, each record belongs to exactly one class,where the class label
is assigned from the set of class labels C = {c1, . . . , ck}. With Dci

we denote the set
of records in the database that has class label ci, likewise with Dci the set of records in
the database is denoted that has a class label different from ci. The first step of finding
discriminating patterns, is to compute all frequently occurring subtrees within a class.
A tree T is called frequent within the class ci if ψ(T,Dci

)/|Dci
| is greater than or equal

to a user defined minimum support (minsup) value. The computation of all frequent
trees within a class over a database with multiple classes can be done simultaneously;
only small changes to the original mining algorithms are needed.

The next step is to select from all frequent patterns within a class, those patterns that
are good descriptors of the class. This is done by means of determining the confidence
P (ci|T) of a rule T → ci, that is the probability of a class given the patterns. If this
confidence is greater than 0.5, then T is regarded as a good discriminator for class ci.
Note that we did not optimize for the ’optimal’ confidence value, nor did we use other
measures such as the lift of a rule. The reason for this is, that our goal is to compare
different tree matching relation by means of classification and not to build the best
classifier. In the set of discriminating patterns found, there still might be redundancy
between the patterns. This occurs when a pattern T1 is a supertree of T2 and P (ci|T1) ≤
P (ci|T2). In order to reduce the risk of overfitting on the training set and to limit the
training time of the classification algorithms all redundant patterns were removed.

14 J. De Knijf and A. Feelders

The resulting set of discriminating patterns are used as binary features in a standard
classification algorithm. Each feature indicates the presence or absence of a discriminat-
ing pattern in a record. We used decision trees [11] to learn a classification model, more
specifically the implementation provided by Borgelt [5]. This implementation uses a
top down divide and conquer technique to build the decision tree. At each node in the
decision tree, an attribute is selected—in a greedy manner—that best discriminates be-
tween the classes. As selection criterion, information gain was used. Additionally, after
construction of the decision tree we used confidence level pruning to avoid overfitting.
The parameter used with confidence level pruning was set to 50%. Finally, we estimated
the area under the ROC curve. This was done with the method described in the work by
Hand and Till [8], where an estimate for the area under the ROC curve is given that can
be used for problems with multiple classes.

5 Experiments

In this section we describe the experiments that we performed to answer the research
questions stated in section 3. For the two datasets, all minimum support thresholds used
and every mining algorithm considered, we computed the following measures:

1. runtime in seconds: the time needed to compute all frequent patterns.
2. # of trees: the number of frequent trees.
3. # of features: the number of non-redundant discriminating patterns.
4. # of nodes in the decision tree: the number of nodes in the decision tree, this is used

as a measure for the complexity of the classification model.
5. Accuracy: the ratio of the number of correctly classified documents and the total

number of documents in the test set.
6. AUC : area under the ROC curve; this is a measure that compares the classification

model with a classifier that has random performance [8]. This measure was also
computed on the test set.

All estimates for the different measures were obtained using ten-fold cross-validation.
In order to determine whether the difference in estimated area under the ROC curve and
the accuracy measure for the different approaches were significant, the standard error
for these two measures was computed.

5.1 Data sets

We performed the experiments on two real datasets namely the CSLOG dataset created
and used by Zaki and Aggarwal [15] and the Wikipedia XML dataset [7].

The CSLOG dataset consist of user sessions of the RPI CS website, collected over a
period of three weeks. Each user session consists of a graph and contained the websites
a user visited on the RPI CS domain. These graphs were transformed to trees by only
enabling forward edges starting from the root node. The goal of the classification task is
to discriminate between users who come from the edu domain and users from another
domain, based upon the user’s browsing behavior. In total there are 23, 011 trees in the
CSLOG dataset, where the average tree size is 8.02. This dataset does not contain any
attributes (in the processed version). The relative frequency of the classes is 23.57% for
the class that represents the edu domain and 76.43% for the other class.

Choosing the Right Patterns: Comparison between Different Tree Inclusion Relations 15

The Wikipedia XML dataset was provided for the document mining track at INEX
2006. The collection consists of 150, 094 XML documents with 60 different class la-
bels. The collection was constructed by converting web pages from the Wikipedia
project to XML documents. The class labels correspond to the Wikipedia portal cat-
egories of the web pages. For the document mining track a subset of the total Wikipedia
collection was selected such that each document belonged to exactly one class. In our
experiments we only used the structure and the attributes of the XML documents. The
algorithms that use the embedded subtree relation, were not able to run with the min-
imum support threshold set to 2% on a server having 4GB of main memory available.
The reason for this is described in [6]: in the worst case, for the embedded subtree
mining algorithm [13] the scopelist size is exponential in the size of the data tree. In
order to include the tree mining algorithms that use the embedded subtree relation into
the comparision, we selected only those documents where the number of nodes in the
tree was less than 20. Compared with the average size of a tree in the whole collection
(161.35) it is a drastic reduction. On the other hand compared with the average tree size
of the most commonly used tree-structured dataset (8.02) it is still quite large. Addi-
tionally, we only used documents that belong to classes that contained more than 400
documents. The resulting reduced dataset consists of 24, 222 documents that are dis-
tributed over 13 classes, where the largest class contains about 22% of the documents
and the smallest class about 3%. The average size of tree in the database equals 13.95
and the average number of attribute value pairs attached to a node equals 0.56. For the
algorithm where the attribute value pairs are mapped to nodes, the average size of a tree
in the database equals 21.73.

5.2 Result and analysis on the Wikipedia dataset

We start with an experiment to determine if the inclusion of attributes has any impact
on the quality of the classifiers. Comparing the results of the two methods that include
attribute-value pairs into the mining process (ATR and NAIVE) with the algorithm
where the attributes were left out (NOATR), the former have a substantially higher
predictive performance on the Wikipedia dataset. Both the accuracy and the area under
the ROC curve are significantly higher, as shown in figure 2. This result holds regardless
of the tree inclusion relation or minimum support value used.

A closer investigation of the patterns used for the ATR and NAIVE classifier, reveals
that the main advantage of including attribute values is that these values often describe
the document to which a link points. Consider for example the discriminating pattern
shown in figure 1. This pattern has very common structural properties, but due to the
attribute values it becomes a discriminating pattern. In the example shown, the attribute
value points to a picture that was the US Navy Jack for some time. Clearly, the values
is a good indicator of its class (“Portal:War/Categories”).

A further remarkable difference between the mining algorithms for the ATR and
the NOATR approach, is the number of frequent trees both produce. Although less in-
formation is included, the NOATR approach computes far more frequent trees than its
counterpart. As a consequence extra computing time is needed for the NOATR mining
algorithms. The reason for the increase in frequent trees is that contrary to the ATR
approach, the same node labels with different attribute-value pairs are counted as one
pattern in the NOATR approach. For example, almost every document in the Wikipedia

16 J. De Knijf and A. Feelders

<figure>
<image xlink:type="simple" xlink:href="../pictures/USN-Jack.png" </image>

</figure>

Fig. 1. A discriminating pattern found on the training set. This pattern, describing class 2879927
(“Portal:War/Categories”) has a support of 48 in its class and of 0 for all other classes.

collection contains a couple of nodes of type “wikipedia link”. These nodes differ only
in the attribute-value pairs attached to them. Consequently, in the NOATR approach
this will be a highly frequent pattern. This effect is especially noticeable in case the
embedded subtree relation is used: the NOATR embedded approach has almost four
times as many frequent trees as the ATR embedded approach. On the other hand, for
most support values, this is limited to almost two times as many in case the induced
subtree relation is used. However, with regard to the number of non-redundant discrim-
inating patterns, the NOATR approach with the induced subtree relation, produces less
discriminating patterns than its counterpart with attributes. The ratio between number
of discriminating patterns and the number of frequent trees is between 1/18 and 1/38
for the ATR approach, while for the NOATR approach the ratio is between 1/58 and
1/83. For the embedded subtree relation these ratios are respectively between 1/38 and
1/53 and between 1/107 and 1/149.

The difference in predictive performance between the classifiers produced with the
induced and embedded tree inclusion relation, for the ATR approach is very small, both
in terms of accuracy and area under the curve. Although the number of frequent trees
and the number of non-redundant discriminating patterns is respectively about two and
one and a half times higher for the embedded subtree relation, the complexity of the
classification model (measured by the number of nodes in the decision tree) is slightly
lower for most cases. For the NOATR classifier, the accuracy and area under the curve
estimates achieved are slightly worse for the embedded subtree relation than for the
induced subtree relation. Furthermore, the classifier based on the embedded subtrees is
by far the most complex classification model for the lower support values.

The patterns produced by the NAIVE mining algorithm are a superset of both the
patterns computed with the ATR approach and those computed with the NOATR ap-
proach. But, contrary to expectation the results obtained in terms of accuracy are for
all but one setting considerably below the results obtained via the ATR approach. And
with respect to the area under the curve measure, the performance of the NAIVE ap-
proach is for all settings significantly below the performance of the ATR approach. We
can not give a complete explanation for this, although with the embedded subtree rela-
tion, the classification model is more complex than the classification models based on
patterns computed with the ATR approach. This might be an indication for overfitting,
however this observation does not hold for the induced subtree relation. Notice, that the
features produced by the NAIVE approach are not necessarily a superset of the features
produced by the ATR approach. This is because of redundancy pruning.

Furthermore, worth noticing are the number of frequent trees the NAIVE approach
produces. Especially in the case that the embedded subtree relation is used, the number
of frequent trees and the time needed to compute these are extremely high compared

Choosing the Right Patterns: Comparison between Different Tree Inclusion Relations 17

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

minimum support %

60
65

70
75

80

ac
cu

ra
cy

atr emb
atr ind
naive emb
naive ind
noatr emb
noatr ind

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

minimum support %

0.
80

0.
85

0.
90

0.
95

1.
00

ar
ea

 u
nd

er
 th

e
cu

rv
e

atr emb
atr ind
naive emb
naive ind
noatr emb
noatr ind

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

minimum support %

10
1

10
2

10
3

10
4

10
5

ru
nt

im
e

in
 s

ec
on

ds

atr emb
atr ind
naive emb
naive ind
noatr emb
noatr ind

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

minimum support %

10
4

10
5

10
6

10
7

10
8

10
9

of

 fr
eq

ue
nt

 tr
ee

s

atr emb
atr ind
naive emb
naive ind
noatr emb
noatr ind

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

minimum support %

0
50

00
10

00
0

15
00

0

of

 fe
at

ur
es

atr emb
atr ind
naive emb
naive ind
noatr emb
noatr ind

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

minimum support %

50
0

10
00

15
00

20
00

25
00

30
00

of

 n
od

es
 in

 th
e

de
cis

io
n

tre
e

atr emb
atr ind
naive emb
naive ind
noatr emb
noatr ind

Fig. 2. Results obtained on the Wikipedia dataset. From left to right, top to bottom: accuracy esti-
mates, estimates for the area under the curve, runtime in seconds (log scale), number of frequent
trees (log scale), number of non-redundant discriminating patterns, and the number of nodes
used in the decision tree. In the two plots on top (accuracy estimates and AUC estimates), for
each estimated value we also show value± 2SE, this is shown as vertical bars going through the
points. Furthermore, the points in these two plots, are shifted a bit to the right or left, such that
the different points and vertical bars could be distinguished.The different lines indicate different
combinations of the tree inclusion relation and attribute handling. For example, atr emb denotes
the embedded tree inclusion relation with ATR attribute handling.

18 J. De Knijf and A. Feelders

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

minimum support %

80
.0

82
.5

85
.0

87
.5

90
.0

ac
cu

ra
cy

noatr emb
noatr ind

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

minimum support %

0.
60

0.
65

0.
70

0.
75

0.
80

ar
ea

 u
nd

er
 th

e
cu

rv
e

noatr emb
noatr ind

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

minimum support %

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

ru
nt

im
e

in
 s

ec
on

ds

noatr emb
noatr ind

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

minimum support %

0
50

0
10

00
15

00
20

00
25

00
30

00

of

 fr
eq

ue
nt

 tr
ee

s

noatr emb
noatr ind

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

minimum support %

0
20

0
40

0
60

0
80

0
10

00

of

 fe
at

ur
es

noatr emb
noatr ind

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

minimum support %

0
10

0
20

0
30

0
40

0

of

 n
od

es
 in

 th
e

de
cis

io
n

tre
e

noatr emb
noatr ind

Fig. 3. Results obtained on the Weblog dataset. From left to right, top to bottom: accuracy esti-
mates, estimates for the area under the curve, runtime in seconds (log scale), number of frequent
trees (log scale), number of non-redundant discriminating patterns, and the number of nodes
used in the decision tree. In the two plots on top (accuracy estimates and AUC estimates), for
each estimated value we also shown value ± 2SE, this is shown as vertical bars going through
the points. Furthermore, the points in these two plots, are shifted a bit to the right or left, such
that the different points and vertical bars could be distinguished.

Choosing the Right Patterns: Comparison between Different Tree Inclusion Relations 19

to the other approaches. Furthermore, the ratio between the number of frequent trees
and the number of non-redundant discriminating patterns ranges between 1/491 and
1/595 for the induced tree inclusion relation and between 1/13146 and 1/24109 for
the embedded inclusion relation. In comparison with both the ratios of the ATR and the
NOATR approach, the NAIVE approach proportionally spends a great effort in comput-
ing patterns that will be discarded in a later stage. With respect to AUC, the difference
between the induced and embedded subtree relation for the NAIVE approach is negli-
gible. However in terms of accuracy, the embedded subtree relation performs for better
than the induced subtree relation.

For all performed experiments on the Wikipedia data set it holds that the difference
in predictive performance between the induced and embedded tree inclusion relation is
small, and well within the range of the standard error of the estimated accuracy and the
are under the ROC curve.

With regard to the run time we earlier noticed that the NAIVE algorithm needs
considerably more time than both the ATR and the NOATR approaches, and in turn
the NOATR approach consumes some extra time in comparison with the ATR ap-
proach. Furthermore, for the embedded tree inclusion relation, considerably more time
is needed to compute all frequent trees than with the induced tree inclusion relation.
Instead of the total run time, often the average time per tree is derived to compare algo-
rithms. Although this would change the comparison completely, it is for our goal not an
interesting measure: we are not interested in the efficiency of an algorithm per se, but
in the computation time needed in order to obtain a certain result. Another performance
issue is the memory usage of the different approaches. As noted earlier, the Wikipedia
dataset had to be reduced such the mining algorithms that uses the embedded subtree
relation could be executed with an upper bound of 4GB. For the reduced Wikipedia
dataset, the memory usage of all approaches with the induced subtree relation was con-
stant for all minimum support values. These values are respectively 26MB, 46MB and
48MB for the NOATR, ATR and NAIVE approach. For the embedded subtree rela-
tion we only measured the worst case, i.e. the case with the lowest minimum support
value. For this case the different approaches (NOATR, ATR, NAIVE) used respectively
339MB, 211MB and 520MB. The difference in memory usage is caused by the fact
that the only known implementations of the embedded subtree mining algorithm, need
to store for every node in the pattern tree a reference to corresponding values in the
database. Hence, the larger the pattern tree becomes, the more values (links) need to
be stored. This is also the reason why the embedded NAIVE approach uses more main
memory than the other embedded approaches: the NAIVE approach has larger frequent
patterns. For the induced subtree relation, known implementations need to store only a
link to all references in the database from the rightmost node of the pattern tree. Hence,
the memory requirement does not depend on the size of the frequent tree but only on
the size of the database.

5.3 Results and analysis on the weblog data

The results of the experiments on the weblog data are displayed in figure 3. In compari-
son with the Wikipedia dataset, the weblog data is relatively simple: both the number of
frequent trees and the number of non-redundant discriminating patterns are in compar-
ison quite modest. Also the fact that there are only two classes makes the classification

20 J. De Knijf and A. Feelders

task less complicated. With the embedded subtree relation, both the number of frequent
trees and the number of discriminating patterns produced is larger than with the in-
duced subtree relation. However, the accuracy score is, for the lowest support values
used, slightly higher for the former. Also in this case, this somewhat higher accuracy
score is gained with slightly less features in the classification model. With regard to
the area under the ROC curve, the induced subtree relation performs slightly better for
the two lowest minimum support values. The run time needed for both tree inclusion
relations on this training set is quite small, but is slightly worse for the embedded tree
inclusion relation. Also the memory usage of the algorithms is modest: for respectively
the embedded and induced approach with the lowest minimum support value it equals
30MB and 25MB.

6 Discussion and Conclusion

In this paper we experimentally compared frequent tree mining algorithms using dif-
ferent tree inclusion definitions, and different ways of handling attributes. Besides the
traditional comparison in terms of run time and memory usage, we also constructed
classifiers from frequent patterns produced by the different approaches, and compared
these classifiers on predictive performance and model complexity.

The three main conclusions of this work are:

1. The inclusion of attribute-values pairs in the mining process significantly improves
the classification result.

2. The ATR approach performs considerably better than the NAIVE approach, both
in terms of run time and predictive performance.

3. The embedded tree inclusion relation does not result in better classification perfor-
mance, nor in simpler classification models and has major computational disadvan-
tages.

The results show that significant performance gain can be obtained by including
attribute value-pairs into the mining algorithms. Especially the case where attributes are
modeled as properties of a node, such as in the ATR approach, delivers good results.
But, also in the case where attribute value-pairs are added as elements to the dataset,
the results are far better than in case the attributes are ignored.

How the attribute value-pairs are handled in the mining process, is also of great im-
portance for both the predictive performance as well as the runtime. The results show
that for all but one minimum support value used, both the accuracy and the area un-
der the ROC curve are considerably better for the ATR approach than for the NAIVE
approach. Furthermore, the NAIVE approach requires substantially extra computation
time. We conclude from this that, the constraint of “at least one attribute per node”
makes sense from both a computational and a usability point of view.

The experiments show no significant difference in performance between the induced
an embedded subtree relation. Contrary to the common expectation, the embedded tree
inclusion relation often results in a slightly lower predictive performance than the in-
duced subtree relation. Furthermore, a major practical limitation is the excessive mem-
ory usage of currently known embedded tree mining algorithms. Even if this implemen-
tation issue is solved, then still the embedded approach has as major disadvantage that

Choosing the Right Patterns: Comparison between Different Tree Inclusion Relations 21

more computation time is needed, which is spent on patterns that will be thrown away
in a later stage.

Although, it is of great advantage to construct less complex classification models
that preserve equivalent predictability, the experiments with the embedded tree inclu-
sion relation, did not result in less complex classification models. Concluding, the ad-
dition of “hidden patterns” did, for the examined datasets, not result in better predictive
performance.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. 20th Int.
Conf. Very Large Data Bases, VLDB, pages 487–499, 1994.

2. T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S. Arikawa. Efficient substruc-
ture discovery from large semi-structured data. In SIAM Symposium on Discrete Algorithms,
2002.

3. T. Asai, H. Arimura, T. Uno, and S. Nakano. Discovering frequent substructures in large
unordered trees. In Discovery Science, pages 47–61, 2003.

4. R. Bathoorn, A.Koopman, and A. Siebes. Reducing the frequent pattern set. In Workshops
Proceedings of ICDM 2006, pages 55–59, 2006.

5. C. Borgelt. A decision tree plug-in for dataengine. In Proc. 6th European Congress on
Intelligent Techniques and Soft Computing, 1998.

6. Y. Chi, R. Muntz, S. Nijssen, and J. Kok. Frequent subtree mining - an overview. Funda-
menta Informaticae., 66(1-2):161–198, 2005.

7. L. Denoyer and P. Gallinari. The Wikipedia XML Corpus. SIGIR Forum, 2006.
8. D. J. Hand and R. J. Till. A simple generalisation of the area under the ROC curve for

multiple class classification problems. Machine Learning, 45(2):171–186, 2001.
9. J. De Knijf. FAT-miner: Mining frequent attribute trees. In SAC ’07: Proceedings of the

2007 ACM symposium on Applied computing, 2007.
10. S. Nijssen and J.N. Kok. Efficient discovery of frequent unordered trees. In In Proceedings

of the first International Workshop on Mining Graphs, Trees and Sequences (MGTS2003),
pages 55–64, 2003.

11. J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
12. A. Termier, M. Rousset, M. Sebag, K. Ohara, T. Washio, and H. Motoda. Efficient mining

of high branching factor attribute trees. In IEE International Conference on Data Mining,
pages 785–788, 2005.

13. M. J. Zaki. Efficiently mining frequent trees in a forest. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 71–80, 2002.

14. M. J. Zaki. Efficiently mining frequent embedded unordered trees. Fundamenta Informati-
cae., 66(1-2):33–52, 2005.

15. M. J. Zaki and C. C. Aggarwal. Xrules: an effective structural classifier for XML data. In
L. Getoor, T. E. Senator, P. Domingos, and C. Faloutsos, editors, ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pages 316–325, 2003.

Mining Frequent Patterns from
Multi-Dimensional Relational Sequences

Nicola Di Mauro, Teresa M.A. Basile, Stefano Ferilli, and Floriana Esposito

Università degli Studi di Bari, Dipartimento di Informatica, 70125 Bari, Italy

Abstract. The problem addressed in this paper regards the discov-
ering of frequent multi-dimensional patterns from relational sequences.
In a multi-dimensional sequence each event depends on more than one
dimension, such as in spatio-temporal sequences where an event may
be spatially or temporally related to other events. In literature, the
multi-relational data mining approach has been successfully applied to
knowledge discovery from complex data. This work takes into account
the possibility to mine complex patterns, expressed in a first-order lan-
guage, in which events may occur along different dimensions. A complete
framework and an Inductive Logic Programming algorithm to tackle this
problem is presented with preliminary experiments focussing on artificial
multi-dimensional sequences.

1 Introduction

The great variety of applications of sequential pattern mining, such as user pro-
filing, medicine, local weather forecast and bioinformatics, makes this problem
one of the central topics in data mining as showed by the research efforts pro-
duced in recent years [1, 22, 7, 17, 18]. Sequential information may concern data
on multiple dimensions and, hence, the mining of sequential patterns from multi-
dimensional information results very important. The first work on mining multi-
dimensional patterns has been presented in 2001 by Pinto et al. [18]. However, all
the works in multi-dimensional data mining have been restricted to the propo-
sitional case, not involving a first-order representation formalism.

Some works facing the problem of knowledge discovery from spatial and tem-
poral data in the multi-relational data mining research area [15, 19, 5, 20, 12] are
present in literature, but there exists no contributions to manage the general
case of multi-dimensional data in which, for example, spatial and temporal in-
formation may co-exist.

In this paper an Inductive Logic Programming (ILP) [16] algorithm for dis-
covering first-order (Datalog) maximal frequent patterns in multi-dimensional
relational sequences is provided. Multi-dimensional patterns are defined as a
set of atomic first-order formulae in which events are explicitly represented by a
variable and the relations between events are represented by a set of dimensional
predicates (next, follow, follow-at).

Although encoding temporal predicates in ILP is very simple, making a sys-
tem able to understand and use their semantic is crucial for efficiency. Some

Mining Frequent Patterns from Multi-Dimensional Relational Sequences 23

recent works on mining logical patterns [9, 11, 13, 4] take into account temporal
sequences (i.e., 1-dimensional sequences) by using a purposely defined logical
temporal formalism. Instead, this work proposes a dedicated framework which
incorporates a specific language bias for multi-dimensional data, expressed in a
first-order logic, in order to rise a faster execution and a smaller search space.
The first-order logical representation gives us the possibility to encode temporal,
spatial and other dimensional spaces without requiring to discriminate between
them. Furthermore, it is possible to represent any other domain relations and
let them to co-exist with other dimensional ones.

An interesting application of multi-dimensional logical pattern mining is
modelling. A logical formalism for mining temporal patterns in a task of user
modelling has been proposed in [8] in which the user behaviour is described ac-
cording to the temporal sequences of his actions. The approach proposed in this
paper allows us to tackle many complex scenarios such as context modelling, in
which a situation and the actors involved in it evolve both in time and space.
For instance, we should think to profile a user accessing to a room (home, of-
fice, museum, etc.) by describing contextual information (such as position in the
room described by two spatial dimensions) and temporal information.

2 Mining Multi-Dimensional Patterns

We used datalog [21] as representation language for the domain knowledge and
patterns, that here is briefly reviewed. A term is defined as a constant symbol
or a variable. An atom p(t1, . . . , tn) is a predicate p of arity n applied to n terms
ti. A substitution θ is defined as a set of bindings {X1 ← a1, . . . , Xn ← an}
where Xi, 1 ≤ i ≤ n is a variable and ai, 1 ≤ i ≤ n is a term. A substitution
θ is applicable to an expression e, obtaining the expression eθ, by replacing all
variables Xi with their corresponding terms ai.

Definition 1. A 1-dimensional relational sequence may be defined as an ordered
list of datalog atoms separated by the operator <, l1 < l2 < · · · < ln.

Example 1. The following list of datalog atoms
p(a,b) < p(b,c) < p(c,a) < p(b,b)

represents a 1-dimensional sequence. In general, for this kind of sequences, re-
ferring to one dimension only, the operator < can be omitted as follows

p(a,b) p(b,c) p(c,a) p(b,b)
where is implicit, for instance, that the atom p(b,c) follows the atom p(a,b).

Hovewer, in order to make the proposed framework more general, the concept
of fluents introduced by J. McCarthy in [14] should be considered: “After having
defined a situation, st, as the complete state of the universe at an instant of time
t, then a fluent is defined as a function whose domain is the space of situations. In
particular, a propositional fluent ranges in (true,false). For example, raining(x,
st) is true if and only if it is raining at the place x in the situation st.”

In our description language we can distinguish two kinds of datalog atoms:
dimensional and non-dimensional atoms. Specifically:

24 N. Di Mauro et al.

– non-dimensional atoms, that may be divided into
• fluent atoms: explicitly referring to a given event (i.e., in which one of

its argument denotes an event);
• non-fluent atoms: denoting relations between objects (with arity greater

than 1), or characterizing an object (with arity 1) involved in the se-
quence;

– dimensional atoms: referring to dimensional relations between events in-
volved in the sequence.

Example 2. The following set of datalog atoms
p(e1,a,b) (e1 < e2) p(e2,b,c) q(b,c)

denotes a 1-dimensional sequence with three non-dimensional atoms and one
dimensional atom. Specifically, p(e1,a,b) denotes the fluent p(a,b) at the event
e1, p(e2,b,c) denotes the fluent p(b,c) at the event e2, (e1 < e2) indicates that
the event e2 is the direct successor of e1 and q(b,c) represents a generic relation
between the objects b and c.

Another way to read the previous example is the following: “ p(a,b) is true
in the event e1, the event e1 gives rise to the event e2 where is true p(b,c), and
there is a relation q between b and c”.

The choice to add the event as an argument of the predicates is necessary in
the general case of n-dimensional sequences with n > 1. In this case, indeed, the
operator < is not sufficient to express multi-dimensional relations and we must
use its general version <i, 1 ≤ i ≤ n. Specifically, (e1 <i e2) denotes that the
event e1 gives rise to the event e2 in the dimension i. Hence, in our framework a
multi-dimensional data is supposed to be a set of events, and to each dimension
corresponds a sequence of events.

Definition 2. A multi-dimensional relational sequence is a set of datalog
atoms, involving k events and regarding n dimensions, in which there are non-
dimensional atoms (fluents and non-fluents) and each event may be related to
another event by means of the <i operators, 1 ≤ i ≤ n.

After having defined what is a logical multi-dimensional sequence, in the
following we give a detailed description of the dimensional operators used to
describe multi-dimensional patterns.

2.1 Multi-Dimensional Patterns

In order to represent multi-dimensional patterns, some dimensional operators
must be introduced. The following symbols for describing general event relation-
ships along many dimensions has been adopted. In particular, given a set D of
dimensions, in the following are reported the multi-dimensional operators:

– <i: next step on dimension i,∀i ∈ D. This operator indicates the direct
successor on the dimension i. For instance, (x <time y) denotes that the
event y is the direct successor of the event x on the dimension time. next i/2
is the corresponding Datalog predicate used to denote the successor operator;

Mining Frequent Patterns from Multi-Dimensional Relational Sequences 25

– �i: after some steps on dimension i,∀i ∈ D. This operator encodes the
transitive closure of <i. For example, (y �spatialx z) states that the event z
occurs somewhere after the event y on the dimension spatialx. follows i/2 is
the corresponding Datalog representation;

– ©n
i : exactly after n steps on dimension i,∀i ∈ D. In particular it calculates

the n-th direct successor. For instance, (x©n
spatialz w) states that the event

w is the n-th direct successor of the event x on the dimension spatialz. The
follows at 1/3 Datalog predicate is used to represent such a situation.

The dimensional characteristics in the sequences will be described by using
the <i operator, while the two dimensional operators �i and ©n

i , will be used,
in combination with <i operator, to represent the frequent discovered patterns.

Example 3. With the above defined dimensional operators, an example of a sim-
ple temporal sequence could be:

p(e1,a,b) (e1 <time e2) q(e2,b,c) (e2 <time e3) p(e3,e,f) (e3 <time e4) q(e4,f,g)
and the relative temporal patterns that may be true when applied to it are

p(E1,X,Y) (E1 <time E2) q(E2,Y,Z)
p(E1,X,Y) (E1 �time E2) q(E2,Z,W)
p(E1,X,Y) (E1©2

time E2) p(E2,Z,W)

In general, given a sequence σ = (e1e2 · · · em) of m elements, a sequence
σ′ = (e′

1e
′
2 · · · e′

k) of length k is a subsequence (or pattern) of σ if for a given
h < m − k: eh+i = e′

i+1, 1 ≤ i ≤ k. The frequency of a subsequence in a
sequence is the number of all the possible values of h such that the previous
condition holds.

We are interested in finding maximal frequent patterns with a high frequency
in long sequences. A pattern σ′ of a sequence σ is maximal if there is no pattern
σ′′ of σ more frequent than σ′ and such that σ′ is a subsequence of σ′′.

Definition 3. A multi-dimensional relational pattern is a set of datalog atoms,
involving k events and regarding n dimensions, in which there are non-dimensional
atoms and each event may be related to another event by means of the operators
<i, �i and ©n

i operators, 1 ≤ i ≤ n.

2.2 The algorithm

In this section we describe the algorithm for frequent pattern discovery based
on the same idea of the generic level-wise search method, known in data mining
from the Apriori algorithm [1]. The level-wise algorithm makes a breadth-first
search in the lattice of patterns ordered by a specialization relation �. The search
starts from the most general patterns, and at each level of the lattice the algo-
rithm generates candidates by using the lattice structure and then evaluates the
frequencies of the candidates. In the generation phase, some patterns are taken
out using the monotonicity of pattern frequency (if a pattern is not frequent
then none of its specializations is frequent).

26 N. Di Mauro et al.

The main method is outlined in Algorithm 1. The generation of the frequent
patterns is based on a top-down approach. The algorithm starts with the most
general patterns. These initial patterns are all of length 1 and are generated
by adding to the empty pattern a non-dimensional atom. Successively, at each
step it tries to specialize all the potential frequent patterns, discarding the non-
frequent patterns and storing the ones whose length is equal to the user specified
input parameter maxsize. Furthermore, for each new refined pattern, semanti-
cally equivalent patterns are detected, by using the θ-subsumption relation, and
discarded. Note that the length of a pattern is defined as the number of non-
dimensional atoms. In the specialization phase, the specialization operator under
θ-subsumption is used. Basically, the operator adds atoms to the pattern.

Algorithm 1 MDLS
Require:

maxsize: maximal pattern length (i.e., the maximum number of non-dimensional
predicates appearing in the pattern);
minfreq: the threshold;

Ensure: Pmax: the set of maximal frequent patterns
1: P ← { initial patterns }
2: Pmax ← ∅
3: while P 6= ∅ do
4: Ps ← ∅
5: for all p ∈ P do
6: {generation step}
7: Ps ← Ps∪ {all the specializations of p }
8: P ← ∅
9: for all p ∈ Ps do

10: {evaluation step}
11: if freq(p) ≥ minfreq then
12: if length(p) = maxsize then
13: Pmax ← Pmax∪ {p}
14: else
15: P ← P∪ {p}

In particular, given the set D of dimensions, the set F of fluent atoms, the
set P of non-fluent atoms, the refinement operator for specializing patterns is
defined as follows:

adding a non-dimensional atom
– the pattern S is specialized by adding a non-dimensional atom F ∈ F

(a fluent) referring to an event already introduced in S;
– the pattern S is specialized by adding a non-dimensional atom P ∈ P;

adding a dimensional atom
– the pattern S is specialized by adding the dimensional atom (x <i y)

i ∈ D, relating the events x and y, iff ∃ a fluent F ∈ F in S with x as

Mining Frequent Patterns from Multi-Dimensional Relational Sequences 27

its event argument and there not exist the atoms (x �i y) and (x©n
i y)

in S;
– the pattern S is specialized by adding the dimensional atom (x �i y)

i ∈ D, relating the events x and y, iff ∃ a fluent F ∈ F in S with x as
its event argument and there not exist the atoms (x <i y) and (x©n

i y)
in S;

– the pattern S is specialized by adding the dimensional atom (x©n
i y)

i ∈ D, relating the events x and y, iff ∃ a fluent F ∈ F in S with x as
its event argument and there not exist the atoms (x <i y) and (x �i y)
in S.

The dimensional atoms are added iff there exists a fluent atom referring to
its starting event. This is to avoid unuseful chains of dimensional predicates like
this p(e1,a) (e1 <i e2) (e2 <i e3) (e3 <i e4), that is naturally subsumed by
p(e1,a) (e1©3

i e4).
As regards the language bias, classical mode and type declarations are used

to specify which predicates can be used in patterns and to formulate constraints
on the binding of variables.

3 Experiments

In order to evaluate the proposed technique we made preliminary experiments,
applying the algorithm to a simple example about 3D data and to an artificial
dataset.

3.1 3D example: Cellular automaton data

In the following we evaluated the algorithm on the best-known example of a cel-
lular automaton, named The Game of Life, devised by J.H. Conway in 1970 [6].
This simulation game resembles the processes of a society of living organisms.

The universe of the game involves a plane, assumed to be infinite, divided into
cells, each of which is in one of two possible states, live – meaning that there is an
organism – or dead . The idea is to start with a simple configuration of organisms
and then observe how it changes as one applies the “genetic laws” for births,
deaths, and survivals. Note that each cell of the plane has eight neighboring
cells, four adjacent orthogonally and four adjacent diagonally. The rules are:

– Births: each empty cell adjacent to exactly three neighbors is a birth cell.
An organism is placed on it in the next population;

– Survivals: every organism with two or three neighboring organisms survives
for the next generation;

– Deaths: each organism with four or more neighbors dies (is removed) for
overpopulation. Every organism with one neighbor or none dies for isolation.

Note that all births and deaths occur simultaneously.
We can model the plane by using two dimensions (say x and y), while the

time may be modeled by another dimension (say t). The plane containing the

28 N. Di Mauro et al.

organisms has been viewed as a two-dimensional array. Hovewer, since the plane
is in principle infinite, its left and right edges are considered to be stitched
together, like the top and bottom edges, thus yielding a toroidal array.

1st 2nd 3th 4th

Fig. 1. A sequence of evolving populations

In Figure 1 is reported a sequence of evolving populations, form an initial
population of 25 organisms, that can be described in the defined domain language
as follows.

/* 1st population */
live(f1) (f1 <x f2) live(f2) ...
(f1 <y f6) live(f6) (f6 <x f7) (f2 <y f7) dead(f7) ...
(f6 <y f11) live(f11) (f11 <x f12) (f7 <y f12) dead(f12) ...
/* 2nd population */
live(s1) (s1 <x s2) dead(s2) ...
(s1 <y s6) live(s6) (s6 <x s7) (s2 <y s7) dead(s7) ...
(s6 <y s11) live(s11) (s11 <x s12) (s7 <y s12) dead(s12) ...
/* 3th population */
...
/* 4th population */
...
/* temporal relations */
(f1 <t s1) (f2 <t s2) (f3 <t s3) (f4 <t s4) (f5 <t s5)...

We used the operators <x and <y to indicate that an event is a direct succes-
sor, respectively, in horizontal and in vertical direction. While, the operator <t

represents direct successor of an event along the time dimension. In particular,
this kind of 3-dimensional sequences combines spatial and temporal data.

Executing the algorithm on some artificial population we obtained many
different multi-dimensional patterns, including still lifes, and oscillators1 as that
reported in Figure 2. The block and boat patterns are still lifes, while the blinker
is a two-phase oscillator.

1 In cellular automata, a still life is a pattern that does not change from one generation
to the next, while, an oscillator is a pattern that returns to its original state, in the
same orientation and position, after a finite number of generations.

Mining Frequent Patterns from Multi-Dimensional Relational Sequences 29

block boat blinker

Fig. 2. Some patterns occur in the Game of Life

block
live(A) (A <x B) live(B) (A <y C) live(C) (C <x D) (B <y D) live(D)
(A <t A′) live(A′) (A′ <x B′) live(B′) (A′ <y C ′) live(C ′) (C ′ <x D′)
(B′ <y D′) live(D′)

boat
live(A) (A <x B) live(B) (A <y C) live(C) (C ©2

x D) live(D) (B ©2
y E)

live(E) (A <t A′) live(A′) (A′ <x B′) live(B′) (A′ <y C ′) live(C ′) (C ′©2
x D′)

live(D′) (B′©2
y E′) live(E′)

blinker
live(A) (A <x B) live(B) (B <x C) live(C)
dead(D) (D <y B) dead(E) (B <y E) (B <t B′) dead(A′) (A′ <x B′)
live(B′) (B′ <x C ′) dead(C ′) live(D′) (D′ <y B′) live(E′) (B′ <y E′)

3.2 Artificial relational data

In order to evaluate the proposed algorithm on more convincing data, a random
problem generator has been implemented and used to generate multi-dimensional
relational sequences. In particular, it randomly generates a sequence containing a
frequent pattern taking as input the following parameters. The domain language
is defined by a set D of d dimensions, a set R of r binary predicates, and a set
F of f fluent predicates with arity 3. By using these predicates, a sequence,
made up of Es events and Os objects, is generated by randomly selecting Rs
relational literals and Fs fluent literals per event. A relational literal is generated
by randomly selecting its predicate fromR and randomly selecting its arguments
from the set of Os objects. For each event, Fs fluent literals are generated
by randomly selecting their predicates from F and randomly selecting its two
relational arguments from the set of Os objects. The sequence contains freq
patterns with the same logical structure, made up of Ep events and Op objects.
Each pattern contains Fp fluents literals per event and Rp relational literals
randomly generated by using the above method.

Two kind of problems, P1 and P2, have been generated, with r and f set to
3, Fs and Fp set to 1. In the former we fixed the length of the pattern, while
in the latter we fixed the length of the sequence. In particular, the problem P1

has been divided into 5 sub-problems, where the number of events Es of the
sequence has been set, respectively, to 100, 200, 300, 400 and 500, while the
number of events Ep of the pattern has been fixed to 4. The problem P2 has
been divided into 5 sub-problems, where the number of events Ep of the pattern

30 N. Di Mauro et al.

Table 1. Warmr and MDLS performances (time in secs.).

p1 p2 p3 p4 p5

Warmr MDLS Warmr MDLS Warmr MDLS Warmr MDLS Warmr MDLS

1D 5,17 1,46 5,32 2,33 5,0t, F0 2,66 5,85 3,92 6,44 5,52
P1 2D 3,75 1,37 4,23 1,97 4,22 2,84 3,68 3,38 4,36 4,59

3D 3,98 1,32 3,46 1,80 4,00 2,72 4,08 3,47 4,02 4,04

1D 5,82 1,53 12,22 3,14 26,52 5,83 45,84 9,3 63,79 13,59
P2 2D 4,46 1,43 8,61 2,77 19,62 5,07 37,41 8,52 62,23 14,47

3D 3,78 1,16 10,30 2,84 18,68 5,13 38,52 9,06 66,67 14,57

has been set, respectively, to 4, 5, 6, 7 and 8, fixing the number of events Es of
the sequence to 100. For each sub-problem 10 sequences have been generated.

Our system has been compared to Warmr [5], using the package ACE-ilProlog
[2] kindly made available by Hendrik Blockeel. Table 1 reports the mean time,
over the 10 sequences for each sub-problem (pi, 1 ≤ i ≤ 5), by executing both
Warmr and MDLS. For each sub-problem of P1 we fixed Ep = 4, Op = 3
and Rp = 2, while the others parameter have been set, respectively, as follows
Es = 100, 200, 300, 400, 500, Os = 10, 20, 30, 40, 50, Rs = 40, 60, 80, 100, 120,
freq = 10, 20, 30, 40, 50. While, for the problem P2 we fixed Es = 100, Os = 10
and Rs = 40, Ep = 4, 5, 6, 7, 8, Op = 3, Rp = 2, freq = 10. t, F The first column
of Table 1 indicates the kind of sequence (1D, 2D, 3D) for each problem, while
the others the mean time in seconds for each corresponding sub-problem. As one
can see, MDLS outperforms Warmr that is limited with respect to the length
of the pattern. Indeed, the time increases as the length of the pattern grows, as
reported for the the problem P2.

4 Related Work

In this section we will review some recent work on mining logical sequences.
In [9] is presented a work, in the domain of user modelling, that helps shell

users by creating scripts (a sequence of commands) from shell logs, that auto-
mate frequent performed tasks. The authors see this task as a relational learning
problem, indeed commands may be interrelated by their execution order, and
each command is possibly related to one or more parameters, giving out a repre-
sentation of a shell log as a set of logical ground atoms. After having transformed
shell logs in a relational representation, they applied the Warmr [5] system, an
upgrade of the propositional Apriori algorithm that can detect first order logic
association rules, for generating scripts. They used a specific predicate to specify
that two commands are considered next to each other in a sequence.

Warmr [5] is based on the level-wise search of conventional association rule
learning systems of the Apriori-family [1]. It extends these systems by looking for
frequent patterns that may be expressed as conjunction of first-order literals. In
Warmr a pattern is defined as a conjunction of first order literals. It performs a
top-down level-wise search, starting with the key and refining patterns by adding

Mining Frequent Patterns from Multi-Dimensional Relational Sequences 31

literals to them. Infrequent patterns (i.e. patterns whose frequency is below a
predefined threshold) are pruned as are their refinements. With Warmr it is
possible to generate patterns that are syntactically different but semantically
equivalent. This is due to the redundant conditions that may be added to a
pattern or to the fact that the same pattern may be expressed in different ways.

As already described in [3], this problem may be avoided by using the Warmr’s
configurable language bias or by its constraint specification language. However,
this solution does not solve the problem at all. Indeed, the constraints that may
be defined in Warmr, by using its constraint specification language, are only
syntax based, and they are not sufficient to handle semantic dependencies. For
this and other limitations already described in [9, 8], in some cases Warmr sys-
tem is not able to calculate frequent subsequences and it is difficult to correctly
represent the specific sequence mining task.

In [11] are presented a logic language, SeqLog, for mining sequences of logical
atoms, and the inductive mining system MineSeqLog, that combines principles
of the level-wise search algorithm with the version space in order to find all
patterns that satisfy a constraint by using an optimal refinement operator for
SeqLog. SeqLog is a logic representational framework that adopts two operators
to represent the sequences: one to indicate that an atom is the direct successor
of another and the other to say that an atom occurs somewhere after another.
Furthermore, based on this language, the notion of subsumption, entailment
and a fix point semantic are given. However, with SeqLog one can represent
unidimensional sequences only.

In [10] has been proposed an algorithm for selecting logical hidden Markov
models from data. Hidden Markov models are one of the most popular methods
for analyzing sequential data, but they can be exploited to handle sequence of
flat/unstructured symbols. The proposed logical extension [10] overcomes such
weakness by handling sequences of structured symbols by means of a probabilis-
tic ILP framework. However, the mining of multi-dimensional sequence is not
taken into account from these methods both logical and propositional.

5 Conclusions

In this paper we proposed a logical framework for mining multi-dimensional
patterns in which many dimensions can be specified. What we can obtain are
maximal frequent multi-dimensional patterns described in a first order language.

One of the most important characteristic of using logical framework for se-
quences is that we can incorporate additional information by using a background
knowledge, and that any relation between atoms can be expressed or learned.

The result is a dedicated system in which are incorporated specific language
bias for multi-dimensional data in order to rise a faster execution and a smaller
search space. Preliminary experimental results prove the validity of the proposed
approach.

32 N. Di Mauro et al.

Acknowledgements This work is partially founded by the Italian COFIN
project “Learning Hierarchical, Abstract Models from Temporal/Spatial Data”.
The authors would like to thank Jan Ramon for giving useful suggestions on
setting the system Warmr.

References

1. R. Agrawal, H. Manilla, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast dis-
covery of association rules. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages
307–328. AAAI Press, 1996.

2. H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens, J. Ramon, and H. Vandecasteele.
Executing query packs in ilp. In J. Cussens and A. Frisch, editors, Proceedings of
the 10th International Conference on Inductive Logic Programming, volume 1866
of LNAI, pages 60–77. Springer, 2000.

3. H. Blockeel, J. Fürnkranz, A. Prskawetz, and F. Billari. Detectin temporal change
in event sequences: an application to demographic data. In Proceedings of the
5th European Conference on Principles of Data Mining and Knowledge Discovery,
pages 29–41. Springer, 2001.

4. S. de Amo and D.A. Furtado. First-order temporal pattern mining with regular
expression constraints. Data & Knowledge Engineering, 62(3):401–420, 2007.

5. L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. Data Mining
and Knowledge Discovery, 3(1):7–36, 1999.

6. M. Gardner. The fantastic combinations of John Conway’s new solitaire game
“life”. Scientific American, 2(223):120–123, October 1970.

7. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate gener-
ation. In ACM-SIGMOD Int. Conf.Management of Data (SIGMOD’00), pages
1–12, 2000.

8. N. Jacobs. Relational Sequence Learning and User Modelling. PhD thesis, Depart-
ment of Computer Science, K.U.Leuven, Leuven, Belgium, October 2004.

9. N. Jacobs and H. Blockeel. From shell logs to shell scripts. In C. Rouveirol and
M. Sebag, editors, Proceedings of the 11th International Conference on Inductive
Logic Programming, volume 2157, pages 80–90. Springer, 2001.

10. K. Kersting and T. Raiko. ‘Say EM’ for selecting probabilistic models for logical
sequences. In F. Bacchus and T. Jaakkola, editors, Proceedings of the 21st Con-
ference on Uncertainty in Artificial Intelligence (UAI05), pages 300–307. AUAI
Press, 2005.

11. S.D. Lee and L. De Raedt. Constraint based mining of first order sequences in
SeqLog. In R. Meo, P.L. Lanzi, and M. Klemettinen, editors, Database Support for
Data Mining Applications, volume 2682 of LNCS, pages 155–176. Springer, 2004.

12. D. Malerba and F.A. Lisi. Discovering associations between spatial objects: An
ilp application. In Proceedings of the 11th International Conference on Inductive
Logic Programming, volume 2157 of LNCS, pages 156–166. Springer, 2001.

13. C. Masson and F. Jacquenet. Mining frequent logical sequences with SPIRIT-LoG.
In Proceedings of the 12th International Conference on Inductive Logic Program-
ming, volume 2583 of LNAI, pages 166–181. Sringer Verlag, 2003.

14. J. McCarthy and P.J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence
4, pages 463–502. Edinburgh University Press, 1969. reprinted in McC90.

Mining Frequent Patterns from Multi-Dimensional Relational Sequences 33

15. S. Moyle and S. Muggleton. Learning programs in the event calculus. In Proceedings
of the 7th International Workshop on Inductive Logic Programming, pages 205–212.
Springer, 1997.

16. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.
Journal of Logic Programming, 19/20:629–679, 1994.

17. P.J. Pei, J. Han, and W. Wang. Mining sequential patterns with constraints in
large databases. In Proceedings of the 11th ACM International Conference on
Information and Knowledge Management, pages 18–25, 2002.

18. H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, and U. Dayal. Multi-dimensional
sequential pattern mining. In CIKM ’01: Proceedings of the tenth international
conference on Information and knowledge management, pages 81–88, New York,
NY, USA, 2001. ACM Press.

19. L. Popeĺınsky. Knowledge discovery in spatial data by means of ILP. In Proceedings
of the Second European Symposium on Principles of Data Mining and Knowledge
Discovery, pages 185–193. Springer, 1998.

20. J. Rodŕıguez, C. Alonso, and H. Böstrom. Learning first order logic time series clas-
sifiers. In J. Cussens and A. Frisch, editors, Proceedings of the 10th International
Workshop on Inductive Logic Programming, pages 260–275. Springer, 2000.

21. J.D. Ullman. Principles of Database and Knowledge-Base Systems, volume I. Com-
puter Science Press, 1988.

22. M.J. Zaki. SPADE: An efficient algorithm for mining frequent sequences. Machine
Learning Journal: Special issue on Unsupervised Learning, 42(1/2):31–60, 2001.

ILP: Compute Once, Reuse Often ?

Nuno A. Fonseca1, Ricardo Rocha2, Rui Camacho3, and Vı́tor Santos Costa2

1 Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
nf@ibmc.up.pt

2 DCC-FC, Universidade do Porto, Portugal
{ricroc,vsc}@ncc.up.pt

3 Faculdade de Engenharia & LIAAD, Universidade do Porto, Portugal
rcamacho@fe.up.pt

Abstract. Inductive Logic Programming (ILP) is a powerful and well-
developed abstraction for multi-relational data mining techniques. How-
ever, ILP systems are not particularly fast, most of their execution time
is spent evaluating the hypotheses they construct. The evaluation time
needed to assess the quality of each hypothesis depends mainly on the
number of examples and the theorem proving effort required to determine
if an example is entailed by the hypothesis. We propose a technique that
reduces the theorem proving effort to a bare minimum and stores valuable
information to compute the number of examples entailed by each hypoth-
esis (using a tree data structure). The information is computed only once
(pre-compiled) per example. Evaluation of hypotheses requires only basic
and efficient operations on trees. This proposal avoids re-computation of
hypothesis’ value in theory-level search and cross-validation algorithms,
whenever the same data set is used with different parameters. In an
empirical evaluation the technique yielded considerable speedups.

Keywords: Mode Directed Inverse Entailment, Efficiency, Data Structures,
Compilation

1 Introduction

Several multi-relational data mining approaches have been proposed, such as
tree-mining, graph-mining, or cross-relational mining [13]. One powerful and
well-developed abstraction for multi-relational data mining techniques is Induc-
tive Logic Programming (ILP) [15,16]. ILP has been successfully applied to prob-
lems in several application domains [14]. Nevertheless, improvements in efficiency
and scalability are necessary to successfully tackle applications that learn from
large data-sets and/or generate large hypothesis spaces.

? This work has been partially supported by Myddas (POSC/EIA/59154/2004) and
by funds from the Programa Operacional “Ciência, Tecnologia, Inovação” (POCTI)
e do Programa Operacional “Sociedade da Informação” (POSI) do Quadro Co-
munitário de Apoio III (2000-2006). Nuno A. Fonseca is funded by FCT grant
SFRH/BPD/26737/2005.

ILP: Compute Once, Reuse Often 35

Research in improving the efficiency of ILP systems has focused on reducing
their sequential execution time, either by reducing the number of hypotheses
generated (see, e.g., [18,5]), or by efficiently testing candidate hypotheses (see,
e.g., [4,7,8]). Another line of research, recommended by Page [19] and pursued
by several researchers is the parallelization of ILP systems[10].

It is well known that an ILP system generates many candidate hypotheses
which have many similarities among them. Usually, these similarities tend to
correspond to common prefixes among the hypotheses. Blockeel et al. [4] defined
query-packs as a technique to exploit this pattern and improve the execution time
of ILP systems. Inspired by their work, we focus on how to reduce the amount of
theorem proving to a minimum. As a first step, in a previous work [6], we argued
that in MDIE [17] based systems the ILP search process can be efficiently coded
by considering the set of all clauses that can be generated from the bottom
clause. This led to an algorithm where a prefix-tree is used to represent all
clauses that can be generated during the search (much in the way of query
packs). But, instead of actually evaluating these clauses, we estimate coverage
by counting the number of bottom-clauses that generated those clauses. Initial
results showed that such an approach can indeed improve performance over
standard ILP search.

The above work uses a single tree to represent the whole search space. In
this work, we go one step further by proposing a novel two step approach to
MDIE-based ILP where:

1. A pre-compilation step defines the search space by generating a set of clauses
per example (where a tree can be used to encode the set of clauses).

2. A search step implements a search using algorithms constructed from an
algebra of set operations implemented over these sets of clauses.

Our original motivation was the observation that the same set of clauses is gen-
erated from the same example at different computation steps (i.e., at different
steps of theory construction or when performing cross-validation). Hence, com-
puting the set of clauses for each example a single time, before execution, could
significantly improve performance. Indeed, experimental results do show a large
reduction in execution time. Moreover, we believe that our approach also pro-
vides a novel, and very modular, framework for ILP algorithm design, where the
search can be easily encoded using set operations.

The remainder of the paper is organised as follows. In Section 2 we provide
a brief introduction to ILP and MDIE. Section 3 introduces the reader to the
rationale of seeing the examples as set of clauses and in Section 4 we present
a first algorithm that exploits this idea. Next, in Section 5, we describe the
proposed two step algorithm (T−once MDIE). In Section 6 some implementation
details are discussed. In Section 7 we present an empirical evaluation of the
impact in execution time and accuracy of our algorithm. Finally, in Section 8 we
discuss our work and draw conclusions.

36 N.A. Fonseca et al.

2 Background

The predictive ILP problem can be defined as follows. Let E+ be the set of
positive examples, E− the set of negative examples, E = E+ ∪ E−, and B the
prior knowledge (background knowledge). In general, B and E can be arbitrary
logic programs. The aim of an ILP system is to find a hypothesis (also referred
to as a theory) H, in the form of a logic program, such that B ∧ E− ∧H 2 ¤
(Consistency) and B ∧ H ² E+ (Completeness), assuming that B 2 E+ and
B ∧ E− 2 ¤.

Mode-Directed Inverse Entailment (MDIE) [17] uses inverse entailment to-
gether with mode restrictions as the basis to perform induction. The key idea
in MDIE is to find all literals that could be used in hypotheses that explain the
example. This is achieved through the construction of the bottom-clause, that
can be considered as the set of all such literals.

Construction of the bottom-clause ⊥e often proceeds as a standard fixed-
point calculation algorithm. Starting from the example e, and using the mode
declarations, we scan the mode language for all possible clauses of the form
e ← l1. We collect all answers for l1 as a set L1 = ∪il1i \ L0, where L0 = {e}.
Next we generate the set L2 with all clauses of the form l1 ← l2, where l1 ∈ L1.
We keep repeating the process until reaching a fixed point (which may be the
whole data-base) or reaching some user-defined constraint. Therefore, the bottom
clause ⊥e can be seen as ∪jLj . Most ILP systems use the bottom clause in order
to bound (anchor) the search space lattice. Therefore, most applications try to
have relatively small bottom-clauses, as otherwise the search space is as big as
if one just enumerates clauses.

3 Examples as Set of Clauses

MDIE-based systems use bottom-clauses to generate sets of clauses. Given a
bottom-clause ⊥e, the refinement operator generates clauses from ⊥e that will
cover at least the example e. Let us call this set S. The clauses in S share e, so we
can say that e forms S. Note that, in general, S will be arbitrarily large, and we
will need to impose some further restrictions, such as clause length restrictions.
Moreover, note that even if complete, S does not correspond to all clauses that
cover e. Indeed, it is well known that the bottom-clause is not complete: we can
generate clauses that cover an example e which cannot be refined from ⊥e [20].

Still, it is interesting to try to understand the meaning of S. An important
question in this regard is: if a clause c generated for example e covers example
x, will c or, to be more precise, a variant of c, be in x’s bottom clause, ⊥x? We
would expect this to be true for ground clauses. Indeed, if this was not the case
there must be at least a ground clause h← g1, . . . , gi−1, gi not refined from ⊥x,
such that h← g1, . . . , gi−1 can be refined from ⊥x. Moreover, gi must be in ⊥e
but not in ⊥x. On the other hand, if gi was in h ← g1, . . . , gi−1, gi it can be
reached from h, g1, . . . , gi−1, so it must also be in ⊥x.

Consider, for example, the following bottom-clause for an example e:

ILP: Compute Once, Reuse Often 37

⊥e = l(A)← h c(A,B), h c(A,C), d(B), o c(B), f(C).

and the following clause c:

c = l(A)← h c(A,B), h c(A,C), d(C), o c(B).

Careful examination shows that ⊥e is entailed by clause c. On the other
hand, the closest clause c′ that can be generated from the bottom-clause is:

c′ = l(A)← h c(A,B), h c(A,C), d(B), o c(B).

Although c′ = cθ, c′ is a more specific version of the original clause, it is not
a variant. In this case, we cannot find a variant, even though the example indeed
covers the clause.

This suggests the following approach: given an example e construct the corre-
sponding bottom clause ⊥e and generate a set S with all legal clauses c such that
c θ-subsumes ⊥e. Next, given a set of examples {e+

1 , e
+
2 , . . . , e

+
n , e
−
1 , e
−
2 , . . . , e

−
m}

construct the corresponding sets of clauses {S+
1 ,S+

2 , . . . ,S+
n ,S−1 ,S−2 , . . . ,S−m}:

finding the best clauses should be just a question of searching for clauses that
appear in most S+

i and not in S−i . More precisely, if we allow no noise, then we
would like to find the clause with the largest coverage from ∪iS+

i \ ∪j S−j .
We are not interested in the examples, but in the set of all clauses of interest,

S (which would to a first approximation be close to ∪iS+
i). Now, this set may

grow quickly, and therefore needs a compact and fast representation. It makes
sense to represent sets of clauses by structures optimised for quick access and
sharing, such as the tries discussed in Section 6.

4 T-MDIE

Assuming that the above representation works, one approach to estimate the
coverage of all clauses is: walk over all examples and generate all clauses sub-
suming the bottom-clause such that for each clause c generated from an example
e ∈ E:

– If c ∈ S, somehow state that c covers e.
– If c 6∈ S, add c to S and state that c covers e.

This basic algorithm can be optimised if we visit positive examples first, and
assume we do not care about clauses that only cover negative examples:

– If the example e ∈ E+ and c ∈ S, state that c covers one more positive
example.

– If the example e ∈ E+ and c 6∈ S, add c to S and state that c covers one
positive example.

– If the example e ∈ E− and c ∈ S, state that c covers one more negative
example.

38 N.A. Fonseca et al.

– If the example e ∈ E− and c 6∈ S, do nothing.

We therefore need to define an abstract set that we call decorated set S with
all clauses and their coverage. A decorated set S is a set whose elements are
clauses, and attached to each element are several counters (one counter for each
class of the learning problem). With this abstraction we can easily implement any
theory construction algorithm as shown in Figure 1. The main difference with
systems like Progol or Aleph concerns the inner procedure learn T MDIE().
We next describe how clauses are being learned in the T-MDIE approach [6].

generalise T MDIE(B,E+, E−, C):
Given: background knowledge B, finite training set E = E+ ∪ E−, constraints C.
Return: a hypothesis H that explains E and satisfies C.

1. H = ∅
2. while E+ 6= ∅ do
3. h = learn T MDIE(B,E+, E−, C)
4. E+ = E+ \ covered(h)
5. H = H ∪ h
6. B = B ∪ h
7. endwhile
8. return H

Fig. 1. The greedy cover algorithm of a MDIE system implementation.

The T-MDIE algorithm has two basic stages (see Figure 2). First a deco-
rated set S is constructed (lines 1 to 9) and then the best clause (according to
some metric) is found by inspection of the set (line 10). The decorated set S is
constructed as described above. First, all positive examples are processed and
then a pruning procedure, prune(), is invoked to remove useless clauses from
S (e.g., clauses with positive coverage lower than some predefined minimum
number of positive examples). Next, all negative examples are also processed
and then the set is pruned again. While processing the negative examples, the
negative counters of the clauses in S are updated whenever a negative example
generates a matching clause. This means that the clauses generated from the
negative examples that are not in S are discarded.

learn T MDIE(B,E+, E−, C):
Given: background knowledge B, finite training set E = E+ ∪ E−, constraints C.
Return: the best hypothesis that explains some of the E+ and satisfies C.

1. S = ∅
2. foreach e ∈ E+ do
3. fillSet(S, B, e, C)
4. endforeach
5. S = prune(S, C)
6. foreach e ∈ E− do
7. fillSet(S, B, e, C)
8. endforeach
9. S = prune(S, C)
10. return bestClauseInTree(S, C)

Fig. 2. The learning algorithm of T −MDIE.

ILP: Compute Once, Reuse Often 39

The set S is filled in three main steps (see Figure 3): i) for each example we
generate a bottom clause (line 2); ii) using the bottom clause we generate all
valid clauses4 (line 4), normalise them (line 5), and insert them in the set (line 6).
Normalisation orders the literals according to the Prolog “@ <” order relation.
We generate all renaming of existential variables to check if a variant already
exists in the tree, therefore guaranteeing a unique representation for each clause.
The insertUpdateInSet() procedure works as follows. If the example class is
positive the clause is inserted into S and the positive counter updated. If the
class is negative, only the negative counter of the clause is updated (the clause
is not added to S, only the coverage is updated).

fillSet(S, B, e, C):
Given: decorated set S, background knowledge B, example e, constraints C.

1. class = getExampleClass(e)
2. bottom = saturate(e,B,C)
3. do
4. clause = findNewV alidClause(bottom,C)
5. clause = normalise(clause)
6. insertUpdateInSet(clause,S, class)
7. while clause ! = ∅

Fig. 3. From an example to a set of clauses.

The algorithm is shown to be complete when compared to the traditional ap-
proach of computing the coverage (PROLOG resolution). Therefore, the cover-
age calculated for a clause by the algorithm should be interpreted as an estimate
since it may not be the exact (correct) value.

5 T-once MDIE

The construction of the set S requires saturating all the examples (both positives
and negatives). Often, one may want to perform repeated runs on the same ex-
amples. For instance, one may want to experiment with different parameters, or
one may be performing cross-validation. Next, we show how repeated saturation
and clause generation can be avoided by decoupling the generation of S from its
usage. The process is divided into two steps: a compilation step, where a Se is
generated for each example e and stored on disk. The stored Se are loaded at
runtime, therefore avoiding the saturation and generation of clauses.

Our algorithm works as follows. At compilation time, we construct a set of
clauses per example; more precisely, we represent the saturated clause for each
example e as a separate Se as depicted in the algorithm presented in Figure 4. At
learning time, we obtain clause coverage information through an algebra of basic
operations, such as union or subtraction, on decorated sets. As an example, search
for the best clause can be described as a search in the decorated set obtained
from the union of all Se. Next, we show in more detail how such approach can

4 Clauses satisfying the language and bias constraints.

40 N.A. Fonseca et al.

be used to implement greedy coverage in a MDIE-based ILP system. It should
be clear that similar operations can be used to implement other ILP algorithms.

compileAnswerSet(B,E,C):
Given: background knowledge B, finite training set E = E+ ∪ E−, constraints C.

1. foreach e ∈ E do
2. class = getExampleClass(e)
3. bottom = saturate(e,B,C)
4. Se = ∅
5. do
6. clause = findNewV alidClause(bottom,C)
7. clause = normalise(clause)
8. Se = insertInSet(clause,S, class)
9. while clause ! = ∅
10. saveSet2File(Se, e, C)
11. endforeach

Fig. 4. Compilation of examples procedure.

Figure 5 shows one approach to implement a MDIE-based algorithm (such as
the default algorithms in Progol [17] and Aleph [1]) using the decorated sets. Like
the algorithm presented in the previous section, the learn T − once MDIE()
algorithm has two main stages: first, it generates a S by loading the compiled
decorated sets and merging them using a joinAdd() procedure; then the best
clause is recursively selected using greedy cover removal.

learn T − once MDIE(E,C):
Given: finite training set E = E+ ∪ E−, constraints C.
Return: a hypothesis H that explains E and satisfies C.

1. S = ∅
2. foreach e ∈ E+ do
3 Se = loadSetFromFile(e, C)
4. S = joinAdd(S,Se)
5. endforeach
6. S = prune(S, C)
8. H = ∅
9. while E+ 6= ∅ do
10. h = bestClauseInTree(S, C)
11. E+ = E+ \ covered(h)
12. H = H ∪ h
13. S = subtract(S, {Se| e ∈ covered(h) and e ∈ E+})
14. endwhile
15. return H

Fig. 5. The greedy cover algorithm of a MDIE system implementation with pre-
compilation.

6 Implementation Issues

Our algorithms depend on the ability to implement efficiently operations such as
union and subtraction of sets. Furthermore, we need a data structure to store the

ILP: Compute Once, Reuse Often 41

decorated sets (clauses and respective coverages). To do so efficiently, we used
tries [12]. A trie is a tree structure where each different path through the trie
data units, the trie nodes, corresponds to a term (clause). An essential property
of the trie data structure is that common prefixes are represented only once. This
naturally applies to ILP since the hypothesis space is structured as a lattice and
hypotheses close to one another in the lattice have common prefixes (literals).

Using Tries to Represent Hypotheses In order to maximise the number of
common trie nodes when storing clauses in a trie, we used Prolog lists to rep-
resent the clauses. A clause of the form Head : −Body1, ...,Bodyn is stored in the
trie structure as an unique path corresponding to the list [Head ,Body1, ...,Bodyn].
Such a path always starts at the root node in the trie, follows a sequence of trie
nodes and terminates at a leaf data structure, the ilp frame data structure, that
we used to extend the original trie structure to store associated information with
the clause, namely information concerning the number of positive and negative
examples covered by the clause. Figure 6 presents an example of a trie storing
three clauses.

An important point when using tries to represent terms is the treatment of
variables. We follow the formalism proposed by Bachmair et al. [2], where each
variable in a term is represented as a distinct constant. Formally, this corresponds
to a function, numbervar(), from the set of variables in a term t to the sequence
of constants VAR0, ...,VARN , such that numbervar(X) < numbervar(Y) if X is
encountered before Y in the left-to-right traversal of t. For example, in the term
[eastbound(T), has car(T,C), long(C)], numbervar(T) and numbervar(C) are
respectively VAR0 and VAR1.

LIST

root node

has_car/2

VAR0

VAR1

long/1

VAR1

END_LIST

ilp frame

eastbound/1

VAR0

closed/1

VAR1

short/1

VAR1

END_LIST

ilp frame

LIST

root node

has_car/2

VAR0

VAR1

long/1

VAR1

END_LIST

ilp frame

eastbound/1

VAR0

closed/1

VAR1

short/1

VAR1

END_LIST

ilp frame

long/1

VAR1

END_LIST

ilp frame

LIST

root node

has_car/2

VAR0

VAR1

long/1

VAR1

END_LIST

ilp frame

eastbound/1

VAR0

(a) (b) (c)

Fig. 6. Using tries to represent:
(a) C = eastbound(T) :- has car(T,C), long(C).
(b) C and D = eastbound(T) :- has car(T,C), closed(C), short(C).
(c) C, D and E = eastbound(T) :- has car(T,C), closed(C), long(C).

42 N.A. Fonseca et al.

Basic Trie Operations In the proposed T-once algorithm, an decorated set
is constructed once and for each example. Therefore, since tries are used to
represent the decorated sets we need to be able to perform some basic trie
operations such as the union and subtraction of tries. The trie-joinAdd() and
trie-subtract() procedures implement these operations. Given two tries, A and
B, the trie-joinAdd(A,B) procedure returns a trie R representing the union of
both tries, that is, if a term t ∈ A or t ∈ B then t ∈ R and ilp frame(tR) =
ilp frame(tA) + ilp frame(tB), where ilp frame(t) represents the information
concerning the number of positive and negative examples covered by t.

The trie-subtract(A,B) procedure returns a trie R equivalent to A but with
the information concerning the number of positive and negative examples covered
by the terms in B subtracted from the terms in A. More formally, if a term
t ∈ A then t ∈ R and ilp frame(tR) = ilp frame(tA) − ilp frame(tB). Terms
represented in B but not in A are ignored.

Searching through a chain of sibling trie nodes that represent alternative
paths is done sequentially. When the chain becomes larger than a threshold value
(8 in our implementation), we dynamically index the nodes through a hash table
to provide direct node access and therefore optimise the search. Further hash
collisions are reduced by dynamically expanding the hash tables. Hence, if the
total number of trie nodes in tries A and B is respectively NA and NB , then the
time complexity of the trie-joinAdd(A,B) and trie-subtract(A,B) procedures is
O(NA +NB).

7 Experiments and Results

The goal of the experiments was to evaluate the impact of the proposed approach
on the execution time and quality of the models when dealing with real applica-
tion problems. We implemented the two algorithms in the April ILP system [11].
For each data set the system was executed with the following configurations:
standard MDIE implementation using a deterministic top-down breadth-first
search (DTD-BF), T −MDIE, and T − once.

7.1 Experimental Settings

The experiments were performed on an AMD Athlon(tm) MP 2000+ dual-
processor PC with 2 GB of memory, running Linux (kernel 2.6.12) Fedora. The
data sets used were downloaded from the Machine Learning repositories at the
Universities of Oxford5 and York6. Table 1 characterises the data sets in terms
of number of positive and negative examples as well as background knowledge
size (number of relations used). The total number of examples ranges from 205
in the Mutagenesis data set up to 1762 in the Pyrimidines data set.

5 http://www.comlab.ox.ac.uk/oucl/groups/machlearn/
6 http://www.cs.york.ac.uk/mlg/index.html

ILP: Compute Once, Reuse Often 43

Table 1. Data sets. | E+ | is the number of positive examples, | E− | is the number of
positive examples, and | B | is the number of relations in the background knowledge.

Data set | E+ | | E− | | B |
Carcinogenesis 202 174 44
Mutagenesis 136 69 21
Pyrimidines 881 881 244

The search was constrained to clauses with 3 literals (maximum) in the body.
The clause length was constrained due to the time taken by the DTD-BF algo-
rithm. In practice we tested T − once algorithm on some datasets with a clause
length up to 5 literals in the body. We performed a 10-fold cross validation to
evaluate the training time and accuracy.

7.2 Results and Discussion

Naturally, T − once MDIE execution time requires some time to compile the
examples. Table 2 presents the compilation (pre-processing) time, in seconds,
taken for each data set, the average number of clauses compiled (refined), and the
average file size of each compiled example (in kbytes). Cleary, the compilation
is not a particularly fast process and further improvements should be made.
Nevertheless, compilation is performed only once, as long as saturation-related
settings are not changed or the clause length used is not increased. Therefore,
in subsequent runs where other parameters (e.g., as noise) are changed there is
no need to recompile the examples.

Table 2. Compilation (pre-processing) time, average number of clauses compiled by
example (in thousands), and average file size (in kbytes) of each compiled example.

Data set Time (sec) Clauses Size

Carcinogenesis 2,840 19,351 k 920 kb
Mutagenesis 6,054 12,659 k 301 kb
Pyrimidines 1,451 2,079 k 33 kb

Table 3 compares the execution times ofDTD−BF , T−MDIE, and T−once
algorithms. The values presented are the average of a 10-fold cross validation and
the sum of the execution times (within brackets). The results show that once
the examples are compiled, T −once is several times faster than T −MDIE and
DTD−BF in all datasets. However, if we take into account the compilation time
then the best approach, for the 10-fold runs, is clearly T−MDIE. Naturally, the
gains of using T − once increase with the number of runs performed. Therefore,
it is well suited for cross-validation and for performing parameter tuning.

Finally, Table 4 presents the average accuracy for the two approaches. It
shows that in spite of the coverage computed to be an estimate, the improvements
in performance are not obtained at a cost of the quality of the models generated.

44 N.A. Fonseca et al.

Table 3. Average execution time (in seconds) and cross-validation total execution
time (within brackets). The total execution time of T − once algorithm includes the
compilation time.

Data Set DTD −BF T −MDIE T − once
Carcinogenesis 617 (6,170) 59 (590) 14 (2,980)
Mutagenesis 2,487 (24,870) 43 (430) 34 (6,394)
Pyrimidines 570 (5,700) 89 (890) 20 (1,651)

Table 4. Average accuracy (standard deviation within brackets)

Data set DTD −BF T −MDIE Diff

Carcinogenesis 50 (3) 58 (9) +8
Mutagenesis 75 (11) 74 (9) -1
Pyrimidines 83 (3) 80 (1) -3

8 Conclusions

We have presented a novel approach to the execution of MDIE algorithms. Our
approach proceeds in two steps. In the first step we compile each example as a set
of clauses. In the second step we implement ILP search as a set of operations over
these sets of clauses. Since such operations can be implemented very efficiently,
our approach can generate major speedups over traditional ILP execution.

The reuse of the initial computation of the pre-compilation step pays-off
whenever there is a large amount of repetition in clause evaluation. That hap-
pens when the induced theory has several clauses. In this case, after each itera-
tion the covered examples are removed and we only need to perform subtraction
operations between the sets of clauses, an operation that can be efficiently im-
plemented using tries. The technique also pays-off when using cross-validation.

A further advantage of the approach is that it can be easily parallelisable,
as the first step runs independently for every example. Moreover, we believe
that our approach is a step forward in facilitating experimentation with different
parameters, and namely in using internal cross-validation for parameter selection
in ILP. On the other hand, the approach applies to MDIE-based algorithms only,
and it needs further investigation when exploring longer clauses or in data sets
with large numbers of examples (some techniques from [3] may help in that
direction).

Last, an interesting insight from our approach is that we can abstract the
ILP search procedure as a process of tree-mining over the trees representing
individual examples. We believe that this suggests new and exciting directions
for future research in this area.

References

1. Aleph. http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/.
2. L. Bachmair, T. Chen, and I. V. Ramakrishnan. Associative-Commutative Dis-

crimination Nets. In Proceedings of the 4th International Joint Conference on

ILP: Compute Once, Reuse Often 45

Theory and Practice of Software Development, number 668 in LNCS, pages 61–74,
1993. Springer-Verlag.

3. H. Blockeel and L. De Raedt and N. Jacobs and B. Demoen, Scaling Up Inductive
Logic Programming by Learning from Interpretations, Data Mining and Knowledge
Discovery, vol. 3, N. 1, pp 59-93, 1999.

4. H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens, J. Ramon, and H. Vandecasteele.
Improving the efficiency of Inductive Logic Programming through the use of query
packs. Journal of Artificial Intelligence Research, 16:135–166, 2002.

5. R. Camacho. Improving the efficiency of ilp systems using an incremental lan-
guage level search. In Annual Machine Learning Conference of Belgium and the
Netherlands, 2002.

6. R. Camacho, N. A. Fonseca, R. Rocha and V. S. Costa. ILP :- Just Trie It. 17th
International Conference on Inductive Logic Programming, 2007.

7. V. S. Costa, A. Srinivasan, and R. Camacho. A note on two simple transformations
for improving the efficiency of an ILP system. LNCS, 1866, 2000.

8. V. S. Costa, A. Srinivasan, R. Camacho, H. Blockeel, B. Demoen, G. Janssens, J.
Struyf, H. Vandecasteele, and W. V. Laer. Query transformations for improving
the efficiency of ILP systems. Journal of Machine Learning Research, 4:465–491,
2003.

9. N. A. Fonseca and R. Rocha and R. Camacho and F. Silva Efficient Data Structures
for Inductive Logic Programming, Proceedings of the 13th International Conference
on Inductive Logic Programming LNAI vol 2835, pp 130–145, 2003.

10. N. A. Fonseca and F. Silva and R. Camacho, Strategies to Parallelize ILP Systems,
Proceedings of the 15th International Conference on Inductive Logic Programming
(ILP 2005), LNAI, vol 3625, pp 136–153, 2005.

11. N. A. Fonseca, F. Silva, and R. Camacho. April - An Inductive Logic Programming
System. In Proceedings of the 10th European Conference on Logics in Artificial In-
telligence (JELIA06), volume 4160 of LNAI, pages 481–484, 2006. Springer-Verlag.

12. E. Fredkin. Trie Memory. Communications of the ACM, 3:490–499, 1962.
13. J. Han and M. Kimber. Data Mining: Concepts and Techniques. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2007.
14. Ilp applications. http://www.cs.bris.ac.uk/ ILPnet2/Applications/.
15. S. Muggleton. Inductive logic programming. In Proceedings of the 1st Conference

on Algorithmic Learning Theory, pages 43–62. Ohmsma, Tokyo, Japan, 1990.
16. S. Muggleton. Inductive logic programming. New Generation Computing, 8(4):295–

317, 1991.
17. S. Muggleton, Inverse Entailment and Progol, New Generation Computing, Special

issue on Inductive Logic Programming. 245-286, vol 13, N. 3-4, 1995.
18. C. Nédellec, C. Rouveirol, H. Adé, F. Bergadano, and B. Tausend. Declarative

bias in ILP. In L. De Raedt, editor, Advances in Inductive Logic Programming,
pages 82–103. IOS Press, 1996.

19. D. Page. ILP: Just do it. In J. Cussens and A. Frisch, editors, Proceedings of the
10th International Conference on Inductive Logic Programming, volume 1866 of
LNAI, pages 3–18. Springer-Verlag, 2000.

20. A. Yamamoto W hich Hypotheses Can Be Found with Inverse Entailment? ILP ’97:
Proceedings of the 7th International Workshop on Inductive Logic Programming,
pp 296–308, 1997.

Mining Imbalanced Classes in Multirelational

Classification

Hongyu Guo and Herna L. Viktor

School of Information Technology& Engineering,
University of Ottawa, Canada

{hguo028,hlviktor}@site.uottawa.ca

Abstract. Multirelational classification algorithms search for patterns
across multiple interlinked tables (relations) in a relational database.
This type of method searches for relevant features both from a target
relation (in which each tuple is associated with a class label) and relations
related to the target, in order to better classify tuples in the target
relation. Unfortunately, most of these methods implicitly assume that
the classes in the target relation are equally represented. They thus tend
to produce poor predictive performance over the underrepresented class
in the data. This paper presents a novel strategy to deal with imbalanced
multirelational data where the number of examples of one class in the
target relation is much higher than the others. The algorithm learns from
multiple views of a relational database and then combines the knowledge
acquired by the view learners in order to find a better quality model
for the skewed classes. Experiments performed on six real-world data
sets show that the proposed method achieves promising results when
compared with other popular relational data mining algorithms, in terms
of the ROC curve and AUC value obtained. In particular, our method
outperforms the others for very highly imbalanced data sets.

1 Introduction

There is a rich tradition of imbalanced class learning applied to single table
(flat file) data sets, where the number of examples of one class (majority) is
much higher than the others (minority classes) [19]. Data mining algorithms
may be biased towards the majority class (negative examples), thus producing
poor predictive accuracy over the minority classes (positive examples). Typical
approaches to dealing with imbalanced data sets include under-sampling neg-
ative examples, over-sampling positive instances, penalizing misclassification of
minority classes (cost-sensitive learning), weighting examples in an effort to bias
the learning toward the minority class, applying boosting algorithms, and cre-
ating synthetic data to balance the examples of the classes [19].

In contrast to the rich tradition in the conventional machine learning com-
munity, little attention has been paid to the imbalanced class problem in the
multirelational data mining research field. Over the past few years, methods
such as FOIL [16], CrossMine [21], TILDE [2], RelAggs [13], and RollUp [12],

Mining Imbalanced Classes in Multirelational Classification 47

amongst others, have been introduced to learn from multirelational data. Most
of these methods implicitly assume that the classes to be learned are equally rep-
resented. Unfortunately, target tuples in many practical database applications,
such as credit card fraud detection and disease diagnosis, are highly imbalanced.
Often, correctly classifying the minority examples is of importance. To our best
knowledge, only one such approach was proposed by Sen and Getoor in [17].
They introduce the so-called “structured” cost functions to address the cost-
sensitive learning problem. That is, misclassification costs assignment not only
depends on the cost of individual example, but also the correction of related
instances. Their method requires that relational classifiers be able to capture
the correlations of the examples. The goal of their approach is to minimize the
expected cost of misclassification of the classifiers. We here present a new strat-
egy to learn from imbalanced target tuples in relational databases. In contrast
to the method proposed by Sen and Getoor, our strategy enables traditional
single-table classifiers to learn from skew class data. In addition, the goal of our
algorithm is to produce a classifier which can better predict both the minority
and majority classes in a relational database.

Fig. 1. Different dimensional projections of feature space

Our approach is based on the following three observations. First, often a rela-
tional database is designed by domain experts using an Entity Relationship (ER)
model, where multiple relations are connected via entity-relationship links [8].
Each relation usually groups a set of features which come from a certain type
of observation of the relational domain. Second, different feature subsets in a
multirelational domain may have different awareness of the skewed classes to be
learned. As an example, Figure 1 visualizes the data from the Loan and Transac-
tion relations of a banking database as presented in the PKDD 99 challenge [1].
Figure 1 shows the distribution of the data, when considered in terms of the
two different tables. Here, the minority class is depicted using red circles, and
the majority class is shown in green. When one considers the class distribution
from the perspective of the Loan table, using the date and payment attributes
(left hand side of the table), it follows that there is no clear division. However,
when utilizing the Transactions table, with attributes amount and balance, as
shown in the right hand side of the Figure, most of the positive examples (red
circles) were gathering at the left-bottom corner. In this case, a simple decision
region indicated by the solid-line rectangle can have a good prediction against
the positive examples. Third, research shows that in many cases, ensembles of
classifiers can be effective in producing a classifier that is superior to any of the

48 H. Guo and H. L. Viktor

individual classifiers, especially when the combined classifiers are diverse and
accurate. Thus, classifiers built using features in different relations of a rela-
tional database can potentially be integrated to improve the classification of the
underrepresented examples in the data.

Our proposed method learns from multiple views (feature sets) of a relational
database. Each view learner initially learns from a separate feature set of the
database. As a result, each learner possesses a different awareness of the skewed
classes in the target relation. Subsequently, the view learners are combined using
majority voting in order to construct a better quality model for the imbalanced
classes. Our experiments performed on six real-world databases show that the
proposed method achieved promising results when compared with popular rela-
tional algorithms, in terms of the ROC curve and AUC obtained. In particular,
our method outperforms the others for very highly imbalanced data sets.

This paper is organized as follows. Section 2 introduces the background and
related work. Next, in Section 3, we present our proposed strategy. This is fol-
lowed, in Section 4, by our experimental results. Section 5 concludes the paper.

2 Background and Related Work

Measurement metrics: Imbalanced classification algorithms are often evaluated
using the Receiver Operating Characteristics (ROC) curves and AUC values [5,
9, 14, 19]. This is due to the ROC curve’s insensitivity to changes in the class
distribution of the data set [7]. A ROC curve represents the trade-offs between
the TP rate and FP rate over a range of decision thresholds. Although it can
summarize a classifier’s performance over a range, the ROC curve is a two-
dimensional technique. The area under the ROC curve (AUC), therefore, is often
calculated to reduce the measurements of an ROC curve to a single value. This
value provides an average expected performance of a classifier.

Learning from multiple feature sets: Learning from multiple feature subsets
has been investigated by many researchers [3, 4, 10, 14]. In our opinion, the most
promising one is multi-view learning. Multi-view learning describes the problem
of learning from multiple independent sets of features, i.e. views, of the presented
data. Following the same line of thought, Lazarevic and Kumar proposed a
strategy which uses bagging features to detect outliers [14]. Bryll et al. used
attribute bagging to improve the classifier’s accuracy [4].

Multirelational data mining: Multirelational classification use a relational
database as input. A schema for a relational database ℜ describes a set of tables
ℜ = {Ti}

n
1 and a set of relationships between pairs of tables. A table Ti consists

of a set of tuples, a primary key (denoted by T.key), a set of foreign keys (in
this paper, we refer to primary key and foreign keys as key attributes); the other
attributes are descriptive attributes. Foreign key attributes1 link to primary keys
of other tables: this link specifies a join between two tables.

In a multirelational classification setting, there is a database ℜ, which consists
of a target table Ttarget and a set of background relations {Ti}

n
1 . In addition, the

1 For simplicity, we only consider key attribute as a single attribute here.

Mining Imbalanced Classes in Multirelational Classification 49

target relation Ttarget has a target variable Y . That is, each tuple in this table
(target tuple) is associated with a class label which belongs to Y . Typically, the
relational classification task is to find a function F (x) which maps each target
tuple x to the category Y :

Y = F (x, T1···n, Ttarget), x ∈ Ttarget

3 The Multiple View Approach

3.1 The MVC framework

The so-called MVC-IM strategy presented here applies the MVC framework as
proposed in [10]. This framework aims to enable propositional methods to explore
relational domains directly. It consists of the following five sequential stages:

1) Information Propagation Stage: The information propagation stage con-
structs the training data sets for use by a number of multiple view learners, using
a relational database as input. The information propagation element propagates
the tuple IDs (identifiers for each tuple in the relation) and classes from the
target relation to the background relations.

2) Aggregation Stage: The aggregation stage summarizes information embed-
ded in multiple tuples and squeezes them into one tuple. In this stage, aggrega-
tion functions are applied to each background relation (to which the tuple ID and
target concepts were propagated). Each new constructed background relation is
then used as training data for a particular view learner.

3) View Learners Construction Stage: The view learners construction stage
constructs various hypotheses on the target concept, based on the multiple train-
ing data sets given by the aggregation stage. Conventional data mining methods
are used to learn the target concept from each view of the data separately. In this
stage, a number of view learners, which differ from one another are constructed.

4) View Validation Stage: This step evaluates all view learners constructed
in the construction stage. This processing is needed to ensure that they are
sufficiently able to learn the target concept on their respective training sets. In
the MVC framework, learners with training error greater than 50% are discarded.

5) View Combination Stage: The view combination stage is the last step of
the MVC strategy. This step incorporates the trained view learners into a meta-
learner to construct the final classification model. The meta-learner is called upon
to produce a function to control how the multiple view learners work together,
to achieve maximum classification accuracy.

We here extend the MVC framework in order to handle skewed classes in
multirelational data. These extensions are discussed next.

3.2 Extensions for Learning Skew Classes

The main goal of the MVC–IM method is to learn a model which can better
predict both the majority and minority classes in imbalanced multirelational
data. Two major extensions, namely view validation and view combination, have
been introduced in the MVC-IM strategy and are discussed next.

50 H. Guo and H. L. Viktor

View Validation In order to produce a combined classifier which is superior to
the individual view learners, we need to ensure that each inducted view learner
has sufficient knowledge on the minority classes. Consider a special case of a
MVC-IM learning setting, where the database forms three disjoint data sets V1,
V2, and V3. In this case, a tuple x in the target relation Ttarget is viewed as

x =
〈

x1, x2, x3, y
〉

where x1, x2, and x3 are instances in the data set V1, V2, and V3, respectively.
The variable y denotes the class label. Three view learners f1, f2, and f3 are
constructed by training using data sets V1, V2, and V3, respectively. In this way,
we have decision functions

f(x1, x2, x3, y) = f1(x1, y) ∪ f2(x2, y) ∪ f3(x3, y)

where ∪ denotes a model combination scheme. Often, a common way to combine
the three learners is to let

F (X) = mode{f1, f2, f3}

That is, x is assigned the class that receives the largest number of classifications
(or votes). However, poor predictors may be transferred into a poorly performing
final model. We, therefore, need to evaluate the validation (in terms of sufficient
knowledge on both the majority and minority classes) of the view learners f1,
f2, and f3, in order to obtained a better combined classifier.

Unlike the view validation criterion error rate used by the MVC approach [10],
the MVC-IM strategy uses the AUC value to evaluate the quality of the multiple
view learners. It removes view learners with a low AUC value. The reason for
this choice is as follows. In imbalanced class applications, predictive accuracy is
inappropriate for evaluating learning methods. For example, a classifier which
always predicts the majority class in a highly skewed class problem can get a
very high resultant accuracy. In addition, accuracy metric is sensitive to the
change of the class distribution in the data. AUC values, on the other hand, can
provide an average expected performance of a classifier over a range of trade-offs
between TP rate and FP rate, as well as over different decision thresholds. We,
therefore, employ the AUC value to evaluate the performance of view learners
of the MVC-IM algorithm.

In the MVC-IM strategy, view learners with AUC value less than 0.5 are
discarded. In the ROC space, random guessing algorithms produce the diagonal
line between the points (0,0) and (1,1), thus obtaining an AUC value of 0.5. That
is, only view learners with average performance better than random guessing are
used in the MVC-IM method.

View Combination In contrast to the meta-learning used in the MVC method,
voting combination technique is employed in the MVC-IM strategy in order to
obtain better knowledge on both the majority and minority classes.

Strategies for combining models have been investigated thoroughly [20]. The
most popular are those such as Stacking, Boosting, and Bagging [20]. Stacking

Mining Imbalanced Classes in Multirelational Classification 51

employs a meta learner to learn which base classifiers are the reliable ones. The
Boosting and Bagging methods, on the other hand, apply a voting principle.

Recall that the MVC method applies meta-learning to combine the multiple
view learners. That is, a meta-learner is called upon to produce a function to
control how the multiple view learners work together, in order to achieve max-
imum classification accuracy. In other words, the combination process of the
MVC method aims to yield a better accuracy regardless of the predictions on
the minority class. Thus, such a combination technique may end up with very
poor predictive performance on the underrepresented examples in an imbalanced
data set. Based on this observation, a meta-learning combination technique is
inappropriate for learning the minority class in a skew class data set.

In contrast to the meta-learning method, another popular model combination
technique is the voting principle, which is used in Boosting and Bagging. Boosting
applies a weighted voting strategy. In this method, each individual model has a
different weight affecting the final results. Often, the more confident individual
learners have more impact on the final results. In a majority voting combination
method, such as the one used in Bagging, each individual model outputs one
score, e.g. a probability. This score is either assigned to one class label as a
whole or divided into several class labels. Next, the class label with the largest
score, for example, is taken as the final result of the combined model.

Algorithm 1 The MVC-IM Algorithm
Input: A DB= {Ttarget, T1, T2, · · · , Tn}; Target tuples {〈xi, yi〉} ∈ Ttarget, where

xi ∈ X, yi ∈ Y (X is some instance space and Y is a label set); View learner L.
Output: Classification model F .

1: Propagate information from Ttarget to each {Tt}
n
1
, forming {T ′

t}
n
1
;

2: Aggregate multiple tuples in {T ′

t}
n
1
, along with relation Ttarget, forming view set {Vt}n

0
from

each relation in the DB;
3: Train each L separately with Vt ∈ {Vt}n

0
, forming hypothesis set {ft}n

0
, where ft : X → Y ,

with AUC value of αt;

4: Remove ft with αt ≤ 0.5, forming hypothesis set {ft}n′

0
;

5: Output the final hypothesis:

F (X) = arg maxc

∑ n′

t=0
p̂ct

where p̂ct is the probability estimate from the tth hypothesis ft for the cth class.

In the MVC-IM algorithm, we employ a majority voting method rather than a
weighted voting strategy. This is due to the following observation. View learners
in the MVC-IM strategy learn only from their own feature set. In addition,
each view learner may be trained by different subset of the target tuples. We,
therefore, have no reason to strongly believe that certain resultant learners are
“better” than the others. Furthermore, unlike the weighted voting strategy, a
majority voting scheme can prevent over-confidence in voters.

The majority voting strategy in the MVC-IM algorithm, as described in
Algorithm 1, works as follows. For each test example x, each view learner f t

first outputs a probability score for assigning each class c of the class set Y , i.e.
p̂ct. Subsequently, these scores are summed up according to each class in the
learning task. Finally, the class with the largest probability score is assigned to

52 H. Guo and H. L. Viktor

the test instance as the final result. In other words, the final classifier decision
of a test example x is based on the sums of the probability outputs

F (X) = arg maxc

∑n′

t=0 p̂ct

That is, each value of X classify to the class that receives the largest score.
The above two sections present our extensions to the MVC framework. Now

we simply describe the entire process of the MVC-IM strategy (Algorithm 1).
As shown in Algorithm 1, the method, first, constructs multiple views from the
relational database through information propagation and aggregation. Next, it
trains multiple learners, each learning from a different view constructed. Subse-
quently, view learners with AUC value less than 0.5 are removed. Finally, the
trained view learners are combined using majority voting.

Table 1. Summary of the data sets used

Data Set
#target #related target class # tuples
tuples relations distribution in task

MUT188 188 3 125:63 (34%) 15,218

F400AC 400 7 324:76 (19%) 75,982

F234AC 234 7 203:31 (13%) 75,816

F682AC 682 7 606:76 (11%) 76,264

EMCL I 4,065 8 3705: 360 (8%) 194,214

EMCL II 7,329 8 6969: 360 (4%) 197,478

4 Experiments

This section provides the results obtained for the MVC-IM algorithm on bench-
mark real-world databases. These results are presented in comparison, in terms
of AUC and ROC achieved, with three other state-of-the-art multirelational data
mining systems, namely TILDE, RelAggs, and CrossMine, along with a “base-
line” “flattening” approach (denoted as SimFlat) and the original MVC method
(as presented in [10]). Recall that, in contrast with the MVC-IM algorithm, the
original MVC method uses the predictive accuracy for view validation prior to a
meta-learning based view combination strategy. The SimFlat strategy uses the
same aggregate functions and follows the same join chains used by the MVC-IM
method to “flatten” relations into a flat file. The goal of the SimFlat strategy is
to provide a universal flat file which consists of all features used by individual
views in the MVC-IM strategy.

Six learning tasks derived from three standard real-world databases were
used to evaluate our algorithm. The derived six learning tasks present varying
degree of class distribution in the target relation. That is, the percentage of the
positive examples in these six learning problems ranges from 4% to 34%. Thus,
these learning tasks provide us a diverse test bed.

We implemented the MVC-IM algorithm using Weka [20]. Also, our exper-
iments applied C4.5 decision trees [15] and Naive Bayes probabilistic classi-

Mining Imbalanced Classes in Multirelational Classification 53

fiers [11] for the learning in the MVC-IM, RelAggs, MVC, and SimFlat ap-
proaches. The C4.5 decision tree learner was used due to its de facto standard
for empirical comparisons. In addition, Naive Bayes was chosen because of its
sensitivity to the changes of the input attributes [6]. The default settings of these
two learning methods were used. Each of these experiments produces ROC curves
and AUC results using ten-fold cross validation. In order to generate the average
ROC curve of the 10 folds, all test instances of the 10 folds were put together and
sorted according to their probabilities of belonging to the classes; the AUC val-
ues were then calculated using the Wilcoxon-Mann-Whitney statistic [20]. The
TILDE, RelAggs, and CrossMine methods were obtained from their authors.

4.1 Databases Used

Mutagenesis Database: Our first experiment (denoted as MUT188) was con-
ducted against the Mutagenesis database [18]. In this data set, 34% of the tar-
get tuples belong to the minority class. A summary of the characteristics for the
learning data set is given in Table 1.

Financial Database: Our second experiment was conducted against the Financial
database [1]. This database provides us with three different learning problems,
namely F234AC (target tuples contain only finished loans), F682AC (target
tuples contain all finished and unfinished loans), and F400AC (database as pre-
pared in [21]). There are 11%, 13%, and 19% of minority class instances in the
target tables of the three learning tasks, respectively (presented in Table 1).

ECML98 Database: Our last experiment used the database for the ECML 1998
Sisyphus Workshop. There are two learning tasks derived from this database.
In the first task (denoted as ECML I), we removed tuples in class 2 (minority
class) with id smaller than 14700; in the second task (denoted as ECML II),
we reversed the class of these removed tuples and then added them back to the
target relation in order to obtain a highly imbalanced data set. There are 8%
and 4% of minority class instances in the target tables of the two learning tasks,
respectively. In this experiment, we used the new start schemes prepared in [13].
A summary of this learning data set is also presented in Table 1.

4.2 Experimental Results

Using C4.5 decision trees In the first experiment, C4.5 decision trees were
used by the MVC-IM, RelAggs, and SimFlat approaches. Also, C4.5 decision
trees were used as the view learners and meta learners of the MVC method.
We present the ROCs and AUCs obtained for each of the six tasks in Figure 2
and Table 2, respectively. In Table 2, the best results for each data set were
highlighted in bold.

AUC analysis: The AUC values listed in Table 2 show that for almost all datasets
the MVC-IM method is able to improve over the RelAggs, TILDE, CrossMine,
MVC, and SimFlat algorithms, when C4.5 decision trees were used. Exceptions
were against the F400AC and F234AC data sets when compared with the Cross-
Mine algorithm. In other words, our MVC-IM strategy can provide an improve-
ment in classifying underrepresented classes of the data against almost all data

54 H. Guo and H. L. Viktor

Table 2. AUCs of the RelAggs, SimFlat, TILDE, CrossMine, MVC, and MVC-IM
approaches (using C4.5)

Data set RelAggs SimFlat TILDE CrossMine MVC MVC-IM

MUT188 0.876 0.888 0.807 0.912 0.874 0.914

F400AC 0.797 0.582 0.591 0.824 0.777 0.798

F234AC 0.722 0.48 0.591 0.785 0.687 0.775

F682AC 0.762 0.506 0.590 0.793 0.792 0.805

ECML I 0.957 0.945 0.553 0.961 0.946 0.990

ECML II 0.965 0.949 0.608 0.971 0.952 0.993

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

MUT188 database

RelAggs approach
SimFlat approach
TILDE approach
CrossMine approach
MVC approach
MVC−IM approach

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

F400AC database

RelAggs approach
SimFlat approach
TILDE approach
CrossMine approach
MVC approach
MVC−IM approach

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

F234AC database

RelAggs approach
SimFlat approach
TILDE approach
CrossMine approach
MVC approach
MVC−IM approach

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

F682AC database

RelAggs approach
SimFlat approach
TILDE approach
CrossMine approach
MVC approach
MVC−IM approach

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

ECML_I database

RelAggs approach
SimFlat approach
TILDE approach
CrossMine approach
MVC approach
MVC−IM approach

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

ECML_II database

RelAggs approach
SimFlat approach
TILDE approach
CrossMine approach
MVC approach
MVC−IM approach

Fig. 2. ROC Curves for MUT188, F400AC, F234AC, F682AC, ECML I, and
ECML II Databases (with C4.5 algorithms applied)

sets, regardless of the skewed rate of the datasets. Promisingly, the MVC-IM
strategy conducted almost perfect AUC values against the two most highly im-
balanced data sets, namely ECML I and ECML II, with AUC values of 0.990
and 0.993, respectively. These values outperformed that of all other five tested
systems, namely TILDE, RelAggs, CrossMine, MVC, and SimFlat approaches.

Furthermore, the experimental results as presented in Table 2 show that the
MVC-IM algorithms significantly benefited from the framework of learning from
multiple views. Recall that, the flat file conducted by the SimFlat approach
consists of attributes from all views of the MVC-IM strategy. That is, in the
MVC-IM algorithm, a set of feature sets (each feature set corresponds to a view in
the MVC-IM strategy) were separately employed to learn the skewed classes. On
the other hand, the SimFlat approach combined all sets of feature set into a flat
file, and then learned from all these features available. When comparing the AUC
values resulted from the SimFlat and MVC-IM algorithms, the results presented
in Table 2 show that the MVC-IM approach meaningfully outperformed the
SimFlat method against almost all six data sets. For example, against the F682,
F234AC, F400AC, ECML I, and ECML II data sets, the MVC-IM algorithm
improved the AUC values over the SimFlat method by 29.9%, 29.5%, 21.6%,
4.5%, and 4.4%, respectively.

Mining Imbalanced Classes in Multirelational Classification 55

In addition, further study of the experimental results show that the MVC-IM
algorithm benefited from the use of the majority voting strategy, when compared
with the MVC method, where a meta learning approach is employed for view
combination. The results in Table 2 show that the MVC-IM approach outper-
formed the MVC method against all tested cases, in terms of AUC obtained.

ROC analysis: The ROC graphs in Figures 2 again demonstrate that, in gen-
eral, the MVC-IM method potentially performs better against both the minor-
ity and majority classes, as compared with the RelAggs, TILDE, and SimFlat
approaches. The results show that, when against the F400AC, F234AC, and
F682AC data sets, the ROC curves of the MVC-IM strategies dominated that
of the TILDE and SimFlat approaches. In these three cases, the ROC curves of
the MVC-IM method were overlapped with that of the RelAggs and CrossMine
methods in the ROC space. Promisingly, against the two most imbalanced data
sets ECML I and ECML II, the ROC curves of the MVC-IM method dominated
that of all other tested systems. In other words, in these two highly skewed-class
tasks, the MVC-IM strategy performed superior to the other five tested systems
over all possible decision thresholds.

In addition, these ROC graphs confirmed that the MVC-IM algorithms sig-
nificantly benefited from learning from multiple views of a relational database.
For example, against almost all the tested data sets, the ROC curves conducted
by the MVC-IM strategies dominated that of the SimFlat approaches. One ex-
ception is against the less skewed MUT188 database, in which the MVC-IM’s
ROC curve was slightly overlapped with the ROC curve yielded by the SimFlat
method (at the ROC space with high TP rates). Also, these experimental results
indicate that the MVC-IM method benefited from the majority voting strategy,
when compared to the MVC meta-learning approach.

Table 3. AUCs of the RelAggs, SimFlat, TILDE, CrossMine, MVC, and MVC-IM
approaches (using Naive Bayes)

Data set RelAggs SimFlat TILDE CrossMine MVC MVC-IM

MUT188 0.899 0.909 0.807 0.912 0.848 0.947

F400AC 0.650 0.685 0.591 0.824 0.823 0.751

F234AC 0.630 0.591 0.591 0.785 0.685 0.812

F682AC 0.686 0.692 0.590 0.793 0.845 0.769

ECML I 0.956 0.929 0.553 0.961 0.980 0.980

ECML II 0.964 0.919 0.608 0.971 0.967 0.989

Using Naive Bayes probabilistic learners In the second experiment, Naive
Bayes was used by the MVC-IM, RelAggs, and SimFlat approaches. Also, Naive
Bayes was employed as the view learners of the MVC method. We present the
ROCs and AUCs obtained for each of the six learning tasks in Figure 3 and
Table 3, respectively.

AUC analysis: The AUCs listed in Table 3 again show that for most of the learn-
ing tasks the MVC-IM method was able to improve over all other tested sys-
tems, namely the RelAggs, TILDE, CrossMine, MVC, and SimFlat algorithms,

56 H. Guo and H. L. Viktor

when Naive Bayes learners were used. Exceptions were against the F400AC and
F682AC data sets when compared with the CrossMine and MVC algorithms.
Again, the MVC-IM method produced the best results for very highly imbal-
anced data sets.

When comparing results obtained by using C4.5 as learning methods, the
MVC-IM strategy yielded consistent results in terms of AUCs obtained regard-
less of the use of different learning methods. However, the RelAggs methods
performed slightly worse in five of the six learning tasks, as compared to that
of using the C4.5 as learners. Experimental results also indicate that the MVC
method performed somewhat better than when using C4.5 decision trees as view
learners. In addition, the SimFlat method had AUC improvement in half of the
learning problems, but yielded AUC loss against another half of the learning
tasks, compared to results of using C4.5 as mining strategy. Note that, the
applied propositional learning algorithm didn’t affect the performance of the
TILDE and CrossMine methods.

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

MUT188 database

RelAggs approach
SimFlat approach
TILDE approach
CrossMine approach
MVC approach
MVC−IM approach

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

F400AC database

RelAggs approach
SimFlat approach
TILDE approach
CrossMine approach
MVC approach
MVC−IM approach

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

F234AC database

RelAggs approach
SimFlat approach
TILDE approach
CrossMine approach
MVC approach
MVC−IM approach

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

F682AC database

RelAggs approach
SimFlat approach
TILDE approach
CrossMine approach
MVC approach
MVC−IM approach

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

ECML_I database

RelAggs approach
SimFlat approach
TILDE approach
CrossMine approach
MVC approach
MVC−IM approach

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

ECML_II database

RelAggs approach
SimFlat approach
TILDE approach
CrossMine approach
MVC approach
MVC−IM approach

Fig. 3. ROC Curves for MUT188, F400AC, F234AC, F682AC, ECML I, and
ECML II Databases (with Naive Bayes algorithms applied)

ROC analysis: Analysis on ROC graphs as shown in Figures 3 confirmed that
the MVC-IM method was superior as compared to the RelAggs, TILDE, and
SimFlat approaches. The ROC curves of the MVC-IM methods dominated over
ROC curves produced by the other three approaches. When compared with
the CrossMine and MVC algorithms the ROC curves produced by the MVC-
IM strategy dominated that of the CrossMine and MVC methods against the
MUT188 and ECML II data sets. Against the other four tested data sets, the
curves obtained by these three methods overlapped in the ROC space.

5 Conclusions

Knowledge discovery applications of commercial databases have often been hin-
dered by the lack of powerful skew-class learning algorithms. This paper presents
a novel strategy to deal with imbalanced multirelational data. The proposed algo-
rithm achieved promising results when compared with five other multirelational

Mining Imbalanced Classes in Multirelational Classification 57

learning methods against six imbalanced learning problems, in terms of AUCs
and ROC curves obtained. Furthermore, an important result indicates that the
MVC-IM method is superior when the class imbalanced is very high.

Our future work will involve testing this method against very large and highly
imbalanced databases. It would also be interesting to examine the influence of
different model combination techniques and view validation strategies.

References

1. P. Berka. Guide to the financial data set. In A. Siebes and P. Berka, editors,

PKDD2000 Discovery Challenge, 2000.
2. H. Blockeel and L. D. Raedt. Top-down induction of first-order logical decision

trees. Artificial Intelligence, 101(1-2):285–297, 1998.
3. A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training.

In Proceedings of the Workshop on Computational Learning Theory, 1998.
4. R. Bryll, R. Gutierrez Osuna, and F. Quek. Attribute bagging: improving accuracy

of classifier ensembles by using random feature subsets. PR, 36(6):1291–1302, 2003.
5. N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: Synthetic

minority over-sampling technique. Jour. of Arti. Inte. and Rese., 16:321–357, 2002.
6. P. Domingos. Metacost: A general method for making classifiers cost-sensitive. In

KDD ’99, pages 155–164, 1999.
7. T. Fawcett. An introduction to ROC analysis. Pattern Recogn. Lett., 27(8):861–

874, 2006.
8. H. Garcia-Molina, J. Ullman, and J. Widom. Database Systems: The Complete

Book. Prentice Hall, 2002.
9. H. Guo and H. L. Viktor. Learning from imbalanced data sets with boosting and

data generation: the databoost-im approach. SIGKDD Explr. Newsl., 6(1):30–39,
2004.

10. H. Guo and H. L. Viktor. Mining relational databases with multi-view learning.
In MRDM ’05, pages 15–24. ACM Press, 2005.

11. G. H. John and P. Langley. Estimating continuous distributions in bayesian clas-
sifiers. In UAI, pages 338–345, 1995.

12. A. J. Knobbe. Multi-Relational Data Mining. PhD thesis, Uni. Utrecht, 2004.
13. M.-A. Krogel. On Propositionalization for Knowledge Discovery in Relational

Databases. PhD thesis, Otto-von-Guericke-Universit Magdeburg, 2005.
14. A. Lazarevic and V. Kumar. Feature bagging for outlier detection. In KDD ’05,

pages 157–166, 2005.
15. J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann, USA,

1993.
16. J. R. Quinlan and R. M. Cameron-Jones. Foil: A midterm report. In ECML, pages

3–20, 1993.
17. P. Sen and L. Getoor. Cost-sensitive learning with conditional markov networks.

In ICML ’06, pages 801–808, New York, NY, USA, 2006. ACM Press.
18. A. Srinivasan, S. H. Muggleton, M. J. E. Sternberg, and R. D. King. Theories

for mutagenicity: a study in first-order and feature-based induction. Artif. Intell.,
85(1-2):277–299, 1996.

19. G. M. Weiss. Mining with rarity: a unifying framework. SIGKDD Explor. Newsl.,
6(1):7–19, 2004.

20. I. H. Witten and E. Frank. Data mining: practical machine learning tools and

techniques with Java implementations. Morgan Kaufmann, CA, USA, 2000.
21. X. Yin, J. Han, J. Yang, and P. S. Yu. Crossmine: Efficient classification across

multiple database relations. In ICDE ’04, Boston, 2004.

Stratified Gradient Boosting for Fast Training of
Conditional Random Fields ?

Bernd Gutmann1 and Kristian Kersting2

1 Department of Computer Science, Katolieke Universiteit Leuven
Celestijnenlaan 200A, 3001 Heverlee, Belgium

2 CSAIL, Massachusetts Institute of Technology
32 Vassar Street, Cambridge, MA, 02139-4307, USA

Abstract. Boosting has recently been shown to be a promising ap-
proach for training conditional random fields (CRFs) as it allows to effi-
ciently induce conjunctive (even relational) features. The potentials are
represented as weighted sums of regression trees that are induced using
gradient tree boosting. Its large scale application such as in relational
domains, however, suffers from two drawbacks: induced trees can spoil
previous maximizations and the number of generated regression exam-
ples can become quite large. In this paper, we propose to tackle the latter
problem by injecting randomness into the regression estimation proce-
dure by subsampling regression examples. Experiments on a real-world
data set show that this sampling approach is comparable with more so-
phisticated boosting algorithms in early iterations and, hence, provides
an interesting alternative as it is much simpler to implement.

1 Introduction

Sequential data are ubiquitous and are of interest to many communities. Such
data can be found in virtually all application areas of machine learning includ-
ing computational biology, activity recognition, information extraction. As an
example, consider the task of marking all proteins in abstracts of biological pub-
lications. One appealing approach to such sequence labeling problems are [7]’s
conditional random fields (CRFs). They are undirected models encoding the
conditional dependency P (Y |X) and have outperformed HMMs [9] on language
processing tasks such as information extraction and shallow parsing. In contrast
to generatively trained HMMs, the discriminatively trained CRFs are designed
to handle non-independent input features such as such as the molecular weight
and the neighboring acids of an amino acid.

The flexibility, however, comes at the expense of severe training costs. To
this end, fast and integrated feature induction and parameter estimation tech-
niques have been proposed. [8]’s Mallet system employs the BFGS algorithm,
? An earlier version of this work appeared as 4-pages extended abstract in the elec-

tronic working notes of the 5th International Workshop on Mining and Learning
with Graphs (MLG’07), August 1–3, 2007, Universita degli Studi di Firenze, Flo-
rence, Tuscany, Italy.

Stratified Gradient Boosting for Fast Training of CRFs 59

Y1 YT-1YT-1Y3Y2

X2X1 X3 XT-1 XT-1

Fig. 1. Graphical representation of linear-chain CRF.

which is a second-order parameter optimization method that deals with param-
eter interactions, and induces features iteratively. Starting with a single feature,
conjunctions of features are iteratively constructed that significantly increase
conditional log-likelihood if added to the current model. Recently, [1] proposed
a boosting approach, called TreeCRF, which is competitive to Mallet. TreeCRF
follows [3]’s gradient tree boosting algorithm, i.e., the potential functions are
represented by sums of regression trees, which are grown stage-wise in the man-
ner of Adaboost [2]. Each regression tree can be viewed as defining several new
feature combinations, one for each path in the tree from the root to a leaf. Thus,
the features can be quite complex; even relational conjunctions as shown by
Gutmann and Kersting’s TildeCRF [5].

One major drawback of the gradient tree boosting approach is that the num-
ber of generated regression examples can become very large. If we have 3 labels
and 100 training sequences of length 200, then the number of training examples
for each label k is 3·100·200 = 60, 000. To get around this, we propose a sampling
strategy tailored to gradient tree boosting for (relational) CRFs. More precisely,
we introduce a stratified sampling approach for CRFs, conduct an experimental
evaluation, and examine the influence of the subsampling, the line search and
the gradient method (steepest ascent vs. conjugated gradient) on the predictive
performance.

We proceed as follows. After reviewing CRFs and gradient tree boosting, we
discuss our stratified sampling scheme. Before concluding, we we evaluate our
approach on a real-world information extraction dataset.

2 Gradient Tree Boosting for CRFs

CRFs are undirected graphical models that encode conditional probability distri-
butions using a given set of features. We will focus on linear-chain CRF models,
cf. Figure 1.

Let G be an undirected graphical model over sets of random variables X and
Y . For linear-chain CRFs, X = 〈xi,j〉Ti

j=1 and Y = 〈Yi,j〉Ti
j=1 correspond to the

input and output sequences such that Y is a labeling of an observed sequence
X. The conditional probability of a state sequence given the observed sequence
is defined as

P (Y |X) = Z(X)−1 exp
T∑

t=1

Ψt(yt, X) + Ψt−1,t(yt−1, yt, X),

60 B. Gutmann and K. Kersting

where Ψt(yt, X) and Ψt−1,t(yt−1, yt, X) are potential functions 3 and Z(X) is a
normalization factor over all state sequences X so that each potential contributes
overall probability.

2.1 Training

Typically, it is assumed that the potentials factorize according to a set of features
{fk}, which are given and fixed, so that

Ψ(yt, X) =
∑

αkgk(yt, X)
and Ψ(yt−1, yt, X) =

∑
βkfk(yt−1, yt, X)

respectively. The model parameters are now a set of real-valued weights αk, βk;
one weight for each feature. To estimate them, a conditional maximum likelihood
approach is typically followed. That is, the (conditional) likelihood of the training
data given the current parameter Θm−1 is used to improve the parameters.
Normally, one uses some sort of gradient search for doing this:

Θm = Θ0 + δ1 + . . . + δm

where δm = ηm − M · ∂
∂Θm−1

∑
i log P (yi|xi;Θm−1)

is the gradient multiplied by a constant ηm, which is obtained by doing a line
search along the gradient.

2.2 Training via Gradient Tree Boosting

Gradient tree boosting interleaves parameter estimation and feature selection.
More precisely, one starts with some initial potential Ψ0, e.g. the zero function,
and adds iteratively corrections

Ψm = Ψ0 + ∆1 + . . . + ∆m.

In contrast to the standard gradient approach, ∆i denotes the so-called func-
tional gradient, i.e.,

∆m = ηm · Ex,y

[
∂

∂Ψm−1
log P (y|x;Ψm−1)

]
.

Since the joint distribution P (x, y) is unknown, one cannot evaluate the expecta-
tion Ex,y. Instead ones evaluates the gradient function at every position in every
training example and fit a regression tree to these derived examples. More pre-
cisely, setting F (yt−1, y,t, X) = Ψ(yt, X) + Ψ(yt−1, yt, X), the gradient becomes
(see [1, 5] for more details),

∂ log P (Y |X)
∂F (u, v, wd(X))

= I(yd−1 ⊆Θ u, yd ⊆Θ v)−

P (yd−1 ⊆Θ u, yd ⊆Θ v|wd(X)),
(1)

3 A potential function is a real-valued function that captures the degree to which the
assignment yt to the output variable fits the transition from yt−1 and X.

Stratified Gradient Boosting for Fast Training of CRFs 61

Algorithm 1 The inner loop of gradient tree boosting for generating the re-
gression examples

function GenExamples(k, Data, Potm)
S := ∅ . Initialize relational regression examples
for all (Xi, Yi) ∈ Data do . Iterate over all training examples`

α, β, Z(Xi)
´

= ForwardBackward(Xi, T, K) . Compute forward and
backward probabilities

for 1 ≤ t ≤ Ti do . Iterate over all positions
for 1 ≤ k′ ≤ K do . Iterate over all class labels

. Compute value of gradient at position t for class label k

P (yt−1 = k′, yt = k|Xi) :=
α(k′, t− 1) · exp(F k

m(k′, wt(X)) · β(k, t)

Z(Xi)
∆(k, k′, t) := I(yt−1 ⊆Θ k′, yt ⊆Θ k)− P (yt−1 ⊆Θ k′, yt ⊆Θ k|Xi)
S := S ∪ {((wt(Xi), k

′), ∆(k, k′, t))} . Update set of relational
regression examples

end for
end for

end for
return S

end function

where I is the indicator function, ⊆Θ denotes that u matches/subsumes y, and
P (yd−1 ⊆Θ u, yd ⊆Θ v|wd(X)) is the probability that class labels u, v fit the
class labels at positions d, d − 1. By evaluating the gradient at every known
position in the training data and fitting a regression model such as a rela-
tional regression tree, cf. Figure 2, to these values, one gets an approxima-
tion of the expectation Ex,y [∂/∂Ψm−1] of the gradient. In order to speed-up
computations, not the complete input X is typically used but only a window
wd(X) = xd−s, . . . , xd, . . . , xd+s, where s is a fixed window size.

2.3 Conjugate Direction Boosting

Reconsider the basic gradient-ascent optimization approach. One of the prob-
lems with choosing the step size doing a line search is that a maximization in

outPrevIs(city(c))

containsAt(1,a(X,f))

containsAt(1,a(1,a))

true

false

containsAt(4,a(3,n))
false

containsAt(4,a(X,n))true

0.271
true

0.610false 0.049
false

0.938true

-0.010
false

0.271
true

Fig. 2. A (relational) regression tree. Nodes denote tests; leaves are the predicted
values.

62 B. Gutmann and K. Kersting

Algorithm 2 Conjugated gradient tree boosting with line search and sampling.

1: function CGTreeBoost(Data, L)
2: for 1 ≤ m ≤ M do . Iterate Functional Gradient
3: S := ∅
4: for 1 ≤ k ≤ K do . Iterate through the class labels
5: (SPos, SNeg) := (SPos, SNeg) ∪
6: GenExamples(k, Data, Fm−1, m)
7: end for
8: SSample := Sample((SPos, SNeg))
9: ∆m := FitRelRegressTree(SSample, L)

10: if m = 1 then
11: d1 = ∆1 . Initial conjugate direction
12: else
13: βm =

〈∆m,∆m−∆m−1〉
〈∆m−1,∆m−1〉

. Polak-Ribiére formula

14: dm = ∆m + βm · dm−1 . Next conjugate direction
15: end if
16: ηm :=LineSearch(Data, Fm−1, dm) . Line Search along dm

17: Fm := Fm−1 + ηm · dm . Model udpate
18: end for
19: return FM . Return Potential
20: end function

one direction could spoil past maximizations. To avoid this, conjugate gradi-
ent boosting methods [6] compute so-called conjugate directions in the function
space, which are orthogonal and, hence, do not spoil previous maximizations.
The step size is estimated along these directions doing line searches.

More precisely, the empirical angle βm between ∆m and ∆m−1 on the training
examples given the current gradient ∆m is computed. As shown in Alg. 2, the
current gradient plus the old weighted gradient multiplied by the calculated
angle is added to the current model, dm = ∆m + βm · dm−1. The angle βm can
be calculated by evaluating the Polak-Ribiére formula for each example. Every
weighted gradient dm is a linear combination of the gradients ∆1, . . . ,∆m. It can
be shown that

dt =
∑m

i=1 βi,m · ∆i

where βm,m = 1 and βi,m =
∏m

j=i+1 βj if i < m.

3 Stochastic gradient tree boosting

One major drawback of the gradient tree boosting approach is that the number of
generated regression examples can become very large. In every iteration, k2×n×l
regression examples are generated (k is the number of labels, n the number of
training examples, l the average sequence length).

An obvious modification to speed up gradient tree boosting is to use only
a subset of the original data. This subset is drawn randomly in every iteration

Stratified Gradient Boosting for Fast Training of CRFs 63

Algorithm 3 Stochastic gradient tree boosting.
1: function CGTreeBoost(Data, L, N)
2: for 1 ≤ m ≤ M do . Iterate Functional Gradient
3: S := ∅
4: Data′ := randomly sample a subset of size N from Data
5: for 1 ≤ k ≤ K do . Iterate through the class labels
6: S := S ∪GenExamples(k, Data, Fm−1, m)
7: end for
8: ∆m := FitRelRegressTree(SSample, L)
9: Fm := Fm−1 + dm . Model udpate

10: end for
11: return FM . Return Potential
12: end function

which ensures that the complete training data contributes to the learned model.
This modification, stochastic gradient tree boosting, was originally proposed in
[4]. Algorithm 3 shows the pseudocode, where N is the size of the sample. For
N = size(Data) the algorithm behaves like standard gradient tree boosting.
Stochastic gradient tree boosting is a kind of bagging approach. Experimental
results show that it improves the runtime (which is an obvious result) and can
also increase the accuracy of the learned model.

Indeed, stochastic gradient tree boosting can directly be used for fast train-
ing of conditional random fields. It is, however, a general-pupose technique and
methods tailored to the problem at hand, namely training conditional random
fields are likely to improve performance. In [6] we showed that gradient tree
boosting for CRFs induces an expectation bias on the generated regression ex-
amples: For every observed (called positive) example in the training data k − 1
unobserved (negative) regression examples are generated (k is the number of
possible labels in the output sequence). For higher k, the regression tree learner
spends a lot of time to fit the tree to unobserved examples, whereas the predictive
accuracy on positive examples is lower. We proposed to reweight the examples
such that the empirical ratio of positive to negative examples is equal. However,
the problem remained that both the regression tree learner and the generating
step of gradient tree boosting hat to consider all data.

Indeed, this approach rebalances the positive and negative examples. The
regression tree learner, however, must still consider all examples. To this end,
we propose to use stratified sampling. This means that we use two different
sampling strategies, one for the observed regression examples and one for the
negative examples. The idea is to use reduce the difference between the number
of positive and negative examples. Doing so, we increase both the predictive
performance on the positive examples and we reduce the time needed by the
regression tree learner.

64 B. Gutmann and K. Kersting

generated

observedRegression Examples Training Examples

Grouping Sampling

Fig. 3. Stratified sampling methodology.

4 Stratified Sampling

There are several other possible sampling approaches for gradient tree boosting.
[3] suggested two techniques to speed up the learning process by reducing the
number of regression examples. Influence Trimming ignores regression examples
with absolute value smaller ε. We do not investigate this method but instead
consider sampling :

use only a randomly drawn subset of the generated examples to train the
regression trees.

Friedman’s original proposal is to subsample uniformly from all training ex-
amples. This strategy is suboptimal for training CRFs. Most of the generated
examples are likely to have never been observed. Recall that for each observed
yt−1 we generate k−1 many expected labels yt. Thus, with an increasing number
of labels, the probability of sampling an observed regression examples decreases
(keeping the training set fixed); roughly at the scale of O(1

k2). In turn, the
influence of the expected examples, the ones we have not observed, increases
and gradient boosting is likely to induce meaningless models. This is truely an
undesirable property of uniform sampling. To overcome this, we propose to a
stratified sampling scheme.

Stratified sampling, cf. Figure 3 is a method of sampling in which it is desir-
able to maintain certain characteristics of the data set in any subset sampled. It
is achieved by firstly partitioning the data set into a number of mutually exclu-
sive subsets of cases (strata), each of which is representative of some aspect of
the real-world process involved. Sampling from the population is then achieved
by randomly sampling from the various subsets so as to achieve representative
proportions.

In our case at hand there are two natural strata: the observed and the gener-
ated regression examples. Thus, when we generate the regression examples, we
mark those examples as positive for which the identity function I returnes 1.0
(see Equation (1)). Then, we sample with different strategies for the positive
and negative examples SPos and SNeg. For instance, we can take all positive
examples and sample a fraction of the negative examples that is 3 times bigger
than the positive examples. We denote this strategy by 1p/3n.

Stratified Gradient Boosting for Fast Training of CRFs 65

-2400

-2200

-2000

-1800

-1600

-1400

-1200

-1000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

lo
g

lik
el

ih
oo

d,
 tr

ai
ni

ng
 s

et

Time [sec]

all+CG+LS
1p/3n+CG+LS

0.5p/0.5n+CG+LS
1p/3n

all
1p/3n+CG

all+CG

-600

-550

-500

-450

-400

-350

-300

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

lo
g

lik
el

ih
oo

d,
 te

st
 s

et

Time [sec]

all+CG+LS
1p/3n+CG+LS

0.5p/0.5n+CG+LS
1p/3n

all
1p/3n+CG

all+CG

Fig. 4. 5-fold cross-validated log likelihoods on training and test set; all: all regression
examples were used, 1p/3n: all positive and 3 times more negative regression examples
were sampled, 0.5p/0.5n: only half of the positive and half of the negative examples
were sampled, CG: conjugated gradients were used, LS: a line search was used

5 Experiments

Our intention was to examine the influence of the sampling rate, the line search
and gradient method on the predictive performance. To this aim, we integrated
stratified sampling in TildeCRF for boosting relational CRFs, which is imple-
mented in YAP Prolog. The regression tree learner was implemented in hipP
Prolog.

We ran several experiments on a subset of [10]’s subcellular-location data set.
The data set consists of sentences of medical abstracts, where each word in the
input sequence is augmented with the word type and the phrase type. The task
is to find proteins and their location within the DNA. More precisely, the output
sequence consists of sequences over protein, location, none. An example of

66 B. Gutmann and K. Kersting

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

ac
cu

ra
cy

, t
es

t s
et

Time [sec]

all+CG+LS
1p/3n+CG+LS

0.5p/0.5n+CG+LS
1p/3n

all
1p/3n+CG

all+CG

Fig. 5. 5-fold cross-validated accuracy on the test set.

for a training example is

[npSeg(unk(′rat7p′)), vpSeg(cop(′is′)), vpSeg(v(′located′)),
ppSeg(prep(′at′)), npSeg(art(′the′)), npSeg(adj(′nuclear′)),
npSeg(unk(′rim′)), . . .}
[protein, none, none, none, none, location, . . .]

We removed all training sequences that do not contain a protein or location tag.
Because of memory limitations4, we only took 25% of the resulting data set,
namely 195 input/output sequence pairs. and only sampling techniques were
running with. to still compare to the deterministic approach. For all our ex-
periments, we did a 5-fold cross validation, 156 examples for training and 39
for testing the trained model. We tried several sampling strategies and ran the
experiments with and without line search and conjugated gradients. We used
a window size of 5 elements, the tree learner learned the regression trees up
to depth 20 but it stop splitting a node (pre-pruning) when the variance was
smaller than 0.0001.

Figure 4 shows the results plotted against the training time. Strategy 1p/3n,
which uses all positive and 3 times as many negative regression examples as
positive ones, outperforms all other approaches in early iterations. In this case
we used only 4/9 of the training examples, since 1/9 of the examples where
positive and 8/9 were negative (k = 3). It is remarkable that 1p/3n is even
better than the 0.5p/0.5n+CG+LS strategy. Where we use 50% of the examples
4 For larger data sets the deterministic boosting technique ran out of memory. Only

the stochastic versions had a chance to keep running due to the reduction in memory
consumptions.

Stratified Gradient Boosting for Fast Training of CRFs 67

and run furthermore a more sophisticated training algorithm. To understand
why, one has to see that the line search is rather slow and furthermore 50%
of the observed data is not considered. Whereas in the 1p/3n one uses all the
observed data. Furthermore, all methods actually achieve similar performances
in terms of likelihood, i.e., the objective function we are maximizing in later
iterations. Note, however, that only the stratified sampling approach achieves
the highest training and test likelihoods already after about 400 sec. This would
also coincide with the stopping point of the optimization if we had implemented
a stopping rule. We did not do so in order to see the long term behaviors of the
boosting algorithms. To summarize,

stratified sampling speeds up computations and achieves higher log-
likelihood estimates.

To complete the view on the performance, we investigated the 5-fold cross-
validated accuracy. Figure 5 shows the accuracy of the trained model on the
test data. The accuracy is defined as c/a where c is the number of correctly
predicted positions in all sequences and a is the number of all positions in all
sequences. One can see that strategy 1p/3n performs best for the early iterations
and afterwards all+CG outperforms all the other strategies. In other words,

subsampling negative examples yields slightly lower accuracies but does
not degrade performance.

Basically all methods are all in close range and comparable. This supports our
results from [6]. Furthermore, one can see that the line search does not signifi-
cantly increase the accuracy. We believe that the line search actually tends to
overfit .

Finally, we ran several other sampling strategies, 1p/2n, 0.25p/0.25 and so
on. The results are not presented here as they follow the general picture:

– Stratified sampling taking all positive examples but subsampling negative
ones is much faster than deterministic gradient tree boosting and achieves
comparable performance.

– The less examples (in particular positive ones) are used, the worse the per-
formance.

6 Conclusions and Future Work

We have presented a stochastic gradient tree boosting approach to training (re-
lational) CRFs. In contrast to existing stochastic techniques, we do not follow a
uniform sampling strategy but sample positive/observed and negative/generated
regression examples following different strategies. The experimental results have
shown that this stratified sampling scheme indeed speeds up computations and
can improve performance. It actually performs better than uniform sampling.
Moreover, compared to more advanced boosting techniques such as conjugate
direction boosting, it is much simpler to implement. Thus, we view stochastic

68 B. Gutmann and K. Kersting

boosting based on stratified sampling as an attractive and promising approach
to scaling up CRF training to large data sets.

Indeed more experiments on larger data sets have to be conducted to confirm
the scale up behavior. The reduction of examples on our rather small data set
are encouraging; for larger data sets, one can expect higher reduction rates.
It is also interesting to investigate stratification of output class, not only of
positive/negative regression examples.

Acknowledgments

The authors would like to thank the anonymous reviewers for the valuable com-
ments, Luc De Raedt for his support, and Vı́tor Santos Costa for his help with the
Prolog system YAP. This work has been supported by the Research Foundation-
Flanders (FWO-Vlaanderen)

References

1. T. Dietterich, A. Ashenfelter, and Y. Bulatov. Training conditional random fields
via gradient tree boosting. In Proc. 21st International Conf. on Machine Learning,
pages 217–224. ACM, 2004.

2. Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In In
Proceedings of ICML-96, pages 148–156. Morgan Kaufman, 1996.

3. J. H. Friedman. Greedy Function Approximation: A Gradient Boosting Machine.
Annals of Statistics, 29, 2001.

4. J. H. Friedman. Stochastic gradient boosting. Computational Statistics & Data
Analysis, 38(4):367–378, February 2002.

5. B. Gutmann and K. Kersting. Tildecrf: Conditional random fields for logical se-
quences. In J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, editors, Proc. of the
15th European Conference on Machine Learning (ECML-2006), volume 4212 of
LNAI (Lecture Notes in Artificial Intelligence), pages 174–185, Berlin, Germany,
September 2006. Springer.

6. K. Kersting and B. Gutmann. Unbiased conjugate direction boosting for condi-
tional random fields. In T. Gärtner, G.C. Garriga, and T. Meinl, editors, Working
Notes of the ECML-2006 Workshop on Mining and Learning with Graphs (MLG
2006), pages 157–164, Berlin, Germany, September 2006. Short paper.

7. J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proc. 18th Int. Conf. on
Machine Learning (ICML-01), pages 282–289, 2001.

8. A. McCallum. Effciently inducing features of conditional random fields. In F. Bac-
chus and T. Jaakkola, editors, Proc. of the 21st Conference on Uncertainty in
Artificial Intelligence (UAI-03), pages 403–410, Edinburgh, Scotland, July 26-29
2003.

9. L. R. Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. In Proceedings of the IEEE, volume 77, pages 257–285, 1989.

10. M. Skounakis, M. Craven, and S. Ray. Hierarchical hidden markov models for
information extraction. In Proceedings of the 18th International Joint Conference
on Artificial Intelligence (IJCAI-03), pages 427–433, 2003.

A Restart Strategy for Fast Subsumption Check
and Coverage Estimation

Ondřej Kuželka and Filip Železný

Intelligent Data Analysis Research Group
Dept. of Cybernetics, Czech Technical University in Prague

http://ida.felk.cvut.cz

{kuzelo1,zelezny}@fel.cvut.cz

Abstract. We study the runtime distributions of a simple subsumption
check algorithm and show that in some conditions they exhibit heavy
tails, indicating a possible runtime advantage achievable by randomizing
and restarting the algorithm. Therefore we design ReSumEr, a restarted
subsumption tester, incorporating randomization while preserving com-
pleteness. On generated graph data, ReSumEr outperforms the state-of-
the-art subsumption algorithm Django (i) significantly in the YES region
of the phase transition domain and (ii) in the entire phase transition do-
main given a sufficient size difference between the tested subsumer and
subsumee. Importantly, we further show how, under a distributional as-
sumption, a restarted strategy can be used to quickly obtain a maximum
likelihood estimate of the coverage of a pattern (proportion of examples
subsumed thereby) without requiring to verify subsumption for all exam-
ples. We implement this technique in the program ReCovEr and show
that it provides accurate coverage estimates in favorable runtimes.

1 Introduction

Recent statistical performance studies of search algorithms in difficult com-
binatorial problems [1, 2] have demonstrated the benefits of randomizing and
restarting the search procedure. Specifically, it has been found that if the search
cost distribution of the non-restarted randomized search exhibits a slower-than-
exponential decay (that is, a “heavy tail”), restarts can reduce the search cost
expectation. In [6] we have demonstrated the benefits of randomized restarted
strategies in the lattice search conducted by an inductive logic programming sys-
tem. While the size of pattern spaces represents one source of the complexity of
relational data mining, another such source follows from the problem of verifying
the subsumption relation between a relational pattern and an example.

This paper first focuses on this latter problem by investigating the possible
benefits of a randomized restarted strategy in subsumption testing. Previous re-
search has demonstrated that vast gains in efficiency can be achieved by using
unorthodox subsumption algorithms as opposed to standard procedures pro-
vided e.g. by a Prolog engine. The pioneering work [4] introduced a tractable

70 O. Kuželka and F. Železný

approximation to the subsumption test called stochastic matching. This ran-
domized algorithm is incomplete in that its failure to prove subsumption in a
finite number of steps does not refute the subsumption. On the contrary, we
aim at preserving completeness in our randomized restarted procedure called
ReSumEr. A complete deterministic approach, called Django, was presented in
[3]. Django converts subsumption into a constraint satisfaction problem (CSP)
then solved by state-of-the-art heuristic techniques. Django was shown to out-
perform by orders of magnitude the subsumption testing mechanism used in ILP.
Therefore we use Django as the baseline algorithm for comparative experiments
with ReSumEr.

Secondly, this paper focuses on the development of an algorithm for fast es-
timation of pattern coverage, i.e. the proportion of a given set E of examples
subsumed thereby. The paper [5] is relevant to this part of our work, in that it
estimates total coverage by checking subsumption with respect to a small sample
of E. We take a different approach in our algorithm, called ReCovEr, enabled
by the fact that ReSumEr’s runtimes neccessarily follow an exponential distri-
bution. ReCovEr computes pattern coverage through a maximum-likelihood
estimation of parameters of this exponential distribution, on the basis of infor-
mation collected during a (possibly small) sequence of restarts of ReSumEr.

Informally, the main intended contribution of this work is to support effi-
cient mining in large relational structures by enabling fast pattern evaluation.
In real-life applications, e.g. in bioinformatics, such structures can typically be
represented by oriented graphs. For this reason, we will assume the oriented
graph structure of examples and hypotheses, and the subsumption test will co-
incide with subgraph matching.

The rest of the paper is organized as follows. Section 2 defines the syntax
of patterns and examples considered and explains how examples are generated
for sakes of empirical measurements throughout the paper. In Section 3 we de-
vise a simple subsumption test algorithm, investigate the runtime distributions
of both its non-restarted and restarted version (ReSumEr), and empirically
evaluate ReSumEr in comparison to Django. Section 4 explains the maximum-
likelihood technique for estimating hypothesis coverage implemented in the al-
gorithm ReCovEr, and tests its efficiency and estimation accuracy. Section 5
concludes the paper.

2 Preliminaries

In the rest of the paper we assume that patterns and examples are oriented
graphs where each vertex may be assigned one of two possible colors. In the
dual, relational-logic representation, examples e and patterns P are viewed as
conjunctions of positive atoms, each being one of edge(t1, t2), black(t), red(t)
where t, t1, t2 are placeholders for terms. All terms in an example e are assumed
to be constants and all terms in a pattern P are assumed to be variables. The
correspondence between the graph and logic representation is such that vertices
correspond to terms and the orientation of and edge is given by the order of

A Restart Strategy for Fast Subsumption Check and Coverage Estimation 71

term appearance in the corresponding atom. We will refer to the described dual
notions interchangeably. When needed, conjunctions will be treated as atom sets,
e.g. for two conjunctions a and b, a ⊆ b will denote that b contains all atoms
contained by a.

Algorithm 1 SubsumptionCheck(P, e): A simple subsumption test algorithm

Input: Pattern P , example e;

if P ⊆ e then
return YES

else
Choose variable V from P using a heuristic function (see main text)
for ∀S ∈ PossibleSubstitutions(V, P, e) (see main text) do
SearchedNodes← SearchedNodes+ 1
Substitute V with S
if ∀W ∈ Adjacency(V) : PossibleSubstitutions(W,P, e) 6= ∅ then

if SubsumptionCheck(P, e) = YES then
return YES

end if
end if

end for
return NO

end if

Algorithm 2 SubstitutionPossible(V,C, P, e): Returns NO if P cannot sub-
sume e when V is substituted by C.

Input: Variable V , constant C, Pattern P , example e;

for ∀A ∈ P such that atom A contains variable V do
A′ ← replace all occurrences of variable V in atom A by C.
if A′θ * E (easy to check for a single atom A) then

return NO
end if

end for

return YES

We consider a simple heuristic algorithm (Algorithm 1) for verifying whether
a pattern P subsumes an example e. Similarly to Django [3] this algorithm is
inspired by the CSP framework, conducting backtracking search with forward
checking, using a variable selection heuristic and randomization. The heuristic
function aims at choosing variables whose substitution makes it likely that an
inconsistency, if exists, is detected soon. For a variable V , the function returns the
sum of occurrences of variables in pattern P that have already been grounded and
that share at least one literal with V . The variable which maximizes this function
is selected; in case of a tie, a random choice is made with uniform probability
among the highest scoring variables. The function PossibleSubstitutions(V, P, e)

72 O. Kuželka and F. Železný

returns all constants C for which SubstitutionPossible(V,C, P, e) (Algorithm 2)
returns YES.

Algorithm 3 RandomGraph(n, p): A generator of uniform random graphs

Input: Integer n, Real p;

Let V be a set of n vertices and G an empty edge set.
for ∀ {vi ∈ V, vj ∈ V |vi 6= vj} do

With probability p, G← G ∪ {vi, vj}
end for
For all edges in G choose a random orientation, and for all vertices in V choose a random color
with uniform probability from {red, black}.
return graph with vertex set V and edge set G

Algorithm 4 ScaleFreeGraph(n, k): A generator of scale-free random graphs

Input: Integers n, k;

Let V be a set containing one vertex v1, G be an empty edge set.
for i← 2 to n do
k′ ← min (i− 1, k)
Create vertex vi
Connect vi to k′ distinct vertices v1, ..., vk chosen from the set V with probability proportional
to their degrees
G← G ∪ {(vi, vj)|j = 1...k}

end for
For all vertices in V choose a random color with uniform probability from {red, black}.
return graph with vertex set V and edge set G

To obtain a domain-independent runtime distribution of the algorithm, we
test it on randomly generated patterns and examples. For generality, we devised
two different graph generators for this purpose. The first (Algorithm 3) gener-
ates graphs where any two vertices are connected with a pre-set probability p (by
an edge of a random orientation). The second (Algorithm 4) produces scale-free
(“small world”) graphs; here, an edge is attached to a vertex with probabibility
increasing with the number of edges already connected to the vertex. In both
algorithms, all vertices are colored as black with probability 0.5 and red oth-
erwise. We will refer to the parameter p (k, respectively) of a random uniform
(scale-free, respectively) graph as the connectivity of the graph.

3 ReSumEr: a restarted subsumption tester

We subjected Algorithm 1 to experiments with random sets of patterns and
examples generated by Algorithm 3 (Algorithm 4, respectively), under various
settings of n and p (n and k, respectively). Our objective was to verify the

A Restart Strategy for Fast Subsumption Check and Coverage Estimation 73

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

nodes searched

1−
F

(x
)

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

nodes searched

1−
F

(x
)

Fig. 1. The subsumption test runtime distribution for patterns with n = 12 (left) and
n = 14 (right) vertices and connectivity p = 0.2. In both cases, examples had n = 50
vertices and connectivity p = 0.5. Both patterns and examples were randomly generated
by Algorithm 3. A heavy tail is observed in the left panel for the non-restarted version
(mostly upper curve) and significant speed-up is achieved by the restarted version
(lower curve, exponential distribution despite its almost linear appearance). Although
no heavy tail is observed in the right panel for the non-restarted version (mostly upper
curve), small speed-up is still observed for the restarted version (lower curve).

presence of heavy tails in the runtime distributions F (t). For a t > 0, F (t) is the
probability that the tested algorithm resolves a random subsumption instance
in no more than t units of time, corresponding to the number of explored search
nodes. A heavy tail is exhibited if 1−F (t) decays at a power-law rate, i.e. slower
than exponentially. Informally, a heavy-tailed distribution indicates the non-
negligible probability of subsumption instances on which the checking algorithm
gets stuck for an extremly long runtime. The presence of a heavy tail in an
empirical runtime distribution F (t) can be checked graphically, by plotting 1−
F (t) against t on a log-log scale. For a growing t, a heavy-tailed distribution
here acquires a linear shape [2].

Our findings were not conclusive in that for various configurations mentioned
above, some runtime distributions were heavy-tailed while others were not. Two
examples are shown in Fig. 1 in blue; while differing very slightly in a single
parameter (n) value, the respective distributions posses largely different shapes
of the tails. We have not yet been able to establish a principled correspondence
between the respective parameter values and the occurrence of heavy tails.

While the presence of heavy tails for some classes of subsumption instances
indicates possible large runtime benefits achievable by a restarting strategy [2],
its effect on the non-heavy-tailed classes may not be necessarily detrimental. We
thus decided to assess the overall impact of restarting empirically. For this sake
we designed a complete restarted randomized subsumption algorithm ReSumEr
(Algorithm 5). Its completeness is guaranteed by the assumption that for the
cutoff sequence R(n), R(n) → ∞ as n → ∞. Note that the randomization
is facilitated by tie-breaking in the heuristic function used in the embedded
Algorithm 1.

74 O. Kuželka and F. Železný

Algorithm 5 ReSumEr(P, e,R): A restarted subsumption algorithm

Input: Pattern P , example e, cutoff sequence R;
n← 1
repeat

Answer ← Run SubsumptionCheck(P, e) with number of searched nodes limited to R(n)
n← n+ 1

until Answer YES or NO is returned

return Answer

The runtime distributions for ReSumEr, with an ad-hoc chosen restart se-
quence R(n) = 10n2 + 30 are plotted in red in Fig. 1 for the earlier exemplified
cases of both heavy-tailed and non-heavy-tailed behavior. In both cases, restarts
generally reduce runtime, although the difference is more significant in the heavy-
tailed case. The set of random subsumption instances naturally comprise of both
satisfiable (where P subsumes e) and non-satisfiable instances. Of relevance, the
times taken by ReSumEr on the non-satisfiable instances were in this exper-
iment on average about 103 times higher than on the satisfiable ones. This is
natural due to the ‘iterative’ character of ReSumEr; while satisfiability can in
principle be shown in any single restart, non-satisfiability can only be shown
after n restarts making R(n) sufficiently high.

We next aimed to compare ReSumEr to a baseline algorithm used for sub-
sumption in relational data mining. As explained earlier, the graph structures
we here deal with are easily embedded into conjunctions of first-order positive
atoms. Thus an obvious baseline algorithm candidate would have been the unifi-
cation mechanism in Prolog. However the sizes of patterns and examples (tens of
vertices in patterns, hundreds in examples) we focus on, consistently result in un-
measurably large runtimes of this procedure. A much faster alternative, which
we adopt for comparisons, is represented by the state-of-the-art subsumption
algorithm Django [3].

All experiments were conducted on the same computer. Django is imple-
mented in C and we used its version 11. ReSumEr is implemented in JAVA.
Figures 2 and 3 display the results for patterns and examples generated as uni-
form random graphs (Fig. 2) and scale-free graphs (Fig. 3). The comparative
runtimes (top panels) are accompanied by the corresponding phase transition di-
agrams (bottom panels). The left (right, respectively) panels pertain to a smaller
(larger, respectively) size difference between the patterns and the examples. Size
is understood as the number of contained vertices.

We now note on the principled trends apparent from the results. First, Re-
SumEr consistently and significantly outperformed Django in the YES region
of the phase transition spectrum.1 Second, in the experiments with a larger size-
difference between the patterns and the examples, ReSumEr was faster across
the entire phase transition domain. Third, heavy-tailed behavior of Django was

1 which corresponds to the left parts of all diagrams in Figures 2 and 3. Although the
observed absolute difference is larger in the NO (right-hand side) region, in relative
terms it is much smaller than the difference in the YES region.

A Restart Strategy for Fast Subsumption Check and Coverage Estimation 75

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

p

tim
e

[m
s]

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7
x 10

4

p

tim
e

[m
s]

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Top: Comparisons of Django (blue) and ReSumEr (red) runtimes of subsump-
tion checks between patterns and examples generated by Algorithm 3 with connectivity
p = 0.3 for examples and varying p (horizontal axis) for patterns. In the left panel,
patterns have 30 vertices and examples have 100 vertices. In the right panel, patterns
have 10 vertices and examples have 200 vertices. All shown points are averages of 50
measurements. Bottom: The phase transition landscapes for the respective settings
above: the probability that a random pattern with connectivity p (horizontal axis)
subsumes a random example with connectivity p = 0.3.

observed: in spite of its typical measured runtimes in the order of milliseconds to
seconds, occasional runs in satisfiable instances took up to tens of minutes and
had to be curtailed. This resulted in Django’s excessive runtimes in the top-left
panel of Fig. 2 (Fig. 3, respectively) for p ≤ 0.1 (k = 3, respectively). Heavy-
tailed behavior is prevented by ReSumEr resulting in its vast superiority in the
p ≤ 0.1 region of Fig. 2, top-left panel. In Fig. 3, however, Resumer’s averaged
runtimes were also excessive for k = 3 and k = 4. Unlike for Django, here the
reason was not in occasional excessive runs, but rather in the systematic in-
crease of runtime required to complete the unsatisfiable subsumption instances.
Fourth, the generally high runtimes of Django in the NO region are surprising.
In particular, for large size-differences between the patterns and the examples
(right panels in Fig. 2 and 3), Django’s runtimes in the NO region were even

76 O. Kuželka and F. Železný

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

k

tim
e

[m
s]

1 2 3 4 5 6 7
0

5

10

15
x 10

4

k

tim
e

[m
s]

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k
1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

Fig. 3. Top: Comparisons of Django (blue) and ReSumEr (red) runtimes of subsump-
tion checks between patterns and examples generated by Algorithm 4 with connectivity
k = 20 for examples and varying k (horizontal axis) for patterns. In the left panel, pat-
terns have 30 vertices and examples have 100 vertices; for some k, runtimes were not
measurable (see main text). In the right panel, patterns have 20 vertices and exam-
ples have 500 vertices. All shown points are averages of 50 measurements. Bottom:
The phase transition landscapes for the respective settings above: the probability that
a random pattern with connectivity k (horizontal axis) subsumes a random example
with k = 20.

consistently higher than those in the YES/NO (transition) region.2 Although
this phenomenon was also reported in [3] (Table 4 therein) for Django version 1,
in general the runtimes reported by [3] for the NO region are much smaller than
those in the transition region. Further investigation is thus needed to clarify this
discrepancy in light of the differences between our experimental setting and that
in [3].

2 Thus eliminating the usual runtime spikes in the transition area. For ReSumEr, such
spikes are also small in the right panels of Fig. 2 and 3, however, here the reason
clearly lies in ReSumEr’s laborious ‘iterative’ approach for proving unsatisfiable
subsumption instances, as commented earlier.

A Restart Strategy for Fast Subsumption Check and Coverage Estimation 77

4 ReCovEr: a restart-based coverage estimator

We will now explain how to exploit a restarted strategy to obtain a maximum
likelihood estimate of the proportion of examples subsumed by a pattern, without
the need to complete a subsumption with a definitive (YES/NO) answer for any
particular example.

We first need to make the assumption that given a pattern P and a set of
examples E, the probability that Algorithm 1 finds a solution (i.e. returns YES
as its answer) before it explores more than cutoff nodes of the search tree, is
same for all e ∈ E such that P subsumes e. Denote this probability by p. We
will not directly assess the empirical accuracy of this assumption, but we will
later verify it indirectly by testing the accuracy of the algorithm built upon it.

We assume a given pattern P and we fix a constant cutoff value R. In the first
step, for each e ∈ E we run SubsumptionCheck(P, e) (Algorithm 1), stopping
it as soon as the number of searched nodes has reached R. Then, after |E|
restarts (each time with a different e ∈ E), we can derive the probability that
the algorithm has produced exactly m1 ‘YES’ responses in this first step. In
particular, this probability P (m1) is

P (m1) =
(
A
m1

)
pm1(1− p)A−m1 (1)

where A = |{e ∈ E|Pθ ⊆ e}|. In the next step, all m1 examples shown to be
subsumed in the first step are removed from E and the procedure is repeated with
the remaining examples. In general, we can derive the probability that exactly
mi YES answers are generated in the i-th step. Thus for i = 2, we obtain

P (m2|m1) =
(
A−m1

m2

)
pm2(1− p)A−m1−m2 (2)

and similarly for an arbitrary i ≥ 1, we have

P (mi|mi−1, . . . ,m1) =
(
A−∑i−1

j=1mj

mi

)
pmi(1− p)A−

Pi
j=1 mj (3)

The probability of a sequence (m1, . . . ,mk), where mi is the number of examples
for which YES was produced in the i-th step, is given by

P (m1, . . . ,mk) =
k∏

i=1

P (mi|mi−1, . . . ,m1) (4)

Substituting for P (mi|mi−1, . . . ,m1) from Eq. 3 and taking the logarithm Eq. 4
results in

ln (P (m1, . . . ,mk)) =

=
k∑

i=1

ln
(
A−∑i−1

j=1mj

mi

)
+

k∑

i=1

mi ln p+
k∑

i=1

A−

i∑

j=1

mj

 ln(1− p) (5)

78 O. Kuželka and F. Železný

Algorithm 6 ReCovEr(P,E,R,M,∆): Algorithm for coverage estimation

Input: Pattern P and set of examples E, Integers R (‘cutoff’), M , ∆;

tries← 0
Unknown← Examples
CoveredInIthTry ← []
repeat
tries← tries+ 1
CoveredInThisTry ← 0
for ∀E ∈ Unknown do
Answer ← Run SubsumptionCheck(P,E) with number of searched nodes limited to R
if Answer = PositiveMatching then
CoveredInThisTry ← CoveredInThisTry + 1
Unknown← Unknown\E

end if
end for
CoveredInIthTry[tries]← CoveredInThisTry

until tries ≥M ∧ ‖LikelihoodEstimate(tries− 1)− LikelihoodEstimate(tries)‖ ≤ ∆
return LikelihoodEstimate(tries)

To find the parameters A and p for which P (m1, . . . ,mk) is maximized, we take
the partial derivative of Eq. 5 with respect to p and then find its roots, yielding

p =
∑k
i=1mi∑k

i=1mi +
∑k
i=1

(
A−∑i

j=1mj

) (6)

Finding the global maximum of P (m1, . . . ,mk) from Eq. 4 on the set

D = {(A, p)|A ∈ {1, 2, . . . , |E|} ∧ p ∈ [0; 1]} (7)

is now straightforward, since using (6) we can find the maximum on every line

Li = {(i, p)|p ∈ [0; 1]} (8)

The maximum on line Li is located either at the value of p given by (6) or at
one of the borders of Li. It then suffices to evaluate (4) at these three points of
Li for every i (1 ≤ i ≤ |E|). The estimate of A then equals the index i of the Li
on which the maximum is located.

The described estimator is used in ReCovEr (Algorithm 6). The question of
how to choose k, i.e. how long a sequence (m1, . . . ,mk) should be generated as the
input to the estimator, is tackled iteratively: the sequence is being extended until
two subsequent estimates differ by less than some ∆, specified as a parameter.
A minimum length M of the sequence is however imposed, to avoid premature
estimates coinciding by chance.

For purposes of initial empirical assessment of ReCovEr, we generated pat-
terns and examples by Algorithm 3 with p = 0.4 for patterns and p = 0.3 for
examples. Figure 4 demonstrates that ReCovEr produces estimates of accept-
able accuracy. Certain imprecision indeed can be accepted: the coverage estimate
should be accurate to the extent allowing to establish a reliable ranking of candi-
date hypotheses. Apart from that, the actual coverage value is seldom of interest.

A Restart Strategy for Fast Subsumption Check and Coverage Estimation 79

Fig. 4. Precision of ReCovEr (Algorithm 6) estimates reflected as the joint distribution
of 1000 pairs [estimated, real], for R = 100, M = 6 and ∆ = 1. Patterns and examples
were generated by Algorithm 3 with p = 0.4 for patterns and p = 0.3 for examples.
Patterns have 10 vertices, examples have 100 vertices. The 1000 estimates correspond
to 1000 different hypotheses tested on a pre-fixed set of 100 examples.

Algorithm Avg. Time [s]

ReCovEr 20.2
ReSumEr 41.7

Django 45.9

Table 1. Average coverage test runtimes for the configuration from Fig. 4.

Table 1 shows the average runtime of ReCovEr testing one pattern on 100
examples in the same experimental configuration as in Fig. 4. For comparison,
the table also shows the analogous runtimes needed to compute the coverage
by testing subsumption for each e ∈ E by ReSumEr or Django. While the
runtime benefit provided by ReCovEr does not appear particularly significant
from this table, it must be noted that the experimental parameters (detailed in
the caption of Fig. 4) chosen for this first assessment correspond to areas where
both ReSumEr and Django perform well. It is our expectation that ReCovEr
will outperform much more significantly both Django in the YES domain and
ReSumEr in the NO domain. In the former case, the expectation is based
on the fact that in the YES region, Django exhibits heavy tails which are, by
construction, prevented by ReCovEr. In the latter case, ReSumEr conducts an
expensive iterative approach for showing unsatisfiability of subsumption, which
becomes a crucial factor in the NO region. On the contrary, ReCovEr prevents

80 O. Kuželka and F. Železný

this burden because it does not need to complete the subsumption check for any
unsatisfiable subsumption instance.

As a last remark, we did not compare ReCovEr to the sampling method
from [5]. Although [5] alleviates coverage computation by taking only a small
sample of E, subsumption for any single e from that sample is tested in the
standard Prolog framework. Such an approach exceeds measurable runtimes for
the sizes of e considered in this paper.

5 Conclusions and Future Work

We have demonstrated the benefits of using a complete restarted randomized
algorithm ReSumEr for subsumption testing, a procedure at heart of most rela-
tional data mining systems. We have further introduced ReCovEr, an algorithm
exploiting restarts for a maximum-likelihood based estimation of pattern cover-
age, eliminating the needed to prove subsumption for any particular example;
the set of examples for which subsumption is actually proved during the appli-
cation of ReCovEr is a result of a random process. ReCovEr prevents heavy
tails as well as laborious proving of unsatisfiable subsumption instances. All of
our experimental evaluations were constrained to generated data in the form of
oriented colored graphs (uniform and scale-free, respectively). However, the prin-
ciples behind ReSumEr and ReCovEr do not rely on this representation bias.
Our next work will therefore concentrate on tests with a more general structure
representation language and with real-life relational data mining benchmarks.

Acknowledgements

We thank the anonymous MRDM’07 reviewers for their helpful remarks. The first au-

thor is supported by the Czech Academy of Sciences through the project 1ET101210513

Relational Machine Learning for Biomedical Data Analysis. The second author is sup-

ported by the European Commission through the project FP6-027473 SEVENPRO.

References

1. H. Chen, C. Gomes, and B. Selman. Formal models of heavy-tailed behavior in com-
binatorial search. In Proceedings of the 7th International Conference on Principles
and Practice of Constraint Programming, pages 408–421. Springer-Verlag, 2001.

2. C. P. Gomes, B. Selman, N. Crato, and H. A. Kautz. Heavy-tailed phenomena in
satisfiability and constraint satisfaction problems. Journal of Automated Reasoning,
24(1/2):67–100, 2000.

3. J. Maloberti and M. Sebag. Fast theta-subsumption with constraint satisfaction
algorithms. Machine Learning, 55(2):137–174, 2004.

4. M. Sebag and C. Rouveirol. Tractable induction and classification in first-order logic
via stochastic matching. In Proceedings of the 15th International Joint Conference
on Artificial Intelligence, pages 888–893. Morgan Kaufmann, 1997.

5. A. Srinivasan. A study of two sampling methods for analysing large datasets with
ILP. Data Mining and Knowledge Discovery, 3(1):95–123, 1999.

6. F. Zelezny, A. Srinivasan, and D. Page. Randomised restarted search in ILP. Ma-
chine Learning, 64(1–2):183–208, 2006.

Relational Transformation-based Tagging for Human
Activity Recognition

Niels Landwehr1, Bernd Gutmann1, Ingo Thon1, Matthai Philipose2, and Luc De
Raedt1

1 Department of Computer Science
Katholieke Universiteit Leuven

Celestijnenlaan 200 A, B-3001 Heverlee, Belgium
firstname.lastname@cs.kuleuven.be

2 Intel Research Seattle
1100 NE 45th Street

Seattle, WA 98105, USA
matthai.philipose@intel.com

Abstract. The ability to recognize human activities from sensory information
is essential for developing the next generation of smart devices. Many human
activity recognition tasks are — from a machine learning perspective — quite
similar to tagging tasks in natural language processing. Motivated by this sim-
ilarity, we develop a relational transformation-based tagging system based on
inductive logic programming principles, which is able to cope with expressive
relational representations as well as a background theory. The approach is exper-
imentally evaluated on two activity recognition tasks and compared to Hidden
Markov Models, one of the most popular and successful approaches for tagging.

1 Introduction

Smart systems that assist humans must be able to recognize the current context of the
user and the activity she is performing in order to suggest or take actions in an intel-
ligent manner. To recognize the context and activity, such systems can rely on streams
of past activities, context, and sensory information (visual, object-interaction, ...). Rec-
ognizing the current activity or context then corresponds to inferring the activity or
context from such sequential information. From a machine learning perspective, this
task is akin to many tagging tasks pursued in natural language processing. For instance,
in part-of-speech tagging, a form of ”shallow parsing”, the words in a sentence are to
be labeled with the corresponding parts-of-speech (word categories). Many techniques
have been developed and employed for this purpose. Two popular techniques for part-
of-speech tagging are Hidden Markov Models and transformation-based learning [1].
However, whereas Hidden Markov models have been applied in many different areas,
ranging from speech-recognition to activity recognition and bio-informatics, to the best
of the authors’ knowledge, transformation based learning has only seldomly been ap-
plied outside the field of natural language processing.

Because the structure of natural language is quite rigid as compared to that of typi-
cal activity recognition tasks, the existing transformation-based learners cannot directly

82 N. Landwehr et al.

be applied for activity recognition. Therefore, we develop a more flexible relational
transformation-based tagger within the inductive logic programming paradigm. This
does not only provide an expressive representation but also allows one to easily incor-
porate background theory during the learning process. Thus the key contribution of this
paper is a relational extension of transformation-based tagging based upon inductive
logic programming principles. It also extends earlier work on relational transformation-
based learning by [2] in that it focuses on tagging rather than classification. More
specifically, from inductive logic programming (and the work by [2]) our technique
inherits its search and refinement techniques (including a branch-and-bound algorithm)
and from transformation-based learning the error driven stacking of rules.

The proposed method is evaluated in two activity recognition domains: “Activities
of Daily Living” (ADL) recognition from a stream of “object interaction” data [6], and
mobile phone profile prediction based on data collected by [8]. Experiments show that
obtained tagging accuracies are competitive with those of HMM-based approaches, and
it is easy to incorporate human-supplied background knowledge into the learning pro-
cess. Furthermore, and that is perhaps the key advantage of the relational transformation-
based tagger, the method can easily be extended to deal with variants of the tagging
problem, for instance the prediction of structured output tags (as in Logical Hidden
Markov Models [4]), and to cope with rich background knowledge.

2 Sequence Tagging

Sequence tagging is the task of assigning to each element in a given sequence an appro-
priate label or tag. Let W = {w1, ..., wk} denote the vocabulary of sequence elements,
and T = {t1, ..., tm} the vocabulary of tags. The most prominent instance of the tag-
ging problem is part-of-speech-tagging in natural language processing, where the task is
to assign lexical categories t ∈ T to wordsw ∈W in a given natural language sentence.
Many other interesting sequence analysis problems can be cast in this framework, such
as activity recognition in user modeling or gene finding and protein secondary structure
prediction in bioinformatics.

In NLP, the two most common tagging approaches are transformation-based taggers
(rule-based) and probabilistic methods (hidden Markov models or related techniques).
Both of these approaches yield competitive results, and have received much attention.
Before discussing our extension to transformation-based learning, we briefly review
these two approaches in the next two sections.

2.1 Transformation-based Tagging

Transformation-based learning is a rule-based learning approach which iteratively stacks
rules on top of each other to improve performance [1]. The basic transformation-based
learning algorithm for the tagging problem is summarized in Algorithm 1. The algo-
rithm takes as input a set S of sequences with known true tags L. During learning,
it maintains a set of current tags L̂ for all s ∈ S. L̂ is initialized with some simple
scheme, such as assigning to every element w ∈ W its most common tag t ∈ T in the
training data (procedure initial-tags). The algorithm then tries to improve the current

Relational Transformation-based Tagging for Human Activity Recognition 83

Algorithm 1 Basic transformation-based tagging algorithm.

tb-tagging(input: sequences S; true sequence tags L)

1 L̂ := initial-tags(S,L)
2 initialize R = []
3 repeat
4 r := find-best-rule(S, L̂, L)

5 update L̂ := apply-rule(L̂, r)
6 update R := append(R, r)
7 until (no improvement)
8 return R

tagging L̂ with respect to the true tagging L by learning a list of transformation rules
R. Transformation rules can re-tag sequence elements based on the context they appear
in. A transformation rule has the form t′ ← t : context and simultaneously replaces all
occurrences of tag t in all sequences with t′ whenever the constraint context is satisfied.

Example 1. As an example from NLP, the word “move” could be initially tagged as
“verb”, but would be re-tagged as “noun” if the preceding word was tagged as “article”.
This can be encoded by the following transformation rule:

noun← verb : word = move, preceding tag = article

The transformation rule languages employed in traditional transformation-based tag-
ging are mostly simple instantiations of some template—for instance, querying in context
the word and tag at the current position and the next or preceeding position(s). We will
replace this constraint by a first-order logical expression in Section 3.

In every iteration, the transformation rule which yields the greatest reduction in er-
ror between L̂ and L is greedily selected (find-best-rule), applied to the current tagging
L̂ and appended to the rule list R. As conditions of rules in R match not only sequence
elements but also currently predicted tags L̂, rules can effectively bootstrap the cur-
rent predictions. This makes transformation-based learning strictly more powerful than
standard rule learning [1].

2.2 Hidden Markov Model Tagging

Tagging with hidden Markov models is typically performed with a model in which there
is a hidden state qt for every possible tag t, and state emission symbols correspond to
symbols w ∈ W . That is, the observed sequence of symbols is seen as being gener-
ated by the hidden sequence of tags. Formally, the joint probability of an observation
sequence s = w1...wn with hidden tag sequence t1...tn is given by

P (w1...wn, t1...tn) = P (t1)
n−1∏

i=1

P (ti+1 | ti)P (wi | ti)

84 N. Landwehr et al.

76540123t1

²²

// 76540123t2

²²

// 76540123t3

²²

// 76540123t4

²²

// 76540123t5

²²?>=<89:;w1 ?>=<89:;w2 ?>=<89:;w3 ?>=<89:;w4 ?>=<89:;w5

Fig. 1. Example lattice generated by unrolling a tagging HMM to a sequence w1, ..., w5. Infer-
ence in this model is carried out with the Viterbi algorithm, which yields the most likely joint
state of the hidden variables t1, ..., t5 given the observations on w1, ..., w5.

where P (t1) is an initial probability for tag t1 and P (wi | ti), P (ti | ti−1) are condi-
tional probabilities for the emitted word wi and next tag ti+1 given the current tag ti.
When such a model is applied to a sequence w1...wn, it is unrolled into a lattice as
depicted in Figure 1, and the Viterbi algorithm [7] is employed to efficiently compute

t̂1...t̂n = arg max
t1...tn

P (t1...tn, w1...wn)

= arg max
t1...tn

P (t1...tn | w1...wn),

the most likely sequence of tags for the given sequence.
This technique has been used successfully for tagging problems in many domains.

For instance, HMM-based approaches are a popular technique for inferring hidden user
activities from a stream of object-interaction data in the so-called ADL (“Activities of
Daily Living”) problem [6, 10], which will be described in more detail below.

3 Relational Transformation-based Tagging

The general motivation for our work on relational transformation-based tagging is to
apply the transformation-based tagging methodology to complex datastreams, which
are generated for instance by sensors or sensor networks in ubiquitous computing envi-
ronments. For such complex domains it is not always possible to represent all available
information as flat (or propositional) symbols from a fixed alphabet. This problem can
be overcome by using a more expressive relational representation for sequence ele-
ments. We will therefore extend the template-based rule language traditionally used in
transformation-based learning to a more flexible relational rule language, which can
take advantage of such richer representations for sequence elements. Furthermore, it is
easy in this case to incorporate domain-specific background knowledge into the learn-
ing process. Analyzing such relational sequences has received considerable attention
recently, for instance with relational extensions of Hidden Markov Models [4] or n-
gram models [5].

Example 2. As an example, consider the ADL (“Activities of Daily Living”) recogni-
tion problem, which is visualized in Figure 2. In ADL recognition, objects which are
used in activities of daily living such as making breakfast are equipped with small RFID
tags that can be picked up by a wearable reader while a person performs an activity [6].

Relational Transformation-based Tagging for Human Activity Recognition 85

Relational
Representation

tag(w1, toastBread) tag(w2, toastBread) tag(w3, toastBread) ...
tag(w4, f lavorToast) tag(w5, f lavorToast) tag(w6, f lavorToast) ...

sensor(w1, toast) sensor(w2, toaster) sensor(w3, toast) ...
sensor(w4, knife) sensor(w5, butter) sensor(w6, toast) ...

time(w1, 1, 2) time(w2, 3, 6) time(w3, 7, 8) ...
time(w4, 9, 11) time(w5, 12, 13) time(w6, 14, 15) ...

Background
Knowledge

...

Activity Tag ToastBread FlavorToast BoilWater FlavorTea

Sensor
Reading

01
to

as
t

02
to

as
t

03
to

as
te

r
04

to
as

te
r

05
to

as
te

r
06

to
as

te
r

07
to

as
t

08
to

as
t

09
kn

if
e

10
kn

if
e

11
kn

if
e

12
bu

tte
r

13
bu

tte
r

14
to

as
t

15
to

as
t

16
kn

if
e

17
kn

if
e

18
ja

m
19

ja
m

20
w

at
er

21
w

at
er

22
w

at
er

23
st

ov
e

24
st

ov
e

25
cu

p
26

sp
oo

n
27

sp
oo

n
28

su
ga

r
29

su
ga

r
30

cu
p

Fig. 2. Relational representation of the ADL recognition problem. While a person is perform-
ing activities of daily living (such as preparing breakfast), a stream of object interaction data is
generated from a wearable RFID reader (“sensor reading”). This can be represented in a rela-
tional form by collapsing identical sensor readings to one sequence element wi, and encoding
the starting point and duration of the observation in another predicate. Furthermore, additional
background knowledge can be used to encode prior knowledge about the domain.

The task is to recover the activity currently performed from the stream of sensor data,
that is, to tag the sequence of object interactions with activities.

It is obvious that this kind of data is less rigidly structured than natural language
data: there are no “grammatical rules” which determine the exact sequence of touching
knife, toast, butter and jam when adding flavor to a toast. Nevertheless, context informa-
tion can help determine the right tag. For instance, using a spoon can indicate activities
FlavorTea or EatCereals. This ambiguity can be resolved by looking at the context: the
observation of a spoon closely followed by sugar indicates activity FlavorTea, while
observation of a spoon after milk and cereals indicates activity EatCereals.

Furthermore, the stream of object data obtained from the sensor has some internal
structure, as an object observation has a starting point and duration in time. A repre-
sentation in first-order logic allows to capture this structure, and to express flexible rule
conditions such as object x has (not) been observed less than t seconds before/after
the current time-step or the most frequent (currently estimated) tag around the current
time-step is t using manually defined background knowledge.

At the same time, activity recognition can be seen as a data stream mining task—the
analysis of a continuous, potentially infinite stream of data. In this context, issues such
as online learning (with only one pass through the data necessary) are of considerable
interest. However, we will not address these issues in the paper, and instead assume that
a limited amount of training data is given a priori. Extending the proposed methods to
an online-learning scenario is an interesting direction for future work.

The next section will discuss the formal learning setting for relational transformation-
based tagging, before discussing learning algorithms and experimental results.

86 N. Landwehr et al.

3.1 Learning Setting

The learning setting for relational transformation-based tagging can be formalized as
follows:

Given

– a relational languageW for describing sequence elements, i.e., a set of typed first-
order logical predicates

– a set of tags T ;
– a set of training sequences S = {s1, ..., sm} with sequence elements described in
W and corresponding true tags L over T ;

– a scheme for setting initial tags given by a function init;
– a language L of transformation rules t′ ← t : q where t, t′ ∈ T , q = l1, ..., lr and

the li are atoms inW .

Find an ordered lists of transformations R = [R1, ..., Rl], Ri ∈ L, such that applying
the initial tagging scheme and afterwards transformation rules R1, ..., Rl minimizes

error(L̂) =
∑

s∈S

ns∑

i=1

δ(lis, l̂is)

where ns is the length of sequence s and lis, l̂is denote the tag assigned to element i in
sequence s according to L and L̂.

In contrast to standard (propositional) transformation-based tagging approaches, the
languages W (sequence elements) and L (rules) employed are relational; that is, rule
conditions q are first-order queries of the form l1, ..., lk where the li are first-order log-
ical atoms. Applying a first-order transformation rule t′ ← t : q means simultaneously
replacing all tags t in L̂ by t′ wherever the first-order context constraint q matches the
relational description of the corresponding sequence element.

Example 3. As an example for a relational transformation rule in the ADL recognition
domain consider

FlavorTea← EatCereals :
sensor(X, spoon), near(X, sugar, 10), not(near(X, bowl, 5))

where the variable X is bound to the sequence element under consideration and the
background predicate near/3 is defined by

near(X,O, T)←
time(X,S,D), sensor(X ′, O), time(X ′, S′, D′), dist(S,D, S′, D′, T ′), T ′ ≤ T

and dist(S,D, S′, D′, T) measures the distance between the intervals [S, S + D] and
[S′, S′ +D′]. This rule re-tags objects of type spoon from EatCereals to FlavorTea
if implied by the context.

Relational Transformation-based Tagging for Human Activity Recognition 87

3.2 A Branch-and-Bound Learning Algorithm

For learning the list R of relational transformation rules, a large space of possible rules
has to be searched. However, structure on the search space can be exploited to make
this search more efficient. More specifically, the algorithm we use combines ideas from
transformation-based learning (branch-and-bound search based on upper bounds for the
error reduction of a transformation rule) and inductive logic programming (refinement
search in a generalization/specialization lattice). It is closely related to the algorithm
presented in [2].

Recall that the goal of learning is to find a list R of transformation rules which
minimize error(L̂) on a set of training sequences S with known true labels L. As in
propositional transformation-based learning [1], the rule list is learned greedily: starting
with an empty list, the algorithm incrementally adds one rule after the other, at every
step selecting the rule which yields the greatest reduction in error(L̂) and updating the
current tagging L̂ (cf. Algorithm 1).

When searching for an individual rule with maximum error reduction, a signifi-
cant part of the search space can be pruned away by computing upper bounds for the
error reduction a rule can achieve. One obvious bound for the reduction achievable
by a transformation rule ti ← tj : context is given by the number of sequence ele-
ments whose true tag (in L) is ti and which are currently (in L̂) assigned tag tj . LetM
denote the current confusion matrix, i.e., M[i, j] denote the number of sequence ele-
ments with true tag ti currently tagged as tj . This can be exploited by considering rules
ti ← tj : context in (decreasing) order of their potential M [i, j] for error reduction
and keeping track of the best error reduction ∆best found so far. Now, all rules of the
form ti ← tj : context for whichM[i, j] ≤ ∆best can be removed from consideration
(cf. [1]).

This idea can be taken one step further if it is combined with a general-to-specific
search for the first-order constraint context [2]. As a complete search in the space
of first-order constraints is infeasible in most cases, we perform a greedy general-to-
specific search. To generate the specializations of the current condition q, a so-called
refinement operator ρ under θ-subsumption is employed. A conditions q1 θ-subsumes a
condition q2 if and only if there is a substitution θ such that q1θ ⊆ q2. A substitution is a
set {V1/t1, . . . , Vl/tl} where the Vi are different variables and the ti are terms, and the
application of the substitution replaces the variables V1, . . . , Vl by the corresponding
terms t1, . . . , tl. ρ(q) typically returns all minimal specializations of q within L. For
our purposes, the refinement operator specializes a condition q = l1, · · · , ln simply by
adding a new literal l to the clause yielding h← l1, · · · , ln, l. This operator is monotone
in the sense that for q′ ∈ ρ(q) the number of matches in the data can only decrease.
Consequently, the maximum gain achievable from specializations of a transformation
rule ti ← tj : q can be bounded in terms of the current matches. More specifically,
assume that a constraint q matches on a number of sequence elements in the training
data S, and that for pq of these it has a positive effect (current tag is tj , but true tag is
ti) and for nq it has a negative effect (current and true tag are tj). The error reduction
of applying the transformation ti ← tj : q is ∆q = pq − nq . It is now obvious that no
specialization ti ← tj : q′ with q′ ∈ ρ∗(q) can achieve an error reduction greater than
Γq = pq .

88 N. Landwehr et al.

Algorithm 2 Branch-and-bound algorithm for relational transformation-based tagging

rtb-tagging(input: sequences S; true sequence tags L; language bias L)

1 L̂ := initial-tags(S,L)
2 initialize R := []
3 repeat
4 initialize ∆best := 0

5 computeM := confusion-matrix(L̂, L)
6 for all i, j ∈ {1, ..., k}, i 6= j, sorted byM[i, j] descending do
7 initialize Γ :=M[i, j]
8 initialize q := true
9 while (Γ > ∆best) do

10 for all q′ ∈ ρ(q,L) do
11 compute ∆q′ := error-reduction(tj ← ti : q′)
12 compute Γq′ := max-reduction(tj ← ti : q′)
13 end for
14 let q := argmaxq′ ∆q′

15 let ∆best := max(∆best,∆q)
16 let Γ := Γq
17 end while
18 end for
19 let r := ti ← tj : q be a rule with error reduction ∆best

20 update L̂ := apply-rule(L̂, r)
21 update R := append(R, r)
22 until (no improvement)
23 return R

A greedy branch-and-bound algorithm exploiting these two bounds is outlined in
Algorithm 2. It takes as input a set of training sequences S, true sequence tagsL, and the
language bias L. The algorithm starts with an empty rule list R and initial tags assigned
in L̂. Transformation rules are then greedily added to R, and their effect applied to the
current tagging L̂ (lines 3–21). Transformations are considered in order of decreasing
M[i, j] (line 6). At every step of the search for a single transformation ti ← tj : q
(lines 6–18), the algorithm keeps track of the largest reduction ∆best achieved by a rule
so far. During refinements of the context constraint q (lines 9–17) a bound Γq for the
maximum reduction that any specialization of a rule q can still achieve is computed
(max-reduction), and only parts of the search space for which Γ is greater than ∆best

are explored.

4 Experiments

The proposed method was implemented in the RETRO (for RElatational TRansfOrmation-
based tagging) system and experimentally evaluated in two real-world domains: Activ-
ity of Daily Living recognition (ADL) and mobile phone profile prediction (Phone).

Relational Transformation-based Tagging for Human Activity Recognition 89

Table 1. Example relations used to describe the activity data. Some relations are directly derived
from the data (e.g. sensor, duration, close), others include human-supplied prior knowledge
(e.g. close used).

Relation Description
sensor(Id,Object) The object observed at sequence element Id is Object
duration(Id, T) The object observation at sequence element Id lasted T seconds

close(Id,Obj, T)
The object Obj has been observed within T seconds of

sequence element Id
time bin(T,Bin) The time span T falls into the bin Bin ∈ {short,medium, long}
closest tag(Id,Act)

The closest sequence position to Id for which an activity
(i.e., a tag 6= “no activity”) is assigned in L̂ is tagged with Act

close used(Id,Act, T)
Less than T seconds away from sequence element Id an object

has been observed which is typically used in Act

Relational
Representation

cell(w1, 6672) cell(w2, 6671) cell(w3, 6673) ...

time(w1, 1, 15) time(w2, 16, 25) time(w3, 26, 38) ...

usr activity(w1, act) usr activity(w2, idle) usr activity(w3, act) ...

active app(w1, 101) active app(w1, 102) active app(w3, 101) ...

comm(125, sms, incoming) comm(390, call, outgoing)

Phone profile normal silent normal meeting
Cell 6672 6671 6673 7409 6673 6671 7409 7410 6739

Fig. 3. Illustration of the Phone data (predicates for cell location, duration, user activity, active
applications, and communication events).

In the ADL recognition domain, object-interaction data for a user having breakfast
at home has been gathered by a wearable RFID reader and RFID tags on objects such
as milk, cereals, kettle, water tap, cutlery etc. (23 objects in total). The stream of tags
picked up by the RFID reader indicates which object is close (approximately 10–15 cen-
timeters) to the wrist of the user at a particular point in time. A single object observation
is returned at every second—if several tags are within reach, one is returned randomly.
Note that the data is relatively noisy: tags might sometimes be missed, or a tag not re-
lated to a particular activity can be reported by the reader because the corresponding
object is accidentally close. The task is to predict the current activity performed, out of
a set of 24 possible activities such as boiling water, toasting bread, reading a newspaper
or “no activity”. The sequence data obtained from the RFID reader is represented in a
relational form by collapsing identical observations into one observation with a start-
ing point and duration in time (cf. Figure 2 for an illustration). Furthermore, additional
background predicates have been defined, see Table 1 for examples.

In the Context Phone domain, data about user communication behavior has been
gathered using a software running on Nokia Smartphones. The software automatically
logs communication and context data, such as the current provider cell, incoming and
outgoing calls and text messages, and other phone status information. The task is to

90 N. Landwehr et al.

Table 2. Average F-measure on the ADL Recognition and Phone problems based on a leave-one-
sequence-out cross-validation.

Algorithm ADL Phone

Majority tag 19.5± 22.3 56.7± 13.1
HMM Tagger 74.9± 12.5 56.7± 13.1
RETRO 75.4± 7.8 67.7± 10.3

Table 3. Examples for rules learned by RETRO on the ADL dataset.

Learned Rules
ObtainNewspaper ← ReadNewspaper: close(Id,Obj, T), Obj = door,

time bin(T,medium)

FlavorTea ← EatCereals: closest tag(A,F lavorTea)

SteepTeaBag ← DrinkTea: close(Id,Obj, T), Obj = stove

PourCereal ← ObtainNewspaper: close used(Id, PourCereal, T),
not(close used(Id,ObtainNewspaper, T ′)), time bin(T, short)

SteepTeaBag ← noActivity: duration(Id, T), time bin(T, long),
closest tag(ID, SteepTeaBag)

predict the active profile of the phone (silent, meeting, or normal) at every point in
time. See Figure 3 for an illustration of the data and the predicates used.

For comparison, we have also conducted experiments with a (propositional) HMM
tagger on the two datasets. As it is not possible to encode all relevant information propo-
sitionally, we have selected the most relevant information to be used as the propositional
alphabetW . For the ADL recognition problem, this is the sequence of objects observed.

For the phone domain, it is the sequence of cells the phone was located in.
For initializing the tagging L̂ in the transformation-based tagger, RETRO simply

assigns the most frequent tag given the propositional symbol w ∈W :

init(w) = argmax
t∈T

C(w, t)

where C(w, t) is the number of times symbol w was tagged with t in the training data.
More elaborate initialization schemes (such as using the HMM tagging as an initializa-
tion for the transformation-based tagger) are an interesting direction for future work.
Furthermore, instead of a simple greedy search as outlined in Algorithm 2, a beam
search with beam size K = 10 is used. The main loop of the algorithm is terminated if
no rule with a gain of at least min gain = 10 is found.

Table 2 lists the average F-measure for RETRO and HMM tagging based on a leave-
one-sequence-out cross-validation. For the ADL recognition problem, there is no sig-
nificant difference between the two approaches. In the phone domain, the HMM tag-
ger fails to improve upon the majority tag prediction, while RETRO yields a (border-
line) significant increase in F-measure (paired sampled t-test, p = 0.051). This shows
that transformation-based approaches can be competitive with probabilistic methods in
complex tagging domains. However, the presented experiments are still preliminary,
and more empirical evaluation is needed to assess the potential of the method in more

Relational Transformation-based Tagging for Human Activity Recognition 91

 0

 0
.0

5

 0
.1

 0
.1

5

 0
.2

 5
 1

0
 1

5
 2

0
 2

5

Fraction of search space explored

A
lg

o
ri
th

m
 I

te
ra

tio
n

B
o

u
n

d
 I

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

 5
 1

0
 1

5
 2

0
 2

5

Fraction of search space explored

A
lg

o
ri
th

m
 I
te

ra
tio

n

B
o
u
n
d
 I
I

Fig. 4. Effectiveness of the two pruning schemes Bound I (maximum gain attainable from chang-
ing a certain tag into a certain other tag) and Bound II (maximum gain attainable from specializing
a given rule). Results are averaged over a leave-one-sequence-out cross-validation.

detail. Note furthermore that although HMM tagging is a standard approach in activity
recognition, more advanced probabilistic methods have recently been developed which
would possibly yield slightly higher accuracy in this domain [9].

Examples for rules learned by RETRO on the ADL recognition task are shown in
Table 3. For instance, consider the last rule: it encodes that if a sequence element cor-
responding to a long object observation is tagged with noActivity and the closest cur-
rently predicted activity is SteepTeaBag, this sequence element should also be tagged
with SteepTeaBag. This rule is useful for “filling in gaps” as SteepTeaBag only
causes characteristic object observations at the beginning and end of the activity.

Finally, Figure 4 visualizes the effectiveness of the pruning schemes based on the
two upper bounds discussed above on the ADL recognition problem. More specifi-
cally, Figure 4 (left) shows the fraction of pairs (ti, tj) that have to be considered when
searching for rules ti ← tj in lines 6–18 of Algorithm 2 as a function of the algorithm
iteration. This pruning scheme is very effective, reducing the search space by 93%–
99%. It is more effective in earlier iterations as it is easier to find a rule with yields
a large reduction in error. Figure 4 (right) shows which fraction of refinements is re-
moved from the beam when rules are refined in lines 10–13 of Algorithm 2 because
no further specialization can reach the performance of the best rule found so far. Note
that this form of pruning does not affect the computational complexity of the algorithm
but rather allows a more thorough search through the space of possible rules (given
a limited beam size) by effectively reducing the branching factor of the search. On av-
erage, the branching factor is about halfed, this is independent of the algorithm iteration.

92 N. Landwehr et al.

5 Conclusions and Related Work

Motivated by the needs of activity recognition problems, we have introduced a rela-
tional transformation-based tagging system. It tightly integrates principles of inductive
logic programming (especially search, representations, operators, background knowl-
edge) with transformation-based tagging (error-driven search, branch-and-bound idea).
The approach has been evaluated on two activity recognition data sets and the results are
competitive with those of a Hidden Markov Model approach. Perhaps more important
than the experimental results obtained so far is the ease with which one can extend the
transformation-based tagging approach beyond the propositional HMM setting. Impor-
tant directions in this regard include: the use of rich sources of background knowledge
(that take not only into account the inputs but also the already available produced tags),
the prediction of structured output sequences (predicting sequences of logical atoms,
cf. [3], such as call(anna,10) denoting the prediction that anna will be called in 10 min-
utes), and relaxing the purely sequential nature of the output (which is important for
the ADL dataset where different activities may overlap in time, and therefore ordering
them is not always possible).

Acknowledgments We would like to acknowledge support for this work from the Re-
search Foundation-Flanders (FWO-Vlaanderen).

References
1. E. Brill. Transformation-based error-driven learning and natural language processing: A case

study in part-of-speech tagging. Computational Linguistics, 21(4):543–565, 1995.
2. L. Dehaspe and M. Forrier. Transformation-based learning meets frequent pattern discovery.

In J. Cussens, editor, Proceedings of the 1st Workshop on Learning Language in Logic, pages
40–51, Bled, Slovenia, 1999.

3. K. Kersting, L. De Raedt, B. Gutmann, A. Karwath, and N. Landwehr. Relational sequence
learning. In L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton, editors, Application of
Probabilistic ILP. Springer, 2007. to appear.

4. K. Kersting, L. De Raedt, and T. Raiko. Logical hidden markov models. Journal of Artificial
Intelligence Research, 25:425–456, 2006.

5. N. Landwehr and L. De Raedt. r-grams: Relational grams. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence, pages 907–912, Hyderabad, India,
2007.

6. D. Patterson, D. Fox, H. Kautz, and M. Philipose. Fine-grained activity recognition by ag-
gregating abstract object usage. In Proceedings of ISWC 2005, Osaka, 2005.

7. L. Rabiner. A tutorial on hidden markov models and selected applications in speech recog-
nition. Proceedings of the IEEE, 77(2):257–286, 1989.

8. M. Raento, A. Oulasvirta, R. Petit, and H. Toivonen. ContextPhone - a Prototyping Platform
for Context-aware Mobile Applications. IEEE Pervasive Computing, 4(2):51–59, 2006.

9. S. Wang, W. Pentney, A.-M. Popescu, T. Choudhury, and M. Philipose. Common sense based
joint training of human activity recognizers. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence, pages 2237–2242, 2007.

10. D. Wilson and M. Philipose. Maximum a posteriori path estimation with input trace pertur-
bation: Algorithms and application to credible rating of human routines. In Proceedings of
IJCAI 2005, Edinburgh, Scotland, August 2005.

Learning Ground CP-logic Theories by means of
Bayesian Network Techniques

Wannes Meert, Jan Struyf and Hendrik Blockeel

Department of Computer Science, Katholieke Universiteit Leuven,
Celestijnenlaan 200A, 3001 Leuven, Belgium,

{wannes.meert, jan.struyf, hendrik.blockeel}@cs.kuleuven.be

Abstract. Causal relationships are present in many application do-
mains. CP-logic is a probabilistic modeling language that is especially
designed to express such relationships. This paper investigates the learn-
ing of CP-theories from examples, and focusses on structure learning.
The proposed approach is based on a transformation between CP-logic
theories and Bayesian networks, that is, the method applies Bayesian
network learning techniques to learn a CP-theory in the form of an equiv-
alent Bayesian network. We propose a constrained refinement operator
for such networks that guarantees equivalence to a valid CP-theory. We
experimentally compare our method to a standard method for learning
Bayesian networks. This shows that CP-theories can be learned more
efficiently than Bayesian networks given that causal relationships are
present in the domain.

1 Introduction

Bayesian networks have earned a good reputation for modeling complex problems
involving uncertain knowledge. This success seems to be at least in part due to
the causal interpretation that can be given to such networks. Although it is
theoretically impossible to infer all causal relationships from a typical data set,
it still seems useful to try to approximate them by means of learning, mainly
because causal information tells you just enough about the (expected) behavior
of a process, while allowing irrelevant details to be ignored [13]. This causality
is, however, not present in the formal semantics of Bayesian networks (although
there is some work on causal Bayesian networks [11]).

Causal Probabilistic logic (CP-logic), on the other hand, is a probabilistic
modeling language with causality at the heart of its fundamental construct.
Because CP-logic focusses on causal information, in a sense, it allows a more
fine-grained and flexible representation than Bayesian networks [13]. This results
in a smaller number of parameters and easy to read theories. This is not only
useful for human experts, but also for automated model building algorithms.
Indeed, a lot of effort goes into obtaining the structure of the model and the
numerical parameters that are needed to fully quantify it. For example, in a
Bayesian network, a binary variable with n parents will require 2n parameters
to be defined. For a large value of n this is not only a heavy task for a human

94 W. Meert et al.

expert but it also requires sufficiently large data sets to accurately learn all these
parameters [9, 3]. A CP-logic theory (CP-theory), on the other hand, has only
one parameter for every cause.

There is already some work on learning a subset of CP-logic by Riguzzi [12]1.
This subset was extended by Blockeel and Meert [1] by using a conversion to
Bayesian networks. The latter method offers the possibility to adapt some of
the many methods and optimizations available for Bayesian networks to learn a
CP-theory. Where Blockeel and Meert [1] mainly focus on parameter learning,
in this paper, we offer a practical method for learning the structure of a large
subset of CP-theories by using this conversion to Bayesian networks.

We start this article with a brief introduction to CP-logic in Section 2. In
Section 3, we explain the link with Bayesian networks and how to convert a
CP-theory to a Bayesian network. Finally, we adapt some Bayesian learning
algorithms to learn a CP-theory from data in Section 4 and Section 5.

2 Intuitions about CP-logic

We briefly introduce CP-logic. A more formal description can be found in [13].
A CP-theory can be seen as a set of if-then rules of the following form:

(h1 : α1) ∨ (h2 : α2) ∨ . . . ∨ (hn : αn)← b1, b2, . . . , bm.

with hi atoms and bi literals in the logical sense, all causal probabilities αi ∈ [0, 1],
and

∑n
i=1 αi ≤ 1. We call the set of all (hi : αi) the head of the rule, and the

set of all bi the body. If the head contains only one atom h : 1, we may write it
as h.

Each of these rules has several possible conclusions (head), each of which
has a certain probability (αi) assigned to it. The rule makes exactly one of the
conclusions true with the associated probability. For instance,

(spaghetti : 0.5) ∨ (steak : 0.5)← shops(john).

expresses that if John goes shopping, he buys spaghetti or steak for dinner each
with 50% chance.

Multiple rules in a CP-theory may lead to the same conclusions. Take, for
instance, the following CP-theory

(spaghetti : 0.5) ∨ (steak : 0.5)← shops(john).
(spaghetti : 0.3) ∨ (fish : 0.7)← shops(mary).

which expresses that if John goes shopping he buys spaghetti or steak for dinner
and if his girlfriend Mary goes shopping, she buys spaghetti or fish. The num-
bers associated with the different meals indicate the probability that the event
mentioned in the rule body causes that type of dinner to be bought. If both go

1 Note that CP-logic theories and LPADs (Logic Programs with Annotated Disjuc-
tions) are equivalent. The research about LPADs has evolved into CP-logic.

Learning Ground CP-logic Theories by Bayesian Network Techniques 95

shopping it is possible that they buy both steak and fish, in that case they can
choose what they will have for dinner.

It is part of the semantics of CP-logic that each rule independently of all other
rules makes one of its head atoms true when triggered. CP-logic is therefore
particularly suitable for describing models that contain a number of indepen-
dent stochastic events or causal processes. Consequently, learning a CP-theory
amounts to discovering the causal structure of possibly complex processes.

It may be tempting to interpret the parameters as the conditional probability
of a head atom given the body, e.g., Pr(spaghetti|shops(mary)) = 0.3, but this
is incorrect. The conditional probability that spaghetti is bought, given that
Mary went shopping, is higher than 0.3, because there is a second possible cause,
namely that John also bought spaghetti. To compute this conditional probability,
we need information on the probability that John went shopping. For instance,
with

shops(john) : 0.2.
shops(mary) : 0.9.

(spaghetti : 0.5) ∨ (steak : 0.5)← shops(john).
(spaghetti : 0.3) ∨ (fish : 0.7)← shops(mary).

we can say that Pr(spaghetti|shops(mary)) = 0.3 + 0.2 · 0.5 · 0.7 = 0.37 : Mary
buys spaghetti with probability 0.3, but there is also a probability of 0.2 that
John went to the shop, and hence a probability of 0.2 · 0.5 · 0.7 that spaghetti is
bought by John (0.2 · 0.5) and not by Mary (0.7).

Thus, for head atoms that occur in multiple rules, the mathematical re-
lationship between the CP-theory parameters and conditional probabilities is
somewhat complex, but it is not unintuitive. The meaning of the probabilities
in the rules is quite simple: they reflect the probability that the body causes
the head to become true. This is different from the conditional probability that
the head is true given the body, but among the two, the former is the more
natural one to express. Indeed, the former is local knowledge: an expert can es-
timate the probability that shops(mary) causes spaghetti without considering
any other possible causes for spaghetti. To infer Pr(spaghetti|shops(mary)), we
need global knowledge: we need to know all possible causes for spaghetti, the
probability of them occurring, and how they interact with shops(mary).

The fact that the parameters in a CP-theory are local makes it impossible
to estimate them directly from the data as can be done in Bayesian networks.
In Section 3, we will see that CP-theory parameters can be mapped to Bayesian
network parameters by introducing unobserved nodes.

3 Converting a CP-logic Theory to a Bayesian Network

Blockeel and Meert [1] show that any CP-theory that is non-recursive and has a
finite Herbrand universe can be converted into a Bayesian network such that the

96 W. Meert et al.

CP-theory parameters appear in the network’s CPTs2. All other CPT entries
are either 0.0 or 1.0. In this section, we explain this conversion.

We only consider ground CP-theories, so a non-ground CP-theory must be
grounded first. Based on such a CP-theory we construct a Bayesian network.
The structure can be created in three steps:

1. For every literal in the CP-theory, a Boolean variable is created in the
Bayesian network. This is a so-called literal variable and is represented by a
literal node in the network.

2. For every rule in the CP-theory, a choice variable is created in the Bayesian
network. This variable can take k+1 values, where k is the number of atoms
in the head. It is represented by a choice node in the network.

3. If an atom is in the head of a rule, an edge is created from its corresponding
choice node towards the atom’s node. If a literal is in the body of a rule, an
edge is created from the literal node towards the rule’s choice node.

For the CPTs there are two cases:

1. The CPT of a choice variable (e.g., Fig. 1 CPT for C3): such a variable can
take k + 1 values with k the number of atoms in the head. The variable
has the value i if the ith atom from the head is chosen by the probabilistic
process. If none is chosen (in case the probabilities do not sum up to one)
then the variable has the value 0. The probability that the variable takes
a particular value if the body is true, is the causal probability given in the
rule of the CP-theory. If the body is not true, the probability that the choice
variable takes the value 0 is 1.0 and all the other values have probability 0.0.
Note, that a body may contain negative literals.

2. The CPT of a literal variable (e.g., Fig. 1 CPT for spaghetti) is structured
differently. If the choice variable of a rule in which the atom is in the head
has as value the position of that atom in the head, then it will be true with
probability 1.0, otherwise it will be false.

As an example, the conversion of the shopping example to a Bayesian network
is depicted in Fig. 1. It can be noted that this structure resembles noisy-or
structures as introduced by Pearl [10]. This is partly due to the fact that CP-
logic uses the principle of independent causation, which is similar to the principle
of independence of causal influence (ICI). ICI models are a family of Bayesian
network models used for classification tasks with large numbers of attributes.
So, a simple CP-theory can be used as an ICI classifier.

Since we can convert a CP-theory to a specific type of Bayesian network,
we have two different representations for the same CP-theory. To differentiate
between them we will name them. All the possible CP-theories expressed in the
CP-logic syntax and semantics will be called the CP-logic space. The Bayesian
networks resulting from the conversion are part of what we will call the Bayesian
network space. So, this is the space of all the possible Bayesian networks that
are equivalent to a valid CP-theory.
2 CPTs are Conditional Probability Tables as known for Bayesian Networks. Note

that Conditional Probability is not the same as Causal Probability (Section 2).

Learning Ground CP-logic Theories by Bayesian Network Techniques 97

shops(mary)

C4

shops(john)

C3

steak spaghetti fish

C1 C2

(a) Bayesian network

spaghetti C3=1 or C4=1 other
T 1 0
F 0 1

C1
0 0.8
1 0.2

C3 john(shops) other
0 0 1
1 0.5 0
2 0.5 0

john(shops) C1=1 other
T 1 0
F 0 1

(b) CPTs for some nodes of (a)

Fig. 1. Conversion from a CP-theory to a Bayesian network.

4 Parameter Learning

Once this equivalent Bayesian network is created we can use known methods
for learning Bayesian networks to learn the parameters of the network and thus
also the CP-theory parameters. It is, however, necessary to impose constraints
on the CPTs in order to keep the network equivalent to a valid CP-theory. As
input we use a multi-set of tuples and each tuple indicates the truth value (true
or false) of each literal in the domain.

The choice variables in the Bayesian network are not present in our domain,
therefore the network is not fully observable. This is solved by using an EM-
algorithm for learning the parameters [8]. Because we use an EM-algorithm, the
missing values are allowed in the input data.

While the choice variables introduce unobserved variables, which is a dis-
advantage, the structure of the CP-theory gives extra information about the
structure of the CPTs, which can make the learning more efficient. Many of
the parameters are 0.0 or 1.0 (Fig. 1). These values are known in advance and
don’t need to be learned, to the contrary, they can be used to speed up the
EM-algorithm. Only the values that are not 0.0 or 1.0 have to be learned; these
are the original parameters of the CP-theory. To force the CPTs to have ones
and zeros in the right positions after learning, it suffices to initialize these pa-
rameters with 0.0 or 1.0. The Bayesian update rule in the expectation-step can
only update values strictly between 0 and 1. Since the prior probability is set,
e.g., to 0.0 the posterior probability is also 0.0. So, a standard EM parameter
learning algorithm for Bayesian networks learns the correct parameters for our
CP-theory.

The method outlined above is a simple application of the EM-algorithm. This
can, however, be further optimized. The CPTs that only contain probabilities
0.0 or 1.0 are actually not describing a probability distribution but a functional
dependency. These are rather functions where there is just one result and it is

98 W. Meert et al.

calculated based on the input, not a set of results with each a probability. Since
this network contains many functional dependencies, extra optimizations can
be incorporated into the algorithm. For example, an optimization specific for
noisy-or implementations is given by Vomlel [14].

5 Structure Learning

Besides learning the parameters, we also need to learn the structure of a CP-
theory. This involves a search over possible CP-theories, which can be done
either in CP-logic space or in Bayesian network space. In the previous section, we
learned the parameters in the Bayesian network space. Here we consider learning
the structure also in the Bayesian network space. This avoids the conversion
each time the algorithm investigates a new candidate structure. An important
constraint when searching the Bayesian network space for possible structures is
that every Bayesian network must have a valid mapping to a CP-theory.

The learning algorithm that we propose is based on the structural EM-
algorithm (SEM) introduced by Friedman [2]. This is a greedy search algorithm,
outlined in Table 1 for both the CP-logic space and the Bayesian network space.
The refinement function returns a Bayesian network in the neighborhood of the
current network. The eval function evaluates the new network.

Table 1. Greedy SEM algorithm to learn the structure of a CP-theory.

CPtheory := ∅ BN := initial Bayesian net
while CPtheory is not good enough: while BN is not good enough:

S := refinements(CPtheory) S := refinements(BN)
CPtheory := argmaxL∈S eval(L) BN := argmaxL∈S eval(L)

return CPtheory return CPtheory(BN)

5.1 Evaluation Function

The evaluation function is typically based on the likelihood of the data given
the candidate model after learning the parameters. In this case, the Bayesian
Information Criterion (BIC) is used [8]. The main advantage of this measure
is its modularity. Every node in the network has its own local score and the
sum of these scores is the total score. In this way we only have to recalculate
the score of the part of the new structure that has changed with respect to the
previous structure to see if it is better or not. As the BIC function prefers smaller
networks, our algorithm prefers smaller CP-theories.

5.2 Refinement Function

The refinement operators are similar to those in the SEM-algorithm and perform
a greedy hill-climbing neighborhood search. More concrete, the SEM operators

Learning Ground CP-logic Theories by Bayesian Network Techniques 99

add, delete or invert one edge of the current network. Our algorithm takes a
similar approach, but takes into account the specific structure of a Bayesian
network that represents a CP-theory.

As we have seen previously, the choice nodes represent the rules in the CP-
theory and the edges are defined by the literals in the head and the body. Based
on this we introduce the following constraints on possible networks.

– Only edges between a literal node and a choice node are allowed.
– A literal node has at least one incoming edge.
– A literal node is a Boolean variable.
– A choice node is a variable that can take values from 0 to k with k the

number of atoms in the head.
– The CPT of aliteral node contains only 0 or 1, based on the structure of the

CP-theory.
– The CPT of a choice node has in the column where the body is true the

CP-theory parameters. In all the other columns the choice node takes the
value 0 with probability 1.

These constraints guarantee that the resulting Bayesian networks are equiv-
alent to a CP-theory and all the entries in the CPTs except the CP-theory
parameters are 1.0 or 0.0. There are three possible actions to find a network in
the neighborhood of the current one: 1) adding a relation between two literals,
2) deleting a relation or 3) inverting a relation. A relation between two literals in
this context means that there is a rule in the theory that has one of the literals
in the head and the other one in the body. Translated to the Bayesian network
space, this is the existence of a choice node with an incoming edge from one of
the literals and an outgoing edge to the other literal. Fig. 2 gives an overview of
the different refinement types, a detailed description follows next.

Deleting a Relation

Deleting an edge corresponds to deleting a literal from a rule. This can be
done by removing the edge between a literal node and a choice node. If the
choice node has no outgoing edges after the removal of the edge, the choice node
itself is also removed. A graphical example can be seen in Fig. 2.a. In the first
step in the figure it is shown that a rule can be eliminated by removing a choice
node and its edges. The second step removes a literal from the body of a rule by
eliminating an incoming edge of the choice node that represents that rule.

Adding a Relation

Adding an edge between a choice node and a literal node is the same as
adding a literal to an existing rule in the CP-theory. To add an atom to the
head of a rule, an edge is created departing from the choice node representing
that rule to the literal node representing the added atom. Adding a literal to
the body of a rule is accomplished by adding an edge from the literal node to

100 W. Meert et al.

X

Y

C2

C1

C3

X

Y

C2

C1

X

C1

Y

C2
del

x : α1.
y : α2 ← x.
y : α3.

x : α1.
y : α2 ← x.

x : α1.
y : α2.

X

C1

Y

C2

Z

C3

X

C1

Y Z

C3

C4

X

C1

Y

C2

Z

C3

X

C1

Y

C2

Z

C3

C4

add add add

del

x : α1.
y : α2.
z : α3.

X

C1

Y

C2

Z

x : α1.
y : α21 ∨ z : α22 ← x.

X

C1

Y

C2

Z

C3C4 C5

x : α1.
x : α2 ← y.
x : α3 ← z.
y : α4.
z : α5.

inv

C2

a b
c

x : α1.
y : α2 ← x.
z : α3.
y : α4 ← ¬x.

x : α1.
y : α2 ← x.
z : α3.

x : α1.
y : α2 ← x.
z : α3.
y : α41 ∨ z : α42 ← ¬x.

Fig. 2. Examples of the refinement operator. The dotted arrow represents a rule where
that particular literal is negated in the body of the rule.

the choice node. To create a new rule, a new choice node must be created with
incoming and outgoing edges based on the literals that are present in the new
rule.

In the first step of Fig. 2.c, a literal is added to the body of the second rule.
The equivalent step in the Bayesian network space is adding the incoming edge
to the choice node departing from the literal node, corresponding respectively
to the rule and the literal in the CP-theory.

This simple addition of a literal to the body of a rule, is a too simplistic step
typically resulting in a CP-theory with a low likelihood. Before introducing an
extension that will overcome this problem, we will first explain in more detail
why this is necessary. In a CP-theory a literal can become only true if it has a
reason to become true, i.e., if the body of a rule where it is in the head is true.
Suppose that a literal is only present in one rule as for example in the second rule
of the CP-theory in Fig. 2.c (y : α2). The literal y can become true independent
of the other literals (because the body is always true). After adding a literal to
the body of that rule (x after step 1), the head can only become true if the body
(x) is true. Suppose that in the target theory, y can also be true if x is false (y
has multiple causes), the current theory will then have a low likelihood, because
the data will contain cases where y is true and x false. The new body of the rule
constraints the head too much, but, on the other hand, we may want to have a
relation between the head and the new body as one of the possible causes.

To check if the new body is the cause of the head, but not the only one, we
perform a lookahead step. When the likelihood is very low after adding a literal

Learning Ground CP-logic Theories by Bayesian Network Techniques 101

to the body of a rule, we add an additional new rule. This rule is identical to the
previous one with the exception that the newly added literal is negated. This
new rule covers the causes not yet discovered, be it in a rudimentary way. In a
subsequent step the algorithm can find another cause for the head and add this
to the rule with the negated literal, possibly even removing this negated literal
in a future step. This addition of this new rule is illustrated in step 2 of Fig. 2.c.

Inverting a Rule

With inverting we mean switching the direction of the causation. It is some-
times possible that the algorithm learns the first relationship between literals
with the wrong direction of causation. Because the algorithm builds further upon
already learned networks, the incorrect direction of the causation may persist
when subsequent relationships are added. And although the initial relationship
had, by coincidence, a good likelihood, the following steps are not optimal. This
operator can detect such situations and reverse them.

The direction of causation is defined in a rule in the CP-theory from the
body towards the head. To invert this direction we must somehow switch head
and body. Consequently the edges of the corresponding choice node have to
be inverted. It is, however, not possible to just invert all the edges. If a rule
has multiple consequences, it is necessary to split up the node into a different
choice node for every consequence in the rule. This is because the consequents
in the head are a disjunction and only reversing the direction of the edges would
convert this disjunction into a conjunction, which is incorrect. Therefore, we
create a separate rule for each consequent (see Fig. 2.b). The same reasoning
applies for rules with multiple conditions in the body.

6 Experiments

As experiment we compare the performance of our algorithm to learn a CP-
theory with the SEM algorithm to learn a Bayesian network (no unobserved
variables). The SEM algorithm used can be found in the Structure Learning
Package [6], which is an extension to the Bayesian Network Toolbox [7] for
Matlab.

We construct the input data by sampling interpretations from the CP-theory
described in the shopping example (Fig. 1). The test set is fixed and consists
of 1000 examples. In each trial, we sample a training set of a given size. The
learning algorithms train on this sample, and the resulting models (CP-theory
or Bayesian network) are tested on the fixed test set. We report, for each method
and training set size, the test set log likelihood averaged over at least 10 trials.
Fig. 3 presents the results. The thick lines are the mean log likelihood of both
methods and the dashed lines represent 90% confidence intervals for the mean.
The graph also plots the minimum and maximum log likelihood measured for
both methods over all trials.

The figure shows the results of the CP-logic structure learning algorithm and
the SEM structure learning for Bayesian networks. For the two methods, the

102 W. Meert et al.

0 100 200 300 400 500 600
Number of interpretations in training set

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

lo
g

 l
ik

e
li

h
o
o
d

 o
f

te
st

 d
a
ta

CP-theory
90% confidence interval
min max
Bayesian Network
90% confidence interval
min max

Fig. 3. Comparing structure learning of CP-theories and Bayesian Networks.

average log likelihood converges, but the learned CP-logic theory has on average
a better log likelihood than the Bayesian network. This is because the Bayesian
network has difficulties to represent a causal structure like the shopping example.
It is possible that the log likelihood of the Bayesian network comes close to the
log likelihood of the CP-theory as can be seen for the cases where there are 100
and 500 examples in the training set. This is however an exception as the SEM
algorithm prefers a small network, and representing the target theory requires
many edges (and parameters) if no additional hidden variables are introduced.
The SEM algorithm seldom finds such a network, but if it does, it raises the
average likelihood a little bit.

Causality imposes a strong connection between the literals’ truth values in
the data set. In this case the data set is derived from a causal process and in
CP-logic this can be described with a small theory. A Bayesian network, on the
other hand, requires many edges and parameters to represent such a theory.
Therefore, it is more useful to search for a CP-theory in this case. When an
incorrect causal relationship is inferred from the data set, this can result in a
theory with a very low likelihood because of the same reasons. Suppose that in
a given training set a literal y is only true when the literal x is true, this may
result in learning this causal relation. If this relationship is not present in the
target theory, the test set will also contain cases where y is true and x is false.
Such a case is not covered by the learned structure and results in an extremely
low likelihood as can be seen from the minima in the graph. These, however,
are exceptions and therefore the average is still good. Running the algorithm
multiple times starting from different initial theories often solves this.

Learning Ground CP-logic Theories by Bayesian Network Techniques 103

Because of this strong causal connection, when learning from a small training
set, the quality of the training set is important for learning a correct CP-theory.
This can be seen when looking at the maxima in the graph; even when learning
from small training sets, the algorithm can learn a good theory (the best log
likelihoods in our experiments correspond to cases where the algorithm learned
the correct structure of the target theory). When the training set is large enough
the algorithm finds a good theory for every training set.

7 Conclusions and Future Work

We proposed a method for learning the structure of a ground CP-theory. It is
based on existing methods for learning Bayesian networks, but uses refinement
operators specific to CP-logic. The main advantage of this approach is the possi-
bility to reuse some of the large amount of the research available in the Bayesian
networks literature [4, 5].

We have compared structure learning for CP-theories to structure learning
for Bayesian networks. CP-theories better approximate the target theory than
Bayesian networks if it contains causal relationships. Compared to CP-theories,
standard Bayesian network algorithms need to learn more edges and parameters
in the corresponding CPTs to approximate such a theory, and this is detrimental
to the efficiency of the learning.

We consider the following directions for further work. We plan to extend the
experimental evaluation. First, it would be interesting to compare our method
for learning CP-theories to a method for learning Bayesian networks that allows
the introduction of hidden variables; our translation of CP-theories also uses
these for the choice nodes. Second, there are specific techniques for representing
causality in Bayesian networks [11]. It would be interesting to compare to such
work. Our current evaluation is on one artificial domain. We plan to evaluate the
method on more data sets and in real world applications. Finally, the present
paper considers ground CP-theories. Further work will address learning of CP-
theories with abstract rules (i.e., rules with variables).

Acknowledgments

Wannes Meert is supported by the Institute for the Promotion of Innovation by
Science and Technology in Flanders (IWT-Vlaanderen). Jan Struyf and Hen-
drik Blockeel are post-doctoral fellows of the Research Foundation - Flanders
(FWO-Vlaanderen). Research supported by project GOA/2003/08 (B0516) on
Inductive Knowledge Bases.

References

1. H. Blockeel and W. Meert. Towards learning non-recursive LPADs by transforming
them into Bayesian networks. In S. Muggleton and R. Otero, editors, International
Conference on Inductive Logic Programming, 2006.

104 W. Meert et al.

2. N. Friedman. Learning belief networks in the presence of missing values and hidden
variables. In Proc. 14th International Conference on Machine Learning, pages 125–
133. Morgan Kaufmann, 1997.

3. N. Friedman and M. Goldszmidt. Building classifiers using Bayesian networks. In
AAAI/IAAI, Vol. 2, pages 1277–1284, 1996.

4. D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The
combination of knowledge and statistical data. In Proc. 10th Conf. Uncertainty in
Artificial Intelligence, pages 293–301, San Francisco, CA, 1994. Morgan Kaufmann
Publishers.

5. F. V. Jensen. Introduction to Bayesian Networks. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1996.

6. P. Leray and O. Francois. BNT structure learning package: Documentation and
experiments. Technical report, Laboratoire PSI, 2004.

7. K. P. Murphy. Bayesian network toolbox, http://bnt.sourceforge.net/.
8. R. Neapolitan. Learning Bayesian Networks. Prentice Hall, Upper Saddle River,

NJ, USA, 2003.
9. A. Onisko, M. J. Druzdzel, and H. Wasylu. Learning Bayesian network parameters

from small data sets: Application of Noisy-OR gates. In Working Notes of the
Workshop on Bayesian and Causal Networks: From Inference to Data Mining, 12th
European Conference on Artificial Intelligence (ECAI-2000), Berlin, Germany, 22
August 2000.

10. J. Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible infer-
ence. Morgan Kaufmann, San Francisco, 1988.

11. J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press,
2000.

12. F. Riguzzi. Learning logic programs with annotated disjunctions. In A. Srinivasan
and R. King, editors, 14th Internation Conference on Inductive Logic Programming
(ILP2004), Porto, pages 270–287, Heidelberg, Germany, September 2004. Springer
Verlag.

13. J. Vennekens, M. Denecker, and M. Bruynooghe. Extending the role of causality
in probabilistic modeling. In Proceedings of the 11th International Workshop on
Non-monotonic Reasoning, pages 183–190, 2006.

14. J. Vomlel. Noisy-or classifier. International Journal of Intelligent Systems,
21(3):381–398, 2006.

Learning Ground ProbLog Programs from
Interpretations

Fabrizio Riguzzi

ENDIF, Università di Ferrara, Via Saragat 1, 44100 Ferrara, Italy
fabrizio.riguzzi@unife.it

Abstract. The relations between ProbLog and Logic Programs with
Annotated Disjunctions imply that Boolean Bayesian networks can be
represented as ground ProbLog programs and acyclic ground ProbLog
programs can be represented as Boolean Bayesian networks. This pro-
vides a way of learning ground acyclic ProbLog programs from interpre-
tations: first the interpretations are represented in tabular form, then
a Bayesian network learning algorithm is applied and the learned net-
work is translated into a ground ProbLog program. The program is then
further analyzed in order to identify noisy or relations in it. The paper
proposes an algorithm for such identification and presents an experimen-
tal analysis of its computational complexity.

Keywords: Probabilistic Logical Models, ProbLog, LPAD, Noisy Or.

1 Introduction

ProbLog [4] is a recent formalism that combines logic and probability. It is
interesting for the simplicity of its semantics and for the availability of an efficient
top-down interpreter. Logic Programs with Annotated Disjunctions (LPADs) [9]
is another formalism for integrating probability and logic in a clear and elegant
way.

In this paper, the relations between ProbLog and LPADs are investigated.
We show that ground ProbLog programs can be represented as LPADs in a
way that preserves the semantics. This allow us to apply results obtained for
LPADs to ProbLog programs. In particular, we show that a Bayesian network
with binary variables can be represented as a ground ProbLog program and that
a ground acyclic [1] ProbLog program can be translated into a Boolean Bayesian
network. Representing a Bayesian network as a ground ProbLog program has
the advantage of a more compact representation in the case in which noisy or
relations are present.

Ground ProbLog programs that encode a Bayesian network take a special
form that we call Bayesian in which all the bodies of the rules for an atom
contain the same set of atoms and all the possible combinations of signs of
literals in the bodies are present. We present a method for transforming a general

106 F. Riguzzi

ground ProbLog program into a program in Bayesian form. The method involves
applying the noisy or law to obtain the probability of clauses.

The possibility of representing a Boolean Bayesian network with a ground
ProbLog program provides a method for learning it from interpretations: we first
transform the input interpretations into tabular form, then we apply a Bayesian
network learning algorithm and we translate the learned network into a ground
ProbLog program in Bayesian form. In order to obtain general ground acyclic
ProbLog programs, we propose an algorithm that identifies the noisy or relations
in the program.

The paper is organized as follows. In section 2 we introduce ProbLog and
LPADs. In section 3 we present some properties of ground ProbLog programs.
Section 4 discusses the learning problem and the algorithm. Section 5 presents
experiments and section 6 discusses related works. Finally, section 7 concludes
the paper.

2 Preliminaries

A ProbLog program [4] P is a finite set of clauses of the form

α : h← b1, . . . , bm (1)

where α is a real number between 0 and 1, h and b1, . . . , bm are atoms. We will
call HB(P) the Herbrand base of P .

In this paper we consider an extension of the original ProbLog language
where b1, . . . , bm are literals.

The semantics of the extended ProbLog is defined in terms of instances:
an instance is a normal logic program obtained by selecting a subset of the
clauses. Its probability is given by the product of the α factor for all the clauses
that are included in the instance and of 1 − α for all the clauses not included.
The probability πPPB(φ) of a query φ according to program P is given by the
sum of the probabilities of the instances that have the query as a consequence
according to a chosen semantics, e.g. Clark’s completion [2], stable models [5]
or well founded [7]. In this paper we consider only the well founded semantics
because it is the one used by LPADs.

A Logic Program with Annotated Disjunctions (LPAD) P [9] consists of a
set of formulas of the form h1 : α1 ∨ h2 : α2 ∨ . . .∨ hn : αn ← b1, b2, . . . bm called
annotated disjunctive clauses. In such a clause the hi are logical atoms, the bi
are logical literals and the αi are real numbers in the interval [0, 1] such that∑n
i=1 αi = 1.
The semantics of LPADs is given as well in terms of instances: an instance is

a ground normal program obtained by selecting for each clause of the grounding
of P one of the heads. The probability of the instance is given by the product
of the probabilities associated with the heads selected. The probability πPLP (φ)
of a formula φ according to program P is given by the sum of the probabilities
of the instances that have the formula as a consequence according to the well
founded semantics.

Learning Ground ProbLog Programs from Interpretations 107

3 Properties of ProbLog

A ground ProbLog program P can be syntactically transformed into an LPAD
P ′ by substituting each clause of the form (1) with the LPAD clause

h : α ∨ none : (1− α)← b1, . . . , bm

where none is a special atom that does not appear in the body of any clause.
This is similar to the way in which a CP-logic program [8] can be transformed
into an LPAD.

Theorem 1. Given a ground ProbLog program P and a query φ, πPPB(φ) =
πP
′

LP (φ).

Proof. (Skecth) There is a one to one correspondence between instances of P
and instances of P ′: the clauses excluded from an instance of P are present in
the corresponding instance of P ′ with none in the head. A query (that does not
involve the special atom none) is true in an instance of P if and only if it is true
in the corresponding instance of P ′.

In fact, for well-founded models, it can be shown that the sequence of in-
terpretations Iα for an instance of P are equal to I ′α \ {none} where I ′α is the
sequence of interpretations for the corresponding instance of P ′.

Therefore a ground program defines the same probability distribution when in-
terpreted as a ProbLog program and as an LPAD. For non ground programs
the semantics differ, because the instances of ProbLog programs are obtained
by selecting clauses from the non-ground program while the instances of LPADs
are selected from a grounding of the program.

From the equivalence between ground ProbLog programs and LPADs follows
that Bayesian networks with binary variables can be translated into ProbLog
programs [9]. For example, the classic burglary Bayesian network (see Figure 2
in [9]) can be translated into the following ProbLog program

0.1 : burglary 0.2 : earthquake
0.1 : alarm← ¬burglary,¬earthquake
0.8 : alarm← ¬burglary, earthquake
0.8 : alarm← burglary,¬earthquake
1.0 : alarm← burglary, earthquake

We will say that a ProbLog program like the one above is in Bayesian form.

Definition 1 (Bayesian form). A ground ProbLog program P is in Bayesian
form if, for every atom a of HB(P), all the clauses for a have bodies built over
the same set of atoms Da and there is a clause for every possible combination
of signs of literals built over Da.

It was shown in [9] that a ground, finite and acyclic [1] LPAD can be translated
into a Bayesian Logic Program (BLP) preserving the semantics. Since BLP en-
code Bayesian networks, this provide a way of translating such type of LPADs

108 F. Riguzzi

into Bayesian networks. Thus we can translate a ground acyclic ProbLog pro-
gram into a Bayesian network. The class of acyclic programs is an important one
because the ProbLog proof procedure may not terminate for cyclic programs.

We present here the technique. Given a ground acyclic ProbLog program P ,
we build a Bayesian network by associating each atom a in HB(P) with a binary
variable a with values true and false. Moreover, for each rule r of the form

α : h← b1, . . . , bm,¬c1, . . . ,¬cl
we add to the Bayesian network a new variable Vr that has b1, . . . , bm, c1, . . . , cl
as parents and has the two values h and none, where none is a special atom
that does not appear anywhere in the body of rules. The conditional probability
table (CPT) of Vr is

Vr = h Vr = none
. . . 0.0 1.0

b1 = true, . . . , bm = true, c1 = false, . . . , cl = false α 1− α
. . . 0.0 1.0

Moreover, each variable a with a ∈ HB(P) has as parents all the variables Vr of
rules r that have a in the head. The CPT for a is the following:

a = true a = false
all the parents equal to none 0.0 1.0

remaining rows 1.0 0.0

We will now show that every ground ProbLog program can be translated into
Bayesian form in a way that preserves the semantics. This is done by collecting,
for each atom a ∈ HB(P), all the rules Ra with a in the head. From Ra, the
atoms Da that appear in bodies of rules for a are collected. Then a rule c for
each combination of signs of literals built on Da is generated. The probability
αc of c is given by the law of the probability of an or:

αc = 1−
∏

r∈Ra|body(c)|=body(r)

(1− αr)

Thus the bodies of the clauses for the same atom a constitute the causes of a in
a noisy or model. For example the program

0.3 : a← b 0.2 : a← c
can be transformed into

0.0 : a← ¬b,¬c 0.2 : a← ¬b, c
0.3 : a← b,¬c 0.44 : a← b, c

Theorem 2. The transformation into Bayesian form preserves the semantics
for ground acyclic ProbLog programs.

Proof. We will prove the theorem by showing that the Bayesian networks en-
coded by the two programs are equal. Let P and P ′ be the programs before
and after the transformation. Consider an atom a and let Da = {b1, . . . , bn} be
the set of atoms on which a depends. Suppose that P contains k rules for a

Learning Ground ProbLog Programs from Interpretations 109

Ra = {r1, . . . , rk} and that rule ri is annotated with probability αi. Let da be
a vector of values for Da, let VRa be the vector of variables corresponding to
the rules of Ra and let vRa be a vector of values for VRa . The probability for
a = true given da in the network obtained from P is given by

P (a = true|da) = 1− P (a = false|da) = 1−
∑
vRa

P (a = false, vRa |da) =

= 1−
∑
vRa

P (a = false|vRa , da)P (vRa |da) =

= 1−
∑
vRa

P (a = false|vRa)P (vRa |da)

Let Vri be the variable associated to rule ri and let vri be the value for Vri in
vRa , thus

P (a = true|da) = 1−
∑
vRa

P (a = false|vRa)
k∏

i=1

P (vri |da)

The only value vRa of VRa for which P (a = false|vRa)
∏k
i=1 P (vri |da) is different

from 0 is the one where every vri is equal to none. In fact, if vri = a, then
P (a = false|vRa) is 0. Suppose that, given the values of da, the set of rules
Ta ⊆ Ra has the body true. For the case in which every vri is equal to none,
P (vri |da) = 1−αi if ri ∈ Ta, P (vri |da) = 1 if ri 6∈ Ta and P (a = false|vRa) = 1.
Thus we have

P (a = true|da) = 1−
∏

ri∈Ta
(1− αi)

which is exactly the law for the probability of an or.

4 Learning Ground Acyclic ProbLog Programs

We consider a learning problem of the following form [6]:
Given:

– a set E of examples that are couples (I, π(I)) where I is an interpretation
and π(I) is its associated probability, such that

∑
(I,π(I))∈E π(I) = 1

– a space of possible ground ProbLog programs S (described by a language
bias LB)

Find: a ground ProbLog program P ∈ S such that ∀(I, π(I)) ∈ E πPPB(I) =
π(I)

Instead of a set of couples (I, π(I)), the input of the learning problem can be
a multiset E′ of interpretations. From this case we can obtain a learning problem

110 F. Riguzzi

of the form above by computing a probability for each interpretation in E′ by
relative frequency.

The approach we propose for learning a ground acyclic ProbLog program
consists in transforming the input data into a table, learning a Bayesian net-
work from the table, converting the learned network into a ground ProbLog in
Bayesian form and then identifying the noisy or relations in order to obtain a
general ground acyclic ProbLog program.

The translation of the input interpretations into a table is done by considering
each atom appearing in them as a binary random variable. Each interpretation
I is then transformed into a binary vector BI where the variable corresponding
to atom a assumes value 1 if a ∈ I and value 0 otherwise.

We obtain the table to be given as input to the Bayesian network learning
algorithm by fixing the number of rows N of the table and replicating the binary
vector BI a number of times equal to N × π(I).

The translation of the learned Bayesian network into a general ground Prob-
Log program is performed by the algorithm Identification that analyzes the CPT
of each atom and tries to identify the noisy or relations in order to apply the
inverse of the transformation into Bayesian form. If it fails in finding such a
relation, it returns the CPT converted into ProbLog rules.

Identification, shown in Figure 1, performs exhaustive search in the space of
possible bodies of rules. It takes as input, besides the learned Bayesian network,
also the parameters MaxBodySize, MaxRules and ε that define, respectively,
the maximum number of literals in the body of rules, the maximum number of
rules for an atom and the error allowed. The first two parameters put a limit on
the search space in order to contain the computational cost.

Identification analyzes the CPT of each atom in turn. For an atom a the
algorithm first builds all possible sets of parents of a from cardinality 1 to cardi-
nality MaxBodySize. Then, with function Select (show in Figure 2), it considers
all possible combinations of signs for the atoms in each set, thus generating the
possible bodies PB. In this phase, the possible bodies that appear in a row of
the CPT where the probability of a is close to 0 (smaller than ε) are eliminated,
because they cannot be possible causes.

Then the combinations of possible bodies are explored with function Explore
(shown in Figure 3) by performing a depth first search in the space of subsets
of PB. Explore is called with a current set of bodies and the set of bodies not
yet added to the current set: it first check if the current set of bodies contains
all possible parents of a and if the set of bodies respects the noisy or relation.
If so, it returns the current set of bodies. Otherwise, if the current set of bodies
has not yet reached cardinality MaxRules, it performs a cycle in which, at each
iteration, it adds a possible body and calls itself recursively. If no set of bodies
respecting the noisy or relation can be found, the empty set is returned and
Identification translates the CPT directly into rules.

The test that a set of possible bodies respects the noisy or relation is per-
formed by function Check (shown in Figure 4). The function considers only the
rows with P (a|row) > ε, because the bodies true in the other rows have already

Learning Ground ProbLog Programs from Interpretations 111

been removed. The function first identifies the probability of each body consid-
ered as a single cause, looking for those rows where a single body is true. The
probability of a body is given by the average of the probabilities of such rows.
Then it checks that for all the rows the or law is respected with an error smaller
than ε.

Fig. 1. Algorithm Identification

algorithm Identification(
inputs : B : Bayesian network,

ε: maximum error,
MaxBodySize: integer,
MaxRules: integer,

returns : P : ProbLog program)

let B be a set of triples (V ariable, Parents, CPT) one for each variable
P := ∅
for every triple (V ariable, Parents, CPT) in B

F := {r|r is a row of CPT such that P (V ariable = true|r) < ε}
G := set of all the possible subsets of Parents from dimension 1 to

dimension MaxBodySize
PB :=Select(G,F)
Bodies :=Explore(PB,CPT, ∅,MaxRules, ε)
if Bodies 6= ∅ then

convert Bodies into a set of rules R
else

convert CPT into a set of rules R
P := P ∪R

return P

Let us show the behavior of the algorithm with an example. Consider an
atom a that has b, c and d as parents and that has the conditional probability
table shown below:

row b c d a ¬a
1 false false false 0.00 1.00
2 false false true 0.30 0.70
3 false true false 0.00 1.00
4 false true true 0.30 0.70
5 true false false 0.00 1.00
6 true false true 0.30 0.70
7 true true false 0.40 0.60
8 true true true 0.58 0.42

Suppose that MaxBodySize is 2, MaxRules is 3 and that ε is 0.01. The set F
of rows with P (a|row) = 0 is F = {{¬b,¬c,¬d}, {¬b, c,¬d}, {b,¬c,¬d}}

112 F. Riguzzi

Fig. 2. Function Select

function Select(
inputs : G : set of sets of parents,

F : rows with probability of the child variable < ε,
returns : PB : set of possible bodies)

PB := ∅
for every parent set Par from G

let B be the set of all possible assignment of signs to variables of Par
for every b ∈ B

if b 6∈ F then
PB := PB ∪ {b}

return PB

Fig. 3. Function Explore

function Explore(
inputs : PB : possible bodies,

CPT : conditional probability table
Bodies: current set of bodies,
MaxRules: maximum number of rules,
ε: maximum error,

returns : B : valid set of bodies)

if Bodies contains all possible parents and Check(Bodies, CPT, ε) then
return Bodies

else
if |Bodies| = MaxRules then

return ∅
else

let PB be {b1, b2, . . . , bn}
for i := 1 to n

Bodies′ :=Explore({bi+1, . . . , bn}, CPT,Bodies ∪ {bi},MaxRules)
if Bodies′ 6= ∅ then

return Bodies′

return ∅

Learning Ground ProbLog Programs from Interpretations 113

Fig. 4. Function Check

function Check(
inputs : B : a set of bodies,

CPT : conditional probability table,
ε: maximum error,

returns : Satisfy : a Boolean value)

remove from CPT all the rows r with P (V ariable = true|r) < ε
for every body b in B

let Rb be the set of rows of CPT that contains only b true

let pb =
∑

r∈Rb
P (V ariable=true|r)

|Rb|
for each row r of CPT

let B′ be the set of bodies of B that are true in r
TP := 1−∏

b∈B′(1− pb)
if |TP − P (V ariable|r)| > ε then

return false
return true

The set G of possible subsets of the set of Parents with maximum size 2 is

G = {{b}, {c}, {d}, {b, c}, {b, d}, {c, d}}

The function Select is called and the set PB of possible bodies is returned

PB = {{d}, {b, c}, {b, d}, {¬b, d}, {c, d}, {¬c, d}}

Then Explore is called with Bodies = ∅. Bodies does not contain all possible
parents of a so Explore is called again with Bodies = {{d}}. Bodies still does
not contain all possible parents of a so Explore is called again with Bodies =
{{d}, {b, c}}. Since all the parents are now present in Bodies, Check is called.

Rows 1, 3 and 5 are removed form CPT . The probabilities pd and pb,c are
computed: pd is obtained from rows 2, 4 and 6 and has value 0.3 while pb,c is
obtained form row 7 and has value 0.4.

Then the probabilities of a in rows 2, 4, 6, 7 and 8 are checked. In row 2, 4 and
6 only d is true, so it is checked that |pd − P (a|row)| < ε. This is true so Check
continues. Row 7 has only b, c true and the test of |pb,c−P (a|row7)| < ε succeeds.
In row 8, both d and b, c are true, so it is checked that |TP − P (a|row8)| < ε.
TP is 1− (1− pd)(1− pb,c) = 1− (1− 0.3)(1− 0.4) = 1− 0.42 = 0.58 so the test
succeeds and Check returns true.

Therefore b, c and d are recognized as valid bodies and the rules
0.4 : a← b, c 0.3 : a← d

are returned.
With this approach, we may have problem when learning ProbLog programs

that are not layered, i.e. when its Herbrand base cannot be divided into subsets
(layers) such that each atom directly depends only on atoms from the previous

114 F. Riguzzi

layer. In fact, in that case the probabilities in the CPT may not be estimated
correctly.

For example, consider a dataset generated from the program
0.6 : c← a 0.7 : c← b
0.2 : d← a, b 0.9 : d← c
The case in which a and b are false and c is true never appears in the data

because if a and b are false then so is c. Therefore the probabilities in the
corresponding row of the CPT for d cannot be estimated. A typical approach
used by Bayesian network learning algorithms is to assign probability 0.5 to d
true and to d false. In this case the CPT of d does not respect the noisy or law
that would assigns probability 0.9 to d true in that row and therefore the rules
for d cannot be identified.

This problem does not appear if the program from which the data is generated
is layered. For the program above the Herbrand base cannot be divided in layers
because d depends on c and on a and b that belong to the layer preceding c.

5 Experiments

A series of experiments were performed for investigating the time complexity
of the algorithm. A number of programs consisting of the definition of a single
atom a have been generated: each program consists of two clauses, the programs
differ for the number of atoms on which a depends that ranges from 4 to 10.
The parents of a are distributed among the two clauses in order to have two
bodies whose lengths differ by at most 1. Programs of this form were considered
because they represent the worst case, since the bodies in PB are ordered from
the shortest to the longest. From the programs, the CPT for a is produced with
the transformation procedure presented in section 3.

Algorithm Identification is applied with the following parameters: MaxRules
is set to 3 and MaxBodySize is set to values ranging from 3 to 10. The execution
times in milliseconds are shown in Figure 5. The experiments were performed
with Sicstus Prolog 3.12.5 on a Windows machine with a 2.00 GHz Pentium M
and 1 Gb of RAM.

The missing points correspond to combinations for which the algorithm ter-
minates because Sicstus gave an insufficient memory error: Sicstus 3.12.5 has a
limitation of 256 Mb for the stack on 32 bit machines. For 10 parents the algo-
rithm has successfully terminated only for MaxBodySize = 3 in 24.5 seconds
while for higher values of MaxBodySize has given an insufficient memory error,

For the points where MaxBodySize < dParents/2e the algorithm returned
a program in Bayesian form because the solution was outside the search space.

A number of experiments were conducted to test the feasibility of the whole
approach: the aim was to learn back a ground ProbLog program. A few ProbLog
programs were written, all the possible interpretations for them were generated
and assigned a probability according to the semantics. The sets of annotated
interpretations were then translated into tables and given as input to a Bayesian

Learning Ground ProbLog Programs from Interpretations 115

3
4

5
6

7
8

9
10

4

5

6

7

8

9
10

1

10
2

10
3

10
4

10
5

MaxBodySizeParents

E
xe

cu
tio

n
tim

a
(m

se
c)

Fig. 5. Execution times

learning algorithm from the suite WEKA. Then the algorithm Identification was
applied to the learned networks.

For example, the approach was tested on a program containing 9 atoms
and 14 rules. From it, a table containing approximately 30,000 rows was gen-
erated and given as input to the implementation of the K2 algorithm available
in WEKA. K2 exploits the ordering of the variables so the correct order was
supplied to it. The other parameters were left at default values except for ini-
tAsNaiveBayes, set to false, and for the maximum number of parents of a node,
set to 8.

K2 learned a Bayesian network in 0.3 seconds. Then Identification was ap-
plied with ε = 0.05, MaxBodySize = 3 and MaxRules = 3. In 0.42 seconds
Identification returned the original ProbLog program. None of the other Bayesian
network learning algorithms available in WEKA were able to correctly discover
the dependencies encoded by the original program.

Experiments with programs of similar complexity were performed using K2
and in all cases the original programs were returned.

6 Related Works

In [3] the authors propose an approach for revising ProbLog programs. The
learning problem they consider consists in finding a subsets of clauses from a
given program that maximizes the likelihood of a set of examples in the form of
ground goals. Moreover, they set an upper limit to the cardinality of the program
to be returned. Thus the approach in [3] is complementary to the one given here,
where a set of interpretations is considered as input.

Another related work is [6] where the author proposes the algorithm ALLPAD
for learning ground LPADs from interpretations. However, ALLPAD can only

116 F. Riguzzi

learn LPADs with mutually exclusive bodies and thus it cannot learn ProbLog
programs encoding a noisy or.

7 Conclusions

We have presented an approach for learning ground acyclic ProbLog programs
from interpretations. The approach consists in translating the input interpre-
tations into tabular form, applying a Bayesian network learning algorithm and
then trying to identify noisy or relations in the learned network.

The identification algorithm has been experimentally tested and it was found
feasible for a number of parents up to 8. Experiments of the overall approach
showed that it was possible to perfectly recover ground programs of around 10
atoms and 14 rules.

8 Acknowledgements

This work has been partially supported by the PRIN 2005 project “Specification
and verification of agent interaction protocols”.

References

1. K. R. Apt and M. Bezem. Acyclic programs. New Generation Comput., 9(3/4):335–
364, 1991.

2. K. L. Clark. Negation as failure. In Logic and Databases. Plenum Press, 1978.
3. L. De Raedt, K. Kersting, A. Kimmig, K. Revoredo, and H. Toivonen. Revising

probabilistic prolog programs. In Proceedings of the 16th International Conference
on Inductive Logic Programming, number 4455 in LNAI. Springer, 2007.

4. L. De Raedt, A. Kimmig, and H. Toivonen. Problog: A probabilistic prolog and
its application in link discovery. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence, pages 2462–2467, 2007.

5. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
R. Kowalski and K. A. Bowen, editors, Proceedings of the 5th Int. Conf. on Logic
Programming, pages 1070–1080. MIT Press, 1988.

6. F. Riguzzi. ALLPAD: Approximate learning of logic programs with annotated dis-
junctions. In Proceedings of the 16th International Conference on Inductive Logic
Programming, number 4455 in LNAI. Springer, 2007.

7. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general
logic programs. Journal of the ACM, 38(3):620–650, 1991.

8. J. Vennekens, M. Denecker, and M. Bruynooghe. Representing causal information
about a probabilistic process. In Proc. of the 10th Eur. Conf. on Logics in Artificial
Intelligence, LNAI. Springer, September 2006.

9. J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic programs with annotated
disjunctions. In Proc. of the 20th Int. Conf. on Logic Programming, 2004.

Towards a Framework for
Relational Learning and Propositionalization

Ulrich Rückert and Stefan Kramer

Institut für Informatik/I12, Technische Universität München, Boltzmannstr. 3,
D-85748 Garching b. München, Germany, {rueckert,kramer}@in.tum.de

Abstract. We present first steps towards a general framework for propo-
sitionalization and relational learning based on sequences of queries and
models, and the information effectively needed to generate both. From
an abstract point of view, we only consider sequences of queries sent
to a database, and sequences of consecutive models that combine those
queries in a decision function. On a more detailed and procedural level,
we consider how the queries in a sequence are actually generated, and,
in particular, which information is taken into account to do that. In this
way, the framework can address the question of how well the provided
information is used by different learning approaches. While we provide a
categorization scheme for existing methods, the framework’s main pur-
pose is to address a number of theoretical and practical questions. On
the theoretical side, questions concerning model selection and overfit-
ting avoidance can be addressed. More practically, we present a simple
visualization scheme comparing the generalization performance of meth-
ods. Finally, the framework could provide hints for software design or for
combining known building blocks in novel ways.

1 Introduction

Traditional ILP or relational learning approaches generate queries dynamically,
interleaving feature construction and model construction.1 By contrast, these
steps are decoupled in propositionalization approaches, and features are gener-
ated upfront before the actual learning stage. While this difference is generally
acknowledged by many authors, a more formal treatment of this matter is hard
to find in the literature. The most elaborate definition of propositionalization by
Krogel and Wrobel [3] deals with both existential and aggregate features, but
does not formally define the difference between relational learning and proposi-
tionalization. In this paper, we propose a formal framework for relational learning
and, particularly, propositionalization based on sequences of queries posed to a
database (or knowledge base, for that purpose). A formal framework of this type
1 In the paper, we will use the term “queries” in the sense of “features”, i.e., as func-

tions providing information about instances. Moreover, traditional ILP systems such
as FOIL [7] or Tilde [1] are called “relational learning” systems here, in contrast to
propositionalization systems. Relational learning and propositionalization methods
are studied within ILP.

118 U. Rückert and S. Kramer

has several advantages: First, it offers clarity in terminology: Which approach
can be categorized as propositionalization, and which as relational learning? If
we agree on the definitions and terminology, it is safe to categorize a method
as one or the other. Second, we can address theoretical questions, for instance,
concerning model selection and overfitting avoidance. How much information is
effectively used in generating, filtering, and sorting queries, and incorporating
them into a classifier? The point of overfitting critically depends on the amount
and type of information presented to a learning algorithm. It is certainly an
interesting question how well a learning system makes use of the provided in-
formation and the framework offers some tools to frame these questions ana-
lytically. Third, the framework is useful in the evaluation and comparison of
algorithms. Generalization performance is often measured with different feature
sets and different numbers of features, making it hard to compare the results of
two methods. Based on our framework, we propose a simple scheme allowing a
comparison of design decisions for relational learning and propositionalization
algorithms. Fourth, the framework could provide hints for the components of a
modular architecture, and thus for the implementation of learning systems. In
particular, it specifies where and in which way a database is accessed to obtain
information about training or test instances. As a first step, the Rumble system
[9] is designed with a modular query generation, allowing for an easy analysis in
the framework. This paper is organized as follows: In Section 2, the framework
is described on an abstract level, where we only consider sequences of queries
and models. Section 3 zooms in and presents a more detailed view on the way
queries are generated, and which information is actually used in the process.
In Section 4, we present experimental results with four learning strategies that
demonstrate the different ways of incorporating information in the learning pro-
cess, as described in the framework. Finally, we summarize and conclude the
paper in Section 5.

2 Framework: High-Level View

Let X be a space of arbitrary instances, the instance space. We do not make
any assumptions about the semantics or representation of instances; they may
be graphs, arbitrary objects in the real world or mathematical constructs. In-
stead of imposing any syntactical or semantical restrictions on the instances,
we make use of a query language to derive pieces of information about specific
instances. For our purposes a query is a function from the instance space to
the real numbers extended with a “don’t know” symbol: q : X → R, where
R := R ∪ {ε} and the abstention symbol ε denotes “no information available”.
We assume that a query extracts some information from the instances in X ,
such as the presence or absence of some properties, the number of nodes, or the
result of some mathematical function. In typical applications, one would encode
nominal values, such as red, blue and green using two-valued indicator variables
and numerical (e.g. size) or aggregated quantities (e.g. mean size of referenced
objects) as real numbers. We assume a fixed space Q of possible queries. We

Towards a Framework for Relational Learning and Propositionalization 119

also need a way to encode a query as a string of symbols in a computer. For
that purpose, we define a language LQ, so that every string sq ∈ LQ represents
exactly one query q ∈ Q.2 For ease of notation, we do not distinguish between
q and sq explicitly, but simply write q whenever we mean “q as a string”, and
q(x) whenever we apply the query q as a function to x.

Later on, we will apply queries to whole sequences of instances X ∈ Xn.
Again, we denote the component-wise application of q on such as sequence of
instances X by q(X), so that q : Xn → Rn can be seen a a function of arbitrary
arity n. Finally, let Y := {−1, 1} be the set of class labels, so that X × Y
denotes the labeled instance space. We are concerned with a learning system, that
induces classifiers3 from data. We assume that the system is given a training set
(X, Y) ∈ (X × Y)n of n labeled instances (x1, y1), . . . , (xn, yn). A classifier is a
function that assigns a class to each instance in X . In our setting we formalize
this as follows: a classifier c := (k, dc, Qc) of size k contains a decision function
dc : Rk → Y and a sequence of queries Qc ∈ Qk. A classifier assigns a class label
to each instance by evaluating the queries and combing the query results through
the decision function: if Qc = (q1, . . . , qk), then c(x) := dc(q1(x), . . . , qk(x)). Let
C be the space of all classifiers. In particular, we denote the empty classifier
by cε. A learning system L is given a training set (X, Y) as input. After some
computations it outputs a classifier c that can be used to make new predictions
on new instances. Thus, we can formalize a learning system as a function L :
(X, Y) → C.

Of course, the learning system is implemented as a computer program. In or-
der to gather information about the training set, it poses queries to the database,
which contains the training instances. We would like to classify and investigate
the various ways a learning algorithm generates new queries and ultimately in-
duces a final classifier. To do so, we observe the queries q1, q2, . . . , ql that are
sent from the system to the database in chronological order. We assume that L
is a deterministic algorithm, so that each qi is uniquely identified by the input to
L, that is, the training set and (possibly) some input parameter.4 Finally, we do
not demand that the queries are evaluated on all instances in the database. Some
algorithms (e.g. separate-and-conquer approaches) perform the queries only on
subsets of instances, others only on single instances (e.g. SVMs). For simplicity
of representation we assume that the database always returns a vector s ∈ Rn,
where the undesired components of s are simply set to ε.

2 Of course, many query strings might represent the same query. Dealing with seman-
tically equivalent query strings is an interesting problem, but out of the scope of this
paper.

3 All of the following considerations are equally valid if one is concerned with regression
rather than classification. Further, generalizations to more complex learning settings
such as multi-class, multi-label, or multi-task learning are straightforward.

4 This is not a severe limitation as most non-deterministic algorithms use a pseudo
random number generator in practice. The framework could also be formulated for
randomized algorithms, although analytical statements about the use of information
would be more difficult, as they depend on random events.

120 U. Rückert and S. Kramer

Since we are concerned with deterministic learning machines only, a query
qk is uniquely identified by the list of preceding queries q1, . . . , qk−1, the corre-
sponding result vectors (q1(X), . . . , qk−1(X)) and the class label vector Y . Let
~qk : Lk

Q ×Rn×k × Y → Q be the function, that decides, which new query is sent
to the database, after the system has sent the preceding k queries, and observed
the corresponding instantiations and the class label vector Y .5 Thus, the kth
query can be reconstructed by an application of ~qk on the data that is returned
by the database for ~q1, . . . , ~qk−1.

Some algorithms build the classifier to be output in an incremental fashion.
For example, separate-and-conquer rule learning systems iteratively add new
rules to an initially empty rule set until a stopping criterion is met. To model
this stepwise refinement approach, we peek inside the learning system to observe
which (partial) classifiers have been built so far. We denote the current classifier
of the algorithm after sending k queries to the database as ck. When the machine
maintains no classifier until query k, we set the c1, . . . , ck to the empty classifier
cε. By convention, c0 = cε, because there is no current classifier before the system
starts and cl = L(X, Y), because after the last query is posed, the algorithm
builds and outputs the final classifier. Similar to the ri, the system’s current
classifier after query qk depends only on the queries so far, their instantiations
and the class labels. We define the function ~ck : Lk

Q×Rn×k×Y → C to output the
current classifier of the system after seeing the first k queries, the corresponding
instantiations and Y .

This allows us to categorize learning systems into certain categories. First of
all, we can discriminate between systems that build the classifier incrementally
and systems that generate all the queries first, but induce the final classifier only
in the last step. We say that a learning system is a propositionalisation system, if
for all k < l: ck = cε and cl = L(X, Y). Otherwise, the system is a stepwise refin-
ing system. In principle, every refinement system can be reduced to a proposition-
alisation system, because one can modify the ~ck(q1, . . . , qk, q1(X), . . . , qk(X), Y)
to output only the empty classifier for k < l and keep only the last classifier
generation function ~cl. However, having access to an initial (partial) classifier
can speed up the computation of the ~qk and ~sk considerably. Many practical
systems are therefore implemented as refining systems. Another way to catego-
rize multi-relational learning systems is by the information that is utilized in the
~qk and ~sk. One can distinguish between three sources of information:

– The dependence of ~qk and ~ck on the preceding query representations. If the
generation of new queries does not depend on the representation of the pre-
ceding queries, we call the system agnostic propositionalization. For instance,
in the case of small molecule data, a learning system could simply process
a list of predefined queries that check for certain active functional groups of
a small molecule. However, this is rarely practical. Many systems generate
the queries according to a “more general than” order imposed on the query

5 In slight abuse of notation we use the arrow in ~q to indicate that ~q describes the
transition from k to k + 1.

Towards a Framework for Relational Learning and Propositionalization 121

strings in LQ. Sometimes, the dependence of ~qk on the preceding queries can
by configured explicitly by a user, often by specifying refinement operators.

– The dependence of ~qk and ~ck on the preceding instantiations. The main mo-
tivation to use this information is to find a preferably diverse and informative
set of queries. On graph data it is common to prune away queries that are
satisfied or violated on less instances than a predefined threshold, because
such queries introduce little discriminative power and are therefore less desir-
able. If the queries in LQ are ordered by generality, threshold-based pruning
can be implemented efficiently, because it depends only on the instantiation
of the least general generalizations of a query.

– The dependence of ~qk and ~ck on the class labels Y . This is the most promi-
nently used information for ~ck, because every good classifier is based on
queries that are as informative as possible about the target. The influence
of the class labels on ~qk is less clear, because it is hard to predict if a new
feature will offer valuable information about the target before evaluating it.
We will see later that one can do remarkably well with ~qk that do not depend
on the class labels.

The categorization of learning algorithms according to the utilization of available
information can be used as a foundation for theoretical analyses of existing and
novel systems. For instance, a system that makes use of the class labels Y to
build the queries is more susceptible to overfitting than a learner that ignores
this information. An analytical investigation could quantify this phenomenon. A
similar effect takes place when a learner generates highly correlated features. A
simple application of the PAC-Bayesian bound can be used to investigate how
query inter-correlation influences overfitting behavior. Clearly, analyses of how
well certain learning systems make use of the provided information can lead to
interesting and relevant insights.

In most learning systems, ~qk and ~ck depend on all three sources of informa-
tion, although the actual dependencies vary considerably. Often, performance
considerations lead to systems that use certain types of information only im-
plicitly, so that their influence on the output is only marginal. Sometimes there
are complicated interdependencies that make it hard to assess the influence of
each source of information. However, there are also many learning systems which
proceed in a way that can easily be formalized. For example, a very common
approach to relational learning is to extend an initially empty classifier step by
step until it reaches a sufficient level of proficiency. Often, such a system iterates
in a loop: First, it generates a new batch of queries and sends it to the database.
Then, it filters those queries that are likely to be relevant and adds them to the
current (partial) classifier. In the next section we give a formal way to describe
this (or similar) approaches to query and classifier construction.

3 Framework: Low-Level View

The level of the framework described in the preceding section focuses on the
sequence of queries and models from an abstract point of view. In particular,

122 U. Rückert and S. Kramer

g(.) f(.)

!L

q1 q3 q5

q7 q9 q10q8q6

q4q2

q1

q5 q7

q4q2

q1

q5q7 q4

q2

q1

q5

q7 q4

q2d

queries

(X,Y)
filtered
queries

sorted
queries

classifier

generator filter

sortinglearner

Fig. 1. The low-level view of a relational learning system in the framework: each batch
of queries is generated by g(.), filtered through f(.), then sorted according to � and
finally handed over to the classifier construction, where the queries are augmented
with the decision function d to form an (intermediate) classifier. Each component can
base its actions on previous queries, the training instances, the labels and/or previous
classifiers. This procedure is repeated iteratively until a final classifier is output.

it does not consider the way the queries in a sequence are generated. In the
following, we take a look inside the learning system’s “black box” and take a
more procedural view of the query and classifier generation process. On this level,
we deal with the information effectively used to generate individual queries or
batches of queries. For instance, we can express formally whether information
about the target class is used directly (by looking it up in the database) or only
indirectly (via looking at a partially induced classifier) in this process. To do
so, we abstract from single queries and instead deal with batches of queries,
where each batch contains the queries generated between two classifier updates.
More formally, recall that ck denotes the current classifier of the system after
sending the kth query qk. If a system does not update the classifier after qk,
then ck = ck−1. For each current classifier c let Q(c) := {qi|ci = c} be the set
of queries that do not lead to an update of c. It is clear that the Q(.) can be
used to partition the query sequence q0, . . . , ql into a sequence of query batches
Q1 = Q(q0), . . . , Ql′ = Q(ql), so that the Qk contain exactly those queries that
are sent to the database between two classifier updates. We can now investigate,
how a system generates each batch of queries. For instance, when modeling a
stepwise refinement system (e.g., Tilde [1]), the algorithm obtains the next batch
of queries or the next query by maximizing some criterion (e.g. with respect to
the target class). Another possibility is to generate the next queries depending
on the parameters of the decision function dc of the current classifier. To allow
for a more fine-grained formalization of the classifier update process, we frame
the construction of a query batch Qk as follows: First, the queries in Qk are
(syntactically) generated depending on some information available at the time
of generation, then they are filtered, sorted, and finally handed over to a classifier

Towards a Framework for Relational Learning and Propositionalization 123

Table 1. Sources of information for generator function, filter function, and sorting
order.

generator filter sorting predicate
agnostic g() f(Q′) �
syntax-dependent g(q1, ..., qk) f(Q′) �
instantiation-dependent g(X) fX(Q′) �X

interaction-depdendent g(q1, ..., qk, X) fq1,...,qk,X(Q′) �q1,...,qk,X

class-dependent g(q1, ..., qk, X, Y) fX,Y (Q′) �X,Y

model-dependent g(q1, ..., qk, dc) fq1,...,qk,dc(Q
′) �q1,...,qk,dc

construction procedure, which derives the decision function dc. For each of these
steps, we consider the information that is necessary to perform them: information
about the instances, their class labels, the previously generated queries, or the
partially learned model.

To formally define the process of query generation and the information used
therein, we have to introduce a few functions and predicates. First, we assume
that the system contains a procedure b that generates the next batch of queries.
The resulting batch of queries is possibly sorted according to some criterion and
presented to the classifier construction procedure. Different implementations of
b are conceivable: For instance, b could use information about the queries q1 to
qk generated so far, X resp. Y , or the current decision function dc. Zooming
in on b, we may find it practical for some systems to distinguish between the
process of generating and filtering queries. In other words, we assume the batch
of queries is first generated using a so-called generator procedure g and then
filtered according to a filter procedure f . Thus, b consists of two parts g and f
where each query generated by g is given as input to f . This does not necessarily
need to happen in a chronological way (first call g, then f), but it can also happen
in a more complex fashion.

Typical generator functions g generate queries syntactically based on a declar-
ative language bias. The filter function f can be thought of as applying an in-
terestingness predicate p, as known from the data mining literature [6], to a set
of generated queries f(Q) = {q ∈ Q|p(q)}. In some instantiations of the frame-
work, f may pick a single query, for instance, by optimizing a scoring function.
Splitting the process into generating and filtering, it is possible to reconstruct
pattern mining approaches like Warmr [2] or classical ILP systems like FOIL [7]
in some detail (see below). Optionally, we can sort the resulting queries for the
batch according to some order �, which in turn may depend on various types of
information. Finally, the newly generated, filtered, and sorted batch of queries
has to be instantiated with respect to the instances of a database (if it has not
already been instantiated by g, f or the sorting procedure), before it can be
processed by the classifier construction procedure, which induces dc.

The generator/filter functions as well as the sorting predicate may be based
on different sources of information (see Table 1). If the data without the class
are accessed, we have X as an argument or as a subscript. If the queries from
the sequence up to index k are taken as input, we have q1 to qk either as ar-

124 U. Rückert and S. Kramer

gument or as subscript. Analogously, we have Y or dc as an argument of g, or
as a subscript of f or �, if the target class or the current model is required. A
schematic illustration of the classifier induction loop in this framework is given
in figure 1. Modelling a relational learning system as an iterated query genera-
tion, filtering, sorting and learning procedure might appear arbitrary or ad-hoc.
However, we feel that the presented framework is not only modular enough to
enable theoretical and empirical investigations (c.f. the next section), but also
flexible and generic enough to apply to existing systems. In the appendix we
give a short survey of how a selection of existing relational learning systems can
be described and classified in the framework.

4 Experimental Evaluation

The framework outlined in section 2 and 3 allows to rate a relational learning
system according to the information it is using to generate queries and clas-
sifiers. With this, we have a convenient method to compare different learning
systems and make justified statements about the contributions of certain design
statements. For example, we could answer questions such as: On this particular
kind of data, does it make more sense to generate queries of form A or form B?
Is it worthwhile to keep all the features or will filtering those features, that meet
condition C, help overfitting avoidance? If the goal is to pass the informative
queries earlier to the learning system than non-informative queries, should one
sort the generated queries according to sorting order E or F? Each of these
questions could be answered by keeping parts of the learning system fixed while
varying only the part under investigation. Other experiments could shed light
on the interdependence between certain design decisions. For instance, one could
ask: What is the best sorting order for each of three different feature genera-
tion methods? Which learning algorithms works particularly well with certain
filters? Those questions are often hard to answer when comparing existing meth-
ods, because most existing systems are built in an integrated fashion so that it
is difficult to rate the contribution of single design decisions.

In the following we perform two studies. In the first, we primarily compare
different query generation procedures while keeping the filter and sorting order
fixed. In the second study, we keep the query generation and filter stage fixed
and use different sorting criteria to investigate which sorting order works best.
We deal with two data sets where the goal is to predict the biological activity of
small molecules, given as molecular graphs. The Yoshida dataset [11] consists of
265 molecules classified according to their bio-availability. The second dataset
classifies 415 molecules according to the degree to which they can cross the
blood-brain barrier [5].

For the first study, we chose the following four query generating procedures,
sorted by the amount of information that is used:

– Agnostic. Here we simply generate all subgraphs with up to ten edges (g()).
– Based on a minimum frequency constraint. Here, we apply a frequent sub-

graph mining tool to identify all subgraphs that appear in at least 6% of the

Towards a Framework for Relational Learning and Propositionalization 125

Table 2. Training and test set accuracies on the yoshida (top) and bloodbarr dataset
(bottom) for a varying number of queries. The left part gives the results for agnostic,
minimum frequency, dispersion-based and dispersion with class correlation based fea-
ture generation, the right part gives the results for sorting by size, by balance, by class
correlation and by a χ2 test with the class.

Num. Agno- Min. Disp. Disp.+ By By By By
of stic Freq. Class Size Balance Class χ2

Queries Corr. Corr. Test
Trg Tst Trg Tst Trg Tst Trg Tst Trg Tst Trg Tst Trg Tst Trg Tst

20 45.2 45.7 56.4 53.2 66.2 58.9 72.9 64.9 65.2 58.9 65.2 59.6 71.0 61.1 72.5 62.3
40 46.6 45.7 61.8 55.5 75.8 66.4 78.3 67.5 68.6 57.0 68.5 60.0 72.7 64.5 74.1 65.3
60 51.1 47.9 63.3 55.8 78.2 68.3 80.4 66.0 73.5 63.0 75.7 66.4 73.5 64.2 74.5 66.4
80 53.2 50.2 64.6 57.4 79.8 68.7 80.0 67.5 74.3 61.5 78.9 65.3 75.1 67.2 75.4 67.5
100 53.7 49.8 66.4 56.2 81.9 68.3 81.4 67.5 80.6 67.5 81.6 68.3 75.8 66.8 76.4 67.5
150 53.8 48.7 70.5 57.0 83.6 68.3 82.5 63.4 84.9 68.7 82.8 67.5 77.1 67.5 78.7 65.3
200 54.9 50.2 73.4 60.0 85.1 66.0 82.8 63.4 86.1 69.1 83.7 68.7 77.9 66.4 80.3 66.0

20 61.1 63.6 63.9 62.7 71.7 67.7 76.6 71.6 73.0 70.8 73.3 71.1 77.3 74.9 76.3 74.5
40 64.4 61.2 61.2 55.7 76.8 70.8 78.4 73.5 75.3 69.9 73.7 72.5 77.4 75.9 77.3 74.7
60 65.2 62.4 66.7 60.2 78.0 71.8 79.5 72.3 77.5 72.0 76.2 72.8 77.8 74.7 77.8 74.2
80 59.4 56.9 66.2 61.4 78.4 71.3 80.6 71.8 80.7 74.7 78.9 73.3 78.3 72.3 78.1 73.0
100 62.4 60.7 66.1 59.0 80.7 73.5 82.0 74.0 82.0 74.7 79.6 72.5 79.4 73.5 78.3 72.8
150 68.8 65.5 67.6 59.8 81.8 73.0 82.0 69.6 83.9 74.9 80.0 71.8 80.1 72.8 80.0 72.3
200 70.7 66.0 74.1 64.8 84.4 72.8 83.9 73.0 84.8 75.2 81.1 72.0 80.9 73.0 82.2 73.7

graphs in the database (g(X)). The implementation is based on a depth-first
search.

– Based on dispersion. Dispersion based query generation [9, 10] aims at a
diverse set of queries, so that each query’s instantiation is as different as
possible from the instantiations of the other queries. To this end, we devised
a scoring function that measures the dissimilarity (dispersion) of a query set
and apply a stochastic local search algorithm to find subgraph queries whose
instantiation optimizes this score (g(q1, ..., qk, X)).

– Based on dispersion and correlation to the target class. This is the same
as the preceding strategy, except that the scoring function is modified so
that dispersion and correlation with the target contribute in equal parts
(g(q1, ..., qk, X, Y)).

In each of the four cases we use a simple filter that discards all queries whose
instantiations are duplicates of already existing features (f(X)). We do not sort
the generated features, but hand them to the learning algorithm in the order they
were generated. A good strategy finds relevant queries first and less informative
queries only later so that the system can stop early without compromising pre-
dictive accuracy. Stopping as early as possible is desirable because it leads to
fast learning systems that induce small and compact classifiers. Thus, to inves-
tigate the performance of each strategy, we generate a fixed number of queries
and use those as features in a linear classifier. We apply Margin Minus Variance
(MMV) [8] with b = 0 and p = 2 to learn the linear classifier. We give the results

126 U. Rückert and S. Kramer

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

20 40 60 80 100 150 200

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

20 40 60 80 100 150 200

Occurrence MinFreq Dispersion Dispersion+Target

Fig. 2. Predictive accuracy (left) and training set accuracy (right) for linear classifiers
on the Yoshida data set plotted against on the number of queries posed to the database.

in the left part of table 2. It can be seen that the first two strategies do not
make efficient use of the information provided by the database. For both strate-
gies, predictive accuracy and training set accuracy increase only slowly and are
significantly lower than the corresponding quantities for the second two strate-
gies. For the two dispersion based strategies there is surprisingly little difference.
The correlation to the target, which is used in the fourth strategy, causes the
predictive and training set accuracy to be better for small numbers of queries.
However, after a certain number of queries are generated, the “dispersion only”
strategy not only catches up, but also does not overfit as strongly as the fourth
strategy. This indicates that – at least for the two investigated data sets – finding
queries that complement each other is more important than finding queries that
are informative about the target on their own. The visualization of training and
test accuracy in figure 2 illustrates this phenomenon on the yoshida dataset.

For the second study, we keep the feature generation and filtering fixed, but
investigate different sorting criteria. Sorting is particularly interesting, if one
is aiming at small and comprehensible feature sets and wishes to stop query
generation as early as possible. We generate all queries by mining for subgraphs
that are contained in at least 6% of the database graphs (g(X)). The queries are
then filtered by the same filter as above, i.e. by discarding all features that give
rise to the same instantiation as an already existing query. We investigate the
following four sorting criteria:

– By size. Here we sort the subgraph queries according to the number of edges
in the subgraph (�). The sorting order is from few edges to many edges.

– By balance. In this case, queries are sorted according to how evenly the +1
and -1 are assigned in a query instantiation (�X). Queries, which assign
+1 to the same number of instances than -1 are ranked first, while queries
that assign +1 (or -1) to only a single instance are ranked last. The idea
is to prefer queries whose instantiations split the training set into parts of
preferably equal size, because those provide more information and can be
better used to scatter the instance space.

Towards a Framework for Relational Learning and Propositionalization 127

– By class correlation. This simply sorts the queries according to the Pearson
correlation coefficient between query instantiation and target class vector
(�X,Y).

– By χ2. This is similar to the preceding sorting criterium, except for the use
of a χ2 test on the 2x2 contingency table instead of a simple correlation
coefficient (�X,Y).

We give training and test accuracies (estimated by tenfold cross validation) in
the right part of table 2. Again, sorting dependent on the class information
works better than the first two criteria only for a small number of features. For
150 or 200 queries, sorting by subgraph size outperforms the other methods on
both datasets. It is surprising that an agnostic sorting criterium using neither
information about the training set nor the target class performs best.

5 Conclusion

We presented a general framework for propositionalization and relational learn-
ing, which allows for the categorization and experimental comparison of existing
and novel approaches. The main idea of the framework is to abstract from every-
thing except the sequence of queries and (partial) models, and the way they are
generated. In particular, we center on the precise information needed to create
sequences of queries presented to a learning algorithm. By doing so, we can find
interesting answers to the question of how well different approaches make use
of the provided information. The framework has two levels. On a higher level,
we consider sequences of queries and models. On the lower level, we identify
functions and predicates necessary for the generation of the queries in this se-
quence, and the type of information they can be based on. The benefits of such
a framework are as follows: First, it allows for the clarification of terminological
ambiguities. Second, theoretical as well as practical questions, from overfitting
avoidance to the evaluation of learning algorithms, can be addressed. To demon-
strate this, we performed two experiments on graph data, which indicated that,
contrary to common belief, information about the target class is not necessary
to generate informative queries for well performing classifiers. In future work,
the model presented in this paper should be refined further and complemented
by quantitative information, e.g., by taking into account the information (in bit)
used as input to the various components.

References

1. H. Blockeel and L. D. Raedt. Top-down induction of first order logical decision
trees. Artificial Intelligence, 101(1-2):285–297, June 1998.

2. L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. Data Min.
Knowl. Discov., 3(1):7–36, 1999.

3. M.-A. Krogel and S. Wrobel. Transformation-based learning using multirelational
aggregation. In C. Rouveirol and M. Sebag, editors, Inductive Logic Programming,
11th International Conference, volume 2157 of Lecture Notes in Computer Science,
pages 142–155. Springer, 2001.

128 U. Rückert and S. Kramer

4. N. Landwehr, A. Passerini, L. D. Raedt, and P. Frasconi. kfoil: Learning simple
relational kernels. In 21st National Conference on Artificial Intelligence (AAAI).
AAAI Press, 2006.

5. H. Li, C. W. Yap, C. Y. Ung, Y. Xue, Z. W. Cao, and Y. Z. Chen. Effect of selec-
tion of molecular descriptors on the prediction of blood-brain barrier penetrating
and nonpenetrating agents by statistical learning methods. Journal of Chemical
Information and Modeling, 45(5):1376–1384, 2005.

6. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

7. J. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239–
266, 1990.

8. U. Rückert and S. Kramer. A statistical approach to rule learning. In Machine
Learning, Proceedings of the 23rd International Conf., pages 785–792. ACM Press,
2006.

9. U. Rückert and S. Kramer. Margin-based rule learning, to appear, 2007.
10. U. Rückert and S. Kramer. Optimizing feature sets for structured data. In

S. Matwin and D. Mladenic, editors, 18th ECML. Springer, 2007.
11. F. Yoshida and J. Topliss. QSAR model for drug human oral bioavailability. J.

Med. Chem., 43:2575–2585, 2000.
12. F. Zelezný and N. Lavrac. Propositionalization-based relational subgroup discovery

with rsd. Machine Learning, 62(1-2):33–63, 2006.

Appendix: Instantiations of the Framework

In this appendix, we briefly discuss known and conceivable instantiations of the
above framework. First, many traditional ILP algorithms proceed top-down, it-
erating query generation and testing. Typically, models consist of queries that
are combined conjunctively or disjunctively. Queries that are already part of a
model are syntactally refined according to a declarative language bias specifica-
tion. This scheme applies to many classical ILP algorithms, from FOIL [7] to
Tilde [1]. In terms of the framework, the queries are generated depending on pre-
vious queries (g(q1, ..., qk)) and evaluated with respect to the class (fX,Y (Q′)).
The state of the classifier dc is not included in the generation function in this
case, because the queries are combined conjunctively and no additional infor-
mation has to be considered for the purpose of query generation. Proposition-
alization methods proceed either purely syntactically in the generation of new
queries (e.g., [12], or in a bottom-up, data-driven manner (e.g., [3], or in a top-
down search manner (e.g., [2]). In the RSD approach [12], queries are generated
syntactically (g()) taking into account non-decomposability and subsequentely
filtered to avoid redundancy (fX(Q′)). Aggregate functions for propositional-
ization were proposed by Krogel and Wrobel in their RELAGGS system (g(X)
and f(Q′) = Q′). In his PhD thesis, Krogel also discusses the elimination of
features involved in functional dependencies (fX(Q′)). Top-down propositional-
ization methods like Warmr [2] generate or refine existing queries syntactically
(g(q1, ..., qk)) and filter according to frequency constraints (fX(Q′)). According
to the scheme proposed in this paper, kFOIL [4] is categorized as relational
learning and not as propositionalization (g(q1, ..., qk) and fX,Y (Q′)).

Distributed Relational State Representations for
Complex Stochastic Processes ?

Ingo Thon1 and Kristian Kersting2

1 Katholieke Universiteit Leuven, Department of Computer Science
Celistijnenlaan 200A, 3001 Heverlee, Belgium

ingo.thon@cs.kuleuven.be
2 Massachusetts Institute of Technology, Computer Science and Artificial Intelligence

Laboratory, 32 Vassar St, Cambridge, MA 02139, USA
kersting@csail.mit.edu

Abstract. Several promising variants of hidden Markov models (HMMs)
have recently been developed to efficiently deal with large state and
observation spaces and relational structure. Many application domains,
however, have an apriori componential structure such as parts in mu-
sical scores. In this case, exact inference within relational HMMs still
grows exponentially in the number of components. In this paper, we pro-
pose to approximate the complex joint relational HMM with a simpler,
distributed one: k relational hidden chains over n states, one for each
component. Then, we iteratively perform inference for each chain given
fixed values for the other chains until convergence. Due to this struc-
tured mean field approximation, the effective size of the hidden state
space collapses from O(nk) to O(n).

1 Introduction

In recent years, Statistical Relational Learning (SRL) has emerged as an ac-
tive research subfield of Machine Learning. It is a relatively young research field
that deals with machine learning and data mining in relational domains where
observations may be missing, partially observed, and/or noisy. So far, however,
surprisingly few SRL approaches have been developed for modeling dynamic do-
mains, i.e., domains with temporal and/or sequential aspects. One reason might
be that time is not simply another relation. The algorithmic complexity for gen-
eral purpose, dynamic SRL approaches easily explodes and becomes intractable
in practice if quite strong assumptions are not made such as low branching
factors to keep tractability [7]. Another alternative way to keep dynamic SRL
approaches tractable is to lift simple dynamic probabilistic models, which nat-
urally restrict the dynamics of the domain, to relational models. This approach
? An earlier version of this work appeared as 4-pages extended abstract in the elec-

tronic working notes of the 5th International Workshop on Mining and Learning with
Graphs (MLG’07), August 1–3, 2007, Universita degli Studi di Firenze, Florence,
Tuscany, Italy. In the present paper, we report for the first time on experimental
results.

130 I. Thon et al.

Fig. 1. Factored HMMs. (Left) a factorial HMM: independent processes Xi (ovals) are
coupled through a single, joint output sequence Yi (boxes). (Right) Weakly coupled
HMMs: processes Xi (ovals) weakly interact to generate independent output sequences
Yi (boxes), one for each process.

has been followed by [1] and by [3], who lifted (hidden) Markov models to the
relational case. Hidden Markov models (HMMs) [5] itself are extremely popular
for modeling dynamic domains. Application areas include user modeling, speech
recognition, empirical natural language processing, and robotics, but also se-
quential domains like computational biology.

Many application domains, however, have an apriori componential structure
such as parts in musical scores. In this case, exact inference within relational
HMMs still grows exponentially in the number of components due to the combi-
natorial nature of the state space. In the propositional case, this ’curse of compo-
sitionality’ has been successfully addressed by a number of factored HMMs such
as factorial HMMs [2] and mixed-memory Markov models [9]. Here, the (hid-
den) state is factored into multiple state variables and is therefore represented
in a distributed manner. Moreover, the distributed nature allows to devise an
efficient variational approximation by (weakly) decoupling the state variables.
The main contribution of the present work is to show how to lift this idea to the
relational case.

We proceed as follows. After briefly reviewing factored HMMs in the next
Section, we will introduce weakly-couple relational HMMs (wcrHMMs) in Sec-
tion 3. Section 4 then presents a structured mean field approximation for efficient
inference within wcrHMMs. Before concluding, we will experimentally evaluate
this approach.

2 Factored Hidden Markov Models

Consider modeling string quartets. A violin has a pitch range from g until a4
this corresponds to four octaves denoted by the number, each with 12 semi tones
denoted by a letter and an optional modifier. For example, g corresponds to the
8th note of the zeros octave. Therefore, a string quartet can play (4 · 12)4 ≈
5 · 106 combinations of notes (even more including double stops and flageolets).
This number also corresponds to the required number of hidden state in an
HMM modeling a string quartet. This is clearly an intractable state space. An
alternative is to decompose the string quartet state space into four separate

Title Suppressed Due to Excessive Length 131

state variables, namely one for each instrument. This results in a much smaller
number of states per state variable, namely, only 48 values.

This decomposition is exactly the idea underlying factored HMMs. Figures 1
(left and right) show two instances of factored HMMs, which represent extreme
points of the factored HMM spectrum: factorial HMMs and coupled HMMs.
Unfortunately, only decomposing the state variables does not make exact infer-
ence and learning algorithms tractable [2]. The decomposition, however, paves
the way for an approximative inference algorithm, which is cubic in the num-
ber of hidden state variables. The basic idea is that each object (instrument)
represented by a (hidden) state variable chooses its next state only based on the
current joint state, i.e., independent of the next state of the other state variables.
This assumption together with making a structured mean field approximation
allows us to show in the remainder of this text that the exponential runtime
complexity drops from O(n2k) to O(k3n2) for one transition, where k is the
number of random variables and n is the domain size of the random variables
even in the relational case.

Why are we interested in the relational case? Reconsider our string quartet
examples. The number of states for each (hidden) state variable is still very high
compared to the number of state variables: 48 vs. 4. So, why not factorizing
even further? Well, decomposing the state for one instrument into two random
variables – one for the note and one for the octave – we would encode that
changing the semitone and the octave are independent of each other. Now assume
that one instrument transitions from the note 12th one halftone up. The next note
will be the first note but also one octave higher, which is wrong. Nevertheless,
as we will argue in the next section, there are (context-specific) independencies
among the state variables, which we would like to employ for fast inference.

3 Weakly-Coupled Relational Hidden Markov Models

In a factored HMM, each hidden state consist of a vector of unstructured sym-
bols. These symbols are the joint state of a set Xt of random variables Xt =
X1,t, . . . , Xn,t at each time t. With the term chain we refer to the set

⋃
t Xi,t

representing the same object over time. The random variables Xt are carrying
the information of the history over to the next state at time point t + 1. As an
example for a state consider:

basso 1 0︸ ︷︷ ︸
X1,t

, alto 1 1︸ ︷︷ ︸
X2,t

, tenor 1 1︸ ︷︷ ︸
X3,t

, soprano 2 1︸ ︷︷ ︸
X4,t

The state says that the instrument basso plays the first note of the octave zero
at time point t represented by X1,t. We will call such a statement ground state
and the combination of ground states for each Xi,t at time t a joint ground
state. Using ground states only, a traditional factorial HMM requires to specify
the conditional probability distribution (CPD) P (Xi,t+1|Xi,t) for each possible
state value combination. Even in our simple examples this CPD consists of 2304

132 I. Thon et al.

abstract state

body:
guard:

note(V oice, Note, Octave)
note(Other, Note, Octave2) ∧Other 6= V oice.

head: → note(V oice, Note, Octave2)

Fig. 2. An abstract transition (probability value omitted) of a weakly-coupled rela-
tional HMM. Capitalized words denote placeholders (for ground properties of the state)
to share knowledge across set of states by means of unification.

entries. Additionally the hidden state values can only depend via the output. For
coupled HMMs, things get even more worse. There the number of parameters
also grows exponential in the number of chains. Our string quartet example,
would require to specify roughly 2.5 · 108 parameters. This is clearly intractable.

In contrast, relational HMMs allow to aggregate sets of ground states together
by using logical atoms. The above example rewritten in logical notation would
be

note(basso, 1, 0)︸ ︷︷ ︸
X1,t

, note(alto, 1, 1)︸ ︷︷ ︸
X2,t

, note(tenor, 1, 1)︸ ︷︷ ︸
X3,t

, note(soprano, 2, 1)︸ ︷︷ ︸
X4,t

Now for instance, note(V oice, Note,Octave) refers to all ground states, in which
an instrument V oice plays any note Note in any octave Octave. Where capital-
ized words denote variables and ground states are states where every variable
is replaced by a constant value. This abstraction in turn allows to compactly
encode the probabilistic information. In the following, we will extend relational
HMMs to the weakly-coupled case.

Weakly-coupled relational HMMs are the factored variant of logical HMMs [3].
Consequently, the state of the system at each time step is a set of ground atoms
(one for each chain) and not only a single ground atom. An abstract state consists
of two components: a body (the state of a single chain) and a guard.

Definition 1. An abstract state {B,ϕ} consists of a body B and a guard
ϕ. A body is a logical atom and specifies the set of all subsumed ground states
for a chain. A mapping θB of the variables (placeholders) in B to objects in
the domain (constants) instantiates the abstract state B to a ground state. The
guard is a conjunction of logical atoms. It describes how one object is related to
other objects in a state. The guard applied to a joint state also induces one or
more mappings θϕ,i.

Thus, whereas the body corresponds to an abstract state in the sense of rela-
tional HMMs [3] and in turn specifies the properties of states of a single random
variable, the guard defines properties and relations, among all random variables.
As we will see below, an abstract transition fires only if the guard is true. This
can always be checked as the systems is at each time in exactly one state, i.e., one
ground atom per chain. To break ties among matching abstract states, we as-
sume the set of abstract states to be totally ordered according to some arbitrary
order.

Title Suppressed Due to Excessive Length 133

As an example, consider the abstract state shown in Fig. 2. Its meaning is
that two different instruments (V oices) play the same note. First, the body says
that there is a voice, which is playing some note. Then, the guard makes sure
that there is another voice playing the same note. Note that we assume that
the system is at each point in time in a particular joint ground state, i.e., we
can match each placeholder (such as V oice, Other, etc.) to a domain element
(constant). This variable mapping can in turn be used to specify a probability
distribution over the next states, i.e., over the states the system can transits to.
Following [3], we specify a distribution over possible successor states as follows.

Definition 2. An abstract transition is an expression of the following form:

pi :: {B,ϕ} → Hi

where pi ∈ [0, 1] is a probability value, {B,ϕ} denotes an abstract state, and
H is a logical atom. An abstract transition belongs to exactly one abstract state.
Hence the pi of the abstract transitions associated to the same abstract state have
to sum up to one. Note that the variables appearing in the body and the guard
can be used in the head. In this way, we can share knowledge across individual
chains.

Figure 2 shows an example for an abstract transition. It states that the instru-
ment playing V oice takes over the octave of the another instrument (if the guard
is true in the current joint state). If there are multiple true groundings of the
guard, as Other = soprano and Other = alto when determining the abstract
state for X1 in the example, we select uniformly among them. Multiple successor
states, i.e., free variables in the head are dealt with in the same way as for logical
HMMs, namely by assuming a selection distribution µ(a|A) mapping atoms A
to ground atoms a.

Definition 3. A selection distribution µ(a|A) defines for every logical atom
A and every ground atom a the probability that a will be a ground instance of A.

Additionally to the transition distribution there has to be a way to define
the prior distribution π over the joint ground states. To this end, we assume
a finite set of expressions of the form p :: {H1, . . . ,Hn}, i.e., one atom Hi per
chain. Then, using the selection distribution, we define

π({h1, . . . , hn}) = P (X0 = {h1, . . . , hn}) = α
∑

p::{H1,...,Hn}∈π
p·

∏n

i=1
µ(hi|Hi)

where α is a normalization constant. Note, however, that this is not the only
way one can imagine to specify a prior over joint ground states and any of them
will work fine with our inference procedure we will introduce below.

The only thing left is the definition of the sensor model, i.e., the probability
model for making observations.

Definition 4. A sensor model is a set of expressions of the form

p :: S1, . . . , Sm → O

where the Si and O are logical atoms.

134 I. Thon et al.

Each time an observation rule fires (assuming the same conflict resolution rule as
for abstract transition rules) in a joint ground state, we make the corresponding
observation (grouding free variables using the selection distribution µ).

Putting everything together results into the definition of a weakly-coupled
relational HMMs.

Definition 5. A weakly-coupled relational HMM (wcrHMM) consists
of a set of totally ordered abstract states, sets of abstract transitions for every
abstract state, a selection distribution µ, a initial state distribution π, a set of
observations.

A long the lines of [3], one can prove that every wcrHMM defines a unique
probability distribution.

Theorem 1. A weakly-coupled relational HMM defines a time discrete stochas-
tic process 〈Xt〉t. The induced probability measure over the Cartesian product
over all random variables exists and is unique for each t > 0 and in the limit
t→∞.

To see this, note that every wcrHMM with a finite number of chains can be
translated into a logical HMM: one basically computes the Cartesian product of
all abstract states and the resulting abstract transitions.
The proof of Theorem 1 provides us with a general way to do inference and
learning within wcrHMMs: compile the wcrHMM into a logical HMMs and
use the inference techniques developed for logical HMMs [4, 3]. This approach,
however, typically scales as n2, where n is the number of hidden state. In practice,
exact inference is therefore limited to relational HMMs with relative small state
spaces.

4 Structured Mean Field Approximation

Mean field theory provides an alternative perspective on inference. The intuition
behind mean field is that in dense graphs each node is subject to influences from
many other nodes. Assuming that each influence is rather weak and that the
total influence is roughly additive, the law of large number suggest that each
node should be roughly characterized by its mean value. Indeed, the mean value
is unknown, but it is related to the mean values of the other nodes. For Bayesian
networks and HMMs, it has been found that the mean value of a given node
is obtained additively from the mean values of the nodes in its Markov blan-
ket [8]. For weakly-coupled HMMs, however, we can do even better. Each chain
individually is tractable. Thus, we can improve the mean field approximation by
decoupling only the variables across the chains. This is called a structured mean
field approach. Whenever the chains are only loosely coupled, we would expect
this approximation to be quite accurate.

This basically leads to relational variants of [9]’s chain-wise inference pro-
cedures for mixed-memory Markov models, which all follow the same principle
and are akin to the hard EM. Even though it is possible to use this procedure

Title Suppressed Due to Excessive Length 135

Fig. 3. Probabilistic information employed by the chainwise Viterbi algorithm to com-
pute a transition probability for chain having all other chain fixed: (a) the probability
to reach the last state, (b) the transition probability of chain i, (c) the observation
probability, (d) the transition probability of the other chain from t to t + 1 given that
chain i is at t in xi.

although for parameter learning and the estimation of a lower bound of the prob-
ability of one output sequence, let us illustrate this for the Viterbi algorithm,
i.e., for computing the most-likely joint state sequence xi,0:T given a sequence
of observations o1:T . First, an initial guess is made for the Viterbi path x

(0)
i,0:T

of each component relational HMM i, for instance by running the Viterbi al-
gorithm for logical HMMs for each chains separately ignoring the inter-chain
dependencies. This is done by ignoring the guard. Then, a chainwise Viterbi
algorithm is applied, in turn, to each of the relational HMMs. The chainwise
Viterbi computes the optimal path of hidden x

(l)
i,0:t states through the ith chain

given fixed values x
(l−1)
j,0:t of the last iteration for the hidden states of the other

chains. This is essentially again the Viterbi algorithm for logical HMMs but it
uses a modified transition probability:

δ(x(l)
i,t |o1:t) = maxxi,t−1 δ(x(l)

i,t−1|o1:t−1) (a)

P (x(l)
i,t |x

(l−1)
1:i−1,t−1, x

(l)
i,t−1, x

(l−1)
i+1:n,t−1) (b)

P (ot|x(l−1)
1:i−1,t, x

(l)
i,t , x

(l−1)
i+1:n,t) (c)∏

j=1:n\i

P (x(l−1)
j,t+1|x

(l−1)
1:i−1,t, x

(l)
i,t , x

(l−1)
i+1:n,t) (d)

where, cf. Figure 3, (a) is the probability to reach the last state, (b) is the
transition probability of chain i, (c) is the observation probability, and (d) is the
transition probability of the other chain from t to t + 1 given that chain i is at
t in x

(l)
i,t . After the chainwise Viterbi has been applied once to each chain, we

iterate the cycle until convergence. The complete procedure rcViterbi is given
in Algorithm 1. One complete cycle of Algorithm 1 can be computed in time
O(k3n2) instead of the original O(n2k).

136 I. Thon et al.

Algorithm 1 rcViterbi: Relational chainwise Viterbi
1: procedure update-path(x0:T , o1:T , x0:T , i)
2: px,0 ← π(x1,0 . . . x1,i−1, x, x0,i+1 . . . x0,n) . init px,0. In general, px,i stores the

probability of the most likely path for o1:t, which ends in x.
3: for all t ∈ [1 . . . T] do
4: for all x do
5: px,t ← 0 . init px,t, i.e., the probability of being in x at t
6: end for
7: for all x′ with px′,t−1 > 0 do . Consider only states reachable at t− 1
8: {B, ϕ} ← abstract state matching x1,t−1 . . . x1,i−1, x

′, xt−1,i+1 . . . xt−1,n

9: θB ← mgu of x′ and B . Ground the variables in the body
10: for all θϕ s.t. ϕθBθH contains no free variable and is true in state

x1,t−1 . . . x1,i−1, x
′, xt−1,i+1 . . . xt−1,n do

11: for all p :: {B, ϕ} → H do . For all abstract successors of x′

12: pnew ← 0
13: for all groundings x of HθBθϕ do . For all ground successors,

compute modified transition probilities (lines 13 – 21)
14: pa ← px′,t−1

15: pb ← p · µ(x|A)
16: pc ← 0
17: for all pO :: S1, . . . , Sm → O s.t. S1 . . . , Sm is true in

x1,t−1 . . . x1,i−1, x
′, xt−1,i+1 . . . xt−1,n do

18: pc ← pc + pOµ(o, O)
19: end for
20: pd ← 1
21: for all j < n and j 6= i do
22: pd ← pd · P (xt+1,j |x1,t . . . x1,i−1, x, xt,i+1 . . . xt,n)
23: end for
24: pnew ← pnew · pa · pb · pc · pd

25: if pnew > px,t then. If more likely, set as current best path
26: px,t ← pnew

27: pred(x, t)← x′

28: end if
29: end for
30: end for
31: end for
32: end for
33: end for
34: x← arg maxx px,T . Extract the computed Viterbi path.
35: for t=T-1. . . 0 do
36: xi,t ← pred(x, t)
37: x← xi,t

38: end for
39: end procedure

5 Experimental Demonstration

To demonstrate the relational chainwise Viterbi algorithm, consider the vacuum
world of [6] as depicted in Figure 4 for the case of 4 rooms.

Title Suppressed Due to Excessive Length 137

Fig. 4. Illustration of the Vacuum world we used to demonstrate rcViterbi. Here we
assume 4 rooms which are arranged in a circle. The robot is in the upper-left room.

Example 1. In the Vacuum world, there are n rooms and a single robot. The
robot has two actions to choose from: walking (w) and cleaning (c). Rooms X
and Y are connected via door(X, Y), which the robot can use to walk from X to
Y. If the robot is in a Room and cleaning, the room will be clean (clean(Room))
with a chance of 90% after the cleaning action. A clean room will stay clean in
any case and a dirty room (dirty(Room)) will also stay dirty by default if not
performing the cleaning action. The action the robot chooses correspond with
probability 0.8 to the true state of the current room. In other words, the robot
is not always able to determine the current state of the room correctly. The
observation at every time consists of the position of the robot and dirt level of
the room. This information is only with a probability 0.75 correct. In the other
cases either the position of the robot is wrong or the dirt level or both.

To model the Vacuum world as a wcrHMM, we treated robot(Room, Action),
clean(Room), and dirty(Room) as abstract chain. The rooms as well as the topo-
logical information among them, i.e., door(X, Y), is provided apriori as determin-
istic background knowledge. Then the Vacuum world can be modeled as follows:

0.9 :: clean(X)← dirty(X) {robot(X, c)}
0.1 :: dirty(X)← dirty(X) {robot(X, c)}
1.0 :: dirty(X)← dirty(X) {}
1.0 :: clean(X)← clean(X) {}
0.8 :: robot(X, c)← robot(X,) {door(X, Y) ∧ dirty(X)}
0.2 :: robot(Y, w)← robot(X,) {door(X, Y) ∧ dirty(X)}
0.2 :: robot(X, c)← robot(X,) {door(X, Y) ∧ ¬dirty(X)}
0.8 :: robot(Y, w)← robot(X,) {door(X, Y) ∧ ¬dirty(X)}

Based on this model, we compared the exact and the chainwise relational Viterbi
algorithms. More precisely, for an increasing number of rooms (3, 4, . . . , 8), we
randomly sampled 40 observation sequences of length 10. For each sequence we
then ran both algorithms to compute the most-likely hidden state sequence. The
mean field approach was set to spend 4 iterations per element in the interpreta-
tion.

138 I. Thon et al.

-70

-60

-50

-40

-30

-20

-10

0

10

2 3 4 5 6 7 8 9 10

lo
g
(P

(x
0
:T

,o
1
:T

))

Problemsize =̂ Number of rooms

exact

♦ ♦ ♦ ♦ ♦ ♦

♦
mean field

+ +
+ + + +

+
inital pathes

� �
� �

� �

�
difference

× × × × × ×

×

(a) Qualitative comparison: Number of rooms (x axis) vs. log joint
probability log(P (x0:T , o1:T)) of computed Viterbi path and observa-
tion sequence (y axis), which is bascially maximized by the Viterbi
algorithm. Finally, we show the probabilities of the paths, which had
been used to initialize the mean field approximation. The mean of the
latter probabilities roughly corresponds to the expected probability of
a randomly selected state sequence.

100

1000

10000

100000

1e+06

1e+07

2 3 4 5 6 7 8 9 10

lo
g

R
u
n
ti

m
e

[m
s]

Problemsize =̂ Number of rooms

runtime viterbi

+
+

+
+

+
+

+
runtime: exact

♦

♦

♦

♦

♦

♦

♦

�

�

�

�

�

�

×
× × × × ×

(b) Running time comparison: Number of rooms (x axis) vs. runtime
(y axis) in ms on a logarithmic scale. The skewness of error bars are
due to the logarithmic scale

Fig. 5. Experimental results on the vacuum world domain averaged over 40 sequences:
(a) qualitative comparison, (b) running time comparison. The results show that the
structured mean field approximation achieves a performance, which is competitive with
the exact inference approach, but it is several orders of magnitude faster.

The experimental results are summarized in Figures 5(a) and 5(b). As one can
see in Figure 5(a), the chainwise Viterbi approach yields close approximations

Title Suppressed Due to Excessive Length 139

-60

-50

-40

-30

-20

-10

0

-60-50-40-30-20-10 0

lo
g

o
f
m

ea
n
fi
el

d

log of exact

problemsize 3

+
++

+
+

+
+

+

+++
+++
+

+

+

+
++

+

+
+

++
+

+
++++
+

+

+
+

+

+
+

+

+

+

-60

-50

-40

-30

-20

-10

0

-60-50-40-30-20-10 0

lo
g

o
f
m

ea
n
fi
el

d
log of exact

problemsize 4

++
+

+++
+

+

+

+
+

+

++
+

+
+
+

+

+
+
++
+

+

+
+
+

+
+

+++
+

+ +
++++

+

-60

-50

-40

-30

-20

-10

0

-60-50-40-30-20-10 0

lo
g

o
f
m

ea
n
fi
el

d

log of exact

problemsize 5

+
+

+

+

+

+

+++

+
+

+
+

+

+++++++
+
+

+

+

++

+
+

+
+

++
+++
+

+

+

+

+

-60

-50

-40

-30

-20

-10

0

-60-50-40-30-20-10 0

lo
g

o
f
m

ea
n
fi
el

d

log of exact

problemsize 6

+++

+
+

++
+

+

+
+

+
+

+

+
+

+

+

++

+
++

+

+

+

+
+

+

+
++

+++
+

++

++

+

-60

-50

-40

-30

-20

-10

0

-60-50-40-30-20-10 0

lo
g

o
f
m

ea
n
fi
el

d

log of exact

problemsize 7

++

+

+

+

+

+++
++

+

+
+

+

+

+
+

+

+

+

+

+

+

+
+

+

++++
++

+
+++

+
+

+

+

-60

-50

-40

-30

-20

-10

0

-60-50-40-30-20-10 0

lo
g

o
f
m

ea
n
fi
el

d

log of exact

problemsize 8

+
+

++

+

+
+

+

+++
++

+
++

+
+

+

+

+

+
+

++

+

++

+

+

++
++++

+
+
++

+

Fig. 6. Scatter-plots of the 40 experiment made for every problemsize. This shows
that the results are in most cases equally good. In the other cases the solutions are still
reasonable.

of the true probabilities. It is, however, an order of magnitude faster, cf. Figure
5(b), as predicted by the theory: the exact viterbi algorithm is exponential in
the number of rooms as the number of possible hidden states grows exponential
in the number of rooms. The quantitative results were as follows:

#rooms
of paths with 3 4 5 6 7 8
same probabilities 28 18 17 20 22 27
0% < log range ≤ 5% 1 3 3 3 3 3
5% < log range ≤ 10% 3 6 7 1 3 1
subtotal (absolute/relative) 32/.8 27/.67 27/.67 24/.6 28/.7 31/.77
> 10% log range 8 13 13 16 12 9
total 40 40 40 40 40 40

Thus, in most cases both algorithms output a path with the same probability.
In the cases in which the estimated path rcViterbi is suboptimal, the solution
is still reasonable. This is also illustrated in the scatter-plots in Figure 6.

To summarize the experiments demonstrate that rcViterbi achieves com-
parable performance as the exact approach but is several orders of magnitudes
faster.

140 I. Thon et al.

6 Conclusions

We introduced weakly coupled relational HMMs (wcrHMMs). Based on a dis-
tributed, abstract state representation, we then developed a structured mean
field approximation for efficient, approximative inference. First experiments have
shown that the approximation works well in practice. This experiments have also
shown, that the exact algorithm is intractable even in the simple cases, because
of the exponential growth of the runtime in the size of the interpretations.
More experiment have to be conducted, particular on real world data.
To the best of our knowledge, the inference procedure is the first application of
a variational method within SRL. Researchers like Pedro Domingos or Taisuke
Sato have started research in the same direction3. Investigating this connection
for other SRL approaches is an interesting direction for future research as it
paves the way towards general relational, variational Bayes methods.

Acknowledgments
The authors thank Luc De Raedt for his support. We also would like to thank
the anonymous reviewers for their helpful comments. The research was partly
supported by the Research Foundation-Flanders (FWO-Vlaanderen).

References

[1] C. Anderson, P. Domingos, and D. Weld. Relational Markov Models and their Ap-
plication to Adaptive Web Navigation. In Proc. of the 8th Int. Conf. on Knowledge
Discovery and Data Mining (KDD-02), pages 143–152, 2002.

[2] Z. Ghahramani and M. Jordan. Factorial hidden Markov models. Machine Learning
Journal, 29:245–273, 1997.

[3] K. Kersting, L. De Raedt, and T. Raiko. Logial Hidden Markov Models. Journal
of Artificial Intelligence Research (JAIR), 25:425–456, 2006.

[4] K. Kersting and T. Raiko. ’Say EM’ for Selecting Probabilistic Models for Logical
Sequences. In Proc. of the 21st Conf. on Uncertainty in Artificial Intelligence
(UAI-05), pages 300–307, 2005.

[5] L. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in
Speech Recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[6] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall,
Inc., 1995.

[7] S. Sanghai, P. Domingos, and D. Weld. Dynamic probabilistic relational models.
In Proc. of the 8th Int. Joint Conference on Artificial Intelligence (IJCAI-03),
pages 992–997, 2003.

[8] L. K. Saul and M. I. Jordan. Exploiting tractable substructures in intractable
networks. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances
in Neural Information Processing Systems, volume 8, pages 486–492. The MIT
Press, 1996.

[9] L. K. Saul and M. I. Jordan. Mixed memory markov models: Decomposing complex
stochastic processes as mixtures of simpler ones. Mach. Learn., 37(1):75–87, 1999.

3 personal communication

Author Index

Basile, Teresa M.A., 22
Blockeel, Hendrik, 93

Camacho, Rui, 34
Costa, Gianni, 2
Costa, Vı́tor Santos, 34
Cuzzocrea, Alfredo, 2

De Knijf, Jeroen, 10
De Raedt, Luc, 1, 81
Di Mauro, Nicola, 22

Esposito, Floriana, 22

Feelders, Ad, 10
Ferilli, Stefano, 22
Fonseca, Nuno A., 34

Guo, Hongyu, 46
Gutmann, Bernd, 58, 81

Kersting, Kristian, 58, 129
Kramer, Stefan, 117

Kuželka, Ondřej, 69

Landwehr, Niels, 81

Manco, Giuseppe, 2
Meert, Wannes, 93

Ortale, Riccardo, 2

Philipose, Matthai, 81

Rückert, Ulrich, 117
Riguzzi, Fabrizio, 105
Rocha, Ricardo, 34

Scordio, Howard, 2
Struyf, Jan, 93

Thon, Ingo, 81, 129

Viktor, Herna L., 46

Zelezný, Filip, 69

