
THE 18TH EUROPEAN CONFERENCE ON MACHINE LEARNING
AND

THE 11TH EUROPEAN CONFERENCE ON PRINCIPLES AND PRACTICE
OF KNOWLEDGE DISCOVERY IN DATABASES

PROCEEDINGS OF THE

INTERNATIONAL WORKSHOP

ON KNOWLEDGE DISCOVERY

FROM UBIQUITOUS
DATA STREAMS

IWKDUDS 2007

September 17, 2007

Warsaw, Poland

Editors:
João Gama
LIAAD - INESC Porto L.A. & University of Porto, Portugal
Mohamed Medhat Gaber
Tasmanian ICT Centre, CSIRO ICT Centre, Australia
Jesús S. Aguilar-Ruiz
School of Engineering, Pablo de Olavide University, Seville, Spain

Preface

We are glad to have this year’s international workshop on knowledge discovery from
ubiquitous data streams at ECML/PKDD 2007. We have a strong workshop program
with 12 papers, an invited talk and a tutorial.

Ting, Theodorou and Schaal have introduced a modified Kalman Filter that can per-
form real-time outlier detection. Spinosa, Carvalho, and Gama have extended OLINDDA
(OnLIne Novelty and Drift Detection Algorithm) to multiple-class classification prob-
lems. Lei, Tang, Iglesias, Mukherjee, and Mohanty have presented a simlilarity-driven
clustering approach to address the scalalbility probelms in large datasets with an appli-
cation to Gravitational-Wave Astronomy Data. Yoshida and Hruschka Jr. have decribed
and evaluated experimentally a Quasi-Incremental Bayesian Classifier that could be
used in dynamic systems like sensor networks. Küçük, Inan, Boyrazoglu, Buhan, Sa-
lor, Çadirci, and Ermis have presented a data stream architecture for electrical power
quality (PQStream). Phung, Gaber and Roehm have extended their ERA-Cluster clusit-
ing algorithm to work in a distributed mode in wireless sensor networks. Karnstedt,
Franke and Gaber have introduced and described mathematically a model for quality
guaranteed resource-aware stream mining. Landwehr, Gutmann, Thon, Philipose, and
Raedt have described a ubiquitous computing application to recognize human activities
from sensory data. Last and Saveliev have enhanced the Information Network (IN) clas-
sification algorithm by preserving the model qulaity while reducing the coputational
cost. Rodrigues and Gama have extended their clustering technique Online Divisive-
Agglomerative Clustering (ODAC) using semi-fuzzy approach. Haghighi, Gaber, Kr-
ishnaswamy, Zaslavsky, and Loke have introduced an architecture for context-aware
adaptive data stream mining. Finally, An and Park have introduced an efficient secure
XML query processing method.

We hope that this proceedings will form an important and valuable addition to your
library. Finally, we thank all the authors for their significant contributions to the work-
shop.

August 2007 João Gama
Mohamed Medhat Gaber

Jesús S. Aguilar-Ruiz

Workshop Organization

Workshop Chairs

João Gama (LIAAD - INESC Porto L.A. & University of Porto, Portugal)
Mohamed Medhat Gaber (Tasmanian ICT Centre, CSIRO ICT Centre, Australia)
Jesús S. Aguilar-Ruiz (School of Engineering, Pablo de Olavide University, Spain)

Publicity Chair

Pedro Pereira Rodrigues (LIAAD - INESC Porto L.A. & University of Porto, Portugal)

ECML/PKDD Workshop Chair

Marzena Kryszkiewicz (Warsaw University of Technology)

Workshop Program Committee

Andreas Hotho
André Carvalho
Antoine Cornuejols
Bernhard Seeger
Elaine Sousa
Eduardo Spinosa
Francisco Ferrer-Troyano
Auroop Ganguly
Geoff Holmes
Georges Hebrail
Hillol Kargupta
João Gama
Jesús Aguilar-Ruiz
Josep Roure

Mark Hall
Mark Last
Miroslav Kubat
Mohamed Medhat Gaber
Olufemi Omitaomu
Pedro Pereira Rodrigues
Philip S. Yu
Ralf Klinkenberg
Rasmus Pedersen
Ricard Gavalda
Sean Wang
Takashi Washio
Raju Vatsavai
Ying Yang

Table of Contents

Learning an Outlier-Robust Kalman Filter . 1
Jo-Anne Ting, Evangelos Theodorou and Stefan Schaa

Learning novel concepts: beyond one-class classification with OLINDDA 13
Eduardo J. Spinosa, André Ponce de Leon F. de Carvalho, and João Gama

S-means: Similarity Driven Clustering and Its application in Gravitational-Wave
Astronomy Data Mining . 25

Hansheng Lei, Lappoon R. Tang, Juan R. Iglesias, Soma Mukherjee and
Soumya Mohanty

Quasi-Incremental Bayesian Classifier . 37
Murilo Lacerda Yoshida and Estevam R. Hruschka Jr.

PQStream: A Data Stream Architecture for Electrical Power Quality 47
Dilek Küçük, Tolga İnan, Burak Boyrazoğlu, Serkan Buhan, Özgül Salor, Işık
Çadırcı and Muammer Ermiş

Resource-aware Distributed Online Data Mining for Wireless Sensor Networks . . 59
Nhan Duc Phung, Mohamed Medhat Gaber and Uwe Roehm

A Model for Quality Guaranteed Resource-Aware Stream Mining 72
Marcel Karnstedt, Conny Franke and Mohamed Medhat Gaber

Relational Transformation-based Tagging for Human Activity Recognition 83
Niels Landwehr, Bernd Gutmann, Ingo Thon, Matthai Philipose and Luc De
Raedt

Enhanced Anytime Algorithm for Induction of Oblivious Decision Trees 95
Mark Last and Albina Saveliev

A Semi-Fuzzy Approach for Online Divisive-Agglomerative Clustering 107
Pedro Pereira Rodrigues and João Gama

An Architecture for Context-Aware Adaptive Data Stream Mining 117
Pari Delir Haghighi, Mohamed Medhat Gaber, Shonali Krishnaswamy, Arkady
Zaslavsky and Seng Loke

Efficient Secure Query Processing in XML Data Stream . 129
Dong-Chan An and Seog Park

Author Index . 139

Learning an Outlier-Robust Kalman Filter

Jo-Anne Ting1, Evangelos Theodorou1 and Stefan Schaal1,2

1 University of Southern California, Los Angeles, CA 90089
2 ATR Computational Neuroscience Laboratories, Kyoto, Japan

{joanneti, etheodor, sschaal}@usc.edu

Abstract. In this paper, we introduce a modified Kalman filter that
performs robust, real-time outlier detection, without the need for manual
parameter tuning by the user. Systems that rely on high quality sensory
data (for instance, robotic systems) can be sensitive to data containing
outliers. The standard Kalman filter is not robust to outliers, and other
variations of the Kalman filter have been proposed to overcome this
issue. However, these methods may require manual parameter tuning,
use of heuristics or complicated parameter estimation procedures. Our
Kalman filter uses a weighted least squares-like approach by introducing
weights for each data sample. A data sample with a smaller weight has
a weaker contribution when estimating the current time step’s state.
Using an incremental variational Expectation-Maximization framework,
we learn the weights and system dynamics. We evaluate our Kalman
filter algorithm on data from a robotic dog.

1 Introduction

Systems that rely on high quality sensory data are often sensitive to data con-
taining outliers. While data from sensors such as potentiometers and optical
encoders are easily interpretable in their noise characteristics, other sensors such
as visual systems, GPS devices and sonar sensors often provide measurements
populated with outliers. As a result, robust, reliable detection and removal of
outliers is essential in order to process these kinds of data. For example, in the
application domain of robotics, legged locomotion is vulnerable to sensory data
of poor quality, since one undetected outlier can disturb the balance controller
to the point that the robot loses stability.

An outlier is generally defined as an observation that “lies outside some
overall pattern of distribution” [1]. Outliers may originate from sensor noise
(producing values that fall outside a valid range), from temporary sensor failures,
or from unanticipated disturbances in the environment (e.g., a brief change of
lighting conditions for a visual sensor). Note that some prior knowledge about
the observed data’s properties must be known. Otherwise, it is impossible to
discern if a data sample that lies some distance away from the data cloud is
truly an outlier or simply part of the data’s structure.

For real-time applications, storing data samples may not be a viable option
due to the high frequency of sensory data and insufficient memory resources. In

1

this scenario, sensor data are made available one at a time and must be discarded
once they have been observed. Hence, techniques that require access to the entire
set of data samples, such as the Kalman smoother [2] are not applicable. Instead,
the Kalman filter [3] is a more suitable method, since it assumes that only data
samples up to the current time step have been observed.

The Kalman filter is a widely used tool for estimating the state of a dynamic
system, given noisy measurement data. It is the optimal linear estimator for
linear Gaussian systems, giving the minimum mean squared error [4]. Using
state estimates, the filter can also estimate what the corresponding (output)
data are. However, the performance of the Kalman filter degrades when the
observed data contains outliers. To address this, previous work has tried to
make the Kalman filter more robust to outliers by addressing the sensitivity of
the squared error criterion to outliers [5, 6]. One class of approaches considers
non-Gaussian distributions for random variables (e.g., [7–9]), since multivariate
Gaussian distributions are known to be susceptible to outliers. For example, [10]
uses multivariate Student-t distributions. However, the resulting estimation of
parameters may be quite complicated for systems with transient disturbances.

Alternatively, it is possible to model the observation and state noise as non-
Gaussian, heavy-tailed distributions to account for non-Gaussian noise and out-
liers, e.g., [11, 12]. Unfortunately, these filters are typically more difficult to im-
plement and may no longer provide the conditional mean of the state vector.
Other approaches use resampling techniques (e.g., [13]) or numerical integration
(e.g., [14]), but these may require heavy computation not suitable for real-time
applications.

Yet another class of methods uses a weighted least squares approach, as done
in robust least squares [15], where the measurement residual error is assigned
some statistical property. Some of these algorithms fall under the first category of
approaches as well, assuming non-Gaussian distributions for variables. Each data
sample is assigned a weight that indicates its contribution to the hidden state
estimate at each time step. This technique has been used to produce a Kalman
filter that is more robust to outliers (e.g., [16,17]). However, these methods usu-
ally model the weights as some heuristic function of the data (e.g., the Huber
function [15]) and often require manual tuning of threshold parameters for op-
timal performance. Using incorrect or inaccurate estimates for the weights may
lead to deteriorated performance, so special attention and care is necessary when
using these techniques.

In this paper, we are interested in making the Kalman filter more robust
to the outliers in the observations (i.e. the filter should identify and eliminate
possible outliers as it tracks observed data). Identifying outliers in the state is
an entirely different problem, left for another paper. We introduce a modified
Kalman filter that can detect outliers in the observed data without the need
for manual parameter tuning or use of heuristic methods. For ease of analytical
computation, we assume Gaussian distributions for variables and states. We il-
lustrate the performance of this robust Kalman filter on robotic data, comparing

2

it with other robust Kalman filter methods and demonstrating its effectiveness
at detecting outliers in the observations.

2 Outlier Detection in the Kalman Filter

Let us assume we have data observed over N time steps, {zk}
N

k=1
, and the corre-

sponding hidden states as {θk}
N

k=1
(where θk ∈ <d2×1, zk ∈ <d1×1). Assuming

a time-invariant system, the Kalman filter system equations are:

zk = Cθk + vk

θk = Aθk−1 + sk

(1)

where C ∈ <d1×d2 is the observation matrix, A ∈ <d2×d2 is the state transition
matrix, vk ∈ <d1×1 is the observation noise at time step k, and sk ∈ <d2×1

is the state noise at time step k. We assume vk and sk to be uncorrelated
additive mean-zero Gaussian noise: vk ∼ Normal (0,R), sk ∼ Normal (0,Q),
where R ∈ <d1×d1 is a diagonal matrix with r ∈ <d1×1 on its diagonal, and
Q ∈ <d2×d2 is a diagonal matrix with q ∈ <d2×1 on its diagonal. R and Q are
covariance matrices for the observation and state noise, respectively. Fig. 1(a)
shows the graphical model for the standard Kalman filter. Its corresponding
filter propagation and update equations are, for k = 1, .., N :

Propagation:

θ
′
k = A 〈θk−1〉 (2)

Σ
′
k = AΣk−1A

T + Q (3)

Update:

S′
k =

(

CΣ
′
kC

T + R
)−1

(4)

K ′
k = Σ

′
kC

TS′
k (5)

〈θk〉 = θ
′
k + K ′

k

(

zk − Cθ
′
k

)

(6)

Σk = (I− K ′
kC)Σ

′
k (7)

where 〈θk〉
3 is the posterior mean vector of the state θk, Σk is the posterior

covariance matrix of θk, and S′
k is the covariance matrix of the residual prediction

error—all at time step k. In this problem, the system dynamics (C, A, R and
Q) are unknown, and it is possible to use a maximum likelihood framework to
estimate these parameter values [18]. Unfortunately, this standard Kalman filter
model considers all data samples to be part of the data cloud and is not robust
to outliers.

2.1 Robust Kalman Filtering with Bayesian Weights

To overcome this limitation, we introduce a novel Bayesian algorithm that treats
the weights associated with each data sample probabilistically. In particular, we

3 Note that 〈〉 denotes the expectation operator

3

� �

� �� � � �

� � � �

(a) Kalman filter

� �
� �

	 �	
 � �

�
 � �

 � �

�
 � � �

�
 � � �

�
�
 � �

�
 � � �

(b) Proposed robust Kalman filter

Fig. 1. Graphical Models: circular nodes are random variables, double circles are
observed random variables, and square nodes are point estimated parameters.

introduce a scalar weight wk for each observed data sample zk such that the
variance of zk is weighted with wk, as done in [19]. [19] considers a weighted
least squares regression model and assumes that the weights are known and
given. We model the weights to be Gamma distributed random variables, as
done previously in [20] for weighted linear regression. Additionally, we learn
estimates for the system dynamics at each time step. A Gamma prior distribution
is chosen for the weights in order to ensure they remain positive. Fig. 1(b) shows
the graphical model of this robust Kalman filter. The prior distributions are:

zk|θk, wk ∼ Normal (Cθk,R/wk)

θk|θk−1 ∼ Normal (Aθk−1,Q)

wk ∼ Gamma (awk
, bwk

)

(8)

We can treat this entire problem as an Expectation-Minimization-like (EM)
learning problem [21,22] and maximize the log likelihood log p(θ1:N) (known as
the “incomplete” log likelihood with the hidden probabilistic variables marginal-
ized out). Due to analytical issues, we only have access to a lower bound of this
measure. This lower bound is based on an expected value of the “complete”
data likelihood 〈log p (θ1:N , z1:N ,w)〉, formulated over all variables of the learn-
ing problem. Since we are considering this problem as a real-time one (i.e. data
samples arrive sequentially, one at a time), we will have observed only data
samples z1:k at time step k. Consequently, in order to estimate the posterior
distributions of the random variables and parameter values at time step k, we
should consider the log evidence of only the data samples observed to date, i.e.,
log p (θ1:k, z1:k,w1:k).

The expectation of the complete data likelihood should be taken with respect
to the true posterior distribution of all hidden variables Q (w, θ). Since this
is an analytically intractable expression, we use a technique from variational
calculus to construct a lower bound and make a factorial approximation of the
true posterior [22] as follows: Q (w, θ) =

∏N

i=1
Q (wi)

∏N

i=1
Q (θi|θi−1)Q(θ0).

This factorization of θ considers the influence of each θi from within its Markov
blanket, conserving the Markov property that Kalman filters, by definition, have.
While losing a small amount of accuracy, all resulting posterior distributions over

4

hidden variables become analytically tractable. This factorial approximation was
chosen purposely so that Q(wk) is independent from Q(θk); performing joint
inference of wk and θk does not make sense in the context of our generative
model. The final EM update equations at time step k are:

E-step:

Σk =
(

〈wk〉C
T
k R−1

k Ck + Q−1

k

)−1
(9)

〈θk〉 = Σk

(

Q−1

k Ak 〈θk−1〉 + 〈wk〉C
T
k R−1

k zk

)

(10)

〈wk〉 =
awk,0 + 1

2

bwk,0 +
〈

(zk − Ckθk)
T

R−1

k (zk − Ckθk)
〉 (11)

M-step:

Ck =
(

∑k

i=1
〈wi〉 zi 〈θi〉

T
)(

∑k

i=1
〈wi〉

〈

θiθ
T
i

〉)−1

(12)

Ak =
(

∑k

i=1
〈θi〉 〈θi−1〉

T
) (

∑k

i=1

〈

θi−1θ
T
i−1

〉)−1

(13)

rkm = 1

k

∑k

i=1
〈wi〉

〈

(zim − Ck(m, :)θi)
2
〉

(14)

qkn = 1

k

∑k

i=1

〈

(θin − Ak(n, :)θi−1)
2
〉

(15)

where m = 1, .., d1, n = 1, .., d2; rkm is the mth coefficient of the vector rk; qkn

is the nth coefficient of the vector qk; Ck(m, :) is the mth row of the matrix Ck;
Ak(n, :) is the nth row of the matrix Ak; and awk,0 and bwk,0 are prior scale
parameters for the weight wk. (9) to (15) should be computed once for each time
step k (e.g., [23] [24]) when the data sample zk becomes available.

Since storing sensor data is not possible in real-time applications, (12) to
(15)—which require access to all observed data samples up to time step k—need
to be re-written using only values observed, calculated or used in the current
time step k. We can do this by collecting sufficient statistics in (12) to (15) and
rewriting them as:

Ck =
∑

wzθ
T

k

(

∑

wθθ
T

k

)−1

(16)

Ak =
∑θθ

′

k

(

∑θ
′
θ
′

k

)−1

(17)

rkm = 1

k

[

∑

wzz

km −2Ck(m, :)
∑

wzθ

km +diag
{

Ck(m, :)
∑

wθθ
T

k Ck(m, :)T
}]

(18)

qkn = 1

k

[

∑θ2

kn −2Ak(n, :)
∑θθ

′

kn +diag
{

Ak(n, :)
∑

θ
′
θ
′

k Ak(n, :)T
}]

(19)

where m = 1, .., d1, n = 1, .., d2, and the sufficient statistics, which are all a
function of values observed, calculated or used in time step k (e.g., 〈wk〉, zk,

5

〈θk〉, 〈θk−1〉 etc.) are:

∑

wzθ
T

k = 〈wk〉 zk 〈θk〉
T

+
∑

wzθ
T

k−1
(20)

∑

wθθ
T

k = 〈wk〉
〈

θkθ
T
k

〉

+
∑

wθθ
T

k−1
(21)

∑

θθ
′

k = 〈θk〉 〈θk−1〉
T +

∑

θθ
′

k−1
(22)

∑θ
′
θ
′

k =
〈

θk−1θ
T
k−1

〉

+
∑θ

′
θ
′

k−1
(23)

∑

wzz

km = 〈wk〉 z2

km +
∑

wzz

k−1
(24)

∑

wzθ

km = 〈wk〉 zkmθk +
∑

wzθ

k−1,m (25)
∑θ2

kn =
〈

θ2

kn

〉

+
∑θ2

k−1,n (26)
∑θθ

′

kn = 〈θkn〉 〈θk−1〉 +
∑θθ

′

kn (27)

A few remarks should be made regarding the initialization of priors used in (9)
to (11), (16) to (19). In particular, the prior scale parameters awk,0 and bwk,0

should be selected so that the weights 〈wk〉 are 1 with some confidence. That
is to say, the algorithm starts by assuming most data samples are inliers. For
example, we set awk,0 = 1 and bwk,0 = 1 so that 〈wk〉 has a prior mean of
awk,0/bwk,0 = 1 with a variance of awk,0/b2

wk,0 = 1. By using these values, the
maximum value of 〈wk〉 is capped at 1.5. This set of values is generally valid
for any data set and/or application and does not need to be modified, unless
the user has a good reason to insert strong biases towards particular parameter
values. Since some prior knowledge about the observed data’s properties must
be known in order to distinguish whether a data sample is an outlier or part
of the data’s structure, this Bayesian approach provides a natural framework to
incorporate this information.

Secondly, the algorithm is relatively insensitive to the the initialization of A

and C and will always converge to the same final solution, regardless of these
values. For our experiments, we initialize C = A = I, where I is the identity
matrix. Finally, the initial values of R and Q should be set based on the user’s
initial estimate of how noisy the observed data is (e.g., R = Q = 0.01I for noisy
data, R = Q = 10−4I for less noisy data [25]).

2.2 Relationship to the Kalman Filter

With a little algebraic manipulation, we can show that the model derived in
Section 2.1 is indeed a variant of the Kalman filter. If we substitute the prop-
agation equations, (2) and (3), into the update equations, (4) to (7), we reach
recursive expressions for 〈θk〉 and Σk. By applying this sequence of algebraic

6

manipulations in reverse order to (9) and (10), we arrive at the following:

Propagation:

θ
′
k = Ak 〈θk−1〉 (28)

Σ
′
k = Qk (29)

Update:

S′
k =

(

CkΣ
′
kC

T
k +

1

〈wk〉
Rk

)−1

(30)

K ′
k = Σ

′
kC

T
k S′

k (31)

〈θk〉 = θ
′
k + K ′

k

(

zk − Ckθ
′
k

)

(32)

Σk = (I − K ′
kCk)Σ

′
k (33)

Close examination of the above equations show that (9) and (10) in the Bayesian
model correspond to standard Kalman filter equations, with modified expressions
for Σ

′
k and S′

k and time-varying system dynamics. Σ
′
k is no longer explicitly

dependent on Σk−1 since Σk−1 does not appear in (29). However, the current
state’s covariance Σk is still dependent on the previous state’s covariance Σk−1

(i.e. it is dependent through the other parameters K ′ and Ck).
Additionally, the term Rk in S′

k is now weighted. Equation (11) reveals that if
the prediction error in zk is so large that it dominates the denominator, then the
weight 〈wk〉 of that data sample will be very small. As this prediction error term
in the denominator goes to ∞, 〈wk〉 approaches 0. If zk has a very small weight
〈wk〉, then S′

k, the posterior covariance of the residual prediction error, will be
very small, leading to a very small Kalman gain K ′

k. In short, the influence of
the data sample zk will be downweighted when predicting θk, the hidden state
at time step k.

The resulting Bayesian algorithm has a computational complexity on the
same order as that of a standard Kalman filter, since matrix inversions are still
needed (for the calculation of covariance matrices), as in the standard Kalman
filter. In comparison to other Kalman filters that use heuristics or require more
involved computation/implementation, this outlier-robust Kalman filter is prin-
cipled and easy to implement.

2.3 An Alternative Kalman Filter

We explored a variation of the previously introduced robust Kalman filter. In-
stead of performing a full Bayesian treatment of the weighted Kalman filter, we
use the standard Kalman filter equations, (2) to (7), and modify (4) so that the
output variance for zk, Rk, is now weighted—as in our original model in (8):

S′
k =

(

CkΣ
′
kC

T
k + 1

〈wk〉
Rk

)−1

.

We learn the weights 〈wk〉 using (11) from the robust Kalman filter and
estimate the system dynamics at each time step using a maximum likelihood
framework (i.e., using (16) to (19) from the robust Kalman filter). Σk is now

7

explicitly dependent on Σk−1 (i.e. Σk−1 appears in the propagation equation
for Σk). We introduce this somewhat unprincipled and arbitrarily derived filter
for comparison with our weighted Kalman filter.

3 Experimental Results

We evaluated our weighted robust Kalman filter on data collected from a a
robotic dog, LittleDog, manufactured by Boston Dynamics Inc. (Cambridge,
MA), and compared it with three other filters. We omitted the filters of [16]
and [17], since we had difficulty implementing them and getting them to work.
Instead, we used a hand-tuned thresholded Kalman filter to serve as a baseline
comparison. The three filters consist of i) the standard Kalman filter, ii) the
alternative weighted Kalman filter introduced in Section 2.3, and iii) a Kalman
filter where outliers are determined by thresholding on the Mahalanobis distance.
If the Mahalanobis distance exceeds a certain threshold value, it is considered
an outlier and ignored. This threshold value is hand-tuned manually in order
to find the optimal value for a particular data set. If we have a priori access
to the entire data set and are able to tune this threshold value accordingly, the
thresholded Kalman filter gives near-optimal performance.

For this paper and these experiments, we are interested in the Kalman fil-
ter’s prediction of the observed (output) data and detection of outliers in the
observations. We are not interested in the estimation of the system dynamics or
in the estimation (or outlier detection) of the states. Estimation of the system
matrices for the purpose of parameter identification is a different problem, and
details on this difference are highlighted in [26]. Similarly, detecting outliers in
the states is a different problem and left to another paper.

3.1 LittleDog Robot

We evaluated all filters on a 12 degree-of-freedom robotic dog, LittleDog, shown
in Fig. 2. The robot dog has two sources that measure its orientation: a motion
capture (MOCAP) system and an on-board inertia measurement unit (IMU).
Both provide a quaternion q of the robot’s orientation: qMOCAP from the MO-
CAP and qIMU from the IMU.

qIMU drifts over time, since the IMU cannot provide stable orientation esti-
mation but its signal is clean. The drift that occurs in the IMU is quite common
in systems where sensors collect data that need to be integrated. In contrast,
qMOCAP has outliers and noise, but no drift. We would like to estimate the offset
between qMOCAP and qIMU, and this offset is a noisy slowly drifting signal con-

taining outliers. There are various approaches to estimating this slowly drifting
signal, depending on the quality of estimate desired. We can estimate it with
a straight line, as done in [20]. Alternatively, if we want to estimate the signal
more accurately, we can use the proposed outlier-robust Kalman filter to track
it. For optimal performance, we manually tuned C, A, R and Q for the standard
Kalman filter—a tricky and time-consuming process. The system dynamics of

8

Fig. 2. LittleDog

the thresholded Kalman filter were learnt using a maximum likelihood frame-
work (i.e. using (16) to (19) without any weights). Its threshold parameter was
manually tuned for best performance on this data set.

Fig. 3(a) shows the offset data between qMOCAP and qIMU for one of the
four quaternion coefficients, collected over 6000 data samples, at 1 sample/time
step. As expected, the standard Kalman filter fails to detect and ignore the
outliers occurring between the 4000th and 5000th sample, as seen in Fig. 3(b).
When comparing our weighted robust Kalman filter with the other remaining
two filters, Fig. 3(c) shows that the thresholded Kalman filter does not react
as violently as the standard Kalman filter to outliers and, in fact, appears to
perform similarly to the weighted robust Kalman filter. This is to be expected,
given we hand-tuned the threshold parameter for optimal performance (i.e. the
thresholded Kalman filter is near-optimal in this experiment). Notice that the
weighted robust filter does not track noise in the data as closely as the alternative
filter. This is a direct result of higher Kalman gains and a consequence of Σk’s
explicit dependency on Σk−1 in the alternative filter.

In this experiment, the advantages offered by the weighted Kalman filter are
clear. It outperforms the traditional Kalman filter and alternative Kalman filter,
while achieving a level of performance on par with a thresholded Kalman filter
(where the threshold value is manually tuned for optimal performance).

4 Conclusions

We derived a novel Kalman filter that is robust to outliers in the observations by
introducing weights for each data sample. This Kalman filter learns the weights
and the system dynamics, without needing manual parameter tuning by the
user, heuristics or sampling. It performs as well as a hand-tuned Kalman filter
(that required prior knowledge of the data) on real robotic data. It provides an
easy-to-use competitive alternative for robust tracking of sensor data and offers
a simple outlier detection mechanism that can potentially be applied to more
complex, nonlinear filters.

9

0 2000 4000 6000

−0.2

0

0.2

0.4

0.6

Time step

O
ut

pu
t d

at
a

Observed output

(a) Observed data from LittleDog robot: a
slowly drifting noisy signal with outliers

0 2000 4000 6000

−0.1

−0.05

0

0.05

0.1

0.15

Time step

O
ut

pu
t d

at
a

Kalman Filter
Weighted Robust KF

(b) Predicted data for the Kalman filter (KF)
and weighted robust KF.

0 2000 4000 6000

−0.1

−0.05

0

0.05

0.1

0.15

Time step

O
ut

pu
t d

at
a

Alternative KF
Thresholded KF
Weighted Robust KF

(c) Predicted data for the thresholded KF, alter-
native KF and weighted robust KF

Fig. 3. Observed vs. predicted data from LittleDog robot shown for all Kalman
filters, over 6000 samples

10

Acknowledgments

This research was supported in part by National Science Foundation grants
ECS-0325383, IIS-0312802, IIS-0082995, ECS-0326095, ANI-0224419, a NASA
grant AC#98−516, an AFOSR grant on Intelligent Control, the ERATO Kawato
Dynamic Brain Project funded by the Japanese Science and Technology Agency,
and the ATR Computational Neuroscience Laboratories.

References

1. Moore, D.S., McCabe, G.P.: Introduction to the Practice of Statistics. W.H.
Freeman & Company (March 1999)

2. Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Academic Press (1970)
3. Kalman, R.E.: A new approach to linear filtering and prediction problems. In

Transactions of the ASME - Journal of Basic Engineering 183 (1960) 35–45
4. Morris, J.M.: The Kalman filter: A robust estimator for some classes of linear

quadratic problems. IEEE Transactions on Information Theory 22 (1976) 526–534
5. Tukey, J.W.: A survey of sampling from contaminated distributions. In Olkin, I.,

ed.: Contributions to Probability and Statistics. Stanford University Press (1960)
448–485

6. Huber, P.J.: Robust estimation of a location parameter. Annals of Mathematical
Statistics 35 (1964) 73–101

7. Sorensen, H.W., Alspach, D.L.: Recursive Bayesian estimation using Gaussian
sums. Automatica 7 (1971) 467–479

8. West, M.: Robust sequential approximate Bayesian estimation. Journal of the
Royal Statistical Society, Series B 43 (1981) 157–166

9. West, M.: Aspects of Recursive Bayesian Estimation. PhD thesis, Dept. of Math-
ematics, University of Nottingham (1982)

10. Meinhold, R.J., Singpurwalla, N.D.: Robustification of Kalman filter models. Jour-
nal of the American Statistical Association (1989) 479–486

11. Masreliez, C.: Approximate non-Gaussian filtering with linear state and observa-
tion relations. IEEE Transactions on Automatic Control 20 (1975) 107–110

12. Schick, I.C., Mitter, S.K.: Robust recursive estimation in the presence of heavy-
tailed observation noise. Annals of Statistics 22(2) (1994) 1045–1080

13. Kramer, S.C., Sorenson, H.W.: Recursive Bayesian estimation using piece-wise
constant approximations. Automatica 24(6) (1988) 789–801

14. Kitagawa, G., Gersch, W.: Smoothness priors analysis of time series. In: Lecture
Notes in Statistics. Springer-Verlag (1996)

15. Huber, P.J.: Robust Statistics. Wiley (1973)
16. Durovic, Z.M., Kovacevic, B.D.: Robust estimation with unknown noise statistics.

IEEE Transactions on Automatic Control 44 (1999) 1292–1296
17. Chan, S.C., Zhang, Z.G., Tse, K.W.: A new robust Kalman filter algorithm under

outliers and system uncertainties. In: IEEE International Symposium on Circuits
and Systems. IEEE (2005) 4317–4320

18. Myers, K.A., Tapley, B.D.: Adaptive sequential estimation with unknown noise
statistics. IEEE Transactions on Automatic Control 21 (1976) 520–523

19. Gelman, A., Carlin, J., Stern, H., Rubin, D.: Bayesian Data Analysis. Chapman
and Hall (2000)

11

20. Ting, J., D’Souza, A., Schaal, S.: Automatic outlier detection: A Bayesian ap-
proach. In: IEEE International Conference on Robotics and Automation. (2007)

21. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data
via the EM algorithm. Journal of Royal Statistical Society. Series B 39(1) (1977)
1–38

22. Ghahramani, Z., Beal, M.: Graphical models and variational methods. In Saad,
D., Opper, M., eds.: Advanced Mean Field Methods - Theory and Practice. MIT
Press (2000)

23. Ghahramani, Z., Hinton, G.: Parameter estimation for linear dynamical systems.
Technical report, University of Toronto (1996)

24. Neal, R.M., Hinton, G.E.: A view of the EM algorithm that justifies incremental,
sparse, and other variants. In Jordan, M.I., ed.: Learning in Graphical Models.
MIT Press (1999) 355–368

25. Maybeck, P.S.: Stochastic models, estimation, and control. Volume 141 of Mathe-
matics in Science and Engineering. Academic Press (1979)

26. Ting, J., D’Souza, A., Schaal, S.: Bayesian regression with input noise for high
dimensional data. In: Proceedings of the 23rd International Conference on Machine
Learning, ACM (2006) 937–944

12

Learning novel concepts: beyond one-class
classification with OLINDDA

Eduardo J. Spinosa1, André Ponce de Leon F. de Carvalho1, and João Gama2

1 University of São Paulo (USP), Institute of Mathematical and Computer Sciences
(ICMC), Caixa Postal 668, 13560-970, São Carlos, SP, Brazil

ejspin@icmc.usp.br?, andre@icmc.usp.br

www.icmc.usp.br/∼ejspin, www.icmc.usp.br/∼andre
2 University of Porto (UP), Artificial Intelligence and Computer Science Laboratory

(LIACC), Rua Campo Alegre, 823, 4150, Porto, Portugal
jgama@liacc.up.pt

www.liacc.up.pt/∼jgama

Abstract. OLINDDA (OnLIne Novelty and Drift Detection Algorithm)
addresses the problem of novelty detection in an online continuous learn-
ing scenario as an extension to a single-class classification problem. This
paper presents its current version, that evolved toward the discovery of
new concepts initially as emerging clusters and further as cohesive sets
of clusters. New strategies for validation and merging of clusters as well
as for dynamically adapting the number of clusters are discussed and
experimentally evaluated.

Key words: Novelty detection, Unsupervised learning, Clustering, K-
Means

1 Introduction

Novelty Detection (ND) in the context of machine learning [6] is the identification
of novel profiles in data. Along with the ability to deal with concept drift [10], it
is an important attribute of any learning system applied to problems in which
data distribution may change over time. Typical applications of ND include
the identification of faults in various types of machines, attacks in computer
networks, novel topics in news documents, regions of interest in medical images,
among others.

Problems involving data streams can benefit from online learning algorithms
capable of detecting novel profiles, such as the one presented herein. Working
with data streams imposes, however, a series of restrictions [1] that are not
addressed in this paper, whose focus is to present a new approach to ND while
considering data streams as a promising future application.

The text is organized as follows. The next section presents the motivations for
this work, while briefly mentioning some related works. Section 3 describes the

? Alternate e-mail: ejspin@yahoo.com

13

proposed approach. Sub-section 3.8 closes by commenting on the improvements
of its current version over the one previously published [8]. Section 4 discusses
experiments aimed at comparing both versions. Finally, Section 5 concludes the
paper and presents future challenges.

2 Related works

ND is frequently treated as a one-class classification problem [9], where only
information regarding a single class is available for training. That given class
usually represents the normal or expected condition. Such an approach requires
the ability to learn from positive-only examples, which is a much harder task than
standard classification, since negative or counter-examples play an important role
in defining the degree of generalization of a description.

Several machine learning techniques can be modified and have been employed
to perform ND [4] [5]. However, most of them focus solely on solving the one-class
classification problem, i.e., comparing a new example to a single static model to
decide whether the example itself is a novelty. The terms anomaly, surprising
event or outlier [2] are also sometimes applied, even though the meaning of these
terms may not be the same.

Another aspect that is usually not addressed by the ND techniques described
in the literature is the incorporation of novel profiles to the knowledge structure.
This is an important attribute, considering that many typical applications of ND
involve dealing with data distributions that change over time.

The k-means clustering algorithm, which is used by proposed approach, has
been previously applied for one-class classification [9]. In that work, the deci-
sion boundaries are positioned in a way that forces a certain percentage of the
examples of the target class to be placed outside the target description, which
is defined by a fixed parameter. The number of clusters k is also manually set.
Furthermore, as in many other ND techniques, any new example that does not
fit the target description is considered novelty, and learning is performed in a
single training phase.

In another cluster-based approach to ND [3], k-means is applied to improve
the quality of clusters originally generated by a standard leader-follower algo-
rithm. The detection of novelty is then performed by observing changes that
may occur to each cluster’s density function.

The approach proposed in this paper does not consider a single example
as novelty, since a single example may appear due to noise, or be an outlier.
It intends to take the single-class classification problem one step forward by
attempting to discover novelty as a novel concept, represented by a cohesive
cluster of examples that share similar characteristics and emerges from those
that have not been previously and individually explained. We believe that this
is a natural approach considering the continuous learning aspect inherent to ND:
as time passes and new examples are received, those that have not been explained
may start to make sense together in the form of a cohesive cluster. By doing so,
we intend to produce robust predictions of emerging classes, in an attempt to

14

approximate to the real class structure at any time in an unsupervised way. In
addition to that, the approach proposed in this paper continuously incorporates
the knowledge of newly discovered concepts, since such knowledge is likely to be
useful in explaining a larger number of examples in the future.

The following section describes the proposed approach.

3 Proposed approach

OLINDDA (OnLIne Novelty and Drift Detection Algorithm) implements our
approach to ND. It builds on our initially proposed algorithm [8] and advances
in the direction of continuously identifying, incorporating and merging concepts
over time. This section describes the current version of the algorithm. Changes
from the one previously published are discussed in Section 3.8.

3.1 Model structure

OLINDDA uses three hypersphere-based models to store knowledge about (1)
the normal profile, (2) extensions to this normal profile and (3) novel profiles.
The normal model is the only static one, remaining as a reference to the ini-
tial learning stage. It corresponds to what is usually employed by most ND
techniques. The extension and novelty models can be created and continuously
updated, allowing OLINDDA to deal with concepts that appear or change over
time. Once newly discovered concepts become part of these two models, they
will also help to explain future examples, thus reducing the cost of exploring
regions of the feature space that have already been explored. Additionally, such
an incremental structure allows the algorithm to start with a basic description,
weakening the requirement of an initial set that thoroughly describes the normal
profile.

3.2 Initial learning phase

OLINDDA starts by modeling the normal or expected behavior in the domain
under investigation, by analyzing a set of normal examples. They usually belong
to a single class, hence the term one-class classification. In the problem of in-
trusion detection in computer networks, for instance, this initial data set would
be built from standard network traffic, without any examples of attacks.

To model the normal profile, OLINDDA produces k clusters using the k-
means clustering algorithm. The normal model is composed of k hyperspheres,
built in feature space, obtained directly from the clusters and represented by
their centers and radii. Each hypersphere center is the centroid of its cluster, and
its radius is the Euclidean distance from the centroid to the farthest example of
the respective cluster.

15

3.3 Continuous unsupervised learning phase

The arrival of new (unseen) examples marks the start of a continuous unsuper-
vised learning phase. For each new example, the algorithm first checks if it can
be explained by the knowledge acquired until that point, represented by (up to)
the three models previously described. If the coordinates of the example in fea-
ture space lie inside a hypersphere of any of the existing models, it is considered
explained by the corresponding model; statistics are updated, and the example is
discarded. Otherwise, the example is marked as a member of an unknown profile
and moved to a short-time memory for further analysis.

Initially, OLINDDA is capable of distinguishing regions that correspond to
the normal profile (inside any of the hyperspheres of the normal model) from
those that have not been explored yet, named unknown. In a stable situation,
the normal model is expected to explain the majority of the new examples. As
new concepts emerge and are added to the extension and novelty models, it will
also be able to explain examples of such concepts.

3.4 Learning new concepts by validating emerging clusters

OLINDDA learns new concepts initially as clusters, formed by examples pre-
viously considered unknown, that comply with certain restrictions. In order to
discover these clusters, each time a new unknown example is found, k candidate
clusters are generated from the examples currently available at the short-time
memory of unknown profiles. These candidate clusters are then evaluated in an
attempt to determine if any of them presents enough evidence of the appearance
of a new concept, represented by a so-called valid cluster.

This is not a trivial task, since it is a totally unsupervised process. On the
other hand, the fact that no labels are required allows its application to a large
amount of data that could not be manually classified.

Several metrics can be used to evaluate clusters from various points of view.
OLINDDA considers a cluster’s density and the number of examples as the
criteria for validating clusters. The density d of a cluster c is defined as:

d(c) =
ne(c)
V (c)

(1)

where ne (c) is the number of examples that belong to c and V (c) is the
volume of the hypersphere whose radius is the distance from the cluster’s centroid
to the farthest example that belongs to c. The volume V (c) in an n-dimensional
space is given by:

V (c, n) =
π

n
2 Rn

Γ
(

n
2 + 1

) (2)

where Γ is the gamma function, defined by:

Γ
(n

2
+ 1

)
=

{ (
n
2

)
!, for even n;√

π n!!
2(n+1)/2 , for odd n.

(3)

16

For a candidate cluster to be considered valid, the first condition is that its
density be equal to or higher than the minimum density among the clusters of
the normal model.

To avoid clusters with too few examples, a minimum number of examples
per cluster is required as a second condition, defined as a parameter. A value
between 3 and 5 has been empirically determined as adequate.

3.5 Attempting to determine the nature of new concepts

Once a valid cluster is identified, OLINDDA proceeds to assess its similarity
to the normal concept. We consider that an extension of the normal concept
should naturally present some similarity to it, which, in terms of distances in
feature space, means that the new concept should be located in the vicinity of
the region associated to the normal concept. On the other hand, a new concept
that is dissimilar to normal may represent a novel concept, or novelty.

To materialize this notion of vicinity of the normal concept, OLINDDA cre-
ates a hypersphere centered at the centroid of the centroids of the clusters of
the normal model, and whose radius is the distance to the farthest centroid. If
the centroid of the new valid cluster is located inside this hypersphere, the new
concept is labeled extension. Otherwise, it is considered novelty.

As previously mentioned, newly discovered concepts update their correspond-
ing models, which facilitates the classification of future examples. Since models
are composed mainly of the coordinates of centroids and radii, besides a few
other distances and statistics, model updating is fast and performed incremen-
tally, which is an important issue in applications involving, for instance, data
streams, where time and space constraints apply.

3.6 Merging similar clusters to produce cohesive concepts

A new valid cluster may itself represent a new concept. However, depending on
the data distribution, a concept may be more adequately described by a set of
clusters. For that reason, OLINDDA will also evaluate the similarity between
the new concept and existing concepts of the corresponding model. It does that
by checking if the new valid cluster intercepts any of the previous clusters. If it
does not, then the cluster is considered a new concept on its own and receives
a new label. However, if the new valid cluster intercepts one or more existing
clusters, they are grouped under the same label and their statistics are merged.

A single cluster may trigger a sequence of mergers, and this process tends to
produce a smaller number of concepts (labels) that are usually easier to analyze.

A typical experiment would be to present OLINDDA with examples of a
single class (representing the normal profile) in the initial phase, and allow the
algorithm to discover the remaining classes as novel concepts. In that scenario,
our final goal would be to have produced a class structure as similar as possible
to the real one, and the merging of concepts helps directing the algorithm toward
that.

17

3.7 Dynamically adapting the number of clusters

The number of clusters k is an intrinsic parameter of the k-means clustering
algorithm, which is used by OLINDDA (1) to create the initial normal model,
as described in Section 3.2 and (2) to periodically generate candidate clusters in
the online phase, as described in Section 3.4.

In the initial model, k is fixed and defined as a parameter, since it depends on
the data distribution. For the generation of candidate clusters in the online phase,
however, k is dynamically adapted to optimize the chance of discovering a valid
cluster. This is done by increasing or decreasing k according to certain conditions.
If the value of k is lesser than the optimum, the algorithm will generate clusters
whose densities are lesser than the required threshold for cluster validation. On
the other hand, if the value of k is greater than the optimum, the candidate
clusters will tend to have fewer examples than the required minimum.

The automatic adaptation of k takes place after each iteration in which candi-
date clusters were generated. If at least one candidate cluster is considered valid,
the value of k is maintained. Otherwise, OLINDDA checks what prevented each
cluster from being accepted: too low density or too few examples. Then, con-
sidering the most frequent cause of failure for all candidate clusters, it decides
how to adapt the value of k. If the majority of failures is due to low density,
k is increased. If too few examples is the most frequent cause of failure, k is
decreased. After a few iterations, k tends to stabilize around the optimum value
that generates valid clusters.

3.8 Changes from the previous version

The initially published version of OLINDDA [8] has been greatly improved. It
differs from the present version, described in Section 3, in the following aspects:

Management of k The previous version of the algorithm did not employ a
dynamic adaptation of k aimed at optimizing the discovery of valid clusters.
The value of k was not fixed either. It was set according to the number of
examples available for clustering at the short-time memory of unknown profiles
at any time. This was achieved by imposing an average number of examples per
cluster as a parameter, and calculating k according to the number of examples
available.

Cluster validation criteria The previous version considered the average dis-
tance between examples and the respective centroid as the criterion for cluster
validation. The average of this metric for the normal model was taken as a higher
threshold for acceptance.

Merging of clusters The previous version did not merge intercepting clusters.
The merging of clusters allows OLINDDA to discover concepts formed by more
than one cluster, reducing the number of labels, which may also ease the analysis.

18

4 Experimental evaluation

This section compares results obtained with the current version of OLINDDA
to those that have been previously published [8]. OLINDDA was implemented
in R [7] and makes use of its built-in implementation of k-means.

4.1 Data and setup

Experiments were performed with the data sets depicted in Figure 1. To simulate
novel concepts, for each data set, each class was selected as the normal profile,
while the remaining classes were considered novel concepts to discover. All met-
rics represent the average of 10 runs performed for each experiment. Datasets
were scaled and shuffled prior to each run.

Data set (Source)
Classes (Number of examples per class)

Class 1 Class 2 Class 3

Balance Scale (UCI) 4 625 Balanced (49) Left (288) Right (288)

5 194 Carrier (67) Normal (127) -

Breast Cancer Wisconsin (UCI) 9 683 Benign (444) Malignant (239) -

Ionosphere (UCI) 33 351 Bad (126) Good (225) -

Iris (UCI) 4 150

32 47 A (23) GC (24) -

Mushroom (UCI) 22 8124 Edible (4208) Poisonous (3916) -

Number of
attributes

Number of
examples

Biomed (StatLib)

Setosa (50) Versicolor (50) Virginica (50)

Lymphoma32A (Alizadeh, Reduced version)

Fig. 1. Data sets used in the experiments.

Regarding parameters, the two versions of OLINDDA used different criteria
for defining k (see Section 3.7 for the current version and Section 3.8 for the
previous version). To produce comparable results, the value of k for the initial
normal model has to be the same. This is achieved by setting the initial k in
the current version as the number of examples in the initial batch of normal
examples divided by the average number of examples per cluster that has been
used in the experiments with the previous version.

4.2 Evaluating the distinction between normal and unknown

The distinction between normal and unknown examples, which corresponds to
the one-class classification phase, is evaluated by the false-unknown error rate,
defined by: eFUnk = FUnk

Nor , where FUnk is the number of normal examples
wrongfully identified as unknown, and Nor is the total number of normal ex-
amples; and by the false-normal error rate, defined by: eFNor = FNor

Unk , where
FNor is the number of unknown examples wrongfully identified as normal, and
Unk is the total number of unknown examples.

As previously mentioned, in order to simulate novel concepts, one class is
selected as the normal profile while the remaining classes serve as novel concepts

19

we wish to discover. For this initial distinction between normal and unknown,
unknown examples are those that belong to any class other than the one which
has been selected as normal.

A high value of one of these metrics indicates either overfitting or underfit-
ting. To assess how the current version of OLINDDA compares to its previous,
we analyze the average and standard deviation of these two error rates over 10
runs. Figure 2 displays the results.

Data set

Parameters Normal concept is Class 1 Normal concept is Class 2 Normal concept is Class 3

E
x

N
or

 M
od

el

A
vg

 E
x/

C
lu

st
er

k
N

or
 M

od
el Error rates Error rates Error rates

M
ea

n

M
ea

n

M
ea

n

M
ea

n

M
ea

n

M
ea

n

Previous 40 10 - 0.13 0.14 0.80 0.07 0.19 0.05 0.23 0.07 0.17 0.07 0.25 0.06
40 - 4 0.04 0.06 0.83 0.07 0.09 0.03 0.24 0.10 0.10 0.03 0.24 0.08

Previous 20 10 - 0.18 0.11 0.85 0.12 0.15 0.09 0.25 0.08
20 - 2 0.19 0.09 0.72 0.18 0.10 0.09 0.29 0.16

Previous 50 10 - 0.10 0.06 0.02 0.03 0.19 0.08 0.23 0.19
50 - 5 0.06 0.02 0.03 0.03 0.12 0.03 0.34 0.23

Ionosphere
Previous 100 10 - 0.25 0.11 0.98 0.01 0.15 0.03 0.07 0.03

100 - 10 0.23 0.10 0.99 0.01 0.11 0.05 0.11 0.07

Iris
Previous 20 10 - 0.13 0.13 0.00 0.00 0.12 0.10 0.16 0.04 0.12 0.09 0.28 0.12

20 - 2 0.11 0.07 0.00 0.00 0.14 0.11 0.14 0.05 0.13 0.11 0.29 0.11

Mushroom
Previous 1000 8 - 0.31 0.01 0.33 0.02 0.28 0.02 0.52 0.01

1000 - 125 0.04 0.01 0.00 0.00 0.02 0.01 0.01 0.01

OLINDDA's
Version eFUnk eFNor eFUnk eFNor eFUnk eFNor

S
D

ev

S
D

ev

S
D

ev

S
D

ev

S
D

ev

S
D

ev

Balance
Scale Currrent

Biomed
Currrent

Breast
Wisconsin Currrent

Currrent

Currrent

Currrent

Fig. 2. Comparison between the current and the previous versions of OLINDDA in
terms of distinction between normal and unknown.

In general, the current version performs as well as or better than the previous
in terms of the distinction between normal and unknown. For the Mushroom data
set, the performance gain is more evident. Of the 14 experiments, the current
version only fails to obtain an adequate generalization degree in three cases,
where very high values of eFNor indicate underfitting (gray area). However,
two of these three failures happen in experiments where an unnatural choice was
made for the normal profile: Biomed with Class 1 (Carrier) as normal as opposed
to the natural choice (Class 2: Normal), and Ionosphere with Class 1 (Bad) as
normal as opposed to the natural choice (Class 2: Good).

It is important to stress that the error rates in one-class classification are not
directly comparable to those of standard classification, since only members of a
single class are available, which makes this a much harder task.

4.3 Evaluating the discovery of valid clusters

One of the major goals that guided OLINDDA’s development has been the
discovery of new concepts. This is naturally influenced by the cluster validation
criteria, but also benefits from the dynamic adaptation of the number of clusters
introduced by the current version.

20

To evaluate OLINDDA’s ability to discover valid clusters, we analyze how
such clusters are formed in terms of the real classes. Figure 3 compares the
class distribution by the end of the learning process for the previous and current
versions. Since cluster validation affects the algorithm’s ability to discover new
concepts as either novelty or extension, not the distinction between these two,
we merged, under a single column named discovered, statistics corresponding to
examples that formed valid clusters of either extension or novelty and examples
identified as members of a previously discovered concept of either extension
or novelty. Ideally, given Class 1 as the normal profile, for instance, a high
percentage of the elements of this class would appear under ident nor (identified
as normal), a high percentage of the members of the remaining classes would
appear under discovered, leaving few examples in the unknown column.

In order to evaluate if valid clusters are composed of elements that share sim-
ilar characteristics, we measure each cluster’s purity, defined by the percentage
of examples of the predominant class. The purity column in Figure 3 displays
the average purity for all clusters discovered over 10 runs.

The increase in the average percentage of patterns discovered shows that the
current version of OLINDDA highly improves the identification of valid clusters.
Moreover, high values of purity indicate that the discovered concepts are indeed
composed of a coherent set of examples, as intended.

4.4 Illustration of the merging of concepts

By merging similar concepts as described in Section 3.6, OLINDDA proceeds
toward generating a class structure that aims at approximating to the real one.
Figure 4 displays an example of the merging of clusters over time. These are
the results of a single run with the Iris data set, using 30 examples of the class
Iris-versicolor to build the initial normal model.

Each chart represents the class structure obtained by OLINDDA at a cer-
tain point of the learning process, from 10% to 100%. The set of charts on the
left corresponds to concepts of the novelty model, and the ones on the right
are concepts found as an extension of the normal behavior. The black bar indi-
cates examples identified as normal. Each color represents a concept, including
examples that either formed the clusters or were explained by them. There is
no correspondence between the colors of concepts on the left and on the right
set of charts, which means that, in this case, OLINDDA has found two different
concepts marked in red: one small concept of extension and one of novelty. This
red novelty concept is the result of at least 2 mergers: first with the green col-
ored concept and later with the magenta colored concept. The resulting concept
corresponds to the real class Iris-Setosa. The dark blue and light blue concepts
have also merged into a single concept that corresponds to Iris-Virginica. This
example shows OLINDDA’s ability to build cohesive concepts that make sense
in terms of the real class structure.

21

5 Conclusion

The detection of novel concepts is a very important aspect of a learning system.
This paper presents OLINDDA, an approach that intends to take novelty de-
tection beyond one-class classification. By detecting emerging coherent clusters
of examples and, further, by merging intercepting clusters, OLINDDA proceeds
toward the construction of a class structure that aims at reproducing the real
one in an unsupervised continuous learning fashion.

Experimental results show that the current version improved in both the
distinction between normal and unknown and the discovery of new concepts.
Yet, several topics are still to be investigated, including other clustering algo-
rithms that may provide more flexible models and/or improve stability, and the
application of OLINDDA to problems involving data streams.

Acknowledgments The authors acknowledge the support of CNPq (Ministry
of Science and Technology of Brazil), CAPES (Ministry of Education of Brazil),
and FCT (Ministry of Science and Technology of Portugal, under the project
Adaptive Learning Systems II, POSC/EIA/55340/2004).

References

1. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in
data stream systems. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems (PODS 2002), pages 1–16.
ACM, 2002.

2. V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley & Sons, 3rd
edition, 1995.

3. C. Gazen, J. Carbonell, and P. Hayes. Novelty detection in data streams: A small
step towards anticipating strategic surprise. In Novel Intelligence from Massive
Data (NIMD) PI Meeting, 2005.

4. M. Markou and S. Singh. Novelty detection: a review - part 1: statistical ap-
proaches. Signal Processing, 83:2481–2497, 2003.

5. M. Markou and S. Singh. Novelty detection: a review - part 2: neural network
based approaches. Signal Processing, 83:2499–2521, 2003.

6. S. Marsland. Novelty detection in learning systems. Neural Computing Surveys,
3:157–195, 2003.

7. R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2006. ISBN
3-900051-07-0.

8. E. J. Spinosa, A. P. L. F. de Carvalho, and J. Gama. Olindda: A cluster-based
approach for detecting novelty and concept drift in data streams. In 22nd Annual
ACM Symposium on Applied Computing (SAC 2007), pages 448–452. ACM, 2007.

9. D. M. J. Tax. One-class classification - Concept-learning in the absence of counter-
examples. PhD thesis, Delf University of Technology, Faculty of Information Tech-
nology and Systems, 2001.

10. G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden
contexts. Machine Learning, 23(1):69–101, 1996.

22

D
at

a
se

t
Parameters

C
la

ss
es

E
x

N
or

 M
od

el

A
vg

 E
x/

C
lu

st
er

k
N

or
 M

od
el

D
is

co
ve

re
d

P
ur

ity

D
is

co
ve

re
d

P
ur

ity

D
is

co
ve

re
d

P
ur

ity

B
al

an
ce

 S
ca

le

P
re

vi
ou

s

30

7 -
1 .81 .17 .03

.93
.49 .48 .03

.79
.52 .43 .05

.812 .71 .28 .01 .74 .23 .03 .18 .80 .02
3 .71 .28 .01 .18 .80 .02 .73 .24 .03

C
ur

re
nt

- 4

1 .72 .27 .02
.89

.47 .52 .01
.82

.45 .52 .02
.822 .65 .34 .01 .74 .24 .02 .15 .83 .01

3 .63 .36 .01 .18 .81 .01 .73 .26 .01

P
re

vi
ou

s

30

7 -

1 .82 .04 .14
.96

.23 .11 .66
.932 .67 .30 .04 .76 .09 .15

3

C
ur

re
nt

- 4

1 .73 .12 .15
.88

.27 .45 .28
.912 .67 .32 .01 .80 .16 .05

3

B
re

as
t W

is
co

ns
in

P
re

vi
ou

s

30

15 -

1 .95 .00 .05
1.00

.18 .81 .01
.962 .04 .01 .95 .89 .01 .10

3

C
ur

re
nt

- 2

1 .96 .04 .01
.95

.24 .76 .00
.962 .08 .85 .07 .93 .06 .01

3

Io
no

sp
he

re

P
re

vi
ou

s

30

15 -

1 .85 .00 .15
NA

.43 .01 .57
.932 .99 .00 .01 .93 .03 .04

3

C
ur

re
nt

- 2

1 .89 .08 .03
.98

.34 .37 .29
.942 1.00 .00 .00 .90 .10 .01

3

Iri
s P

re
vi

ou
s

30

7 -

1 .80 .05 .16
.93

.00 .88 .12
.99

.00 .90 .10
.982 .00 .55 .45 .84 .06 .10 .38 .38 .24

3 .00 .40 .60 .16 .39 .45 .82 .05 .13

C
ur

re
nt

- 4

1 .86 .03 .11
.88

.00 .92 .08
.99

.00 .92 .08
.972 .00 .91 .09 .75 .12 .14 .37 .56 .07

3 .00 .88 .12 .13 .72 .15 .77 .14 .09

Ly
m

ph
om

a3
2A

P
re

vi
ou

s

15

7 -

1 .84 .05 .11
1.00

.05 .67 .28
1.002 .03 .55 .43 .73 .02 .24

3

C
ur

re
nt

- 2

1 .89 .05 .06
.97

.02 .82 .17
.982 .02 .84 .14 .77 .09 .14

3

M
us

hr
oo

m

P
re

vi
ou

s

10
0

5 -

1 .59 .41 .01
1.00

.14 .85 .01
1.002 .00 .99 .01 .55 .44 .01

3

C
ur

re
nt

- 20

1 .61 .39 .00
.92

.12 .88 .00
.942 .01 .99 .00 .53 .47 .00

3

O
LI

N
D

D
A

's

V
er

si
on

Normal concept is
Class 1

Normal concept is
Class 2

Normal concept is
Class 3

Id
en

t N
or

U
nk

ow
n

Id
en

t N
or

U
nk

ow
n

Id
en

t N
or

U
nk

ow
n

B
io

m
ed

Fig. 3. Comparison between the current and the previous versions of OLINDDA in
terms of discovery of valid clusters.

23

N
ov 10 %

0 10 20 30 40 50

Iris−setosa
Iris−versicolor

Iris−virginica

N
ov 20 %

0 10 20 30 40 50

Iris−setosa
Iris−versicolor

Iris−virginica

E
xt 30 %

0 10 20 30 40 50

Iris−setosa
Iris−versicolor

Iris−virginica

N
ov 30 %

0 10 20 30 40 50

Iris−setosa
Iris−versicolor

Iris−virginica

E
xt 40 %

0 10 20 30 40 50

Iris−setosa
Iris−versicolor

Iris−virginica

N
ov 40 %

0 10 20 30 40 50

Iris−setosa
Iris−versicolor

Iris−virginica

E
xt 50 %

0 10 20 30 40 50

Iris−setosa
Iris−versicolor

Iris−virginica

N
ov 50 %

0 10 20 30 40 50

Iris−setosa
Iris−versicolor

Iris−virginica

E
xt 60 %

0 10 20 30 40 50

Iris−setosa
Iris−versicolor

Iris−virginica

N
ov 60 %

0 10 20 30 40 50

Iris−setosa
Iris−versicolor

Iris−virginica

E
xt 70 %

0 10 20 30 40 50

Iris−setosa
Iris−versicolor

Iris−virginica

N
ov 70 %

0 10 20 30 40 50

Iris−setosa
Iris−versicolor

Iris−virginica

E
xt 80 %

0 10 20 30 40 50

Iris−setosa
Iris−versicolor

Iris−virginica

N
ov 80 %

0 10 20 30 40 50

Iris−setosa
Iris−versicolor

Iris−virginica

E
xt 90 %

0 10 20 30 40 50

Iris−setosa
Iris−versicolor

Iris−virginica

N
ov 90 %

0 10 20 30 40 50

Iris−setosa
Iris−versicolor

Iris−virginica

E
xt 100 %

0 10 20 30 40 50

Iris−setosa
Iris−versicolor

Iris−virginica

N
ov 100 %

0 10 20 30 40 50

Iris−setosa
Iris−versicolor

Iris−virginica

Fig. 4. Illustration of the merging of concepts.

24

S-means: Similarity Driven Clustering and Its
application in Gravitational-Wave Astronomy Data

Mining

Hansheng Lei1, Lappoon R. Tang1, Juan R. Iglesias1

Soma Mukherjee2, and Soumya Mohanty2

1 Computer Science Department
2 The Center for Gravitational Wave Astronomy

The University of Texas at Brownsville
Brownsville TX 78520, USA
hansheng.lei@utb.edu

Abstract. Clustering is to classify unlabeled data into groups. It has been well-
researched for decades in many disciplines. Clustering in massive amount of as-
tronomical data generated by multi-sensor networks has become an emerging new
challenge; assumptions in many existing clustering algorithms are often violated
in these domains. For example, K means implicitly assumes that underlying dis-
tribution of data is Gaussian. Such an assumption is not necessarily observed in
astronomical data. Another problem is the determination of K, which is hard to
decide when prior knowledge is lacking. While there has been work done on dis-
covering the proper value for K given only the data, most existing works, such as
X-means, G-means and PG-means, assume that the model is a mixture of Gaus-
sians in one way or another. In this paper, we present a similarity-driven clustering
approach for tackling large scale clustering problem. A similarity threshold T is
used to constrain the search space of possible clustering models such that only
those satisfying the threshold are accepted. This forces the search to: 1) explicitly
avoid getting stuck in local minima, and hence the quality of models learned has
a meaningful lower bound, and 2) discover a proper value for K as new clusters
have to be formed if merging them into existing ones will violate the constraint
given by the threshold. Experimental results on the UCI KDD archive and re-
alistic simulated data generated for the Laser Interferometer Gravitational Wave
Observatory (LIGO) suggest that such an approach is promising.

1 Introduction

Clustering is unsupervised classification of unlabeled data, which has been a well-
researched problem in many disciplines. A large portion of clustering algorithms were
developed by computer scientists but much motivation came from applications of an
interdisciplinary nature. It is common for modern applications in business data mining,
physics, astronomy and environmental sciences to deal with a large amount of data.

While many clustering algorithms are available and work well in small scale data
sets [9, 12, 16], comparative study showed that only K-means and its variants are suited
for mining very large data sets [15, 22]. The K-means method is more computationally

25

efficient than other commonly used clustering methods such as hierarchical clustering
[22, 7] and Kohonen’s self organizing map (SOM) [14]. When data set size is large,
hierarchical clustering and SOM can be computationally prohibitive.

However, K-means also has its own weaknesses: i) sensitive to initial partition, ii)
converge to local minima, iii) the number of cluster, K, must be determined before
hand, and iv) outliers from the centroid may pull the centroid away from the real one.
Initial partition problem can be alleviated by repeating different initial seed settings.
Local convergence is still an open problem. But in most cases, locally optimal solution
is satisfactory if global optimization is too costly. Discovering K is a big weakness and
several algorithms have been proposed to tackle the problem. The X-means algorithm
was presented to learn K [19]. This algorithm tries many values of K and uses Bayesian
Information Criterion (BIC) to score each resulting model. The K that produces the
highest BIC score is chosen. Besides BIC, other scoring systems, such as Akaike Infor-
mation Criterion [3] and Minimum Description Length [20] can be applied. X-means is
a straightforward extension of regular K-means. The difficulty it faces is: how many K
values should be chosen and compared? When the data set is large and data distribution
is non-trivial, the range of possible number of clusters can be large.

Addressing problems in X-means where overfitting of data can occur, the G-means
algorithm [13] is proposed to grow K from a small number. A statistical normality test
is applied to each cluster to see whether it has high confidence of Gaussian distribution.
If not, split the current cluster into two clusters and continue with the statistical test for
the rest of the clusters. Like X-means, this algorithm is also a wrapper around K-means.
It will generate a hierarchical tree of clusters. While the approach is intuitively mean-
ingful, applying normality tests can become difficult when the set of data is extremely
large (e.g. on the order of tens of thousands). The one dimensional projection of the data
will be very high in dimension and tend to look Gaussian according to the Central Limit
Theorem [6] and hence the need of splitting a cluster could not be detected even when
it is not Gaussian. Powerful normality test like the Shapiro Wilk test [21] can handle a
sample size of at most 5000. Also, the assumption of having Gaussian distribution in
clusters is too strong in many real data, such as in Astronomy time series. It has been
extensively tested within the LIGO community and it is known that LIGO data is not
necessarily Gaussian in nature [2].

Similar to G-means, there are a number of algorithms that rely on statistical tests
to check the ”goodness of fit” of data according to some distribution. For example,
PG-means projects both the data set and learned clusters to one dimension and then
applies the Kolmogorov-Smirnov test (KS) to check the goodness of fit of the data to
distribution implied by the clusters where model parameters are learned by Expectation
Maximization (EM) [8]. Combining normality test and splitting for discovering K can
be problematic due to application of possibly costly statistical tests and difficulty in
applying the distribution test itself when data dimension is high.

Due to advances in multi-sensor networks, large amounts of astronomical data have
been gathered in the form of sensor information. Discovering interesting patterns in
these astronomical data has profound implication for making new discoveries in Astro-
Physics, for instance, in opening up new understanding of the nature of the universe.
Since sensor data can be gathered on a rate of terabytes per week, processing such

26

a gigantic amount of data requires at least semi-automated data mining mechanisms.
Hence, clustering large amounts of astronomical data has recently become an interest-
ing problem in the time series data community [10, 18]. Astronomical data are usually
plagued with noise, very high in dimension, and not necessarily Gaussian in distribu-
tion. Limitations in current approaches motivated us to present a similarity driven clus-
tering algorithm that we call S-means. Instead of specifying the number of clusters K,
a similarity threshold T is used as a quality constraint in the search of optimal solutions
to the clustering problem.

The rest of the paper is organized as follows. In Section 2, we provide a background
on K-means, then the S-means algorithm is described afterward. Its time complexity
and convergence are also discussed. In Section 3, we describe the experimental domains
and experimental evaluation are demonstrated in which S-means is compared to exist-
ing approaches like K-means and G-means. Finally, conclusion and future work are
presented in Section 4.

2 From K-means to Similarity driven clustering

Before we describe our similarity driven approach to clustering, we need to first revisit
the classic K-means algorithm.

2.1 K-means

Two clustering algorithms are most popularly used: hierarchical clustering and K-means.
Hierarchical clustering produces a nested hierarchy of clusters according to a pairwise
distance matrix of all the given points. The hierarchy gives intuitive visualization. A
user does not need to have expertise in Computer Science since no parameter excepts
distance measure is needed in hierarchical clustering. However, the distance matrix
limits its application to small data sets (both time complexity and space complexity are
O(n2) or higher).

K-means basically divides a given data set into K clusters via an iterative refining
procedure. The procedure simply consists of three steps:

1. initialize K centroids (ci, 1 ≤ i ≤ K) in the vector space.
2. Calculate the distances from every point to every centroid. Assign each point to

group i, if ci is its closest centroid.
3. Update centroids. Each centroid is updated as the mean of all the points in its group.
4. If no point changed its membership or no centroid moved, exit, otherwise, go to

step 2.

The iterative procedure uses hill climbing to minimize the objective function:

J =
K∑

i

N∑

j

‖x(i)
j − ci‖2 (1)

where ‖x(i)
j − ci‖2 denotes Euclidean distance between point xj to corresponding cen-

troid ci. The Euclidean distance can be substituted by any distance measure.

27

Although the procedure will always terminate, K-means might converge to a local
minima. K-means is a simple algorithm that has been employed in many problem do-
mains. However, one of the major problems of K-means is that we do not know the
right number of clusters in advance. There is no existing theoretical solution to find
the optimal number of clusters for any given data set. A common approach is to score
the results of multiple runs with different K values according to a given criterion. The
criterion might incur new risk and parameter setting problems. We propose to use a
similarity driven approach to clustering that does not require specification of K.

2.2 S-means: Similarity Driven Clustering

The clustering problem we need to solve is: given N data points, group them into
clusters such that within each cluster, all members have similarity ≥ T with the cen-
troid where T is a user-defined threshold. Similarity is a central notion in classifica-
tion problem. The definition of cluster also implies that the cluster members should
have high similarity with each other. The most popular Euclidean distance is a dis-
similarity measure, which can be converted to a similarity measure in Gaussian form:
k(xi, yj) = exp(−γ‖xi−yj‖2). This is also called the Radial Basis Function (RBF ker-
nel) in kernel machines. Kernel methods all use similarity measures instead of dissimi-
larity. Similarity value is usually normalized to between 0 and 1; a confidence threshold
in [0, 1] also makes intuitive sense to users. There are a large number of similarity
measures available beside the RBF, such as correlation r, R-squared (the square of
r). Indeed, any kernel function can be considered a similarity measure. Therefore, the
clustering problem, if defined in terms of similarity, is more user-friendly and will likely
gain more popularity due to the increasing amount of interests in kernel methods.

S-means starts from K = 1 by default and a user can specify any starting K. Note
that the starting K is only an optional parameter in S-means. First, same as in K-means,
we initialize K centroids. Second, calculate the similarities from every point to every
centroid. Then, for any point, if the highest similarity to centroid ci is ≥ T , group it
to cluster i, otherwise, add it to a new cluster (the K + 1th cluster). Third, update each
centroid, using the mean of all member points by default. If one group becomes empty,
remove its centroid and reduce K by 1. Repeat the second and third step until no new
cluster is formed and none of the centroids moves.

Note that S-means is similar to K-means but with some differences. The major
difference lies in the second step, which basically groups all the points to a new cluster
whose highest similarity to existing centroids is below the given threshold . In K-means,
all points must go to one of the existing K groups, which is unfair for some points when
their similarities to corresponding closest centroid are very low. This simple difference
makes big impact on the output of clusters. Also, we can let K starts from 1 and it will
converge to a value, which eliminates the need of specifying a fixed K value. Also, there
is a minor difference in the third step. While K is incremented by 1 if a new cluster is
formed, it is decremented when some groups become empty. It is not unusual that as
K keeps increasing, some old groups would disappear (as points in existing clusters
could change membership as new clusters are formed). This way, K will not go beyond
control.

28

The following is the pseudo code of S-means in Matlab style. The running code in
Matlab is downloadable from our website1.

S-means
Inputs: N data points X = [x1,x2, · · · ,xN] and similarity threshold T .
Outputs: number of clusters K , centroids C = [c1, c2, · · · , cK] and labels Y .

1: K = 1; /* starting number can be specified*/
2: Randomly choose K centroids C;
3: change=1;
4: while change==1 do
5: NewCluster = []; /*initialize to empty */
6: for i = 1 to N do
7: for j = 1 to K do
8: SimToClusters(i, j) = Similarity(xi, cj);
9: end for

10: end for/*End of similarity calculation */
11: for i = 1 to N do
12: maxSim = max(SimToClusters(i, :));
13: if maxSim ≥ T then
14: Y (i) = find(SimToClusters(i, :) == maxSim); /*Assign label */
15: else
16: NewCluster = [NewCluster, xi]; /* Add to a new cluster */
17: Y (i) = K + 1; /*Assign label (K + 1)*/
18: end if
19: end for/*End of label assignment*/
20: for i = 1 to K do
21: ci = mean(find(X(:, find(Y == i))));
22: if ci is empty then
23: remove ci; /* K will also reduce by 1 */
24: end if
25: end for/*End of centroid update*/
26: if NewCluster is empty and no centroid changed then
27: change==0;
28: end if;
29: end while. /*end of algorithm*/

For the sake of simplifying description, two for loops are used to calculate the simi-
larities in line 6-10. The loops are usually slow in Matlab. Using matrix dot product will
be very efficient. Since many similarity measures can be implemented in dot product,
the matrix product in Matlab can be utilized. The loop in line 11-19 varies from 1 to N .
Matlab can also provide an efficient way to implement it using built-in functions like
find and max. Interested readers should reference our Matlab real code.

The convergence of the S-means is guaranteed, because in the extreme case when
K equals N every point has 100% similarity to itself. Of course, the extreme case is not
desired. The result of K depends on threshold T . Intuitively, a high T produces more

1 http://blue.utb.edu/hlei/Smeans/Smeans V01.zip

29

clusters. When T = 0, S-means is reduced back to K-means. In this sense, S-means is
a flexible generalization of K-means.

If S-means converges to K clusters, then time complexity is O(N ∗ (1 + 2 + · · ·+
K)) ≈ O(N ∗K2/2). Recall that the time complexity of K-means is O(NKL), where
L is the number of iterations, strongly related to K and the distribution of data points.
If using model selection based method to try different K and choose the best one, then
the time complexity is approximately O(N ∗ K2/2 ∗ L), assuming K value varies
from 1 to desired number of clusters. Besides avoiding the use of statistical tests (since
both the number of data points and the data dimensionality could be high), S-means
has advantages in low time complexity. In the following section, extensive experiments
were performed to evaluate S-means from different perspectives.

0 10 20 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
era

ge
 Si

mil
ari

ty

a)
0 10 20 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
era

ge
 Si

mil
ari

ty

b)

Fig. 1: S-means converges on dataset SCT in less than 30 iterations. a) the maximum number of
clusters is restricted (up-bound is set 6). b) without restriction (up-bound is set 600).

3 Experiments

First, a small dataset was used to evaluate the convergence and execution speed of
S-means. Second, a medium size dataset with ground-truth class labels was used to
evaluate the accuracy of S-means in comparison with K-means and G-means. Third, we
applied S-means to mine compact clusters in a simulated large dataset of Gravitational-
wave time series. All the following experiments were performed in Matlab on a SUN
Ultra 40 microsystem that has 2.8Ghz CPU and 3.0G RAM memory.

3.1 Convergence and Execution speed

We adopted the popular toy dataset Synthetic-Control time series dataset (SCT) to test
the convergence and robustness of S-means [4]. SCT contains 600 samples of syntheti-
cally generated control charts. The length of each sample is 60. The similarity measure
used is R-squared (squared Pearson’s r) which is essentially equivalent to Euclidean
distance after mean-variance normalization [17].

Fig. 1 show the convergence of S-means with T = 0.7 with/withoud restriction on
the maximum number of clusters. Without restriction, S-means need more iterations

30

to finish and more clusters are generated. The average similarity of all points to their
corresponding centroids is an equivalent measure of the objective function described
in equation (1). Like K-means, S-means is also a hill-climbing algorithm. Although
global optimum might not be reached, convergence is guaranteed.

We varied T from 0.05 to 0.75 by step 0.05 to watch the changing of the number
of clusters on the SCT dataset. The result is illustrated in fig. 2, from which we can
see that the number of returned clusters are sensitive to the threshold setting. Increasing
similarity threshold T significantly increases the number of clusters, because it imposes
the requirement that all cluster are compact (minimum similarity to the centroid is no
less than T). Depending on the similarity adopted and the mining target, intuitive T
should be properly set. Big T tends to lead to overfitting, which can be considered
as one weakness of S-means. But from perspective of outlier detection, it is a good
phenomenon that some outliers are grouped as single-item stand-alone clusters. That is,
the clusters with only one elements are outliers which might interest user.

0 5 10 15
0

20

40

60

80

100

120

140

160

180

#
 o

f
cl

u
st

e
rs

 r
e
tu

rn
e
d

Similarith threshold T (x 0.05)

Fig. 2: The number of returned clusters with respect to the similarity threshold T setting.

S-means was compared in execution time with standard K-means and fast K-means
with triangle inequality acceleration [11]. The source codes for standard K-means and
fast K-means in Matlab are provided by the authors’ of fast K-means. For K-means,
we let K vary from 1 to 20 on the SCT dataset. For S-means, we let the up-bound
number of clusters varied from 1 to 20. In this way, the comparison in execution time
is fair. The results are plotted in Fig. 3. S-means has the same level of speed with fast
the K-means when K beyond 5. S-means has a peak execution time when K=4. The
cause is that S-means has to force itself to converge when the clusters reaches up-bound.
S-means is fast because: i) in every iteration only one new cluster is added and ii) as
the total number of clusters increase, a large portion of old cluster centroids do not
move (already converged), thus, there is no necessity to recalculate distances from all
the points to those converged centroids.

3.2 Clustering Accuracy

One of the major concerns for new algorithm is whether it is accurate. Classification
accuracy usually depends on both (dis)similarity measure and classification strategy. To

31

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

E
xe

cu
tio

n
 t
im

e
 (

se
co

n
d
s)

Number of required clusters

Fig. 3: Execution time comparison between S-means (dot point), standard K-means (star point
and fast K-means (diamond point).

compare S-means and K-means fairly in accuracy, we still used the R-squared measure
in S-means and equivalent Euclidean distance in K-means. The benchmark dataset used
was Pendigit [5], which has been widely used in evaluating classification algorithms.
It has 10 classes (digit 0 to 9). Total training samples is 7494 and test samples 3498.
Each sample has 16 attributes (x-, y- coordinates). We concatenated x-, y- coordinates
and made each sample a 32-length vector. All the vectors were normalized by mean-
variance before input for clustering.

First, accuracy was compared in clustering the training dataset by K-means, G-
means and S-means respectively. Suppose we don’t know how many classes in Pendigit.
For K-means, the necessary step is to guess K=1 up through to some up-bound P (P
was set 20 in our experiments). In G-means, a confidence threshold is needed in place
of K. The default confidence is set 0.001 in the original G-means package [13]. We
let confidence vary from 0.0001 to 0.002 by step 0.0005. We recorded the accuracy of
clustering results against the ground-truth labels in each step. For S-means, the neces-
sary step is to vary T if no prior knowledge about the number of clusters. T was varied
from 0 to 0.95 by step 0.05 and the up-bound number of clusters P was set 20, same as
K-means.

Calculating clustering accuracy is a tricky task. Suppose K cluster are returned
and the cluster assignment is L = [l1, l2, · · · , lN], 1 ≤ li ≤ K. And suppose the
ground-truth number of clusters is Kt and the true labels are Lt = [lt1, lt2, · · · , ltN],
1 ≤ lti ≤ Kt. Note that K does not necessarily equal Kt. We used the following
pseudo code to calculate accuracy:

1: for i = 1 to K do
2: for j = 1 to Kt do
3: Common(i, j) =

NumberOfCommonMemebers(find(L == i), find(Lt == j));

32

4: end for
5: end for
6: count=0;
7: for i = 1 to Kt do
8: count = count + max(Common(:, i));
9: end for

10: Accuracy = count/N ;

0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
C

lu
st

e
ri
n
g
 a

cc
u
ra

cy

Steps of guess

Fig. 4: Accuracy comparison between S-means (dot point), fast K-means (star point) and G-
means (circle point). K varies from 1 to 20 in K-means. Confidence varies from 0.0001 to 0.002
in G-means. T varies from 0 to 0.95 with step 0.05 and up-bound of clusters is set 20 in S-means.

Line 3 computes the maximum common number of members between two clusters.
The nested for loops (line 1-5) find the best matching between two sets of clusters. Line
7-9 sums up all the number of common members (which are correctly assigned). Fig.
4 shows the clustering accuracy with S-means and K-means on each step of guess. In
step 9, S-means reaches its peak accuracy (when T=0.40). K-means reaches its peak
accuracy when K=10. S-means’s peak accuracy is significantly high than K-means’s
peak accuracy. After step 10, both algorithms decreases in accuracy, which is because
the number of returned clusters run farther away from the true number of classes. G-
means shows poor performance due to the weak assumption of Gaussian distribution.
According to our experience, the real data’s statistical distribution is usually not as
simple as Gaussian.

3.3 Mining Gravitational-wave Astronomy time series

The detection of Gravitational waves is the next frontier in astronomy. Several large
scale detectors have been constructed around the world, such as the Laser Interferomet-
ric Gravitaitonal wave Observatory (LIGO) in the U.S. [1]. These detectors are part of
a world wide network that is collecting data at the rate of several Tb per week. Mining
gravitational wave data for useful information is a daunting task and one of the major

33

challenges in the area of astronomical data analysis. The following simulation is an ex-
ample of a typical clustering task that arises in such an analysis and also demonstrates
the application of the S-means.

A dataset consisting of 20020 time series with length 1024 were artificially gener-
ated. Each sequence is first generated by a single Gaussian modulated sinusoid signal.
The amplitude is scaled such that the matched filtering signal to noise ratio (SNR) is 1 in
white Gaussian noise with zero mean and unit variance. Then, a single Gaussian pulse is
added to the signal in random position. The pulse amplitude is also scaled with SNR=1
in white Gaussian noise. Fig. 5a shows the typical shape of the each cluster. The sim-
ulated time series is a close representation of the actual triggers in Gravitational-wave
Astronomy time series.

0 500 1000 1500
−0.2

0

0.2

sa
m

pl
e1

0 500 1000 1500
−0.2

0

0.2

sa
m

pl
e2

0 500 1000 1500
−0.2

0

0.2

sa
m

pl
e3

0 500 1000 1500
−0.2

0

0.2

sa
m

pl
e4

0 500 1000 1500
−0.2

0

0.2

sa
m

pl
e5

0 500 1000 1500
−0.2

0

0.2

sa
m

pl
e6

0 500 1000 1500
−0.2

0

0.2

sa
m

pl
e7

0 500 1000 1500
−0.2

0

0.2

sa
m

pl
e8

(a)

0 500 1000 1500
−0.1

0

0.1

C
en

tr
oi

d1

0 500 1000 1500
−0.1

0

0.1

C
en

tr
oi

d2

0 500 1000 1500
−0.1

0

0.1

C
en

tr
oi

d3

0 500 1000 1500
−0.05

0

0.05

C
en

tr
oi

d4

0 500 1000 1500
−0.1

0

0.1

C
en

tr
oi

d5

0 500 1000 1500
−0.2

0

0.2

C
en

tr
oi

d6
0 500 1000 1500

−0.1

0

0.1

C
en

tr
oi

d7

0 500 1000 1500
−0.1

0

0.1

C
en

tr
oi

d8

(b)

Fig. 5: (a) Samples of simulated Gravitational-wave time series. (b)Centroids mined by S-means
when T = 0.1.

Although Gaussian process is used here, the possible clusters inside the dataset does
not follow Gaussian distribution. As discussed in the introduction, GW events dot not
follow any known statistical distribution. As a part of GW data analysis, clustering time
series based on shapes (which can be matched by similarity measures) is a reliable
method.

Same as experiments above, the simple similarity measure R-squared was used in
S-means. Since the number of clusters in the dataset is unknown, our goal is to mine
how many compact clusters exist. With high similarity threshold T , it is expectable
that many time series will be stand-alone clusters. Therefore, we started with low T .
Initially, we set T=0.1. We found that S-means converges to 8 clusters in less than 50
iterations. The centroids are as shown in Fig. 5b. The convergence was completed in
34.1 seconds. The average similarity of each item to its corresponding centroid was
also converged to about 0.55, as shown in Fig. 6. Note that the average similarity times
the number of items is equivalent to the objective function in equation (1). This means,
S-means converges via a hill-climbing approach to minimize the object function and at
the same time discover the number of clusters according to the similarity requirement.

34

0 10 20 30 40 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

A
ve

ra
g
e
 S

im
ila

ri
ty

Iteration

Fig. 6: S-means converges to 8 clusters in 50 interations when T = 0.1.

Then, we varied T from 0.2 to 0.6 by step 0.1 and recorded the number of clusters,
iteration, execution time and average similarity on each step. The results are shown in
Table 1 The number of clusters increases dramatically when T = 0.4 to unbound 1000.
Correspondingly, and execution time and number of iterations changes sharply at step
4, while the average similarity increases steadily. So, we can see it is not worth to set
T ≥ 0.4 in mining this dataset. We can conclude that the simulated dataset has 8 to 16
compact clusters, depending on parameter T .

Table 1: Number of clusters, iterations, execution time and average similarity change as similarity
threshold T increases.

Threshold T 0.1 0.2 0.3 0.4 0.5 0.6
Number of clusters 8 11 15 1000+ 1000+ 1000+

Number of iterations 48 29 20 1008 1003 1001
Execution time (secs) 34.1 23.1 23.3 1673.8 1221.8 1064.5

Average similarity 0.563 0.575 0.612 0.643 0.663 0.675

4 Conclusions and future work

S-means eliminates the necessity of specifying K (the number of clusters) in K-
means clustering. An intuitive argument, similarity threshold T is used instead of K
in S-means. Experiments demonstrates the efficiency and effectiveness of S-means in
comparison with standard K-means, fast K-means and G-means. S-means mines the
number of compact clusters in a given dataset without prior knowledge in its statistical
distribution. We applied S-means to simulated Gravitations-wave time series analysis
and discovered the existence of compact clusters.

While we believe S-means is promising in its simplicity, efficiency and effective-
ness, we are aware that more extensive comparative experiments are needed to further

35

validate the algorithm with other clustering algorithms. For instance, the clustering re-
sult is very sensitive to threshold T and the number of returned clusters can be unex-
pectedly large when T is high (e.g, T > 0.4). Also, it is necessary to evaluate S-means
with different similarity measures such as Dynamic Time Warping and kernel functions
in our future work.

References

1. B. Abbott and et al. (LIGO Scientific Collaboration). Search for gravitational waves from
binary black hole inspirals in ligo data. Physics Review, 73, 062001, 2006.

2. A. Abramovici and et al. LIGO: The laser interferometer gravitational wave observatory.
Science, 256:325–333, 1992.

3. H. Akaike. A new look at the statistical model identification. IEEE Transactions on Auto-
matic Control, 19(6):716–723, 1974.

4. R. J. Alcock and Y. Manolopoulos. Time-series similarity queries employing a feature-based
approach. In Proceedings of the 7th Hellenic Conference on Informatics, 1999.

5. A. Asuncion and D. Newman. UCI machine learning repository,
http://www.ics.uci.edu/∼mlearn/mlrepository.html, 2007.

6. G. Casella and R. Berger. Statistical Inference. Duxbury Press, 2001.
7. R. D’andrade. U-Statistic hierarchical clustering, 1978.
8. A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the em

algorithm. Journal of the Royal Statistical Society, 39(1, pages =).
9. C. Ding, X. He, H. Zha, and H. Simon. Adaptive dimension reduction for clustering high

dimensional data. In Proceedings of the 2nd IEEE International Conference on Data Mining,
pages 107–114, 2002.

10. S. G. Djorgovski, C. Donalek, A. Mahabal, R. Williams, A. Drake, M. Graham, and E. Glik-
man. Some pattern recognition challenges in data-intensive astronomy. In the 18th Interna-
tional Conference on Pattern Recognition (ICPR 2006), page 856, 2006.

11. C. Elkan. Using the triangle inequality to accelerate kmeans. In Proceedings of the Twentieth
International Conference on Machine Learning, pages 147–153, 2003.

12. U. M. Fayyad, C. Reina, and P. S. Bradley. Initialization of iterative refinement clustering
algorithms. In Proceedings of the 4th International Conference on Knowledge Discovery
and Data Mining, pages 194–198, 1998.

13. G. Hamerly and C. Elkan. Learning the k in k-means. In Advances in Neural Information
Processing Systems, volume 17, 2003.

14. S. Haykin. Neural Networks: A Comprehensive Foundation (2nd Edition). Prentice Hall,
1998.

15. A. Jain, M. Murty, and P. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3),
September 1999.

16. K. Kalpakis, D. Gada, and V. Puttagunta. Distance measures for effective clustering of arima
time-series. In Proceedings of the 2001 IEEE International Conference on Data Mining,
pages 273–280, 2001.

17. H. Lei, S. Palla, and V. Govindaraju. ER2: An intuitive similarity measure for on-line signa-
ture verification. In the 9th International Workshop on Frontiers in Handwriting Recognition,
pages 191–195, 2004.

18. S. Mukherjee. Multidimensional classification from kleine welle triggers from ligo science
run. Classical Quantum Gravity, 23(S661-71), 2006.

19. D. Pelleg and A. Moore. X-means: Extending k-means with efficient estimation of the num-
ber of clusters. In Proceedings of the 17th International Conference on Machine Learning,
pages 727–734, 2000.

20. J. Rissanen. Modeling by the shortest data description. Automatica, 14:465–471, 1978.
21. S. Shapiro and M. Wilk. An analysis of variance test for normality (complete samples).

Biometrika, 52(3 and 4):591–611, 1965.
22. W. Sheng and X. Liu. A hybrid algorithm for k-medoid clustering of large data sets. In IEEE

Congress On Evolutionary Computation, volume 1, pages 77–82, 2004.

36

Quasi-Incremental Bayesian Classifier

Murilo Lacerda Yoshida1 and Estevam R. Hruschka Jr.1

1 DC/UFSCar, Universidade Federal de São Carlos, São Carlos, Brazil

{murilo_yoshida, estevam}@dc.ufscar.br

Abstract. This paper describes and empirically evaluates a Quasi-Incremental
Bayesian Classifier (QBC) designed to be used when a classification task must
be performed in dynamic systems such as sensor networks, which are
continuously receiving new piece of information to be stored in huge databases.
Therefore, the knowledge that needs to be extracted from these databases is
continuously evolving and the learning process may need to go on almost
indefinitely. The induction proposed by QBC is performed in two steps; in the
first one a traditional Bayesian Network (BN) induction algorithm is performed
using an initial amount of data. As far as new data is available, only the
numerical parameters of the classifier are updated. The conducted experiments
showed that QBC tends to maintain the average correct classification rates
obtained with non-incremental classifiers while decreasing the time needed to
induce the classifier.

Keywords: Bayesian Networks, Bayesian Classifiers, Incremental Learning.

1 Introduction

Data Mining, also called KDD (Knowledge Discovery from Databases), is an
important research area and its main objective is to study, investigate, propose and
implement techniques, methodologies and algorithms to extract knowledge from great
amounts of data.

One of the biggest challenges in KDD is to cope with huge datasets. These datasets
are common in many real application domains as e-commerce and financial market.
In addition, the most recent advances in miniaturization and sensor technology lead to
sensor networks, gathering spatio-temporal data about the environment and revealing
a new area that needs to deal with massive datasets. In such domains, thousands of
measurements are done every day, thus the amount of information to be stored in
databases is huge and continuously growing. Therefore, the knowledge extracted from
these databases need to be continuously updated, otherwise it may become obsolete or
incorrect.

The main problem of using traditional (non-incremental) learning algorithms (used
to extract knowledge from databases in a KDD task) with these huge and
continuously growing datasets, is the high computational effort needed. Therefore, it
is not feasible to continuously execute them and an alternative approach must be used.

37

Incremental learning algorithms [23] represent a suitable approach to overcome the
aforementioned problem [5]. The main idea behind these algorithms is to induce
dynamic models that can be updated as far as new data is aggregated into a dataset. In
this sense, the computational effort can be reduced and the knowledge extracted from
the databases can be constantly updated.

Although there are some incremental algorithms proposed in the literature, this
class of algorithm is not yet consolidated. In this paper, a Quasi-Incremental
Bayesian Classifiers, named QBC, is proposed. The induction proposed by QBC is
performed in two steps; in the first one a traditional Bayesian Network (BN) induction
algorithm is performed using an initial amount of data and generating a Bayesian
Classifier (BC). As far as new data is available, only the numerical parameters of the
classifier are updated. Considering that a BC is formed by a graph structure and
numerical parameters and, in addition, learning the graph structure demands a higher
computational effort [18], QBC minimizes the use of a BN structure learning
algorithm (applying it only once) and explores the numerical parameters to update the
classifier. This idea is based on some previous work on BCs [2][16][25]; QBC,
however, proposes some innovation to the traditional algorithms aiming at becoming
a method suitable to real problems applications.

The remainder of this paper is organized as follows. The next section focuses on
incremental learning, Bayesian Networks and related works found in the literature.
Section 3 describes our Quasi-Incremental Bayesian Classifier (QBC), which will be
evaluated in classification problems and the achieved results compared with those
obtained using a traditional non-incremental learning algorithm. Section 4 reports our
simulation results in four datasets that are benchmarks for data mining methods.
Finally, Section 5 describes the conclusions and points out some future work.

2 Incremental Learning, Bayesian Classifiers and Related Work

The quasi-incremental approach proposed in this paper explores some incremental
algorithms constraints and Bayesian Network Classifiers foundations. Therefore, this
section reviews some basic concept of incremental learning and Bayesian Networks
and Bayesian classifiers related works.

2.1 Incremental Learning

Some authors consider self-adaptation as a prerequisite for general intelligence [19].
Following along this line, the learning process should involve the ability to improve
performance over time. In addition, it is known that humans acquire knowledge in an
incremental fashion over time. These can be considered as the initial main
motivations for developing incremental learning algorithms [8].

The recent and fast development of areas such as e-commerce, databases,
electronic sensors and ubiquitous computation generated a new motivation for
incremental learning algorithms investigation [24]. These technologies allow dynamic
systems to be designed and employed in real world applications. Such dynamic

38

system are continuously receiving new piece of information to be stored in huge
databases. Therefore, the knowledge present in the databases is continuously evolving
and the learning process may need to go on almost indefinitely, thus a non-
incremental learning algorithm may become ineffective. Most machine learning
algorithm, however, are not incremental.

 Incremental learning algorithms have been investigated focusing on many specific
tasks. In [8] was proposed one of the first incremental learning algorithms and it was
devoted to clustering tasks. In [11] an overview of incremental clustering algorithms
developed in the 80’s is presented and such algorithms can be considered precursors
of incremental learning in machine learning and data mining.

Following the definition given in [15], an incremental learning algorithm should be
able to use its learned knowledge to carry out its performance task at any stage of
learning. It should also be computationally efficient when incorporating experience
(training data) into memory during the learning procedure; and should not use
unreasonable space (memory) to store its experience (already used training dataset).

An alternative definition can be found in [6][5]. In these works, the authors focus
on learning from dynamic datasets that keep growing continuously. In this sense, to
be considered incremental, a learning algorithm [5]:
• “must require small constant time per record, otherwise it will inevitably fall

behind the data, sooner or later.
• must use only a fixed amount of main memory, irrespective of the total

number of records it has seen.
• must be able to build a model using at most one scan of the data, since it may

not have time to revisit old records, and the data may not even all be available in
secondary storage at a future point in time.
• must make a usable model available at any point in time, as opposed to only

when it is done processing the data, since it may never be done processing.
• Ideally, it should produce a model that is equivalent (or nearly identical) to the

one that would be obtained by the corresponding ordinary database mining algorithm,
operating without the above constraints.
• When the data-generating phenomenon is changing over time (i.e., when

concept drift is present), the model at any time should be up-to-date, but also include
all information from the past that has not become outdated.”

The literature also presents other different definitions of incremental learning. In
spite of this, instead of reviewing all these alternatives (to identify the most
appropriate one to develop our approach), we propose to use a Quasi-Incremental
algorithm which follows some of the aforementioned constraints, but do not need to
be strictly in accordance with any incremental learning formal definition. Following
this idea, some classical learning algorithms, such as k-NN [16] and naïve Bayes
classifier [9] can be considered as having incremental learning features and based on
this fact we developed our approach presented in section 3.

39

2.2 Bayesian Networks and Bayesian Classifiers Related work

Bayesian Networks (BNs) are graphical representations of multivariate joint
probability distributions. They are described by directed acyclic graphs in which the
nodes represent the attributes and the arcs represent probabilistic dependencies
between connected nodes (attributes). The strength of each dependency is given by
the conditional probability P(xi|πxi), where xi and πxi are the i-th attribute and the set
of parents of xi in the graph, respectively. The use of conditional independence is the
key to the ability of BNs to provide a general-purpose compact representation for
complex probability distributions [18][21].

BNs can be built directly from domain knowledge or they can be automatically
learned from data. It is also possible to combine both strategies. Learning BNs from
data became an effervescent research topic in the last decade, and there are two main
classes of methods to perform this task [18]: methods based on heuristic search and
methods based on conditional independence tests. Our work is based on the classic
K2 algorithm [3], which uses a heuristic search to learn a Bayesian network from
data.

Bayesian networks incremental learning is not a mature research field, hence, there
are not many different approaches dealing with this theme. Nevertheless, there are
some very relevant works that can be divided into two main groups, the first one
considers the BN structure update and the second one considers the numerical
parameters update.

When concerning the BN structure update some relevant ideas were presented in
[14][10][24]. Nevertheless, considering that the method proposed in our work focuses
on the numerical parameters update, the BN structure update approaches will not be
further discussed in this paper.

Considering the numerical parameters update, in [2][16] and [25], the authors
define the BN structure based on human expert knowledge and then, only the
numerical parameters are updated in order to incorporate the new information in the
knowledge represented by the BN. Such numerical parameters update may be done
using one of the three different techniques: discretization of parameters, Dirichlet
distributions, and Gaussian distributions. Still concerning only on the numerical
parameters update, another relevant work is the one presented in [4] in which is
assumed that the parameter distribution is given by a product of Gaussian
distributions. The aforementioned approaches were designed to be used mainly in
situations where the instances contained in the database are incomplete, the BN
structure can be obtained from an external font (e.g. a human expert) and the form of
the variables probability distributions are known (or can be estimated using prior
knowledge). Under these circumstances, the proposed methods are good options when
trying to perform an incremental learning of Bayesian Networks. Our proposed
Quasi-Incremental Bayesian Classifier, on the other hand, is designed to be applied in
situations where these assumptions do not hold.

40

3 Quasi-Incremental Bayesian Classifier - QBC

It is already known that when learning a BN from data, the correctness of the learned
network (structure and numerical parameters) depends on the amount of training data
available. Thus, when the training data is not large enough, the literature recommends
employing prior knowledge about the domain to improve the accuracy of learned
models [20]. Based on this understanding, some incremental BN learning algorithms
require a domain expert to fully specify the network structure of the BN and focus
only in the numerical parameter learning. Therefore, the network structure specified
by the expert domain is used as a set of constraints to learn the conditional probability
tables (CTPs) that rule the BN.

In real world applications, however, it is not common to have an expert domain at
hand. In addition, as mentioned before, in domains such as sensor networks, the lack
of data to be used in a learning task is not frequent. Therefore, the QBC approach
considers that the initial amount of data available to be used in the learning task is
large enough to induce a consistent network structure to be used in a classification
task. Accordingly, the QBC initially uses a BN learning algorithm to induce a first
model to be used as a classifier (as in a non-incremental procedure). As long as new
data arise, only the numerical parameters are updated. Such an update is based on the
previous induced BN structure. Considering that learning the BN structure needs
more computational effort than learning the numerical parameters (when knowing the
BN structure), the main idea is to minimize the need of inducing the entire BN every
time that new data is available.

Another interesting feature present in the QBC is the numerical parameters
induction approach. Instead of looking for an adequate probability distribution to
model the variables behavior, as done in other proposals [2][16][25][4], our approach
uses the dataset to estimate the relative frequency of the variables and thus, build the
CPTs. It is important to state that we are not claiming that the frequentist approach is
always better than the one pointed in the aforementioned papers. The frequentist
approach, however, is simpler to implement and very adequate when no prior
knowledge about the variables behavior is known, and because of its simplicity, it is
commonly employed in data mining tasks. In addition, as showed in [26], assuming a
variable distribution (e.g. gaussian) without being certain may implicate in bad
results. On the other hand, when having a sufficiently large dataset, the relative
frequency can be used to estimate the probability distribution [13].

Figure 2 presents the QCB in an algorithmic fashion. In this figure, it is shown that
QBC receives a dataset D as input and, as output it produces a Bayesian Classifier BC
and a data structure NP that represents the classifier numerical parameters.

The procedure Learn_Structure (in Figure 2) was implemented for this work
using the K2 structure learning algorithm (described in [3]). This procedure, however,
can be implemented using other approaches described in the literature [18]. The line 3
in the algorithm for example, can be omitted from the QBC when intending to use a
naïve Bayes classifier [9] in the classification task. In spite of minimizing the
computational effort in the first run of QBC, the use of a naïve Bayes classifier is not
suitable in situations where the classification results are used for decision-making, for

41

example. It happens, mainly because precise estimates of class probabilities are
crucial for decision-making. As stated in [12], a classifier is often only one part of a
larger decision process, for which accurate class probability estimates provide
additional utility. For instance, knowing the class probability may give much
information about costs of incorrect predictions [22]. For this reason, QBC uses as
classifier an unrestricted Bayesian Network (that gives more precise probability
estimates) instead of a simpler Bayesian Classifier.

Figure 2. QBC Algorithm

The first run of QBC must be executed when having a considerable amount of data.
Doing so, in the first run the BN structure will be built (Learn_Structure
procedure in Figure 2) using a fair sampling of the probability distribution that
governs the variables domain. Subsequently, as far as new data arrives, QBC must be
executed again. Considering that the BN structure is already built, from this point and
on, only the numerical parameters will be learned and updated.

The procedure Learn_num_parameters receives as input a dataset D and the
previous numerical parameters information (stored in a specific data structure NP),
and updates NP. In the first run of the algorithm, NP is an empty input. The data
structure used to store the learnt numerical parameters can be an AD-Tree [17], thus,
only the sufficient statistics is stored. An AD-tree can be seen as a sparse data
structure used to store counts of the records from datasets and its time performance is
independent of the number of records in the dataset [24]. Therefore it is suitable in
domains like sensor networks data streams learning.

The Build_Classifier procedure has as inputs a BN structure (previously
built in line 3) and the data sufficient statistics stored in NP. Thus, it merges these
inputs creating a complete BN having the structure and its corresponding numerical
parameters which will be used as a classifier (BC).

QBC Algorithm
Input: D: dataset
Output: BC: Bayesian Classifier

NP: updated Numerical Parameters
 1. Begin
 2. If it is the first run then
 3. Learn_Structure(D,Structure);
 4. else
 5. Load(NP);
 6. end {if}
 7. Learn_num_parameters(D,NP);
 8. Build_Classifier(Structure,NP,BC);
 9. Store(NP);
10. Return(BC);
11. End.

42

As mentioned before, QBC is designed to be used in domains like sensor networks
data streams learning. In such domains, it is worth having algorithms able to update
the knowledge stored in a classifier in the light of new data instances using a
reasonable computing time and memory space. In addition, as done in most
incremental learning approaches [24], QBC is based on the assumption that all data in
the stream are sampled from the same probability distribution, therefore, QBC does
not need to handle concept drift as the underlying domain probability distribution
does not change over time.

4 Experiments

Trying to verify the soundness of the proposed QBC approach, when compared to a
non-incremental algorithm, a number of empirical classification experiments were
conducted using the K2 algorithm as a non-incremental approach. The main aspects to
be considered when concerning the QBC behavior are twofold: the Average Correct
Classification Rates (ACCRs) and the time needed to build the classifier. The
remaining of this section initially describes the knowledge domains used in the
experiments as well as the experimental methodology adopted. The results from the
experiments are then presented and analyzed.

Four well-known Bayesian Network domains, namely Alarm [1], Asia [7], Credit
[7] and Engine fuel system [7] were used in our experiments. The description of each
domain can be obtained in [7]. Table 1 summarizes datasets characteristics.

The main motivation of using domains described by known Bayesian Networks is
the possibility to generated new data (using a sampling strategy) whenever it is
necessary. In addition, it is possible to identify a suitable variable ordering to each
domain.

Table 1. Datasets Description with dataset name (Data), number of attributes plus class
(#Attributes), number of instances (#Instances) and number of classes (#Classes).

Data Alarm Asia Credit Fuel Engine
#Attributes 37 8 12 9
#Instances 30000 15000 15000 15000
#Classes 2 2 2 2

The experiments were conducted considering three scenarios for each domain. The

main idea is to picture 3 different situations where the initial dataset (used to construct
the complete BN: structure + numerical parameters) has different sizes. In the first
scenario, the initial dataset can be considered as a small one and it keeps growing as
far as new scenarios are created. Therefore, in the third scenario, the initial dataset is
larger than the ones defined in the first and second scenarios. Table 2 shows the initial
dataset size for each scenario considering each domain. The second and third
scenarios are different in the Alarm domain (when compared to the other domains)
because it is the largest domain in our experiments.

43

Table 2. Datasets Description with dataset name (Data), number of attributes plus class
(#Attributes), number of instances (#Instances) and number of classes (#Classes).

 Alarm Asia Credit Engine
1st scenario 1000 1000 1000 1000
2nd scenario 5000 3000 3000 3000
3rd scenario 10000 5000 5000 5000

Considering the Alarm domain, in the first scenario, after executing the first QBC

run (with the initial dataset), 500 new instances were added to the experiment and the
QBC was executed again. It was done 38 times, thus QBC was executed once using
only the initial dataset (1000 instances) and then, executed other 38 times simulating
new data arrivals. The last QBC execution in this scenario used a dataset containing
20000 instances.

For the second scenario, as the initial dataset contains 5000 instances, the QBC was
executed 30 times to simulate the new data (500 instances) arrivals. Thus, in the last
execution, the dataset was formed by 20000 instances. The third scenario followed the
same strategy and, thus, QBC was executed once with the original dataset (10000
instances) and more 20 times with new data (500 instances) arrivals.

For each scenario, the process was repeated 10 times and Table 3 shows the
obtained results. The time and ACCRs presented in Table 3 are the average values
obtained after the 10 executions. To calculate the correct classification rates 10000
new instances (not used in the QBC executions) were used.

Analyzing results for the Alarm domain, it is possible to verify that the ACCRs
obtained using QBC are close to the ones obtained with K2. On the other hand, the
time needed to execute the non-incremental algorithm (every time that new data is
available) is considerably lower with QBC. On average, QBC spent less than 35% of
the time spent by K2.

One interesting aspect to be highlighted is that in the first scenario the QBC was
faster than in the following ones. Considering that in the third scenario QBC was
executed only 21 times, while in the first scenario it was executes 39 times, this result
may seem counterintuitive. Observing, however, that in the third scenario the initial
dataset has ten thousand instances while in the first scenario it has only one thousand,
it is possible to understand such behavior. It means that the time spent in the first
QBC run is higher in the third scenario than in the first one. In other words, the size of
the initial dataset used in the first QBC run (when the BN structure is induced) has
more influence in the average time showed in Table 3 than the number of times that
QBC is executed.

For the next three domains, the same strategy employed to the Alarm domain was
also used. The only difference is the size of the initial datasets which are smaller in
Asia, Credit and Engine domains. Results presented in Table 3 show that the ACCRs
obtained with both QBC and K2 are similar in all the three domains. When
concerning the time needed by both algorithms, on average, QBC spent less than 30%
of the time spent by K2. These results confirm the same behavior present in the Alarm
domain.

As happened with the Alarm domain, in the experiments with the Credit domain,

44

the size of the initial dataset (used in the first QBC run) had more influence in the
average run time than the number of times that QBC was executed. The same fact did
not occur with Asia and Engine domains. Considering that Asia and Engine are
smaller domains (8 and 9 variables respectively), such behavior was already expected.
In this sense, the conducted experiments showed that, when concerning runtime
obtained with employed datasets, large domains (having many variables) with large
datasets tends to take more advantage of QBC characteristics.

Table 3. Results with Alarm, Asia, Credit and Fuel Engine domains. Where Time ± SD: time
and standard deviation; ACCR: Average Correct Classification Rates; #exec: number of runs.

Alarm
Incremental – QBC Non-incremental – K2

Scenario
Time ± SD ACCR #exec Time ± SD ACCR #exec

1st 31.7 ± 3.9 91.2 ± 8.3 39 2,566.0±30.9 93.9 ± 6.1 39
2nd 58.4 ± 0.7 85.6 ± 9.1 31 2,374.6±25.5 91.2 ± 8.4 31
3rd 112.2 ± 12.9 94.7 ± 6.1 21 2,075.7±294.0 95.3 ± 5.1 21

Asia
Incremental – QBC Non-incremental – K2

Scenario
Time ± SD ACCR #exec Time ± SD ACCR #exec

1st 1.3 ± 0.6 99.9 ± 0.0 18 5.3 ± 0.9 99.9 ± 0,0 18
2nd 1.7 ± 0.6 99.9 ± 0.0 14 5.0 ± 0.7 99.9 ± 0,0 14
3rd 1.3 ± 0.6 100.0 ± 0.0 10 4.0 ± 0.8 100.0 ± 0,0 10

Credit
Incremental – QBC Non-incremental – K2

Scenario
Time ± SD ACCR #exec Time ± SD ACCR #exec

1st 2.7 ± 0.6 69.3 ± 3.3 18 27.6 ± 2.0 64.2 ± 4.5 18
2nd 2.6 ± 0.3 70.7 ± 5.1 14 26.3 ± 0.9 65.1 ± 2.7 14
3rd 3.2 ± 0.6 64.4 ± 3.9 10 22.0 ± 0.5 64.7 ± 1.9 10

Engine
Incremental – QBC Non-incremental – K2

Scenario
Time ± SD ACCR #exec Time ± SD ACCR #exec

1st 1.5 ± 0.5 99.5 ± 0.0 18 5.4 ± 0.4 99.5 ± 0.0 18
2nd 1.4 ± 0.6 99.5 ± 0.0 14 4.6 ± 0.4 99.5 ± 0.0 14
3rd 1.4 ± 0.4 99.6 ± 0.1 10 4.2 ± 0.6 99.6 ± 0.1 10

5 Conclusions and Future Work

In this paper we proposed a Quasi-Incremental Bayesian Classifier (QBC) designed to
induce classifiers in dynamic systems such as sensor networks. QBC is a tow-fold
approach, at first a BC is induced using an initial amount of data. Subsequently, as far
as new data is available, only the numerical parameters of the classifier are updated.

The conducted experiments showed that QBC tends to maintain the ACCRs
obtained with a non-incremental classifier while decreasing the induction time. In
addition, large domains (having many variables) with large datasets tends to take
more advantage of QBC characteristics than small ones. We intend next to investigate
the appropriateness of other non-incremental BN learning as well as the use of
simpler classifiers induction algorithms in conjunction to QBC.

45

Acknowledgments

Authors acknowledge the Brazilian research agency FAPESP for its financial support.

References

[1] Beinlinch, I.; Suermoundt, G.; Chavez, R.; Cooper, G. The ALARM monitoring system. In
Proceedings of the European Conference on AI and medicine, 1989.

[2] Buntine, W. Operations for learning with graphical models. Journal of artificial intelligence research,
2: 159-225, 1994.

[3] Cooper, G.; Herskovits, E. A Bayesian method for the induction of probabilistic networks from data.
Machine Learning, 9:309-347, 1992.

[4] Díez, F. J., Parameter adjustment in Bayes networks. The generalized noisy OR-gate. In Proc. of the
9th Conf. on UAI, pages 99{105, Washington D.C., 1993. Morgan Kaufmann, San Mateo, CA.

[5] Domingos, P.; Hulten, G. A general framework for mining massive data streams. Journal of
Computational and Graphical Statistics, 12, 2003.

[6] Domingos, P.; Hulten, G. Catching up with the data: Research issues in mining data streams. In
Workshop on Research Issues in Data Mining and Knowledge Discovery, Santa Barbara, CA, 2001.

[7] Druzdel, M.J. SMILE: Structural Modeling, Inference and Learning Engine and GeNIe: A
development environment for graphical decision-theoretic models. In Proc. AAAI-99, 902-903, 1999.

[8] Fisher, D.H. “Knowledge acquisition via incremental conceptual clustering”. Machine Learning,
2:139-172, 1987.

[9] Friedman, N.; Geiger, D.; Goldszmidt, M. Bayesian network classifiers. Machine Learning, 29:131–
163, 1997.

[10] Friedman, N.; Goldszmidt, M. Sequential update of Bayesian network structure. Proc. 13th UAI, 1997.
[11] Gennari, J.H.; Langley, P.; Fisher, D. Models of incremental concept formation. Artificial

Intelligence, 40:11-61, 1989.
[12] Grossman, D. and Domingos, P., Learning Bayesian Networks Classifiers by Maximizing Conditional

Likelihood. Proceedings of 21st ICML, Canada, 2004.
[13] Hays, W., Statistics. Wadsworth Publishing, 5 edition, 1994.
[14] Lam, W.; Bacchus, F. Using new data to refine Bayesian networks. In Proceedings of the Tenth

Conference on Uncertainty in Artificial Intelligence, 383-390, 1994.
[15] Langley, P. Order effects in incremental learning. In Learning in humans and machines: Towards an

Interdisciplinary Learning Science, Pergamon, 1995.
[16] Lauritzen, S.L. The EM algorithm for graphical association models with missing data. Computational

Statistics and Data Analysis, 19:191-201, 1995.
[17] Moore, A. W. and Lee, M. S., Cached sufficient statistics for efficient machine learning with large

datasets. Journal of Artificial Intelligence Research, 8:67-91, 1998.
[18] Neapolitan, R.E. Learning Bayesian Networks. Prentice Hall, Upper Saddle River, NJ, 2003.
[19] Newell, A. and Simon, H., Computer science as empirical enquiry: Symbols and search,

Communications of the ACM 19(3), (1976), 113–126.
[20] Niculescu, R. S., Mitchell, T. M. and Rao, R. B., Bayesian Network Learning with Parameter

Constraints 7(Jul):1357--1383, 2006.
[21] Pearl, J., “Probabilistic Reasoning in Intelligent Systems”. Morgan Kaufmann, 1988.
[22] Provost, F. and Fawcett, T., Robust Classification for Imprecise Environments. Machine Learning,

42, 203-231, 2001.
[23] Provost, F. J. and Kolluri, V. “A survey of methods for scaling up inductive algorithms”. Data Mining

and Knowledge Discovery, 3(2):131-169,1999.
[24] Roure, J. Incremental methods for bayesian network structure learning. Research Report LSI-99-42-

R, Software Department at the Technical University of Catalonia. 1999.
[25] Spiegelhalter, D.J.; Lauritzen, S.L. Sequential updating of conditional probabilities on directed

graphical structures. Networks, 20:579 – 605, 1990.
[26] Yang, Y. and G. I. Webb, On Why Discretization Works for Naive-Bayes Classifiers. In T.D. Gedeon

and L.C.C. Fung (Eds.), LNAI Vol. 2903: Proc. of the 16th AI 03, Perth, Australia, pp. 440-452, 2003.

46

PQStream: A Data Stream Architecture for Electrical
Power Quality

Dilek Küçük1, Tolga İnan1, Burak Boyrazoğlu1,2, Serkan Buhan1,3,
Özgül Salor1, Işık Çadırcı1,3, Muammer Ermiş2

1 TÜBİTAK – Uzay, Power Quality Group, Ankara – Turkey

{dilek.kucuk, tolga.inan, burak.boyrazoglu, serkan.buhan, ozgul.salor}@uzay.tubitak.gov.tr
2 METU, Electrical and Electronics Eng. Dept., Ankara – Turkey

ermis@metu.edu.tr
3 Hacettepe University, Electrical and Electronics Eng. Dept., Ankara – Turkey

cadirci@ee.hacettepe.edu.tr

Abstract. In this paper, a data stream architecture is presented for electrical
power quality (PQ) which is called PQStream. PQStream is developed to
process and manage time-evolving data coming from the country-wide mobile
measurements of electrical PQ parameters of the Turkish Electricity
Transmission System. It is a full-fledged system with a data measurement
module which carries out processing of continuous PQ data, a stream database
which stores the output of the measurement module, and finally a Graphical
User Interface for retrospective analysis of the PQ data stored in the stream
database. The presented model is deployed and is available to PQ experts,
academicians and researchers of the area. As further studies, data mining
methods such as classification and clustering algorithms will be applied in order
to deduce useful PQ information from this database of PQ data.

Keywords: Data Streams, Data Stream Applications, Electrical Power Quality.

1 Introduction

The proliferation of time-involving and data-intensive applications such as sensor
networks, network traffic monitoring systems and financial applications led to the
emergence of data stream models and issues related to the management of these
models as well. Considerable research have been carried out on data streams
including the studies on data stream management systems such as STREAM [1],
those ones on tracking cross-correlation in data streams [2, 3], studies on mining data
streams such as StreamCube [4], and finally those studies that present real world
applications of data streams such as GigaScope [5]. We refer interested readers to
[6, 7] for in-depth surveys of the literature on data streams.

In this paper, a data stream architecture is presented, which is called PQStream, for
processing and managing electrical power quality (PQ) data. The feasibility and
effectiveness of the proposed architecture is demonstrated on the PQ data obtained by
a mobile PQ measurement system [8] monitoring the transformer substations of the

47

Turkish Electricity Transmission System where this measurement system is also part
of the PQStream architecture.

The rest of the paper is organized as follows: Section 2 presents a brief review of
electrical power quality and power quality parameters. In Section 3, general
PQStream architecture and its main components are described in detail with its
application on field PQ data. Finally, conclusions and future research directions are
presented in Section 4.

2 Electrical Power Quality Parameters

Electrical power is one of the most essential items used by commerce and industry
today. It is an unusual commodity because it is required as a continuous flow - it
cannot be conveniently stored in quantity - and it cannot be subject to quality
assurance checks before it is used [9]. The reliability of the supply must be known
and the resilience of the process to variations must be understood. In reality, of
course, electricity is very different from any other product – it is generated far from
the point of use, is fed to the grid together with the output of many other generators
and arrives at the point of use via several transformers and many kilometers of
overhead and possibly underground cabling. Where the industry has been privatized,
these network assets will be owned, managed and maintained by a number of
different organizations. Hence assuring the quality of delivered power at the point of
use is no easy task.

Consumers of electricity are being increasingly affected by PQ problems due to
augmentation of disturbing loads in electric power systems. Throughout the study, PQ
parameters given at IEC 61000-4-30 [10] are used. In the following subsections, basic
electric power definitions and brief descriptions of some PQ parameters can be found.
At the end of this section, event types such as sag, swell, unbalance and interrupt are
explained as well.

2.1 Power

Electric power is defined as the amount of work done by an electric current, or the
rate at which electrical energy is transferred. In alternating current circuits, energy
storage elements such as inductance and capacitance may result in periodic reversals
of the direction of energy flow. The portion of power flow that averaged over a
complete cycle of the AC waveform, which results in net transfer of energy in one
direction is known as real power. That portion of power flow due to stored energy that
returns to the source in each cycle is known as reactive power. The relationship
between real power, reactive power and apparent power can be expressed by
representing the quantities as vectors (Fig.1). The apparent power vector is the
hypotenuse of a right triangle formed by connecting the real and reactive power
vectors [11].

48

Fig. 1. Relation between Real, Reactive, and Apparent Powers

2.2 Demand

Electric power demand is directly proportional to the current demand of consumer.
Hence consumer’s power demand profile may obtained by sampling the current
demand values. Power demand is mainly characterized by fundamental harmonic
component of the load current.

2.3 Voltage and Current RMS

RMS (Root-Mean-Square) value is defined to be square root of the arithmetic mean of
the squares of the instantaneous values of a quantity taken over a specified time
interval. The average power consumed by a sinusoidally driven linear two-terminal
electrical device is a function of the RMS values of the voltage across the terminals
and the current passing through the device, and of the phase angle between the
voltage and current sinusoids.

2.4 Frequency

The mains frequency is the frequency at which alternating current is transmitted from
a power plant to the end user. In most parts of the world, it is typically 50 or 60 Hz.
Mains frequency is fixed to 50 Hz for the Turkish Electricity Transmission System.
However due to practical load demand variations, supply frequency appears to be in a
frequency band rather than having a constant value. Hence, mains frequency turns out
to be an important PQ parameter indicating the frequency stability of the particular
utility grid.

2.5 Harmonics

Ideally, voltage and current waveforms are perfect sinusoids. However, as reported in
[12], because of the increased popularity of electronic and other non-linear loads,
these waveforms often become distorted. This deviation from a perfect sine wave can
be represented by harmonics—sinusoidal components having a frequency that is an
integral multiple of the fundamental frequency (Fig. 2). Thus, a pure voltage or
current sine wave has no distortion and no harmonics, and a non-sinusoidal wave has
distortion and harmonics. To quantify the distortion, the term total harmonic

49

distortion (THD) is used. The term expresses the distortion as a percentage of the
fundamental (pure sine) of voltage and current waveforms.

Fig. 2. Distorted Waveform Composed of Fundamental and 3rd Harmonic

2.6 Flicker

The power supply network voltage varies over time due to perturbations that occur in
the processes of electricity generation, transmission and distribution. Interaction of
electrical loads with the network causes further deterioration of the electrical PQ.
High power loads that draw fluctuating current, such as large motor drives and arc
furnaces, cause low frequency cyclic voltage variations that result in flickering of
light sources which can cause significant physiological discomfort, physical and
psychological tiredness, and even pathological effects for human beings. Hence,
flicker is quantified based on models of light sources and human sensation [13].

2.7 Events

Voltage sag, swell, unbalance and interruption are detected as PQ events throughout
the measurements. These events are briefly described below [10]:

• Voltage Sag: Sag indicates an under-voltage situation. On poly-phase

systems, voltage sag begins when the voltage of one or more channels is
below a sag threshold (%85 of nominal) and ends when voltage on all
measured channels is equal to or above the sag threshold plus the hysteresis
voltage.

50

• Voltage Swell: Swell indicates an over-voltage situation. On poly-phase
systems, a swell begins when the voltage of one or more channel rises above
the swell threshold (%110 of nominal) and ends when the voltage on all
measured channels is equal to or below the swell threshold minus the
hysteresis voltage.

• Unbalance: Channels of poly-phase systems should have sinusoidal voltages

having same amplitude. Balanced three-phase system should have the same
amplitude on all phases. Unbalance is a measure which indicates how much
the amplitude of phases different from each other.

• Interruption: On poly-phase systems, a voltage interruption begins when the

voltage of all channels is below the voltage interruption threshold (%5 of
nominal) and ends when the voltage of any one channel is equal to or greater
than the voltage interruption threshold plus the hysteresis.

3 PQStream Architecture

PQStream is an architecture offered for efficient processing and management of PQ
data. PQ data has an inherent time-dependency and this data when measured at
relevant frequencies requires almost unbounded storage and processing capabilities
compared to other data types stored in conventional relational database management
systems.

We have used PQStream architecture for mobile measurements of PQ data in the
Turkish Electricity Transmission System and describe the architecture accordingly,
yet it is a generic architecture and can be used for managing any PQ data acquired in
other means with little or no customization.

An abstract representation of PQStream presented in Fig. 3. In the following
subsections, we firstly introduce the mobile PQ measurements application which
corresponds to the PQ measurement module in Fig. 3 and describe how the resulting
data is transferred to the stream database. Following this, we describe the stream
database with its conceptual data model and finally the PQStream GUI.

Fig. 3. Abstract Representation of PQStream Architecture

51

3.1 PQ Data Measurement Module

Mobile PQ measurements in the Turkish Electricity Transmission System are carried
out for a period of seven consecutive days for each measurement point. Measurement
points are feeders and busbars in the transformer substations. At the time this paper is
written, measurements have been completed for 144 bus-bars, 205 feeders, 59
transformer substations all over the country.

Mobile measurement program is developed in LabView development environment
[14] using its proprietary visual programming language called G where the sampling
frequency of the program is 3200 Hz, that is, it acquires 3200 raw samples per second
for each PQ parameter. The program calculates and outputs the averages
corresponding to the PQ parameters according the PQ standards [10] in an online
fashion. It outputs raw PQ data as well in case of events as will be clarified in the
upcoming paragraphs.

Output traffic load of the PQStream measurement module is presented in Table 1
for each PQ data measurement point. Storage and processing requirements of
PQStream database could be estimated using the total bit rate values in this table and
number of measurement points.

Table 1. Outgoing Data Traffic of PQStream Measurement Module (Based on Mobile PQ
Measurements of the Turkish Electricity Transmission System).

Parameter Precision Update Rate
(Averaging

Interval)

Three
Phase

Average PQ Data Bit
Rate (bps)

Active Power Double every second Yes 192
Reactive Power Double every second Yes 192
Apparent Power Double every second Yes 192
Power Factor Double every second Yes 192
33 Voltage
Harmonics

Double every 3 secs. Yes 2.112

33 Current
Harmonics

Double every 3 secs. Yes 2.112

RMS Current and
Voltage

Double every 0.2 secs. Yes 1.920

Event Length Integer variable No 4
Event Type String variable No 10
Event Raw
Current1 Data

Double variable Yes 614.400

Event Raw
Voltage Data

Double variable Yes 614.400

Short Term
Flicker

Double every 10 mins. Yes 0,32

Demand Double every 15 mins. Yes 0,213
Frequency Double every second No 64
 Total (with Events) 1.235.790,533
 Total (without Events) 6.990,533

1 614400 bps = 3200 samples/sec*8 bytes/sample*8 bits/byte*1 sample/phase*3 phase

52

The output of the program is a set of directories and files for each PQ parameter
where exact directory structure of this output is presented in Fig. 4.

Fig. 4. Directory Structure of Mobile PQ Measurements

In order to store and manage this PQ measurement data in a stream database, a

daemon program executes on the data in order to transfer them to the database. The
program simply reads the measurement files for PQ parameters and inserts each
sample in these files to the corresponding tables in the stream database.

However, not all values in all files in Fig. 4 are directly stored in the database due
to space and processing limitations. The files under the directories of Sag, Swell,
Unbalance, and Interruption include raw data corresponding to the actual samples
during the entire period of each event and are simply stored as compressed files in the
file system in a specific directory layout instead of storing their contents in the
database. Only absolute paths of these files are stored in the database. Event
measurement file in Fig. 4 has an entry for each of these events so that this
information will be available through the database and if the actual raw data is
required for an event, it will be provided to the user as a file. We refer interested
readers to [8] for an in-depth description of the mobile PQ measurements application.

3.2 Data Stream Model for PQ Data

The output of the PQStream data measurement module, which corresponds to the
computed averages of PQ parameters according to the averaging intervals provided in
Table 1, should be effectively stored in a database for retrospective analysis of the PQ
data. For this purpose, we have proposed a conceptual data model for PQ data and
presented this model as a Unified Modeling Language (UML) class diagram in Fig. 5.

PQStream database is constructed by implementing each of the classes in Fig. 5 as
tables of a database using open-source object relational PostgreSQL as the backend
database system. These classes are briefly described below:

53

Fig. 5. Conceptual Data Model for PQ Data Represented with a UML Class Diagram

• Measurement_Point class holds information about the busbars or feeders

(measurement points) where PQ measurements take place. The attributes of
this class are crucial since they could be used to group stream data (hence
will be in the group by clause when the required data is represented as a
Structured Query Language (SQL) query or a query in one of the other
languages based on SQL). Some of the most significant attributes of this
class are load_type (which can take on one of the values of Heavy Industry,
Industry+Urban, and Urban Only), city_name, region_name, and
voltage_level.

• Transfer_File class is for holding information related to the transfer file and

actual data transfer time. Since each PQ measurement sample has a
corresponding timestamp; this value must also be stored in the stream
database. But, frequency of each PQ parameter is determined according to
PQ standards (provided as averaging intervals in Table 1), that is, duration
between consecutive timestamps are known in advance, hence we use an
attribute called measurement_date for each Transfer_File instance to
represent the measurement time of the last sample in that file so that the
timestamps for the remaining samples could be determined according to the
PQ parameter type.

• Event class is used to model an entry for each and every event that occurred

during the entire measurement period. The attributes of this class include
event_type (one of sag, swell, interruption or unbalance),
event_starting_time, event_ending_time, and event_size_in_samples.
Although raw data corresponding to each event occurrence is also stored in
the directory structure in Fig. 4 as a file for each event type under
corresponding directories, they are not individually modeled in the

54

conceptual design due to space and processing limitations (the number of
event occurrences is bounded only by the total measurement period) and we
store these files in compressed form in a certain directory structure for each
measurement point as explained at the end of Section 3.1. The absolute path
of each of these raw data files is modeled with the file_path attribute of the
Event class.

• Event_Stat is a class introduced for efficiency reasons. It is used to model a

summary of the events occurred in a measurement point. The attributes of
Event_Stat include event_count, sag_count, swell_count, interruption_count
and unbalance_count. With this class implemented as a database table, most
of the aggregation queries on PQStream will be faster (since they will scan
Event_Stat table instead of the larger Event table).

• Among the remaining classes, Flicker_PST models short term, and

Fliker_PLT models long term flicker measurements. Long term flicker (Plt)
is calculated from short term flicker (Pst) with the formula (1) taking N=12
where Psti (i=1..N) are consecutive values of Pst. As their names imply, the
classes Demand, Frequency, RMS and Power are for modeling respective PQ
parameters.

(1)

3.3 PQStream Graphical User Interface (GUI)

A user-friendly interface is essential for the effective querying of the presented
PQStream database. Furthermore, this interface should provide high-quality
visualization facilities to its users since graphics is probably the best way to present
PQ data.

For this purpose, a GUI for PQStream has been developed using Java
programming language, with its Swing Application Programming Interface (API), in
Eclipse development environment. The characteristics of PQStream GUI are
summarized below:

• It enables its users to query each of the PQ parameters and results can be

represented using different visualization options such as tables, bar/pie
charts, or time-series graphics. Graphics facilities are implemented using the
open-source JFreeChart API [15]. In Fig. 6, flicker panel of PQStream GUI
is presented where the query provided through the GUI results in the
graphical representation of short term flicker for a measurement point,
namely, EZİNE TM 154/34.5 KV TRAFO PRİMERİ.

55

Fig. 6. PQStream GUI (with Flicker Query Panel)

• Users can provide aggregation queries through PQStream GUI so that

summary information can be obtained about PQ parameters. For instance,
the aggregation query provided in the Event query panel of the GUI in Fig. 7
can be represented in SQL as follows:

 select sum(es.sag_count), sum(es.swell_count),
 sum(es.unbalance_count),
 sum(es.event_count), mp.load_type

 from event_stat es, measurement_point mp
 where es.measurement_point_id = mp.id
 group by mp.load_type

• We have used Apache XML-RPC [16], Apache's Java implementation of

XML-RPC protocol, for the communication between the stream database
and PQStream GUI for its simplicity and compactness. Apache's Tomcat
[17] web server is used to deploy server side PQStream code.

56

Fig. 7. PQStream GUI (with Event Query Panel)

4 Conclusion

Electrical PQ data is a time-evolving type of data and measuring it at high frequencies
without any processing leads to unfeasibly large volumes requiring almost unbounded
processing capabilities compared to other types of data stored in conventional
relational database management systems. In this paper, we have described a data
stream architecture for electrical PQ data, which, to our knowledge, is the first
attempt to model PQ data as data streams, and shown its feasibility on real-world
(field) PQ data.

The main modules of PQStream architecture are a measurement module which
processes continuous PQ data and computes averages according PQ standards, a
stream database for storing the averages that the measurement module computed and
finally a GUI for retrospective analysis and visualization of the stored PQ data.
PQStream chooses not to store raw PQ data to lower the storage requirements of the
acquired PQ data and uses some summary relations to speed up query processing. It
supports aggregation queries over PQ data and with its proprietary GUI it enables
users to access summaries of PQ data with relevant visualization facilities such as
bar/pie charts and time-series graphs which are typical ways of presenting PQ data.

57

As further studies, we will employ data mining techniques on PQStream database
such as classification and clustering algorithms to group those measurement points
from which PQ data are acquired as well as sequence mining techniques to see the
time-evolution of PQ problems. With the results of these data mining attempts on
PQStream, experts of PQ domain will be able to take the necessary measures to detect
and reduce PQ problems in electricity transmission systems.

Acknowledgments. This research and technology development work is carried out as
a subproject of the National Power Quality Project of Turkey (Project No. 105G129,
http://www.guckalitesi.gen.tr). Authors would like to thank the Public Research
Support Group (KAMAG) of the Scientific and Technological Research Council of
Turkey (TÜBİTAK) for full financial support of the project.

References

1. Stanford Stream Data Management (STREAM) Project. http://www-
db.stanford.edu/stream.

2. Zhu, Y. and Shasha, D. StatStream: Statistical Monitoring of Thousands of Data Streams in
Real Time. In Very Large Data Bases (VLDB), (2002).

3. Papadimitriou, S., Sun, J. and Yu, P.S. Local Correlation Tracking in Time Series. In
Proceedings of the Sixth International Conference on Data Mining (ICDM), (2006).

4. Han, J., Chen, Y., Dong, G., Pei, J., Wah, B. W., Wang, J., and Cai, Y. D. StreamCube: An
Architecture for Multidimensional Analysis of Data Streams. Distributed and Parallel
Databases, 18(2): 173–197, (2005).

5. Cranor, C., Johnson, T., Spataschek, O., and Shkapenyuk, V. Gigascope: a stream database
for network applications, In proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, June 09-12, (2003).

6. Golab, L. and Özsu, M. T. Issues in Data Stream Management, ACM SIGMOD Record,
32(2): 5–14, (2003)

7. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J. Models and Issues in Data
Stream Systems, In: 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, (2002)

8. Özdemirci, E., Akkaya, Y., Boyrazoğlu, B., Buhan, S. et al. Mobile Monitoring System to
Take PQ Snapshots of Turkish Electricity Transmission System. In IEEE Instrumentation
and Measurement Technology Conference (IMTC), (2007)

9. Chapman, D. Introduction to Power Quality. Power Quality Application Guide, 1-4 (2001)
10. IEC 61000-4-30, Testing and Measurement Techniques - Power Quality Measurement

Methods, International Electrotechnical Commission, (2003)
11. AC power - Wikipedia, http://en.wikipedia.org/wiki/AC_power
12. Harmonics, Electric Power Quality Notes, Pacific Gas and Electric Company, (1993)
13. Hanzelka, Z. and Bień, A. Flicker Measurements, Power Quality Application Guide, 1-12

(2005)
14. LabVIEW - Products and Services - National Instruments, http://www.ni.com/labview/
15. JFreeChart, http://www.jfree.org/jfreechart/
16. Apache XML-RPC, http://ws.apache.org/xmlrpc/
17. Apache Tomcat, http://tomcat.apache.org/

58

Resource-aware Distributed Online Data Mining
for Wireless Sensor Networks

Nhan Duc Phung1, Mohamed Medhat Gaber2 and Uwe Roehm1

1 University of Sydney, School of Information Technologies
SIT Building J12, NSW 2006, Australia

{dphu9727,roehm}@it.usyd.edu.au
2 CSIRO ICT Centre, Tasmania, Hobart, TAS 7001

Mohamed.Gaber@csiro.au

Abstract. Online data mining in wireless sensor networks is concerned with the
problem of extracting knowledge from a large continuous amount of data streams
with an in-network processing mode. Unlike other types of networks, the limited
computational resources require the mining algorithms to be highly efficient and
compact. We propose a distributed resource-aware online data mining framework
for wireless sensor networks which can be used to enable existing mining techniques
to be applied to sensor network environments. We have applied the framework to
develop and implement a distributed resource adaptive online clustering algorithm
on the novel Sun MicrosystemTM Small Programmable Object Technology Sun
SPOT platform. We have evaluated the performance of the algorithm on the actual
sensor nodes. Experimental results show that the clustering algorithm can improve
significantly in resource utilization while maintaining acceptable accuracy level.

Keywords: distributed clustering, resource adaptivity, data mining, sensor networks

1 Introduction

Online data mining in wireless sensor networks has attracted research attention in recent
years. This is because deployments of large-scaled distributed sensor networks are now
possible owning to hardware advances and increasing software support. Online data
mining, also called data stream mining is concerned with extracting patterns from
continuous data streams such as those generated by sensor networks. Because of the
massive amount of data and the speed of which the data are generated, many data mining
applications in sensor networks require in-network processing such as aggregation to
reduce sample size and the communication overhead.

Adding up to the challenges are the extremely limited size of memory, available
energy and processing power of the sensor nodes. These factors imply that traditional data
mining techniques in order to be used in sensor network need to be highly energy efficient
and compact. One of the methods is to improve the resource utilization via enabling
resource-awareness for the mining techniques. With resource-awareness, the mining
algorithm can automatically adjust its configuration in real time according to resource

59

availability levels. This can prolong network lifetime and it can also improve the mining
techniques performance under resource-scare scenarios. Whilst there is research work on
resource adaptivity in wireless sensor network, none of them provide a generic
mechanism to enable resource-awareness for data mining in sensor networks.

In this paper, we propose a distributed resource-aware online data mining framework
for wireless sensor network which can be applied for many mining techniques that
requires constantly monitoring, aggregation of data and in-network processing. We apply
the framework to implement a distributed resource-aware online clustering algorithm,
which we termed DERA-Cluster, on an actual sensor platform – the Sun SPOT. We have
implemented and evaluated the algorithm on the actual sensor networks. Experimental
results show that our clustering algorithm with resource-awareness greatly improves
resource utilization while being able to maintain acceptable accuracy.

This paper is organised as follows. Section 2 reviews the related work in this field and
Section 3 briefly discusses the background of the resource-aware framework. In Section 4,
we introduce our DERA cluster algorithm, and we discuss implementation issues in
Section 5. Section 6 evaluates the validity of this approach in terms of resource-awareness
and accuracy. Section 7 concludes this paper.

2 Related Work

We discuss an approach to adapt mining data stream techniques to resource availability.
Online data stream mining has attracted more and more research attention in recent years.
Gaber et al. [3] have done an in-depth survey of mining data streams. There are several
existing approaches to adapt data stream techniques to changes in resource constraints.

The first approach is the threshold-based approach for clustering algorithms. BIRCH
[1] was the first threshold-based algorithm that uses an adjustable threshold to allow large
datasets to fit into memory. Recently, it has been adopted in new algorithms such as
CluStream [2] and LWC [3], which adds more features and/or modifies its structures to be
able to adapt to streaming environments. Online stream clustering also has been termed by
Aggarwal et al. [2] as microclustering.

The second family of algorithms is frequent itemset mining which concerns with
finding sets of items occurring together frequently. Giannella et al. [4] have proposed a
method to extend the traditional FP tree for finding frequent item sets to mine streaming
data in a time-sensitive way. Franke et al. [5] have discussed methods to measure the
quality of data stream mining algorithms. In [5], they have used these measurements to
analyze and enhance a frequent itemset mining technique. The enhanced technique can
estimate the quality of output depending on the current resource situation (mainly
available memory) as well as allocate resources needed for guaranteeing user-specified
quality requirements.

Teng el al. [6] have proposed the RAM-DS algorithm, which uses a wavelet-based
approach to control the resource requirements. The algorithm is used to mine temporal

60

patterns and is be used in conjunction with a regression-based stream mining algorithm
proposed by the authors.

An overview of recent research and application on distributed data mining can be
found in [7]. Bandyopadhyay et al. described a K-Means-like technique for clustering
homogeneously distributed data streams in a peer-to-peer environments like sensor
networks [8].

3 Background

The resource-aware framework is a theoretical generic approach to provide resource-
awareness for data stream mining first proposed by Gaber and Yu [9]. It promotes a
holistic approach that jointly considers adjusting the settings of the mining algorithm
input, output and/or processing endpoints according to resource availability. Gaber and
Yu [9] have coined the algorithm input settings as Algorithm Input Granularity AIG, the
algorithm output setting as Algorithm Output Granularity AOG and the processing
settings as Algorithm Processing Granularity APG. In general, they are referred to as the
Algorithm Granularity Settings or AGS.

The AIG represents the process of changing the data rates that feed into the algorithm
such as sampling rates or data structure. The AOG represents the process of changing the
output size of an algorithm such as the number of clusters formed by a clustering
algorithm. The APG represents the process of changing the algorithm parameters to
consume less processing power while changing the randomization factor is an example of
an APG setting. The resource-aware framework consists of three main components:
1. A resource monitoring component that periodically monitors the availability of various

resources. The implementation of the resource monitoring component is platform
dependant and the resources to be monitored can also vary. Common resources are
battery charge, remaining memory, CPU load, communication buffers or bandwidth.

2. The data mining algorithm processes data in real-time.
3. The algorithm granularity settings that is responsible for adjusting the mining

algorithm parameters according to resource availability.

Fig. 1. The resource-aware framework by Gaber and Yu [9].

Gaber and Yu [9] have implemented a resource-aware clustering algorithm in Matlab,
called RA-Cluster, which uses the resource monitoring component to adapt to resource
availability. RA-Cluster adjusts its microcluster creation radius threshold according to
remaining memory, sampling rate according to remaining battery and the randomization
factor according to CPU utilization. By increasing the radius threshold, RA-Cluster

61

discourages the formation of new microclusters, thus, reduces memory consumption. This
is done in combination with the removal of outliers and inactive microclusters to free
more memory. The randomization factor affects a strategy called randomized assignment.
The randomized assignment means that when determining a new data point, only a
random number of existing microclusters are examined instead of all microclusters. The
higher the randomization factor is, the less number of microclusters are examined. RA-
Cluster uses adaptor threshold bounds to adjust the trade off between the resource
adaptation and accuracy loss of the algorithms.

In our previous work, we have developed a generic resource-aware framework for
wireless sensor networks. The framework has been used to implement a resource-aware
clustering algorithm, which we termed Extended Resource-aware Cluster or ERA-Cluster.
We have implemented and tested the framework in an actual sensor node. The sensor
platform is the novel Sun Small Object Programmable Technologies sensor node from
Sun Microsystems, a.k.a. Sun SPOT. Sun SPOT uses the Squawk Virtual Machine, which
is a high performance JVM written mostly in Java and designed specifically for resource-
constrained devices. Applications for the Sun SPOT node is written entirely in Java and
can be deployed and run from the node. Details about the non-distributed ERA-Cluster
algorithm can be found in [10].

This paper presents the complete distributed resource-aware framework for wireless
sensor networks. By distributed, we mean a hierarchical structure, in which each node can
do some data processing such as clustering but the results will be integrated at a parent
node which in turn sends to other higher level parents or to base station to answer some
queries or for further offline data mining. Firstly, we will discuss the issues coming up
within the design of the framework, our solution as well as other alternatives. Secondly,
we describe our specific implementation on the Sun SPOT platform.

4 Distributed Resource-aware Online Data Clustering

In the following, we describe our approach to distributed resource-aware data clustering in
sensor networks, termed DERA-Cluster. We start by defining the problem we want to
solve. After that, we describe our clustering algorithm and how it can adapt to
computational resource availabilities. In particular, we focus on how to react to low
battery resources in a distributed way in order to meet the lifetime goal with maximal
result accuracy. We describe our solutions with respect to the feasibility of the
development platform as well other possible alternatives.

4.1 Problem definition

We consider a system of a hierarchical or peer-to-peer wireless sensor network that
comprises hundreds of nodes. Each node monitors the environments and does clustering
over these collected online data. We propose DERA-Cluster, a distributed resource-aware
online clustering algorithm, which can adapt to computational resource availabilities. In a
distributed computational model, the main goal is that given a user-specified running time

62

and a task such as data clustering, the aim is that our network is able to complete the
preset runtime and produce as accurate results as possible. The other objective is to
minimize the accuracy loss in case few nodes die or stop working due to low availability
of resources such as running out of battery, full of memory, and/or full of CPU utilization.
Our approach is to migrate current results from a near-dead node to another ‘best’
neighbour. This gives rise to three main questions:

- Which neighbour to migrate to?
- When to migrate?
- How to migrate (and merge these clustered data)?
In general, the issues are divided into three aspects: migration of data, predicting

dynamic thresholds and wireless sensor networking issues.

4.2 The core algorithm

The core of DERA-Cluster is based on our previous work in [10] where we developed a
resource-adaptive online clustering algorithm called Extended Resource-aware Cluster or
ERA-Cluster. Via ERA-Cluster, we wanted to show a typical AGS scheme – the way the
algorithm adjusting to resource availability. To the best of our knowledge, ERA-Cluster is
the first resource-aware algorithm that runs on a sensor node with limited resource
availability. ERA-Cluster is an online threshold-based clustering algorithm, which can be
used to reduce or summarize streaming data into microclusters. We allow mechanisms to
control the accuracy of the algorithms.

In this paper, we extend this work to DERA-Cluster, a fully distributed clustering
approach. The core algorithm runs locally on each node where it subscribes to the
resource monitor to receive resource events, and adapts to changes in battery level,
remaining memory and CPU utilization similar to what we introduced in [10]. Beside this
local adaptation, we introduce a new distributed strategy: If the battery level drops below
a minimal threshold, a node will migrate its microclusters to a suitable neighbour, where
they will be merge with the existing microclusters. In the following, we present the details
of our approaches to migrate microclusters – when, where, and how – in DERA-Cluster.

4.3 Using linear extrapolation model to estimate dynamic migration threshold

A node has to dynamically estimate if the node is able to complete the runtime at each
timeframe. If not possible then it will migrate its current result to the best neighbour. In
order to answer the question when to migrate, we use a simple linear regression model to
dynamically and iteratively estimate three thresholds in descending order:

1. the adaptive threshold,
2. the best-neighbour-finding threshold, and
3. the migrating threshold.
The adaptive threshold is the one that triggers the resource adaptation process. This is

described in details in [10]. However, there are cases which resource adaptation cannot
improve much the situation. In that case, we choose to migrate its existing results before it
dies. The second threshold is called best-neighbour-finding threshold. As its name

63

suggests, when resources drop below this threshold, the node starts to broadcast request to
its neighbours. Information in the replies is the remaining resource levels. The link quality
can also be estimated from the replies. From this information, a ‘best’ neighbour will be
marked. Finally, when resources reach the migrating threshold, which typically just
enough energy for it to send its data before it dies, this node will migrate its data to the
selected neighbour. One simple approach to know when to adapt to resource availability
or to migrate data is to use some predefined threshold. For instance, when the battery level
reaches 70%, a node can start to adapt to resource availabilities; when battery reaches
30%, it starts to query for best neighbour and when the battery reaches 10%, it migrates
results. This approach is simplest and also easiest to implement. Under some cases such
as where all nodes do the same operation and the resources are consumed steadily,
perhaps this is the best approach. However, we are also interested in developed a more
dynamic scheme whereas user does not need to specify these predefined threshold but the
node dynamically estimate these thresholds. We choose to use a simple linear
extrapolation model to estimate whether a node is able to complete its specified runtime.
It is the only suitable regression model because non-linear regression model are
complicated to implement and cost a significant amount of energy and computational
resources.

Fig. 2. Linear extrapolation model.

Fig. 2 shows our linear extrapolation model. Suppose, a node is programmed to run for
10 minutes, which is marked t10. At each time frame t0, t1, t2 the node checks its
availability resources but it keeps only the most recent time frame resource record. The y-
axis shows the battery level. Soon after started running, at time t0, the node measures its
battery level. At time t1, it re-measures the battery and calculates the line equation
through t0 and t1 which is used to check if it can complete 10 minutes runtime. In this
case, it does so the node continues run normally. At time t2, the node re-measures the
battery level. In this case, battery drops significantly and it detects that it cannot reach 10
minutes runtime. Thus, it starts the resource adaptation process. Later, if the node detects
that resource adaptation cannot improve the situation, it starts to query for best neighbour.
Finally, it will migrate result when battery level reaches the minimum amount necessary
for sending data. Currently, this minimum battery level is pre-defined for the sake of

64

simplicity. Given a certain sensor platform, we can measure or estimate level by
experimenting with the node.

4.4 Selecting ‘best’ neighbour

To find the ‘best’ neighbour to migrate data to, a node can broadcast a query to all of its
neighbors asking for their current computational resources level. From the replies, it can
also detect the link quality. Most platforms allow this feature. In our approach, we use
such broadcasting and then built a two dimensional matrix to represent this information
and we have a weighting scheme and a formula to determine the ‘best’ neighbour. For
example, remaining battery is given the best priority; second comes link quality and
remaining memory; last is CPU utilization.

4.5 Migrating data.

Data is sent in byte array format, not string, to minimal the amount of transferred data.
As current SPOT’ API does not support the serializable mechanism directly, we need to
create our own mechanism to marshal/unmarshal objects to byte array. Basically, we
define an IPersistence interface which contains the persist() and resurrect() methods. The
Cluster class, which represents microcluster, extends this interface and implements these
two methods defining how its attributes are actually persisted and revived. We also create
a class called VectorHelper to serialize the Vector class, which contains collection of
microclusters. Upon migration, ERA-Cluster persists all of its current microclusters to
byte array then delegate to the Communicator class to send this data. Communicator is
responsible for fragmenting this data into multiple datagram, adding appropriate header
and flags before sending off the datagrams. At destination, the data is received and
assembled by the Server class.

4.6 Merging data at destination.

At the destination node, the new arrival clustered data will be merged with the existing

data on the node. The merging method depends on the mining algorithms. For our DERA-
Cluster, the algorithm to merge the data is as follows:

FOR EACH new microcluster
 find the minimum distance min_dist to all existing microclusters
 IF min_dist > cluster_creation_ threshold

keep this new microcluster
 ELSE

merge this new microcluster with the microcluster with min_dist.

Fig. 3. DERA-Cluster's merging algorithm.

65

The merging formula can be a simple calculation of average mark with weights. Given
two microclusters (a1, a2... aN) with K number of records and (b1, b2… bN) with L number
of records. Each new attribute of the new microcluster is given by (1):

 (1)

The number of records of the new cluster is K + L.

4.7 Networking issues

Firstly, most of current sensor node platform supports two basic type of communication:
the packet-based or datagram-based communication and the streaming communication.
The communication is, however, also one of the most significant factors that consume
energy of the node. Thus, in general case, we choose datagram-based communication
because it cost much less energy compared to streaming communication. The unreliability
factor can be taken into account during implementation.

 Secondly, when a node is querying for ‘best’ neighbour, broadcasting will be used
as sensor networks may not necessarily have a robust routing system implemented. When
broadcasting, we should assume we only get replies from ‘direct’ neighbours or the
neighbours within the range of the sensor node. One issue that should also be noticed here
is that the network follows a hierarchical structure, thus, one might consider the case that
a child node always migrate to the parent node whenever it runs out of resources. That is a
much simpler model and easier to implement. However, it is not always the best solution
as it may lead to a bottleneck at the parent node. Migrating-to-parents can be used in a
heterogeneous network in which parent nodes are of different kind than child nodes and
have more resources. However, with a network that uses similar nodes, migrating to
parent nodes is not the optimum solution.

5 Implementation of the Distributed Resource-Aware Framework

This section discusses issues we faced during the design and implementation of our
distributed resource-aware framework for online data mining on the Sun SPOT platform.

5.1 Architectural design of the resource-aware framework

We use a couple of software design patterns to make the framework generic,
extensible and maintainable and easy to implement on any platforms. Design patterns are
classified in the well-known ‘Gang-of-Four’ book [11].

Firstly, we use the publish/subscribe pattern to decouple the resource monitor and the
adaptive mining algorithms that subscribe to receive resource availability updates. By this
way, we can support one or many processing techniques that subscribe to enable resource-
awareness. Besides, future extension or modification can be made to the resource monitor

66

without any change to the rest of the system. As can be seen from Fig. 4, we have
implemented our ResourceMonitor extends the Publisher class, which keeps a list of
references to the subscribers. The algorithms that wish to receive resources updates need
to implement the Subscriber interface. The ResourceMonitor can then use the method
notifySubscriber (Object resourceEvent) to dispatch resource events.

Fig. 4. Publish-Subscribe pattern of resource-awareness framework.

Secondly, we have implemented an abstract factory pattern for the data stream
generator. We have a Sensor class to generate actual data stream sensed from the
environment. Currently, data are light, temperature and 3D acceleration values, x, y and z.
However for experimental purposes, there is the need for some synthetic data generator
that gives us control on the evaluation parameters. For this purpose, we implemented a
RandomDS class, which generates random data suitable to test our clustering algorithm.

In order to uncouple the data stream generator with the clustering algorithm, we use
the factory design pattern. Following this pattern, we create a generic class called
DSGenerator from which both Sensor and RandomDS extend. DSGeneratorFactory is
responsible for creating DSGenerator. The implementation of DSGenerator is
encapsulated and unknown to outsiders. Therefore, we can alternate between Sensor and
RandomDS without changing the rest of the code. Fig. 5 shows the class diagram of the
factory pattern.

Fig. 5. Factory pattern. Fig. 6. Singleton pattern.

67

Thirdly, instead of creating a new resource event object for each update, we choose to
have only one static singleton object of the ResourceEvent class. This can minimize the
consumption of limited virtual memory of the node. Following this pattern (Figure 6), the
constructor of each class is marked private instead of the normally public keyword. This
means outside classes cannot arbitrarily create new object of this class. We then have a
public and static method named getInstance() to return an object of this class. This
method will return the existing object if there is already one or create a new object.
Besides the resource event, some entities such as the battery simulation class and CPU
utilization class are desired to be unique throughout the scope of the application.
Therefore, we also apply the singleton pattern to these classes.

5.2 Resource Monitor

The responsibility of the resource monitor is to periodically examine remaining battery,
memory and CPU utilization and publish the resource report, which contains status of
various resource availabilities. We allow two ways of updating the resource report,
periodic and aperiodic updating schemes. The periodic scheme is the traditional way of
updating. This means that the resource monitor notifies the subscribed processing
techniques over fixed time frames. The drawback of this approach is that if there is
stability in the resource level, CPU utilization will be wasted as there is no need to adjust
the algorithm settings. Thus, we have implemented an alternative method, which is the
aperiodic scheme. The aperiodic scheme only notifies subscribed processing techniques
when the accumulative change in resource level is greater than a significant threshold.
This threshold is submitted to the resource monitor during the algorithm’s subscription.
For example, an algorithm can request to be notified only if there is more than 10% or 5%
changes in resource level. This approach can greatly reduce processing and
communication cost. To further reduce the use of the limited memory size of the node,
there is only one resource event object follows the singleton pattern.

The current implementation of the resource monitor allows monitoring of battery
charge, free memory and CPU utilization. For the memory, we use the available API
provided by Sun SPOT as memory can be consumed quickly. However, we create two
simulations for the battery and the CPU utilization to facilitate the manipulation of
resource availability, thus, make it easier to experiment with resource adaptation and
accuracy of the algorithm. The battery simulation employs a credit point system, which is
used by Younis and Fahmy in [12]. With this approach, each activity of the sensor node is
assigned an amount of points and the maximum battery capacity is defined. Activities
such as sleep mode, send/receive radio signal, sensing data and computational processing
are defined. During operation, the battery charge is decreased gradually according to the
sensor activities. With the CPU simulation, we use a simple queuing model that has a
fixed queue length and tasks with random generated service time. The CPU utilization is
computed as the percentage of total service time of existing tasks in the queue over
maximum load. Both simulations have methods to set the resource to a specified level to
facilitate experimental setup.

68

5.3 High level architectural diagram

Fig. 7 illustrates the high level architecture of the system. The ERA-Cluster and the
resource monitor block are existing components from our previous project. We add the
Communicator to facilitate the sending of datagram and the ServerDeamon is responsible
for listening for incoming request and act accordingly. These building blocks make up the
basis for the system.

Fig. 7. Distributed Resource-aware Framework

6 Experimental Evaluation

We conducted a small experimental evaluation of our resource-aware framework. We
focus on proving two issues: The first is the resource adaptiveness of the framework. In
other words, how effective the mining algorithms adapt to resource changes. This issue is
to examine by comparing the resources – memory, battery, CPU utilization consumption
pattern of the mining algorithm with against without the resource adaptiveness. The
second issue of the evaluation deals with proving that the accuracy of the mining
algorithm is acceptable even with its parameters adjusted to resource levels. This can be
done by using another well known algorithm as a benchmark. For example, we compare
the accuracy of our DERA-Cluster with the Weka’s [13] simple K-Means clustering.
Results show that DERA-Cluster’s accuracy is comparable to Weka K-Means under
normal operation (with resource adaptiveness). Under high CPU load, the accuracy will

69

be reduced. However, the overall accuracy is still acceptable. These experiments and
results are detailed in [10].

For the distributed case, we aim to show that the accuracy of the migrated results at
the destination node is acceptable. Similar to the previous approach, we use Weka K-
Means clustering algorithm as a benchmark. The rationale behind using K-Means as a
benchmark are also discussed in [10].

 We use synthetic data for the experiments. Values are drawn from an uniform
random integer of the range 0 to 100. We use a network comprising of two nodes for the
experiments. We run node 1 for 10 seconds then migrate its clustered result to node 2.
This migrated result is then merged with existing clustered result by the algorithm. We
investigate the accuracy of this merged result. The original synthetic data set used up to
that moment of node 1 and node 2 are combined. We then run K-Means 3 times over this
synthetic data with k = n, n is the number of microclusters of the merged result. We sort
all of the results of the merged result and three K-Means according to ascending order of
mean value of the microclusters. We then plot the mean value of DERA-Cluster against
the average mean value of K-Means. Figures 8 and 9 shows the results of this experiment.

Fig.8. Accuracy of merged result compared to K-Means. Fig.9. Result deviation of merged result and K-Means.

 From Figure 8, we can see a closed match between the two results despite some
deviations. To justify these deviations, we calculate the result deviation of the merged
result with K-Means, which is the absolute value of the deviation between the merge
result and K-Means average over the maximum range of the mean value. Figure 9 shows
that these deviations are small with the maximum accuracy loss are less than 10% while
The average result deviation was less than 0.05. In other words, average accuracy loss is
less than 5%.

70

7 Conclusions

This paper has presented a distributed resource-aware framework which can be used to
enable resource adaptiveness for selective mining algorithms to be used in wireless sensor
networks, in particular the Sun SPOT environment. The design of the framework is
detailed and our approach to migrate results when nodes run out of battery are described.

Using the framework, we have implemented a distributed resource-aware online
clustering algorithm termed DERA-Cluster. We have evaluated the accuracy of the
migrated and merged results at the target node. Experimental results show that the loss of
accuracy is acceptable. Possibilities for further work include: a) Evaluate the performance
of the frame work on actual sensor data and with a network of multiple nodes. b)
Implementation and study of the framework in another sensor platform such as Berkeley’s
Mote for comparison. c) Using the resource-aware framework to implement other online
mining algorithms.

Acknowledgements. This work is supported by the Australian Research Council
(ARC) under grant no. DP0664782, and by Sun Microsystems Laboratories.

References

[1] T. Zhang, R. Ramakrishnan, and M. Livny, "BIRCH: an efficient data clustering method for
very large databases", SIGMOD Rec., vol. 25 (2), June 2006.

[2] C. Aggarwal, J. Han, J. Wang, and P. S. Yu, "A Framework for Clustering Evolving Data
Streams", in Proc. of VLDB 2004, 2003.

[3] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, "Mining data streams: a review", SIGMOD
Record 34(2): 18-26, 2005.

[4] C. Giannella, J. Han, E. Robertson, and C. Liu, "Mining Frequent Itemsets over Arbitrary Time
Intervals in Data Streams", technical report, Indiana U., 2003.

[5] C. Franke, M. Karnstedt, and K.-U. Sattler, "Mining Data Streams under Dynamically Changing
Resource Constraints", in KDML 2006

[6] W.-G. Teng, M.-S. Chen, and P. S. Yu, "Resource-aware mining with variable granularities in
data streams", in SDM 2004, 2004.

[7] S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kargupta, "Distributed Data Mining in
Peer-to-Peer Networks", IEEE Internet Computing, vol. 10, pp. 18-26, 2006.

[8] S. Banyopadhyay, C. Giannella, U. Maulik, H. Kargupta, S. Datta, and K. Liu, "Clustering
distributed data streams in peer-to-peer environments", Information Science, vol. 176, 2006.

[9] M. M. Gaber and P. S. Yu, "A framework for resource-aware knowledge discovery in data
streams: a holistic approach with its application to clustering",in Proceedings of ACM SAC 2006.

[10] D. N. Phung, M. M. Gaber, and U. Roehm, "Resource-aware Online Data Mining in Wireless
Sensor Networks", in Proceedings of the IEEE Symposium on Computational Intelligence and
Data Mining. Honolulu, USA, 2007.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns - Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1993.

[12] O. Younis and S. Fahmy, "HEED: a hybrid, energy-efficient, distributed clustering approach
for ad hoc sensor networks", IEEE Trans. on Mobile Computing, vol. 3 (4), pp. 366-379, 2004.

[13] I. H. Witten and E. Frank, Data Mining: Practical machine learning tools and techniques, 2nd
Edition, Morgan Kaufmann, San Francisco, 2005.

71

A Model for Quality Guaranteed
Resource-Aware Stream Mining

Marcel Karnstedt1 Conny Franke2 Mohamed Medhat Gaber3

1 Technische Universität Ilmenau, Ilmenau, Germany
2 University of California at Davis, Davis, CA, USA

3 Tasmanian ICT Centre, CSIRO ICT Centre, Australia

Abstract. Data streams are produced continuously at a high speed.
Most data stream mining techniques address this challenge by using
adaptation and approximation techniques. Adapting to available resources
has been addressed recently. Although these techniques ensure the conti-
nuity of the data mining process under resource limitation, the quality of
the output is still an open issue. In this paper, we propose a generic model
that guarantees the quality of the output while maintaining efficient re-
source consumption. The model works on estimating the quality of the
output given the available resources. Only a subset of these resources
will be used that guarantees the minimum quality loss. The model is
generalized for any data stream mining technique.

1 Introduction

In the past years, data streams emerged as a new kind of data source. Analyzing
data streams thus becomes more and more important as new areas of application
are identified. Applications like click stream analysis and the analysis of records
from networking and telephone services are among the most popular examples for
data stream mining, i.e., the discovery of patterns and rules in the data. Another
important area of application is the stream processing in sensor networks, where
continuously generated data is processed as far as possible onboard the sensor
node in order to preserve the limited bandwidth and energy.

Due to the unique characteristics of data streams, like their potentially infi-
nite nature and the vast amount of data they are carrying, data stream mining
requires a different processing than mining on databases and data warehouses.
Efficient resource consumption is one of the major objectives when designing
stream mining algorithms. Rather than storing the incoming data and process-
ing it offline like in traditional data mining, data stream mining is much more
constraint in terms of available resources.

Most data stream algorithms provide approximate results, often by using a
summarization of the stream (called a synopsis) and determining precise error
bounds. Thus, a notion of output quality is immediately associated with this
process. Which information from the data stream is stored is crucial for the
quality of the data mining results. Note that we explicitly refer to the output

72

quality of the mining technique, in contrast to aspects of the input quality, which
is a related but still different field of research.

Well-known state-of-the-art of stream mining algorithms reveal that while
many of the algorithms strive for minimizing the resources they need, most of
them are not designed with regard to adaptation to resource availability. Specif-
ically, they fail to provide well-defined routines for situations where the avail-
able resources are exhausted. Most algorithms are designed to work in a static
manner, without taking into account that the algorithm’s resource requirements
might exceed the amount of resources provided. In such a case the algorithm’s
behavior depends in its implementation, and thus might be undefined. Recent
approaches (e.g., [1]) identified this issue, but still lack a clear consideration of
correlations between resource-adaptation and output quality.

When dealing with complex stream mining systems, where usually a set of
queries runs continuously and resources are shared among them, we additionally
have to consider the interactions between different mining operators. In such
systems, algorithmic output quality is usually referred to as Quality-of-Service
(QoS) [2]. Note that, when combining resource and quality aspects of multi-
ple, possibly dependent, mining operators, we start closing the mentioned gap
between input quality and output quality of mining techniques.

In this work, we consider all of the aforementioned aspects and integrate
them into one single framework. We propose a generic three layer model for
quality guaranteed resource-aware (QGRA) data mining on data streams. The
model is designed to be applicable to a wide variety of stream mining techniques.
Our model assesses the output quality and the current status of resources and
adapts the algorithm’s resource consumption accordingly. This way, we are able
to maintain resource efficiency and we may use lesser resources to achieve the
same level of accuracy in the output. At any time, we will be having the max-
imum achievable quality according to the resources. Most static data stream
mining algorithms leave excess resources unused. With our framework, available
resources are utilized in an optimal way at any point in time.

The model utilizes a set of functions that is provided by the applied algo-
rithm to control the adaptation. One function is used to determine the algorith-
mic parameters from the assessed resources. Then, a second function is used to
determine the output quality based on the chosen algorithmic parameters. Other
functions are used to compute lower bounds for the algorithmic parameters in or-
der to maintain the quality of the output. Using this strategy, our model bridges
the gap between quality-aware mining and general resource-adaptivity in data
stream mining by monitoring the resource consumption.

The remainder of this paper is organized as follows. In Section 2 we provide
some background about data mining quality and resource-aware data stream
processing. Our formal model is introduced in Section 3. There, we give a brief
description of the functionalities and a formalization of all elements. Finally,
Section 4 concludes this paper and outlines areas for future work.

73

2 Background

2.1 Data Mining Quality

approximation QMa

Quality of Reaction time
QTcinterestingness QMi

Quality of Time range
QTr

Time granularity
QTg

Methodical quality QM Temporal quality QT

Quality Q

Fig. 1. Different quality measures

Most data mining algorithms have control parameters to determine how well
their output approximates the actual result. These control parameters differ for
each technique and data mining goal, but they can be arranged into classes of
related parameters. Typical examples include the number of microclusters main-
tained during clustering, or the maximum frequency error in frequent itemset
mining. The values of these parameters have a strong influence on the workload
of the algorithm as well as on the size of the synopsis it maintains. In general,
the better the approximation of the output should be, the more resources the
algorithm consumes. Due to this close correlation between these parameters and
the output quality of an algorithm, we will refer to this set of parameters as
adaptation factors. After identifying the adaptation factors of an algorithm, we
are able to adapt its resource requirements and output quality.

In analogy to a classification of adaption factors, affected quality measures
can be classified, too. We distinguish several different classes of quality measures,
which are categorized in Figure 1. This classification is comprehensive, yet ex-
tensible without restricting the proposed framework. All QT∗ are identical for
different mining problems and symbolize concrete quality measures, while QM∗
represent classes of measures that are always specific to the investigated prob-
lem and the applied algorithm(s). For example, in the context of clustering these
measures involve the clustering quality, e.g., SSQ, diameter and other standards
to evaluate the final result of a clustering. One traditional measure for the prob-
lem of frequent itemset mining is the error rate ε, which defines the maximal
deviation of the observed frequency to the actual frequency of an itemset. For
several specific mining applications, special interestingness measures (QMi) have
been proposed in the literature (e.g., [3]). In the context of frequent itemsets the
support is one such interestingness measure.

As many existing algorithms take time sensitiveness into account, we define
time as another important quality measure. QTr describes how far we can look
back into the history of the processed data stream and QTg how exact we can do
this, which means which time granularity we can provide.QTc corresponds to one
of the main challenges of stream mining: the actual time necessary to register
changes in the stream. As might be expected, adaptation factors sometimes

74

influence more than one of these quality measures, making them dependent from
each other. For more details on the different quality classes we refer to [4]. For
the remainder of this paper, if we refer to all quality measures as a whole, we
will use the symbol of the superclass Q and the general term ‘quality’.

2.2 Resource and Quality Awareness

Most data stream mining algorithms are designed to use as little resources as
possible. However, they are often not aware of the actual amount of resources
available and thus may either fail to utilize them completely or may not be able
to work properly with the given resource constraints. We therefore distinguish
algorithms that are aware of the available resources and are able to adapt their
requirements accordingly. When talking about resources, we do not only consider
memory consumption, despite this being the main factor in most streaming
applications. In addition, since data streams are often generated at a rapid rate,
algorithms must need only minimal time to process the data in order to keep up
with the pace of the stream. In the example of sensor networks, bandwidth and
battery power are additional constraint resources.

Apart from the adaptation factors, properties of the data stream also have
a strong impact on an algorithm’s resource requirements. One of the most im-
portant properties is the streaming rate. Another one are characteristics of the
individual elements in the data stream, like the range and distribution of their
values, and their size. This correlates to adaptation methods like sampling and
load shedding [5], which can be used on the input level of mining techniques to re-
duce the workload, and thus the resource requirements, by decreasing the volume
of the incoming stream. Due to their generic nature, they are applicable to all
mining algorithms, since they do not require any changes to the algorithm itself.
As a consequence, however, applying these methods results in the loss of guar-
anteed error bounds which the original algorithm may have provided. Instead,
only probabilistic error bounds can be established. This may be a non-desirable
tradeoff for some applications. Moreover, determining these probabilistic bounds
should be expected to be very complicated and, due to the evolving character of
streams, potentially erroneous.

Other levels of resource-adaptation throughout the whole process of stream
mining have been identified and discussed in recent works. Methods that can
be applied to most data stream mining algorithms have been proposed for ex-
ample in [6]. Most other approaches either do not formalize their approaches
accordingly or focus on single, rather limited, levels of adaption. Moreover, to
the best of our knowledge, all of them lack the combination of resource and qual-
ity awareness. That means, although they deal with resource adaptation, they
do not take quality aspects and guarantees into consideration.

75

3 QGRA Model

3.1 Model Description

Gaber et al. [6] have proposed and developed a generic model to adapt data
stream mining algorithms to the current availability of computational resources.
The model aims at prolonging the life-time of the running technique in critical
situations of low availability of computational resources. It has been coined as
Algorithm Granularity (AG). AG can adapt the consumption of computational
resources according to measured patterns of consumption over a pre-set time
window.

AG has been classified into three classes according to the adaptation end-
points. Algorithm Input Granularity (AIG) adapts the input streaming data
to the mining algorithm. On the other hand, Algorithm Output Granularity
(AOG) changes the output size of the algorithm. Finally, Algorithm Processing
Granularity (APG) can adapt the algorithm parameters to consume less CPU
cycles. The changes in AG affect the accuracy of the output. Therefore, the model
sets bounds on the AG settings in order to keep the accuracy loss bounded. These
AG settings have been used to develop an online clustering algorithm termed as
Resource-Aware Cluster (RA-Cluster).

Although the AG model has proven its applicability to change the resource
consumption, the model is still facing the following issues:

– The bounds over the AG settings have no guarantee over the quality of the
output. Because the quality relies on many other interleaving factors such
as data distribution and the running mining technique.

– The changes in the AG settings are not quality-aware. That means the algo-
rithm changes according only to the availability of computational resources.
This may lead to accuracy loss and/or extra use of computational resources,
because in some cases, we can gain the same accuracy using less resources.

– The AG settings do not take into consideration the interaction among the
different settings. Addressing this issue can optimize the use of resources.

In this paper, we propose a new model QGRA that extends AG in order to
address the above issues. The model is able to adapt in real-time according to
resource consumption patterns as well as the quality of output. Franke et al. [4]
have proposed a quality-aware data stream mining model. This model will be
extended to assess the quality of the output in real-time. This assessment will
be used to choose the best combination of AG settings that minimize resource
consumption, and maximize the quality of output.

The model has three layers. The first one is the resource monitoring that
works over dynamic time intervals. Unlike the AG model, the time window is
dynamic and changes according to the criticality of the available computational
resources. The second component is the real-time quality assessment. This will
be able to provide information about the quality of the output given the avail-
ability of resources. It will also be able to provide the system with information
about preserving computational resources while maintaining the same quality

76

Fig. 2. Three layer model

level. The output of the second component will be passed to the AG settings
(AGS) component. This third component feeds the mining algorithms with in-
put, output and processing settings.

3.2 Formalization

The QGRA model relies on the notion of variables v ∈ V , which comprises all
dynamic components the internal formulas and mechanisms are built on. We
define a partitioning V̆ over V , where each v belongs to a certain class Ĉ of
variables, described as follows. As V̆ is a partitioning,

∀Ĉ1, Ĉ2 ∈ V̆ , Ĉ1 6= Ĉ2 : Ĉ1 ∩ Ĉ2 = ∅

holds. That is, each variable v belongs to exactly one class Ĉ of variables.
On the one side of the adaptation framework, we assume a set of resources

R̂ ∈ V̆ ,

R̂ := {r|r is a limited resource consumed by the algorithm}.

Main representatives of R̂ are the consumed memory and the number of CPU
cycles needed. This corresponds to the kinds of resources already considered in
previous works like [6, 4, 1].

The basis of the framework is enriched by quality awareness, defined in terms
of quality measures Q̂ ∈ V̆ ,

Q̂ := {q|q is a quality measure of interest}.

There is a wide variety of quality measures that might be integrated into Q̂. We
present a brief classification in Section 2.1, which is based on the more detailed
work in [4].

On the contrary side of the framework, we expect any stream mining algo-
rithm to define a set of parameters P̂ ∈ V̆ ,

P̂ := {p|p influences resource requirements and/or
output quality of the algorithm}.

77

These parameters can be seen as the “tuning knobs” of the particular method.
This includes representatives of adaptation factors corresponding to the afore
mentioned classes AIG, APG and AOG, e.g., sampling rate, internally used
thresholds or number of output objects (like the number of output clusters). In
addition, we also include parameters that cannot be adjusted but the method
exhibits some dependence on, in either resource requirements, output quality, or
both. Examples of this kind of parameters are distribution models the stream
data follows or the fraction of noise. More on the specific requirements an algo-
rithm has to meet can be found in Section 3.3.

In [6] the sets R̂ and P̂ were used in order to implement a one-way resource
adaptation. This means, predictions for relevant r ∈ R̂ are used to adapt p ∈ P̂
accordingly, while the prediction of future resources is based on the observed
recent resource consumption. Now, we introduce how to combine this idea with
the quality-awareness proposed in [4].

We define an instance F (Ĉ) as a materialization of all variables from class
Ĉ ∈ V̆ which are actually involved in the adaptation process, i.e.,:

F : V̆ → V ×<
F (Ĉ) := {v, f(v)|v ∈ Ĉ∧ 6 ∃w 6= v : w ∈ Ĉ

∧f(v) is the current value of v}.

As v only defines which variable is concerned, f(v) represents an actual value of
that variable. To improve readability, we use C short for F (Ĉ). In other words,
C represents all variables from class Ĉ together with the corresponding values.
For instance, we use R to represent all limited resources and their actual amount
currently consumed by a specific algorithm.

Informally speaking, Ĉ represents the schema level of the variable classifica-
tion, i.e., a description of which variables belong together in a class. Accordingly,
C denotes an instance of Ĉ, that is, it associates each variable v ∈ Ĉ with an
actual value f(v). In the above definition of C, we write 6 ∃w 6= v : w ∈ Ĉ to
denote ∀(v, f(v)) ∈ F (Ĉ) : v ∈ Ĉ ∧ ∀v ∈ Ĉ : (v, f(v)) ∈ F (Ĉ). That is, on the
instance level we have exactly one value f(v) for each v ∈ Ĉ. Note that distin-
guishing between classes Ĉ and instances C is not urgently necessary to make the
model work. However, we believe that this makes the model more flexible, result-
ing in more algorithms and approaches being applicable to it. For instance, the
introduced notion allows for an easy but still mathematically consistent integra-
tion of “schema-based” functions, e.g., which select actually considered quality
measures from the set of all possible ones.

On the notion of the variables and instances we introduce two more kinds of
sets. First, we define RL to represent current resource limits and QL to represent
requested quality guarantees. Whether these limits are met or not is described
by two functions:

Φ(RL, R) :=

{
true if ∀(v, x) ∈ RL : (v, y) ∈ R ∧ x ≥ y

false else

78

The resource limits RL are met in R, i.e., Φ(RL, R) = true, if for each v ∈ R̂ its
value y in the instance R is less than or equal to its limit x in RL.

Ψ(QL, Q) :=

{
true if ∀(v, x) ∈ QL : (v, y) ∈ Q ∧ x ≤ y

false else

The quality guarantees QL are met in Q, i.e., Ψ(QL, Q) = true, if for each v ∈ Q̂
its value y in the instance Q is greater than or equal to its limit x in QL.

Finally, we define timelined variable instances CT . A set CT corresponds to
an instance C enriched by a timestamp t, which represents the time the according
values were effective. Thus,

CT := {v, x, t|(v, x) ∈ C∧ 6 ∃(w, y) 6= (v, x) : (w, y) ∈ C
∧(v, x) was effective at time t}.

CT associates each pair (v, x) ∈ C with a timestamp t. In the following, if we
refer to an instance of one specific time t we write Ct for short.

On the introduced sets we define the following functions:

ρ : RL ×RT × PT → {−1, 0, 1} (1)
φ : P → R (2)
ψ : P → Q (3)
τ : RL ×RT × PT → P (4)
ω : QL ×QT × PT × P → P (5)

The first formula ρ is used to decide whether future resource consumption should
be increased (underload situation, ρ = 1), decreased (overload situation, ρ = −1)
or nothing is to be done at all (ρ = 0). This decision is based on provided resource
limits, recent resource consumption and recent parameters. There are different
approaches for handling this issue. [6] proposes to calculate the number of time
frames remaining until resources are exhausted, whereas [4] uses a filling factor
describing the percentage of available resources already consumed.

φ and ψ take as input an instance of parameters and map them to the result-
ing instance of resources and quality measures, respectively. τ and ω can each be
seen as a kind of inverse function, mapping an instance of resources, respectively
quality measures, to an instance of parameters. As additional input, both τ and
ω accept recent parameter values and recent resources/quality measures. In or-
der to align the quality-based decision with a preceding resource-based decision,
ω also takes suggested parameters P as an input.

Based on these sets and functions the QGRA model works as illustrated in
Algorithm 1.

As mentioned before, the time intervals in which the QGRA method is ap-
plied are set dynamically. In the beginning, all parameters are set to achieve
highest possible quality. The algorithmic steps from Algorithm 1 are then ap-
plied at any time t. Based on the current resource consumption in time t provided

79

Algorithm 1 General QGRA algorithm at time t
1: Rt = res-mon(t)
2: if 0 6= ρ(RL,∪t

i=1Ri, Pt) then
3: P = τ(RL,∪t

i=1Ri, Pt)
4: P ′ = ω(QL,∪t

i=1Qi, Pt, P)
5: if Φ(RL, ψ(P ′)) then
6: P = P ′

7: end if
8: if !(Φ(RL, φ(P)) ∧ Ψ(QL, ψ(P))) then
9: return false

10: end if
11: else
12: P = Pt

13: end if
14: Qt+1 = {q, x, t+ 1|(q, x) ∈ ψ(P)∧ 6 ∃(u, y) 6= (q, x) : (u, y) ∈ ψ(P)}
15: Pt+1 = {p, x, t+ 1|(p, x) ∈ P∧ 6 ∃(o, y) 6= (p, x) : (o, y) ∈ P}
16: set parameters P
17: return true

by the resource monitoring component (line 1) and (dynamically) provided re-
source limits, ρ is used to decide whether resource utilization should be increased,
decreased or maintained (line 2). If any adaptation is necessary, a new set of pa-
rameters is determined using τ on the provided resource limits and on recent
resource consumption as well as parameters (line 3). In the next step, we re-
fine these parameters using ω on the QoS requirements and on recent quality
measures as well as recent parameters (line 4). In order not to work contrary,
ω also takes the set of parameters suggested before by the resource adaptation
as additional input. Only if the parameters modified like this still meet the re-
source limits (line 5), they are accepted (line 6). After all adaptation steps, the
new parameters are checked for resource and QoS requirements again (line 8).
If they are not acceptable, the failed resource and/or quality requirements are
signalized and reaction is left to the system or user. Otherwise, the resulting
qualities and parameters are stored for later access (lines 14 & 15) and finally
set (line 16). Note that, if no adaptation takes place, parameters for time t+ 1
are set to those from time t in order to build the timelined sets (line 12).

It is worth to note that formulas 4 and 5 involve solving a kind of optimization
problem, which is left to the specific mining technique. By this, the interaction
between different kinds of resources, quality measures and adaptation end-points
is regarded. A significantly more complex approach is to include qualities and
resources into one single optimization problem. But we expect any such problem
to be much too complex in order to be solved in practicable time.

Applying the model as proposed, there is only one question unanswered until
now: What quality is provided when querying the mining result of an arbitrary
time interval? As stream mining algorithms should support such queries but
quality measures differ between different time intervals, the answer to this ques-
tion is fundamental to support meaningful quality awareness. Thus, we define a

80

last function

ξ : QT ×N ×N → Q (6)

which determines an instance Q of quality measures extracted from the gathered
timelined qualities QT with respect to a given interval of time.

3.3 Requirements on Algorithms

Though we try to capture most of the existing data mining algorithms on data
streams, the proposed framework is not applicable to all mining algorithms.
There are some basic requirements that algorithms need to fulfill in order to be
extendable using our model.

Naturally, one of the crucial requirements is that parameters must exist in
the algorithm, so that we can choose adaption factors. Moreover, a strong cor-
relation between the adaption factors and the algorithm’s resource requirements
aids precisely estimating the quality of the output. Also, in order to antici-
pate an algorithm’s resource requirements as well as the quality of its output,
the algorithm must show homogeneous behavior when provided with an input
stream whose properties are maintained homogeneous as well. For example, most
threshold based stream mining algorithms meet these requirements.

Another important property is that there should exist a partitioning into
independent sections in the mining result of an algorithm. That means that
different values of the adaption factors only have “local” effects in the mining
results. This also indicates that it must be possible to query each of these in-
dependent sections separately, since otherwise the lowest quality setting of the
adaption factors in the history of the data stream processing will determine the
quality of the overall mining results. As an example, consider frequent itemset
stream mining using a landmark window model, where the error threshold is
one of the adaption factors. Since we can only query the complete history of the
stream, the lowest value of the error threshold ever used while processing the
stream will determine the overall output quality of this algorithm. Note that
this last aspect is not a strict requirement but rather a helpful property. If an
algorithm does not satisfy this requirement, it will still be applicable for the pro-
posed framework, but it will not be able to “recover” from low quality adaption
factor settings.

Currently, we are adopting the resource- and quality-aware mining techniques
we proposed in former works to the presented framework. Despite some last
formulas, this is almost done, which shows that the introduced formalization is
suitable for application to existing and future proposals.

4 Conclusions and Future Work

Mining data streams stresses our computational resources with regard to pro-
cessing power, memory requirements, energy and communication. In order to

81

ensure the continuity and consistency of a data stream mining process, adap-
tation to available resources is required. Although adaptation is crucial for the
success of the data mining process, its effect on the quality is of concern. Thus,
in this paper we propose a Quality Guaranteed Resource-Aware (QGRA) data
stream mining approach. The objective of this approach is two-fold. Firstly, the
adaptation is done while maintaining a guaranteed QoS set by the user. Sec-
ondly, utilization of resources is achieved through mapping of required resources
to quality measures. If the same quality could be achieved with less resources,
only the required resources are consumed with appropriate parameter settings.

Our work provides the mathematical foundation to add quality-guaranteed
resource awareness to most stream mining algorithms. Concrete instances of the
formulas given in this paper must be implemented by the respective algorithm.
We are currently working on applying our model to existing algorithms for the
three main data mining tasks, clustering, classification, and frequent itemset
mining.

The paper presents a pioneering work to address the two most important
challenges in data stream mining, namely, resource constraints and quality of
the output model. We believe in the flexibility and suitability of the proposed
framework in order to cover existing and following approaches as well as meeting
the special challenges of stream mining. By this, we built a valuable and essential
basis for future work on quality guaranteed resource-aware stream mining.

References

1. Jiang, N., Gruenwald, L.: Research issues in data stream association rule mining.
SIGMOD Rec. 35 (2006) 14–19

2. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku,
G.S., Olston, C., Rosenstein, J., Varma, R.: Query processing, approximation, and
resource management in a data stream management system. In: CIDR. (2003)

3. Tan, P., Kumar, V.: Interestingness measures for association patterns: A perspec-
tive. KDD WS on Postprocessing in Machine Learning and Data Mining (2000)

4. Franke, C., Hartung, M., Karnstedt, M., Sattler, K.: Quality-Aware Mining of Data
Streams. In: Information Quality (ICIQ). (2005) 300–315

5. Chi, Y., Wang, H., Yu, P.S.: Loadstar: load shedding in data stream mining. In:
VLDB, VLDB Endowment (2005) 1302–1305

6. Gaber, M.M., Yu, P.S.: A framework for resource-aware knowledge discovery in
data streams: holistic approach with its application to clustering. In: SAC. (2006)
649–656

82

Relational Transformation-based Tagging for Human
Activity Recognition

Niels Landwehr1, Bernd Gutmann1, Ingo Thon1, Matthai Philipose2, and Luc De
Raedt1

1 Department of Computer Science
Katholieke Universiteit Leuven

Celestijnenlaan 200 A, B-3001 Heverlee, Belgium
firstname.lastname@cs.kuleuven.be

2 Intel Research Seattle
1100 NE 45th Street

Seattle, WA 98105, USA
matthai.philipose@intel.com

Abstract. The ability to recognize human activities from sensory information
is essential for developing the next generation of smart devices. Many human
activity recognition tasks are — from a machine learning perspective — quite
similar to tagging tasks in natural language processing. Motivated by this sim-
ilarity, we develop a relational transformation-based tagging system based on
inductive logic programming principles, which is able to cope with expressive
relational representations as well as a background theory. The approach is exper-
imentally evaluated on two activity recognition tasks and compared to Hidden
Markov Models, one of the most popular and successful approaches for tagging.

1 Introduction

Smart systems that assist humans must be able to recognize the current context of the
user and the activity she is performing in order to suggest or take actions in an intelligent
manner. To recognize the context and activity, such systems can rely on streams of past
activities, context, and dense sensory information, as it is often gathered in ubiquitous
computing environments. Recognizing the current activity or context then corresponds
to inferring the activity or context from such sequential information. From a machine
learning perspective, this task is akin to many tagging tasks pursued in natural language
processing (NLP). For instance, in part-of-speech tagging, a form of “shallow parsing”,
the words in a sentence are to be labeled with the corresponding parts-of-speech (word
categories). In this paper, we will investigate this relationship and explore how tagging
techniques can be applied in activity recognition domains.

In NLP, many techniques have been developed and employed for tagging purposes.
Two popular techniques for part-of-speech tagging are Hidden Markov Models and
transformation-based learning [1]. While Hidden Markov Models have been applied in
many different areas, ranging from speech-recognition to activity recognition and bio-
informatics, to the best of the authors’ knowledge, transformation based learning has
only seldomly been applied outside the field of natural language processing.

83

Because the structure of natural language is quite rigid as compared to that of typical
activity recognition tasks, the existing transformation-based learners cannot directly
be applied for activity recognition. Therefore, we develop a more flexible relational
transformation-based tagger. This does not only provide an expressive representation,
which allows to easily model complex sensory information, but also an easy way to
incorporate prior domain knowledge in the learning process. Thus the key contribution
of this paper is the application of the transformation-based tagging methodology to rich
sensor data streams, which is realized by extending transformation-based tagging with
a relational representation based upon inductive logic programming principles.

The presented relational transformation-based tagger also extends earlier work on
relational transformation-based learning by [2] in that it focuses on tagging rather than
classification. More specifically, from inductive logic programming (and the work by
[2]) our technique inherits its search and refinement techniques (including a branch-
and-bound algorithm) and from transformation-based learning the error driven stacking
of rules.

The proposed method is evaluated in two activity recognition domains: “Activities
of Daily Living” (ADL) recognition from a stream of “object interaction” data [3], and
mobile phone profile prediction based on data collected by [4]. Experiments show that
obtained tagging accuracies are competitive with those of HMM-based approaches, and
it is easy to incorporate human-supplied background knowledge into the learning pro-
cess. Furthermore, and that is perhaps the key advantage of the relational transformation-
based tagger, the method can easily be extended to deal with variants of the tagging
problem, for instance the prediction of structured output tags (as in Logical Hidden
Markov Models [5]), and to cope with rich background knowledge.

2 Activity Recognition

Activity Recognition, in the broadest sense, is concerned with labeling a stream of sen-
sor data with a context or activity label. The sensor data stream is typically collected
from an ubiquitous computing environment, such as sensors embedded in everyday
objects [3] or data gathered from mobile phones [4]. The context or activity label pre-
dicted at every step in time can characterize the physical activity a user is performing,
her state of mind or intentions, or additional context information that cannot directly
be observed through sensors. Activity Recognition and related problems are important
challenges when designing the next generation of smart devices: knowing e.g. a user’s
intentions can make a device adapt to the current situation and thus improve usability.
Furthermore, the collection of data about human behavior can be interesting in its own
right, e.g. in elderly care. Here, it can be interesting to automatically generate reports
about an elderly person’s activities of daily living to detect medical problems at an early
stage, without need for continous human supervision in an elderly care facility.

The gathered sensor data takes the form of a continous, dense and often heteroge-
nous data stream. Depending on the complexity of the available sensor information,
the data might also be structured, i.e. not easily representable with simple flat symbols
from a fixed alphabet. As an example, consider the Activities of Daily Living (ADL)
domain visualized in Figure 1. In ADL recognition, objects which are used in activities

84

Relational
Representation

tag(w1, toastBread) tag(w2, toastBread) tag(w3, toastBread) ...
tag(w4, f lavorToast) tag(w5, f lavorToast) tag(w6, f lavorToast) ...

sensor(w1, toast) sensor(w2, toaster) sensor(w3, toast) ...
sensor(w4, knife) sensor(w5, butter) sensor(w6, toast) ...

time(w1, 1, 2) time(w2, 3, 6) time(w3, 7, 8) ...
time(w4, 9, 11) time(w5, 12, 13) time(w6, 14, 15) ...

Background
Knowledge

...

Activity Tag ToastBread FlavorToast BoilWater FlavorTea

Sensor
Reading

01
to

as
t

02
to

as
t

03
to

as
te

r
04

to
as

te
r

05
to

as
te

r
06

to
as

te
r

07
to

as
t

08
to

as
t

09
kn

if
e

10
kn

if
e

11
kn

if
e

12
bu

tte
r

13
bu

tte
r

14
to

as
t

15
to

as
t

16
kn

if
e

17
kn

if
e

18
ja

m
19

ja
m

20
w

at
er

21
w

at
er

22
w

at
er

23
st

ov
e

24
st

ov
e

25
cu

p
26

sp
oo

n
27

sp
oo

n
28

su
ga

r
29

su
ga

r
30

cu
p

Fig. 1. Relational representation of the ADL recognition problem. While a person is perform-
ing activities of daily living (such as preparing breakfast), a stream of object interaction data is
generated from a wearable RFID reader (“sensor reading”). This can be represented in a rela-
tional form by collapsing identical sensor readings to one sequence element wi, and encoding
the starting point and duration of the observation in another predicate. Furthermore, additional
background knowledge can be used to encode prior knowledge about the domain.

of daily living such as making breakfast are equipped with small RFID tags that can be
picked up by a wearable reader while a person performs an activity [3]. The task is to
recover the activity currently performed from the stream of sensor data. Note that the
stream of object data obtained from the sensor has some internal structure, as an object
observation has a starting point and duration in time, which can be easily represented
in a relational formalism.

At an abstract level, predicting activities is a sequence tagging problem, and explor-
ing applications of sequence tagging methods to activity recognition will be the main
focus of the paper. At the same time, the problem is an instance of data stream mining—
the analysis of a continuous, potentially infinite stream of data. In this context, issues
such as online learning (with only one pass through the data necessary) are of consider-
able interest. However, we will not address these issues in the paper, and instead assume
that a limited amount of training data is given a priori. Extending the proposed methods
to an online-learning scenario is an interesting direction for future work.

The following section reviews sequence tagging from a natural language processing
perspective. Section 4 discusses a relational extension of transformation-based tagging
for activity recognition. Finally, Section 5 presents experimental results and Section 6
conclusions and related work.

3 Sequence Tagging

Sequence tagging is the task of assigning to each element in a given sequence an appro-
priate label or tag. Let W = {w1, ..., wk} denote the vocabulary of sequence elements,

85

Algorithm 1 Basic transformation-based tagging algorithm.

tb-tagging(input: sequences S; true sequence tags L)

1 L̂ := initial-tags(S, L)
2 initialize R = []
3 repeat
4 r := find-best-rule(S, L̂, L)

5 update L̂ := apply-rule(L̂, r)
6 update R := append(R, r)
7 until (no improvement)
8 return R

and T = {t1, ..., tm} the vocabulary of tags. In natural language processing, the two
most common tagging approaches are transformation-based taggers (rule-based) and
probabilistic methods (hidden Markov models or related techniques). Both of these ap-
proaches yield competitive results, and have received much attention.

3.1 Transformation-based Tagging

Transformation-based learning is a rule-based learning approach which iteratively stacks
rules on top of each other to improve performance [1]. The basic transformation-based
learning algorithm for the tagging problem is summarized in Algorithm 1. The algo-
rithm takes as input a set S of sequences with known true tags L. During learning,
it maintains a set of current tags L̂ for all s ∈ S. L̂ is initialized with some simple
scheme, such as assigning to every element w ∈ W its most common tag t ∈ T in the
training data (procedure initial-tags). The algorithm then tries to improve the current
tagging L̂ with respect to the true tagging L by learning a list of transformation rules
R. Transformation rules can re-tag sequence elements based on the context they appear
in. A transformation rule has the form t′ ← t : context and simultaneously replaces all
occurrences of tag t in all sequences with t′ whenever the constraint context is satisfied.

Example 1. As an example from NLP, the word “move” could be initially tagged as
“verb”, but would be re-tagged as “noun” if the preceding word was tagged as “article”:

noun← verb : word = move, preceding tag = article

The transformation rule languages employed in traditional transformation-based tag-
ging are mostly simple instantiations of some template—for instance, querying in context
the word and tag at the current position and the next or preceeding position(s). In every
iteration, the transformation rule which yields the greatest reduction in error between
L̂ and L is greedily selected (find-best-rule), applied to the current tagging L̂ and ap-
pended to the rule list R. As conditions of rules in R match not only sequence elements
but also currently predicted tags L̂, rules can effectively bootstrap the current predic-
tions. This makes transformation-based learning strictly more powerful than standard
rule learning [1].

86

76540123t1

��

// 76540123t2

��

// 76540123t3

��

// 76540123t4

��

// 76540123t5

��?>=<89:;w1 ?>=<89:;w2 ?>=<89:;w3 ?>=<89:;w4 ?>=<89:;w5

Fig. 2. Example lattice generated by unrolling a tagging HMM to a sequence w1, ..., w5. Infer-
ence in this model is carried out with the Viterbi algorithm, which yields the most likely joint
state of the hidden variables t1, ..., t5 given the observations on w1, ..., w5.

3.2 Hidden Markov Model Tagging

Tagging with hidden Markov models is typically performed with a model in which there
is a hidden state qt for every possible tag t, and state emission symbols correspond to
symbols w ∈ W . That is, the observed sequence of symbols is seen as being gener-
ated by the hidden sequence of tags. Formally, the joint probability of an observation
sequence s = w1...wn with hidden tag sequence t1...tn is given by

P (w1...wn, t1...tn) = P (t1)
n−1∏
i=1

P (ti+1 | ti)P (wi | ti)

where P (t1) is an initial probability for tag t1 and P (wi | ti), P (ti | ti−1) are condi-
tional probabilities for the emitted word wi and next tag ti+1 given the current tag ti.
When such a model is applied to a sequence w1...wn, it is unrolled into a lattice as
depicted in Figure 2, and the Viterbi algorithm [6] is employed to efficiently compute

t̂1...t̂n = arg max
t1...tn

P (t1...tn | w1...wn),

the most likely sequence of tags for the given sequence. This technique has been used
successfully for tagging problems in many domains.

4 Relational Transformation-based Tagging

The general motivation for our work is to apply the transformation-based tagging method-
ology to complex datastreams, which are generated for instance by sensors or sensor
networks in ubiquitous computing environments. In many cases, such complex datas-
treams are most easily represented in an expressive relational formalism. Consequently,
we will extend the template-based rule language traditionally used in transformation-
based learning to a more flexible relational rule language, which can take advantage
of such richer representations for sequence elements. Furthermore, this allows to in-
corporate domain-specific background knowledge into the learning process. Analyzing
such relational sequences has received considerable attention recently, for instance with
relational extensions of Hidden Markov Models [5] or n-gram models [8].

Example 2. As an example, consider the ADL (“Activities of Daily Living”) recogni-
tion problem, which is visualized in Figure 1. It is obvious that this kind of data is less

87

rigidly structured than natural language data: there are no “grammatical rules” which
determine the exact sequence of touching knife, toast, butter and jam when adding fla-
vor to a toast. Nevertheless, context information can help determine the right tag. For
instance, using a spoon can indicate activities FlavorTea or EatCereals. This ambiguity
can be resolved by looking at the context: the observation of a spoon closely followed
by sugar indicates activity FlavorTea, while observation of a spoon after milk and ce-
reals indicates activity EatCereals. A relational rule language can exploit this structure,
and express flexible rule conditions such as object x has (not) been observed less than
t seconds before/after the current time-step or the most frequent (currently estimated)
tag around the current time-step is t using manually defined background knowledge.

The next section will discuss the formal learning setting for relational transformation-
based tagging, before discussing learning algorithms and experimental results.

4.1 Learning Setting

The relational transformation-based tagging problem can be formalized as follows:

Given

– a relational languageW for describing sequence elements, i.e., a set of typed first-
order logical predicates

– a set of tags T ;
– a set of training sequences S = {s1, ..., sm} with sequence elements described in
W and corresponding true tags L over T ;

– a scheme for setting initial tags given by a function init;
– a language L of transformation rules t′ ← t : q where t, t′ ∈ T , q = l1, ..., lr and

the li are atoms inW .

Find an ordered lists of transformations R = [R1, ..., Rl], Ri ∈ L, such that applying
the initial tagging scheme and afterwards transformation rules R1, ..., Rl minimizes

error(L̂) =
∑
s∈S

ns∑
i=1

δ(lis, l̂is)

where ns is the length of sequence s and lis, l̂is denote the tag assigned to element i in
sequence s according to L and L̂.

In contrast to standard (propositional) transformation-based tagging approaches, the
languages W (sequence elements) and L (rules) employed are relational; that is, rule
conditions q are first-order queries of the form l1, ..., lk where the li are first-order log-
ical atoms. Applying a first-order transformation rule t′ ← t : q means simultaneously
replacing all tags t in L̂ by t′ wherever the first-order context constraint q matches the
relational description of the corresponding sequence element.

Example 3. As an example rule in the ADL recognition domain consider

FlavorTea← EatCereals :
sensor(X, spoon), near(X, sugar, 10), not(near(X, bowl, 5))

88

where the variable X is bound to the sequence element under consideration and the
background predicate near(X, bowl, 5) is true if the object bowl has been observed
within ±5 seconds from X . This rule re-tags objects of type spoon from EatCereals
to FlavorTea if implied by the context.

4.2 A Branch-and-Bound Learning Algorithm

For learning the list R of relational transformation rules, a large space of possible rules
has to be searched. However, structure on the search space can be exploited to make
this search more efficient. More specifically, the algorithm we use combines ideas from
transformation-based learning (branch-and-bound search based on upper bounds for the
error reduction of a transformation rule) and inductive logic programming (refinement
search in a generalization/specialization lattice). It is closely related to the algorithm
presented in [2].

Recall that the goal of learning is to find a list R of transformation rules which
minimize error(L̂) on a set of training sequences S with known true labels L. As in
propositional transformation-based learning [1], the rule list is learned greedily: starting
with an empty list, the algorithm incrementally adds one rule after the other, at every
step selecting the rule which yields the greatest reduction in error(L̂) and updating the
current tagging L̂ (cf. Algorithm 1).

When searching for an individual rule with maximum error reduction, a signifi-
cant part of the search space can be pruned away by computing upper bounds for the
error reduction a rule can achieve. One obvious bound for the reduction achievable
by a transformation rule ti ← tj : context is given by the number of sequence ele-
ments whose true tag (in L) is ti and which are currently (in L̂) assigned tag tj . LetM
denote the current confusion matrix, i.e., M[i, j] denote the number of sequence ele-
ments with true tag ti currently tagged as tj . This can be exploited by considering rules
ti ← tj : context in (decreasing) order of their potential M [i, j] for error reduction
and keeping track of the best error reduction ∆best found so far. All rules of the form
ti ← tj : context withM[i, j] ≤ ∆best can be removed from consideration (cf. [1]).

This idea can be taken one step further if it is combined with a general-to-specific
search for the first-order constraint context [2]. As a complete search in the space of
first-order constraints is infeasible in most cases, a greedy general-to-specific search is
performed. Specializations of the current condition q are generated by a so-called re-
finement operator ρ. For our purposes, the refinement operator specializes a condition
q = l1, · · · , ln simply by adding a new literal l to the clause yielding h← l1, · · · , ln, l.
This operator is monotone in the sense that for q′ ∈ ρ(q) the number of matches in
the data can only decrease. Consequently, the maximum gain achievable from special-
izations of a transformation rule ti ← tj : q can be bounded in terms of the current
matches. More specifically, assume that a constraint q matches on a number of sequence
elements in the training data S, and that for pq of these it has a positive effect (current
tag is tj , but true tag is ti) and for nq it has a negative effect (current and true tag are
tj). The error reduction of applying the transformation ti ← tj : q is ∆q = pq − nq. It
is now obvious that no specialization ti ← tj : q′ with q′ ∈ ρ∗(q) can achieve an error
reduction greater than Γq = pq.

89

Algorithm 2 Branch-and-bound algorithm for relational transformation-based tagging

rtb-tagging(input: sequences S; true sequence tags L; language bias L)

1 L̂ := initial-tags(S, L)
2 initialize R := []
3 repeat
4 initialize ∆best := 0

5 computeM := confusion-matrix(L̂, L)
6 for all i, j ∈ {1, ..., k}, i 6= j, sorted byM[i, j] descending do
7 initialize Γ :=M[i, j]
8 initialize q := true
9 while (Γ > ∆best) do

10 for all q′ ∈ ρ(q,L) do
11 compute ∆q′ := error-reduction(tj ← ti : q′)
12 compute Γq′ := max-reduction(tj ← ti : q′)
13 end for
14 let q := argmaxq′ ∆q′

15 let ∆best := max(∆best, ∆q)
16 let Γ := Γq

17 end while
18 end for
19 let r := ti ← tj : q be a rule with error reduction ∆best

20 update L̂ := apply-rule(L̂, r)
21 update R := append(R, r)
22 until (no improvement)
23 return R

A greedy branch-and-bound algorithm exploiting these two bounds is outlined in
Algorithm 2. It takes as input a set of training sequences S, true sequence tags L, and the
language bias L. The algorithm starts with an empty rule list R and initial tags assigned
in L̂. Transformation rules are then greedily added to R, and their effect applied to the
current tagging L̂ (lines 3–21). Transformations are considered in order of decreasing
M[i, j] (line 6). At every step of the search for a single transformation ti ← tj : q
(lines 6–18), the algorithm keeps track of the largest reduction ∆best achieved by a rule
so far. During refinements of the context constraint q (lines 9–17) a bound Γq for the
maximum reduction that any specialization of a rule q can still achieve is computed
(max-reduction), and only parts of the search space for which Γ is greater than ∆best

are explored.

5 Experiments

The proposed method was implemented in the RETRO (for RElatational TRansfOrmation-
based tagging) system and experimentally evaluated in two real-world domains: Activ-
ity of Daily Living recognition (ADL) and mobile phone profile prediction (Phone).

90

Relation Description
sensor(Id, Object) The object observed at sequence element Id is Object

duration(Id, T) The object observation at sequence element Id lasted T seconds

close(Id, Obj, T)
The object Obj has been observed within T seconds of

sequence element Id

time bin(T, Bin) The time span T falls into the bin Bin ∈ {short, medium, long}

closest tag(Id, Act)
The closest sequence position to Id for which an activity

(i.e., a tag 6= “no activity”) is assigned in L̂ is tagged with Act

close used(Id, Act, T)
Less than T seconds away from sequence element Id an object

has been observed which is typically used in Act
Table 1. Example relations used to describe the activity data. Some relations are directly derived
from the data (e.g. sensor, duration, close), others include human-supplied prior knowledge
(e.g. close used).

Relational
Representation

cell(w1, 6672) cell(w2, 6671) cell(w3, 6673) ...

time(w1, 1, 15) time(w2, 16, 25) time(w3, 26, 38) ...

usr activity(w1, act) usr activity(w2, idle) usr activity(w3, act) ...

active app(w1, 101) active app(w1, 102) active app(w3, 101) ...

comm(125, sms, incoming) comm(390, call, outgoing)

Phone profile normal silent normal meeting
Cell 6672 6671 6673 7409 6673 6671 7409 7410 6739

Fig. 3. Illustration of the Phone data (predicates for cell location, duration, user activity, active
applications, and communication events).

In the ADL recognition domain, object-interaction data for a user having breakfast
at home has been gathered by a wearable RFID reader and RFID tags on objects such
as milk, cereals, kettle, water tap, cutlery etc. (23 objects in total). The stream of tags
picked up by the RFID reader indicates which object is close (approximately 10–15 cen-
timeters) to the wrist of the user at a particular point in time. A single object observation
is returned at every second—if several tags are within reach, one is returned randomly.
Note that the data is relatively noisy: tags might sometimes be missed, or a tag not re-
lated to a particular activity can be reported by the reader because the corresponding
object is accidentally close. The task is to predict the current activity performed, out of
a set of 24 possible activities such as boiling water, toasting bread, reading a newspaper
or “no activity”. The sequence data obtained from the RFID reader is represented in a
relational form by collapsing identical observations into one observation with a start-
ing point and duration in time (cf. Figure 1 for an illustration). Furthermore, additional
background predicates have been defined, see Table 1 for examples.

In the Context Phone domain, data about user communication behavior has been
gathered using a software running on Nokia Smartphones. The software automatically
logs communication and context data, such as the current provider cell, incoming and
outgoing calls and text messages, and other phone status information. The task is to

91

Algorithm ADL Phone

Majority tag 19.5± 22.3 56.7± 13.1
HMM Tagger 74.9± 12.5 56.7± 13.1
RETRO 75.4± 7.8 67.7± 10.3

Table 2. Average F-measure on the ADL Recognition and Phone problems based on a leave-one-
sequence-out cross-validation.

Learned Rules
ObtainNewspaper ← ReadNewspaper: close(Id, Obj, T), Obj = door,

time bin(T, medium)

FlavorTea ← EatCereals: closest tag(A, F lavorTea)

SteepTeaBag ← DrinkTea: close(Id, Obj, T), Obj = stove

PourCereal ← ObtainNewspaper: close used(Id, PourCereal, T),
not(close used(Id, ObtainNewspaper, T ′)), time bin(T, short)

SteepTeaBag ← noActivity: duration(Id, T), time bin(T, long),
closest tag(ID, SteepTeaBag)

Table 3. Examples for rules learned by RETRO on the ADL dataset.

predict the active profile of the phone (silent, meeting, or normal) at every point in
time. See Figure 3 for an illustration of the data and the predicates used.

For comparison, we have also conducted experiments with a (propositional) HMM
tagger on the two datasets. As it is not possible to encode all relevant information propo-
sitionally, we have selected the most relevant information to be used as the propositional
alphabet W . For the ADL recognition problem, this is the sequence of objects observed.
For the phone domain, it is the sequence of cells the phone was located in.

For initializing the tagging L̂ in the transformation-based tagger, RETRO simply
assigns the most frequent tag given the propositional symbol w ∈W :

init(w) = argmax
t∈T

C(w, t)

where C(w, t) is the number of times symbol w was tagged with t in the training data.
More elaborate initialization schemes (such as using the HMM tagging as an initializa-
tion for the transformation-based tagger) are an interesting direction for future work.
Furthermore, instead of a simple greedy search as outlined in Algorithm 2, a beam
search with beam size K = 10 is used. The main loop of the algorithm is terminated if
no rule with a gain of at least min gain = 10 is found.

Table 2 lists the average F-measure for RETRO and HMM tagging based on a leave-
one-sequence-out cross-validation. For the ADL recognition problem, there is no sig-
nificant difference between the two approaches. In the phone domain, the HMM tag-
ger fails to improve upon the majority tag prediction, while RETRO yields a (border-
line) significant increase in F-measure (paired sampled t-test, p = 0.051). This shows
that transformation-based approaches can be competitive with probabilistic methods in
complex tagging domains. However, the presented experiments are still preliminary,
and more empirical evaluation is needed to assess the potential of the method in more

92

 0

 0.05

 0.1

 0.15

 0.2

 5 10 15 20 25

F
ra

ct
io

n
 o

f
se

a
rc

h
 s

p
a
ce

 e
xp

lo
re

d

Algorithm Iteration

Bound I

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25
F

ra
ct

io
n
 o

f
se

a
rc

h
 s

p
a
ce

 e
xp

lo
re

d
Algorithm Iteration

Bound II

Fig. 4. Effectiveness of the two pruning schemes Bound I (maximum gain attainable from chang-
ing a certain tag into a certain other tag) and Bound II (maximum gain attainable from specializing
a given rule). Results are averaged over a leave-one-sequence-out cross-validation.

detail. Note furthermore that although HMM tagging is a standard approach in activity
recognition, more advanced probabilistic methods have recently been developed which
would possibly yield slightly higher accuracy in this domain [9].

Examples for rules learned by RETRO on the ADL recognition task are shown in
Table 3. For instance, consider the last rule: it encodes that if a sequence element cor-
responding to a long object observation is tagged with noActivity and the closest cur-
rently predicted activity is SteepTeaBag, this sequence element should also be tagged
with SteepTeaBag. This rule is useful for “filling in gaps” as SteepTeaBag only
causes characteristic object observations at the beginning and end of the activity.

Finally, Figure 4 visualizes the effectiveness of the pruning schemes based on the
two upper bounds discussed above on the ADL recognition problem. More specifi-
cally, Figure 4 (left) shows the fraction of pairs (ti, tj) that have to be considered when
searching for rules ti ← tj in lines 6–18 of Algorithm 2 as a function of the algorithm
iteration. This pruning scheme is very effective, reducing the search space by 93%–
99%. It is more effective in earlier iterations as it is easier to find a rule with yields
a large reduction in error. Figure 4 (right) shows which fraction of refinements is re-
moved from the beam when rules are refined in lines 10–13 of Algorithm 2 because
no further specialization can reach the performance of the best rule found so far. Note
that this form of pruning does not affect the computational complexity of the algorithm
but rather allows a more thorough search through the space of possible rules (given
a limited beam size) by effectively reducing the branching factor of the search. On av-
erage, the branching factor is about halfed, this is independent of the algorithm iteration.

93

6 Conclusions and Related Work

Motivated by the needs of activity recognition problems, we have introduced a rela-
tional transformation-based tagging system. It tightly integrates principles of inductive
logic programming (especially search, representations, operators, background knowl-
edge) with transformation-based tagging (error-driven search, branch-and-bound idea).
The approach has been evaluated on two activity recognition data sets and the results are
competitive with those of a Hidden Markov Model approach. Perhaps more important
than the experimental results obtained so far is the ease with which one can extend the
transformation-based tagging approach beyond the propositional HMM setting. Impor-
tant directions in this regard include: the use of rich sources of background knowledge
(that take not only into account the inputs but also the already available produced tags),
the prediction of structured output sequences (predicting sequences of logical atoms, cf.
[10], such as call(anna,10) denoting the prediction that anna will be called in 10 min-
utes), and relaxing the purely sequential nature of the output (which is important for
the ADL dataset where different activities may overlap in time, and therefore ordering
them is not always possible).

Acknowledgments We would like to acknowledge support for this work from the Re-
search Foundation-Flanders (FWO-Vlaanderen).

References

1. Brill, E.: Transformation-based error-driven learning and natural language processing: A
case study in part-of-speech tagging. Computational Linguistics 21(4) (1995) 543–565

2. Dehaspe, L., Forrier, M.: Transformation-based learning meets frequent pattern discovery.
In Cussens, J., ed.: Proceedings of the 1st Workshop on Learning Language in Logic, Bled,
Slovenia (1999) 40–51

3. Patterson, D., Fox, D., Kautz, H., Philipose, M.: Fine-grained activity recognition by aggre-
gating abstract object usage. In: Proceedings of ISWC 2005, Osaka (2005)

4. Raento, M., Oulasvirta, A., Petit, R., Toivonen, H.: ContextPhone - a Prototyping Platform
for Context-aware Mobile Applications. IEEE Pervasive Computing 4(2) (2006) 51–59

5. Kersting, K., De Raedt, L., Raiko, T.: Logical hidden markov models. Journal of Artificial
Intelligence Research 25 (2006) 425–456

6. Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recog-
nition. Proceedings of the IEEE 77(2) (1989) 257–286

7. Wilson, D., Philipose, M.: Maximum a posteriori path estimation with input trace pertur-
bation: Algorithms and application to credible rating of human routines. In: Proceedings of
IJCAI 2005, Edinburgh, Scotland (August 2005)

8. Landwehr, N., De Raedt, L.: r-grams: Relational grams. In: Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence, Hyderabad, India (2007) 907–912

9. Wang, S., Pentney, W., Popescu, A.M., Choudhury, T., Philipose, M.: Common sense based
joint training of human activity recognizers. In: Proceedings of the 20th International Joint
Conference on Artificial Intelligence. (2007) 2237–2242

10. Kersting, K., De Raedt, L., Gutmann, B., Karwath, A., Landwehr, N.: Relational sequence
learning. In De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S., eds.: Application of
Probabilistic ILP. Springer (2007) to appear.

94

Enhanced Anytime Algorithm for Induction of Oblivious

Decision Trees

Mark Last
1
, Albina Saveliev

1

1Department of Information Systems Engineering, Ben-Gurion University of the Negev,

 POB 653, Beer-Sheva, 84105 Israel

{mlast, albinabu}@bgu.ac.il

Abstract. Real-time data mining of high-speed and non-stationary data

streams has a large potential in such fields as efficient operation of machinery

and vehicles, wireless sensor networks, urban traffic control, stock data analysis

etc.. These domains are characterized by a great volume of noisy, uncertain

data, and restricted amount of resources (mainly computational time). Anytime

algorithms offer a tradeoff between solution quality and computation time,

which has proved useful in applying artificial intelligence techniques to time-

critical problems. In this paper we are presenting a new, enhanced version of an

anytime algorithm for constructing a classification model called Information

Network (IN). The algorithm improvement is aimed at reducing its

computational cost while preserving the same level of model quality. The

quality of the induced model is evaluated by its classification accuracy using

the standard 10-fold cross validation. The improvement in the algorithm

anytime performance is demonstrated on several benchmark data streams.

Keywords: anytime algorithms, classification, information theory,

Information Network algorithm, classification accuracy, computation cost

1 Introduction

Systems that deal with continuous data streams are becoming increasingly

important primarily due to the emergence of sensors and similar small-scale

embedded computing devices that continuously produce large volumes of data they

obtain from their environment. The complex nature of real-world, streaming data has

increased the difficulties and challenges of data mining applications in terms of

knowledge induction and decision making within the limited time scope.

 Data generated by wireless sensor networks (WSN) is one of the important

examples. WSN are now used in many application areas including environment and

habitat monitoring, health care, home automation, and traffic control. Each sensor

node of such network records as streams time-stamped observations, taken at varying

time frequency. A typical observation includes measurements of various physical or

environmental parameters such as temperature, sound, vibration, pressure, as well as

sensor location. While real-time tracking of environmental conditions is extremely

95

important for handling a chemo/bio contamination, seismic detection etc., continuous

transmission of all recorded observations by the meter-reading chips to the nearest

hub node and, subsequently, to the central station may be infeasible due to the limited

battery life of the chips and the local hubs. The intuitive solution is to use data-mining

techniques to analyze and induce time-dependent models of observed behavior and

transfer these models to the central station rather then the streamed data. At the same

time, the high rate of data changes requires to generate the model rapidly within the

allocated time frame.

 The anytime algorithms give intelligent systems the capability to trade

computational time for the quality of results. This capability is efficient for solving

time-constrained problems such as decision making in dynamic environment, sensor

interpretation, and planning [17]. The term anytime algorithm was introduced by

Dean et al. in the mid-1980s in their work on time-dependent planning [4], [5].

Similar approaches termed flexible computation by Horvitz [10], [11] and imprecise

computation by Liu et al. [15] are based on a general idea that many computational

tasks are too complicated to be completed at real-time speeds, therefore it is important

to build a system that can generate good approximate results in a much shorter time

period.

According to Zilberstein [17], the desired properties of anytime algorithms

include the following: measurable solution quality, which can be easily determined at

run time, monotonicity (quality is a non-decreasing function of time), consistency of

the quality w.r.t computation time and input quality, diminishing returns of the quality

over time, interruptibility of the algorithm, and preemptability with minimal

overhead.

 In this paper, we propose a new, enhanced version of an anytime algorithm

for inducing a classification model called Information Network (IN). The original

algorithm was developed by Last et al. [13]. The model is a tree-like structure that

represents relationship between input (predictive) features and target (classification)

attributes. Unlike most other decision-tree models, the information network uses the

same input attribute across all nodes of a given layer (level) and thus it can be

considered an oblivious decision-tree. The method was shown theoretically and

empirically to have the basic properties of interruptible anytime algorithms [12]. The

enhanced method presented in this paper is aimed at improving the anytime

performance of the IN algorithm by reducing its computational time while

maintaining the same quality level of the induced model. The most time-intensive

operation in network construction is choosing, at each iteration of the algorithm, an

input attribute, which provides the maximum significant increase in mutual

information relative to the previous layer. Therefore the idea is to filter out the least

significant attributes, before the classifier construction, and afterwards to build a

model using a reduced subset of candidate input attributes. We evaluate the

performance of the algorithm on eleven benchmark datasets from various sources (see

Section 4).

 The paper is organized as follows. Section 2 reviews the related works in the

fields of anytime classification algorithms and resource-aware knowledge discovery

in data streams. The enhanced anytime algorithm for induction of oblivious decision

trees is described by us in Section 3. Experimental results are presented and discussed

96

in Section 4. Finally we conclude the paper and present the possible future research

directions in Section 5.

2 Related work

2.1 Anytime Decision Tree Induction

Last et al. [12] introduced an interruptible anytime information-theoretic

classification algorithm. Their method constructs a compact and accurate decision-

tree model called Information Network. The algorithm has several objectives, such as:

maximizing the mutual information between a set of predictive attributes and the

target (classification) attribute, finding a minimal set of features involved in the

induced model (hence, it can be also used as a feature selection method), and

verifying the statistical significance of the discovered patterns.

Esmeir et al. [6] presented interruptible anytime algorithms for iterative

improvement of decision trees. The motivation of their research is different from our

goal of saving the computational resources. They explore the problem of how to

produce better decision trees for hard-to-learn concepts when more time resources are

available. Their framework consists of two anytime algorithms. The first one, called

Sequencing LSID3 converts the recent LSID3 contract algorithm to an interruptible

version, which does not require the allocated time in advance and can be interrupted

at any time. The second is Interruptible Induction by Iterative Improvement (IIDT)

which repeatedly selects a sub tree whose reconstruction is estimated to yield the

highest marginal utility and rebuilds it, exploiting extra time allocation.

2.2 Resource-aware Data Mining Techniques

Gaber et al. [7] presented a framework for resource-aware computing in data

stream analysis. The streaming information is often generated, received or processed

by computational devices such as wireless sensors. These devices are limited in terms

of energy, memory, computational speed and communication bandwidth. The main

goal of the research is to apply data mining techniques to continuous data streams

within the scope of constrained device resources. This generic framework proposes

Algorithm Granularity Settings (AGS). The idea is to periodically change algorithm

settings from the input, output, and/or processing end points according to resource

consumption pattern measurements performed over the last time period as well as a

measure of resource criticality. In [7] this method is applied to a novel threshold-

based micro-clustering algorithm, called RA-Cluster. The strategy of adapting the

CPU demand is done using the Randomized Assignment approach. As the CPU load

97

increases, only a pre-specified fraction of the current micro-clusters is examined when

making the micro-cluster assignment for a new data point.

 Phung et al. [16] extended the previous work [7] for Wireless Sensor

Networks. Their approach was applied to online clustering algorithm (ERA-Cluster),

which uses the resource monitoring of the Sun SPOT sensor nodes from Sun

Microsystem™ to adapt to resource availability. The CPU adaptation of [16] is also

based on the Randomized Assignment approach.

2.3 Anytime Properties of the IN Algorithm

If the network quality is measured by its predictive accuracy, we can easily verify

the algorithm conformity with the anytime properties defined by Zilberstein [17]

using a line of arguments similar to [12]:

• Measurable quality. The predictive accuracy after each iteration of the

algorithm can be estimated using 10-fold cross-validation or any other

validation procedure.

• Recognizable quality. Due to the inherent compactness of IN models,

counting the number of validation errors is a relatively fast procedure.

• Monotonicity. A new attribute is added by the algorithm to the set of input

attributes only if it causes an increase in the mutual information. According

to Fano’s inequality [3],an increase in mutual information implies an

expected decrease in the error rate.

• Consistency. The theoretical run time of the algorithm has been shown by us

in [13] to be quadratic-logarithmic in the number of records and quadratic

polynomial in the number of initial candidate input attributes.

• Diminishing returns. This property is very important for algorithm’s

practical usefulness: it means that after a small part of the running session,

the results are expected to be sufficiently close to the results at the

completion time. We could prove this property mathematically, if we could

show that the mutual information is a concave function of the number of

input attributes. Though the last proposition is not true in a general case, it is

possible to conclude from Fano’s inequality [3] that the mutual information

is bounded by a function, which behaves this way. This conclusion is

empirically confirmed by the results of Section 4.

• Interruptibility. The algorithm can be stopped at any time and provide the

current list of selected attributes. Each iteration forms, what is called, a

contract anytime algorithm, i.e. the corrections of predictive accuracy are

available only after termination of an iteration.

• Preemptability. Since the algorithm maintains the training data, the list of

selected input attributes, and the current structure of the information-

theoretic network, it can be easily resumed after an interrupt. If the

suspension is expected to be long, all relevant information may be stored on

a hard disk.

98

3 Enhanced Algorithm for Anytime Induction of Oblivious

Decision Trees

We aim at enhancing the Information Network algorithm by reducing the time needed

to construct a classification model, while maintaining the same level of its predictive

accuracy. At each iteration, the algorithm builds a new hidden layer by choosing an

input attribute (either discrete, or continuous), which provides the maximum

significant increase in mutual information relative to the previous layer. The

computational complexity of evaluating a discrete attribute is the complexity of

calculating its conditional mutual information MI(Ai;T/z) (1). The complexity of

evaluating a continuous attribute consists of calculating its conditional mutual

information MI (Th; T/S, z) for a given split (2), as well as discretizing it into a

number of discrete intervals. Both these operations are performed in each hidden layer

of information network for all candidates in that layer. Hence, to reduce the

computational cost of the Information Network algorithm we propose the following

“fast feature filtering” procedure to be applied before the network construction:

• Generate a random sample of training instances. The sample size is a pre-

specified percentage of the training examples. Based on the experimental

results described in Section 4, the recommended sample size can be as low

as 5%.

• Compute the estimated mutual information for each candidate input attribute

using the random sample of training instances. Due to the small sample size

(5%), this calculation is expected to take much less time than the first

iteration of the algorithm based on the entire training set. The mutual

information calculated by the IN algorithm is shown in [14] to be a much

more efficient feature selection method than two alternative feature selection

algorithms (Relief and ABB).

• Filter out the least significant features, having the lowest values of estimated

mutual information. The percentage of selected features is determined in

advance. Based on the experimental results, described in Section 4, the

recommended percentage is 30%, i.e., 70% of significant input attributes are

removed from consideration by the algorithm. We call this approach Fast

Feature Filtering (FFF).

The Information Network induction is performed subsequently on the subset of

selected features using all training examples.

The pseudocode of the “fast feature filtering” procedure is given below:

Input: the set of n training instances; the set CI of

m candidate input attributes (discrete and continuous);

the target (classification) attribute T; the percentage

of randomly selected training instances sample_size; the

percentage of selected attributes from m candidate input

attributes significant_Set_size.

Output: a set I of selected significant input

attributes.

99

I = Ø

Create random sample of sample_size training instances.
For each candidate input attribute A

i
∉ I do

 If A
i
is discrete then

 Return the statistically significant
conditional mutual information cond_MI

i

between A
i
and T.

 Else return the best threshold splits of A
i
and the

statistically

significant conditional
mutual information cond_MI

i
between A

i
and T.

 If cond_MI
i
> 0, then

 Update the set I of selected input
attributes: I = I ∪ A

i*

End do
Sort the set I of selected input attributes according

to increasing its cond_MI
i

For each i ← significantSet_size to I

 Exclude the less significant input attribute A
i
from

the set I:
 I = I - A

i*

i ← i + 1;

End do
Return a set I of selected significant input

attributes.

4 Experimental Results

According to [17], the performance profile (PP) of an anytime algorithm denotes

the expected output quality as a function of the execution time t. Since there are many

possible factors affecting the execution time, the performance profile, in many cases,

has to be determined empirically and not analytically.

 To study the performance profile of the enhanced method for induction of

oblivious decision trees, we have applied it to eleven real-world datasets, including

five datasets (Housing, Image Segmentation, Spambase, Waveform, Adult) from the

UCI Machine Learning Repository [1], five Traffic Direction datasets provided by the

Traffic Control Center of Jerusalem, and the Intrusion Detection database originally

used for the Third International Knowledge Discovery and Data Mining Tools

Competition (current available from the UCI KDD Archive [8]).The characteristics of

each dataset are shown in Table 1. The size of the datasets varies between 506 and

10,000 cases. The total number of candidate input attributes is from 11 up to 57,

including nominal and continuous features. It should be noted that the Traffic

Direction, Intrusion Detection and Adult datasets have actually more than 10,000

instances, but due to the memory constraints we have confined ourselves to this

amount of training examples.

We have measured the quality of the induced model by the standard 10-fold

cross validation procedure. To evaluate the attribute filtering method we have

experimented with three different sample sizes of 5%, 10% and 20% accordingly.

100

Using each sample of the training set, we have calculated the mutual information for

all candidate input attributes and selected 20%, 30%, 40%, 50%, 60% and 70% of the

most significant features. With each subset of selected significant attributes, we have

built 10 Information Networks, using the ten-fold cross validation procedure. This

experiment has been repeated eighteen times for each dataset, using six different

amounts of selected attributes and three different samples of the training set. The

results of each experiment, which are the averages of 10 cross-validation models, are

compared to the results of the original method (not using fast feature selection). After

each iteration of the algorithm, we have computed the accuracy of the current model

and the time needed to induce the new hidden layer of that model. These parameters

are compared with the same parameters of the original algorithm, which induces a

classification model from all candidates, without filtering out less significant

attributes.

 Based on the results of experiments we can say that on average, only three

hidden layers are built in all 10 models over 11 datasets. We have found also, that

after the third iteration the cross-validation accuracy of most models stops to increase

significantly (see the “simplicity first” approach proposed in [9]). Measuring the run

time and the predictive accuracy of the enhanced algorithm over three different

sample sizes (5%, 10%, 20%), we have found that the 5%-sample preserves the same

performance level as the larger samples. Considering these facts we have presented in

Figure 2 the performance profile of only three-layered networks induced from various

sets of significant attributes selected by a 5% random sample. To simplify the

comparison of the results of the novel approach with the original one, as well, for

better illustration, we have normalized the execution time of each experiment with

respect to the execution time of the original algorithm. For the run time equal to zero,

the average accuracy over 11 datasets is computed by means of the majority rule.

Several important observations can be made from Figure 2. First, we can see,

that the average performance profiles are concave functions of time. After the first

iteration of the algorithm, the accuracy of the model is sufficiently close (85%) to the

accuracy at completion time. It proves the very important anytime property of the

algorithm: diminishing returns (see subsection 2.3). Second, we can observe that

execution time of the enhanced approach varies between 20-50% of run time using

the original method, where the lowest computational time of 20% refers to induction

of the model from 30% of selected significant attributes and the highest time of 50%

refers to construction of the model from 70% subset accordingly. Finally, we note that

with a 20% subset of selected features, the induced model has only two layers in eight

datasets out of eleven (Housing, Adult, five Traffic Direction datasets, and Intrusion

Detection). Hence, we exclude the 20% subset of significant attributes from our study,

and compute the average performance for a three-layered network, regarding this

network as a minimal model in all 11 datasets.

The run time of the enhanced method with the 5% sample starts with 93.8

msec. for the Traffic-Direction2 datasets and goes up to 87,895 msec. for the

Spambase dataset, which has 4,601 records and 57 continuous attributes. Due to space

limitations, Figure 3 shows the performance profiles of five datasets only.

101

0,4

0,45

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0 20 40 60 80 100

Relative time (%)

A
c

c
u

ra
c

y

before features filtering

20 % of features

30 % of features

50 % of features

70 % of features

Figure2. Average performance profile of the enhanced anytime algorithm over eleven datasets,

sample size 5%.

Our research is primarily aimed at reducing the computational time of the IN

algorithm while keeping the same quality level of the classification model. To study

how the sample size affects the accuracy and the execution time of constructing the

Information Network, the average value of these parameters have been calculated for

each sample size (see Table 2)

0

0,2

0,4

0,6

0,8

1

0 20 40 60 80 100

Relative time (%)

A
c

c
u

ra
c

y

Image Segmentation

Spambase

Waveform

Adult

Intrusion detection

Figure3. Performance profiles of the enhanced anytime algorithm for five datasets, sample size

5%

102

Table 1. The characteristics of eleven benchmark datasets

Dataset Data

size

Class

es

Conti

nuous

Nomi

nal

Total

Attributes

Housing 506 3 12 1 13

Image Segment. 2,100 7 19 0 19

Spambase 4,601 2 57 0 57

Waveform 5,000 3 21 0 21

Adult 10,000 2 6 8 14

Traffic-Direction1 10,000 4 6 5 11

Traffic-Direction2 10,000 4 6 5 11

Traffic-Direction3 10,000 4 6 5 11

Traffic-Direction4 10,000 4 6 5 11

Traffic-Direction5 10,000 4 6 5 11

Intrusion Detect. 10,000 4 14 2 16

Table2. Average accuracy, execution time and standard deviation of three-layered model over

eleven datasets and various percentages of selected significant attributes

Sample

Size

(%)

Average

attributes

filtering

time (sec.)

Average

accuracy

Average

execution

time (sec)

STDEV

of

mean

accur.

STDEV

of

mean

time

Slope

(*10-4)

5 1,8 0.79 31,7 0.013 6 2.5

10 1,8 0.80 32,1 0.013 6 2.49

20 2 0.79 32,2 0.014 6 2.45

As one can see from Table 2, the sample size affects the induction time of

the classifier and does not affect its accuracy. To evaluate the trade-off between these

characteristics we calculate their ratio called the Slope using the following equation:

SLOPE =
t

tQ

∆

∆)(
 (3)

Where,

)(tQ∆ = the difference between the accuracy of the complete (three-

layered) model and the initial (majority rule) accuracy;

t∆ = the execution time of inducing a complete (three-layered) model

According to the value of Slope we can suggest that the 5% sample size is

slightly more preferable than the 10% and 20% sample sizes.

 Another question is which percentage of selected significant attributes is

preferable for optimizing the accuracy-time relationship. To answer this question, we

103

are summarizing in Table 3, the average accuracy and execution time, for each subset

of significant attributes, comparing these parameters to the results of the original

method, without the fast feature filtering (FFF), where the average accuracy is 0.806

and execution time is 88,115 msec.

The decrease in accuracy and execution time (see Table 3, columns 2 and 3)

is computed relative to the 100 % set of candidate attributes. As we can see, the

maximal reduction of time (79.9%) is reached with the 30% set. It is important to note

that, the decrease in accuracy vs. the original method (see Table 3, column 5) has not

been found statistically significant as for various sample sizes, as for various

percentages of selected attributes. To find the optimal percentage of significant

features we have calculated the Slope for each subset of selected attributes. According

to the Slope value we can say that the 30% percentage of significant features is

optimal for accuracy-time optimization task.

Finally, we can conclude, based on analysis of the experimental results obtained

for eleven datasets that best trade-off between the accuracy of the three-layered

Information Network and computational time needed for its construction is achieved

on a 30% subset of significant attributes selected by a 5% random sample. In this

case, the execution time is reduced by almost 80%.

Table 3. Average accuracy, execution time and standard deviation of three-layered model, over

eleven datasets and various sample sizes

Percent

signif.

attrib.

Aver.

accur.

after

FFF

Aver.

time

(sec.)

after

FFF

Slope

(*10
-4

)

Decre

ase

accur.

after

FFF

(%)

Decre

ase

time,

after

FFF

(%)

STDEV

of mean

accurac

y after

FFF

STDEV

of mean

time,

after

FFF

30 0.788 17,6 4.38 4 80 0.018 5

40 0.792 25,7 3.08 2 71 0.018 6

50 0.793 33,2 2.39 2 62 0.018 8

60 0.801 39,3 2.04 1 55 0.015 9

70 0.804 44,0 1.83 0.3 50 0.015 11

 One of the important benefits of the proposed FFF approach is that it allows

capturing the tradeoff between the solution quality and the time saved and/or

complexity of classification represented by the number of the most significant input

attributes. The anytime interruptability of the algorithm allows stopping it after each

iteration to provide an approximate solution that is close to the complete result. This

can be crucial for real-time classification algorithms working with a large number of

input attributes and/or with timing constraints.

104

5 Conclusions

In this paper, we have proposed a new, “Fast Feature Filtering” version of an anytime

algorithm for constructing a classification model called Information Network (IN).

We have studied and improved the important anytime property diminishing returns of

the algorithm. The new method enables to reduce significantly its computation cost

while preserving the same level of model quality. This goal is achieved by means of

monitoring the relationship between the random sample size of training examples and

the percentage of most significant input attributes selected by this sample. The

proposed algorithm is evaluated on eleven benchmark datasets available from

different sources. The quality of the induced model is measured by its classification

accuracy using the standard 10-fold cross validation. The performance profiles of the

new version have been shown to be concave functions of time. Based on the

experimental results, the optimal tradeoff between accuracy of a three-layered

Information network and execution time needed for its construction is achieved with a

30% subset of significant attributes selected using a 5% random sample. In this case,

the accuracy rate is very close to the accuracy of the original algorithm, whereas the

execution time is reduced by almost 80%. Topics for future research include

predicting the expected quality for a given execution time (and vice versa), and

integrating the enhanced version of the algorithm with real-time learning systems

such as IOLIN [2].

References

1. Blake, C.L., Merz, C.J. UCI Repository of machine learning databases,

http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.

2. Cohen, L., Avrahami, G., Last, M, Kandel, A., Kipersztok, O. “Real-Time Data Mining of

Non-Stationary Data Streams from Sensor Networks”, Information Fusion Journal, Special

Issue on Information Fusion in Distributed Sensor Networks, in press.

doi:10.1016/j.inffus.2005.05.005.

3. Cover, T.M., Thomas J.A., Elements of Information Theory, Second edition, Wiley, 2006

4. Dean, T.L., 1987. Intractability and Time-Dependent Planning. In Reasoning About

Actions and Plans, Georgeff M.P., Lansky A. L., Eds. Morgan Kaufmann Publishers, San

Francisco, California, 1986, pp. 245-266.

5. Dean, T.L, Boddy, M., An Analysis of Time-Dependent Planning, In Proceedings of the

American Association for Artificial Intelligence Conference (AAAI-88) (Cambridge,

Massachusetts, 1988), AAAI, MIT Press, pp. 49-54.

6. Esmeir, S., Markovitch, S., Interruptible Anytime Algorithm for Iterative Improvement of

Decision Trees, In Proceedings of The 1st Workshop on Utility-Based Data Mining

(UBDM-2005), held with The 11th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD 2005), pp 78-85

7. Gaber, M.M., Yu, P.S., A Framework for Resource-aware Knowledge Discovery in Data

Streams: A Holistic Approach with Its Application to Clustering, in Proceedings of ACM,

Symposium on Applied Computing, (SAC 2006), ACM Press, pp 649-656.

8. Hettich, S., Bay, S.D. (1999). The UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine, CA:

University of California, Department of Information and Computer Science.

9. Holte, R.C., Very simple classification rules perform well on most commonly used

datasets. Machine Learning, 11(1), pp 63-91, Apr. 1993.

105

10. Horvitz, E.J., Reasoning about Beliefs and Actions under Computational Resource

Constraints, Proc. of the 1987 Workshop on Uncertainty in AI, Seattle, Washington, 1987,

pp 429-444.

11. Horvitz, E.J., Suermondt, H.J., Cooper G.F., Bounded Conditioning: Flexible Inference for

Decision under Scarce Resources. Proc. of the 1989 Workshop on Uncertainty in Artificial

Intelligence, 182–193. New York: North-Holland, 1989.

12. Last, M., Kandel, A., Maimon, O., Eberbach, E., Anytime Algorithm for Feature

Selection, Proceedings of the Second International Conference on Rough Sets and Current

Trends in Computing (RSCTC'2000), pp. 532-539, Springer-Verlag, 2001.

13. Last, M., Maimon, O., A Compact and Accurate Model for Classification, IEEE

Transactions on Knowledge and Data Engineering, Vol. 16, No. 2, pp. 203-215, February

2004.

14. Last, M., Kandel, A., Maimon, O., Information-theoretic algorithm for feature selection,

Pattern Recognition Letters 22(2001) pp. 799-811.

15. Liu, J.W.S., Lin, K.J., Shih, W.K., Yu, A.C., Chung, J.Y., Zhao, W., Algorithms for

Scheduling Imprecise Computations, Computer, vol.24 no.5, pp.58-68, May 1991.

16. Phung, N.D., Gaber, M. M., Röhm, U., Resource-aware Online Data Mining in Wireless

Sensor Networks, Proceedings of the 2007 IEEE Symposium on Symposium on

Computational Intelligence and Data Mining (CIDM 2007), pp 139-146.

17. Zilberstein, S., Using Anytime Algorithms in Intelligent Systems, AI Magazine, vol. 17,

no. 3, pp. 73-83, 1996

106

A Semi-Fuzzy Approach for Online

Divisive-Agglomerative Clustering

Pedro Pereira Rodrigues1,2 and João Gama1,3

1 LIAAD - INESC Porto L.A.
2 Faculty of Sciences of the University of Porto

3 Faculty of Economics of the University of Porto
Rua de Ceuta, 118 - 6 andar, 4050-190 Porto, Portugal

pprodrigues@fc.up.pt jgama@fep.up.pt

Abstract. The Online Divisive-Agglomerative Clustering (ODAC) is an
incremental approach for clustering streaming time series using a hierar-
chical procedure over time. It constructs a tree-like hierarchy of clusters
of streams, using a top-down strategy based on the correlation between
streams. The system also possesses an agglomerative phase to enhance a
dynamic behavior capable of structural change detection. However, the
split decision used in the algorithm focus on the crisp boundary between
two groups, which implies a high risk since it has to decide based on only
a small subset of the entire data. In this work we propose a semi-fuzzy
approach to the assignment of variables to newly created clusters, for a
better trade-off between validity and performance. Experimental work
supports the benefits of our approach.

Keywords: fuzzy clustering, streaming time series, hierarchical models.

1 Introduction

The task of clustering streaming time series is not widely studied. Data streams
usually consist of variables producing examples continuously over time. The basic
idea behind it is to find groups of variables that behave similarly through time,
which is usually measured in terms of time series similarities. Clustering time
series has been already studied in various fields of real world applications. Many
of them, however, could benefit from a data stream approach. For example:

– in electrical supply systems, clustering demand profiles (ex: industrial or
urban) decreases the computational cost of predicting each individual sub-
network load [2];

– in medical systems, clustering medical sensor data (such as ECG, EEG, etc.)
is useful to determine correlation between signals [11];

– in financial markets, clustering stock prices evolution helps preventing bank-
ruptcy [7];

107

All of these problems address data coming from a stream at high rate. Hence,
data stream approaches should be considered to solve them.

In the next section we present an overview on ODAC and its main characteris-
tics, while Section 3 proposes the new semi-fuzzy assignment criterion. Section 4
enunciates the validity indices used in Section 5 to validate our proposal, while
Section 6 presents some concluding remarks.

2 ODAC Overview

The Online Divisive-Agglomerative Clustering (ODAC) is an incremental ap-
proach for clustering streaming time series using a hierarchical procedure [10]. It
constructs a tree-like hierarchy of clusters of streams, using a top-down strategy
based on the correlation between streams. The system also possesses an ag-
glomerative phase to enhance a dynamic behavior capable of structural change
detection. The splitting and agglomerative operators are based on the diameters
of existing clusters and supported by a significance level given by the Hoeffding
bound [5]. Accordingly, we observe that:

– the update time and memory consumption does not depend on the number of
examples, as it gathers sufficient statistics to compute the correlations within
each cluster; moreover, anytime a split is reported, the system becomes faster
as less correlations must be computed;

– the system possesses an anytime compact representation, since a binary hi-
erarchy of clusters is available at each time stamp, and does not need to
store anything more than the sufficient statistics and the last example to
compute the first-order differences;

– an agglomerative phase is included to react to structural changes; these
changes are detected by monitoring the diameters of existing clusters;

– this online system was not designed to include new streams along the exe-
cution; however, it could be easily extended to cope with this feature;

– given its hierarchical core, the system possesses a inherently adaptable con-
figuration of clusters;

As reported by the authors, this is one of the systems clearly proposed to address
clustering of multiple streams. It copes with high-speed production of examples
and reduced memory requirements, with constant time update. It also presents
adaptability to new data, detecting and reacting to structural drift.

2.1 Dissimilarity Measure

The system must analyze distances between incomplete vectors, possibly with-
out having any of the previous values available. Thus, these distances must be
incrementally computed. The system uses Pearson’s correlation coefficient [9] be-
tween time series as similarity measure. This way, the sufficient statistics needed
to compute the correlation are easily updated at each time step.

108

2.2 Splitting Criterion

One problem that usually arises with approximate models is the definition of a
minimum number of observations necessary to assure convergence. One approach
is to apply techniques based on the Hoeffding bound [5] to solve this problem.
The Hoeffding bound has the advantage of being independent of the probability
distribution generating the observations [3], stating that after n independent ob-
servations of a real-valued random variable r with range R, and with confidence
1 − δ, the true mean of r is at least r − ǫ, where r is the observed mean of the
samples and

ǫ =

√

R2ln(1/δ)

2n
(1)

As each leaf is fed with a different number of examples, each cluster ck will
possess a different value for ǫ, designated ǫk.

Let d(a, b) be the distance measure between pairs of time series, and Dk =
{(xi, xj) | xi, xj ∈ ck, i < j} be the set of pairs of variables included in a specific
leaf ck. After seeing n samples at the leaf, let

(x1, y1) = argmax
(x,y)∈Dk

d(x, y)

be the pair of variables with maximum dissimilarity within the cluster ck, and
in the same way considering D′

k = Dk\{(x1, y1)}, let

(x2, y2) = argmax
(x,y)∈D′

k

d(x, y)

Let d1 = d(x1, y1), d2 = d(x2, y2) and ∆d = d1 − d2 be a new random variable,
consisting on the difference between the observed values through time. Applying
the Hoeffding bound to ∆d, if ∆d > ǫk, one can confidently say that, with
probability 1− δ, the difference between d1 and d2 is larger than zero, and select
(x1, y1) as the pair of variables representing the diameter of the cluster. With
this rule, the ODAC system will only split the cluster when the true diameter
of the cluster is known with statistical confidence given by the Hoeffding bound.
However, to prevent the hierarchy from growing unnecessarily, another criterion
is defined in ODAC which has to be fulfilled in order to perform the splitting,
which falls out of the scope of this work.

2.3 Assigning Criterion

When a split point is reported, the pivots are variables x1 and y1 where d1 =
d(x1, y1), which are separated into each of the newly created clusters. The system
then assigns each of the remaining variables of the old cluster to the cluster which
has the closest pivot. This crisp assignment is the key object of our proposal in
this work. When considering the expansion of the structure, the strict splitting
of variables appears as a possible drawback, in the sense that a previous decision
of moving a variable to a leaf, when there was no statistical confidence on the
decision of assignment, may split variables that should be together. Left plot

109

of figure 1 presents an example of a possible configuration where the problem
could arise. An approach based on fuzzy sets [13] would let forthcoming examples
decide what to do with those variables. Section 3 introduces our proposal to deal
with this uncertainty.

2.4 Aggregation Criterion

The main setting of the system is the monitoring of existing clusters’ diameters.
On stationary data streams, the diameter of a cluster decreases every time a
split occurs. Nevertheless, usual real-world problems deal with non-stationary
data streams, where time series that were correlated in the past are no longer
correlated to each other, in the current time period, and might be approaching
time series of other clusters. The strategy that is adopted in ODAC to detect
changes in the structure is based only on the analysis of the diameters. In fact,
the diameter of each two new clusters should be less or equal than their parent’s
diameter. In this way, no computation is needed between the variables of the
two siblings.

3 ODAC with a Semi-Fuzzy Assignment Criterion

When a split point is reported, ODAC determines two variables as pivots and
assigns each of the remaining variables to the cluster which has the closest pivot.
This is usually a good heuristic, as it often finds an optimal border hyperplane.
It is a lot faster than the heuristic performed by DIANA [6], since it is not needed
to compute the average distances to decide which leaf will receive each variable.
However, this may lead to erroneous situations if the moving variable is equally
distant from the two pivots, there is no way of determining to which cluster it
should be assigned.

This issue has a possible solution. The Hoeffding bound can be used to control
the expansion of a cluster. We could include this notion of the Hoeffding bound
as a decision support tool to the decision of moving a variable considering the
two pivots. Let x and y be the pivots of the clusters a and b, respectively, and
m be the moving variable. The expansion is decided as follows:

– if d(y, m) − d(x, m) > ǫk move variable to cluster a;
– else if d(x, m) − d(y, m) > ǫk move variable to cluster b;
– else move m into both clusters a and b, with a given degree of membership;

An example of application of this semi-fuzzy assignment is explained in the
right plot of figure 1. This option may in fact allow the system to try different
combinations of objects. However, this expansion eliminates the characteristic of
speeding up the process with structure growth. Another example of this behavior
follows when, given a crisp data set, the final specification is presented in figure 2
illustrating the difference between the two approaches. Top plot shows the result
for strict clustering, where nodes 4, 5, 6 and 7 represent the real clusters defined
for the crisp data set.

110

Fig. 1. Example of a dissimilarity structure between ten variables, produced by three
clusters, and the comparison on the assignment method: strict (left) and semi-fuzzy
(right). Variables x1 and x2 are the chosen pivots for splitting at first level this set
of variables. Dot-dashed lines represent the first-level splitting while continuous lines
present a second-level splitting.

The fuzzy approach enables a wider observation on the relations between
clusters, as they appear in different configurations. However, if crisp sets are
fuzzified, a later pruning action could be considered. The diameters of the first
ancestors of the leaves or the leaves themselves could act as a post-prune cri-
terion. Preliminary results suggest it may have a very important role in time
series incremental clustering, and it is scheduled for future work. Moreover, this
approach is a simple variation of the ODAC algorithm that might be useful
in applications where the data reveals a fuzzy characteristic. Nevertheless, this
simple technique must be complemented with the right membership function, in
order to be evaluated by fuzzy clustering validity indices.

3.1 Membership Function

A fuzzy clustering procedure enables an object to belong to different clusters,
with some membership function [8], using the concept of fuzzy sets [13]. However,
in hierarchical procedures, different possibilities arise. A simple way of applying
fuzzy clustering in ODAC is to consider that, at each split where a variable
is not clearly closer to one pivot than the other, the degree of membership of
the variable to the new clusters should be equal, assigning the variable to both
clusters with same probability. This will enable the definition of accurate validity
indices for fuzzy clustering structures.

The result of a fuzzy clustering procedure is usually defined as a matrix
U = [uic] where each uic is the degree of membership of a vector xi to cluster c.
In our case, the vectors are the variables. At the root level, all variables belong
to one cluster, so if cluster r is the root node, uir = 1 for all variables i. Every
time a split occurs on a cluster p, the membership of variable i to each offspring
cluster c (it was assigned to) should depend on the degree of membership uip.
So, our approach is to compute it as

uic = uip ∗ βip (2)

111

Fig. 2. ODAC structure compari-
son: strict (top) vs fuzzy (bottom)
clustering (crisp data set).

Variables

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

High-level Nodes, uic

node 1 1 1 1 1 1 1 1 1 1 1

node 2 1 1 2
−1

2
−1

2
−1

2
−1

2
−1

node 3 1 1 1 2
−1

2
−1

2
−1

2
−1

2
−1

node 4 1 1 4
−1

4
−1

4
−1

4
−1

node 5 2
−1

4
−1

4
−1

4
−1

4
−1

node 6 1 1 1 4
−1

4
−1

4
−1

4
−1

node 7 2
−1

4
−1

4
−1

4
−1

4
−1

Final Clusters, uic

node 8 1 1

node 9 4
−1

4
−1

4
−1

4
−1

node 10 2
−1

node 11 4
−1

4
−1

4
−1

4
−1

node 12 1 1 1

node 13 4
−1

4
−1

4
−1

4
−1

node 14 2
−1

node 15 4
−1

4
−1

4
−1

4
−1

Table 1. U Matrix for the fuzzy clustering
structure gathered for crisp data set (zero-
valued cells removed).

where p is the parent cluster of c and βip is the distribution of membership due to
possible fuzzy assignment of variable i when splitting cluster p. The β function
can be computed based on several parameters, including the diameters of p, c
and c’s siblings. However, a first approach will consider β = (nip)

−1, where nip

is the number of new clusters to which variable i was assigned when splitting
cluster p. For a clear strict assignment, we consider β = 1−1 = 1. For a fuzzy
assignment after a binary split, we would have β = 2−1 = 0.5.

For the example presented in figure 2, the values for U are presented in
table 1. It is easy to observe that the sum of membership values for each variable
to all final clusters is 1. Values of U for non-leaf nodes are also presented to enable
a clear insight on the splitting procedure.

4 Fuzzy Cluster Validity

Simple insights on the fuzziness of the clustering structure can be extracted using
only the memberships values uij . Simple indices have been proposed such as the
partition coefficient (PC) and the partition entropy (PE), defined next.

The partition coefficient index [1] is defined as

PC =
1

N

N
∑

i=1

nc
∑

c=1

u2
ic (3)

with range in [1/nc, 1], where nc is the number of clusters. The closer the
index is to 1 the crisper the clustering is. In case that all membership values to
a fuzzy partition are equal, the closer the value of PC is to 1/nc, and the fuzzier
the clustering is.

112

The partition entropy coefficient [4] is a slight variation defined as

PEa = −
1

N

N
∑

i=1

nc
∑

c=1

uic · loga(uic) (4)

for values of U greater than zero, where a is the base of the logarithm, thus the
index values range in [0, loga(nc)]. The closer the value of PE is to 0, the crisp
the clustering is.

Regarding the correspondence between the fuzzy clustering and the real data,
a more robust criteria is the Xie-Beni index [12], also called the compactness and
separation validity function. It is based on several measures of the clustering
structure, with respect to the real data. The fuzzy deviation of variable i from
cluster c, fic, is the distance between i and the center of cluster c, vc, weighted
by the fuzzy membership degree of data point i to cluster c, i. e.:

fic = uic · d(i, vc) (5)

We can compute the variation of cluster c as σc =
∑nc

i=1 f2
ic. The sum of all

the variations of final clusters, σ =
∑nc

c=1 σc, is called total variation of the data
set. The compactness of cluster c is calculated as the average variation in cluster
c, πc = σc/nc, where nc is the number of variables belonging to cluster c. Hence
the compactness of the whole partition is π = σ/n. The separation of the fuzzy
partition, dmin, is defined as the minimum centroid linkage between any two
clusters. The index is defined as

XB = π/dmin (6)

Small values of XB are expected for compact and well-separated clusters. How-
ever, attention should be paid as it monotonically decreases with the number of
clusters nc.

5 Experimental Evaluation

In order to compare the fuzziness of the structures gathered by the system, we
have applied the algorithm to a real data set published in the 2004 ICML Phys-
iological Data Mining Competition, which has no clear crisp structure. Visually,
we can only stress that there is high correlation between sensor3 and sensor5.
For the data belonging to user01 (93344 observations), presented in figure 3, it is
easy to note that only sensor3 and sensor5 are clearly correlated. The resulting
ODAC structure is the left-most plot of figure 5, and the membership values are
presented in table 2. The indices for both the crisp and user01 data sets present
concordant directions. While the crisp data set was partitioned with PC = 0.650
and PE2 = 0.900, the user01 set produced a partitioning with PC = 0.594 and
PE2 = 0.875. One can note that the PC index reveals a fuzzier structure in
the outcome of user01, as expected. Accordingly, the PE2 shows that the en-
tropy of crisp data set result is higher, revealing that less fuzzy structure was

113

Fig. 3. Batch DIvisive ANAlysis clustering
structure for the user01 in PDMC data set,
using the same correlation-based measure.

Sensors

s2 s3 s4 s5 s6 s7 s8 s9

Final Clusters, uic

node 14 1 1

node 15 2
−1

2
−1

node 27 4
−1

2
−1

node 31 2
−1

node 32 4
−1

2
−1

2
−1

node 29 4
−1

2
−1

node 33 2
−1

2
−1

2
−1

node 34 4
−1

Table 2. U Matrix for the final clusters
obtained for the user01 PDMC data set
(zero-valued cells removed).

found. Evidence appears that the user01 data set has some inherit fuzziness,
which was absent in the crisp data set. The proposed method relies on a con-
fidence test based on the Hoeffding bounds. This way, sensitivity analysis must
be performed to assess the level of dependence of the method to this parameter.
Figure 4 presents the analysis on the user01 data set. We can observe that, for
usual values of δ, the system reveals low sensitivity, being the best results ob-
served for δ parameter values between 0.02 and 0.06. From this point, we chose
to fix δ = 0.05.

Fig. 4. ODAC quality sensitivity to the δ

parameter, for the user01 data, for PC,
PE2 and the Xie-Beni index for the semi-
fuzzy (XB) and crisp (XB

′) partitioning.

user01 user06 user25

Value, (nc)
PC 0.594 (8) 0.672 (9) 0.938 (5)
PE2 0.875 (8) 0.688 (9) 0.125 (5)
XB 0.051 (8) 0.123 (9) 0.134 (5)
XB(strict) 0.059 (4) 0.199 (4) 0.059 (4)

Table 3. Fuzzy validity indices for PDMC
data sets. Last line presents the Xie-Beni
index for the resulting structure using
strict assignment (δ = 0.05).

However, in order to assess the sensitivity of the method to different lev-
els of fuzziness, we have applied the algorithm to two other users’ data from
the PDMC data set (80182 and 141251 observations). Figures 5 and 6 present
the resulting structures for the three users. The resulting crisp clusters are the
same in the three sets, although the hierarchy may be different. When using
semi-fuzzy assignment, user25 revealed much less fuzziness in the final struc-
ture than the remaining two sets, with almost the same clusters as the strict
assignment method. Table 3 presents the values for the two partition indices

114

Fig. 5. ODAC semi-fuzzy structure for the PDMC users (user01, user06 and user25).

Fig. 6. ODAC strict structure for the PDMC users (user01, user06 and user25).

and the Xie-Beni index for the three users, with the XB index also computed
for the strict assignment method. While for the user01 and user06 data sets
the semi-fuzzy approach resulted in better values of XB, the user25 appears to
contradict our approach. The strict assignment resulted in a much better value
for the index, indicating that a fuzzy clustering would probably not be a good
approach. Accordingly, when looking to the resulting hierarchy we can state that
the semi-fuzzy assignment resulted in an almost strict partition of the variables,
supporting the notion that, although semi-fuzzy, this approach will nonetheless
find crisp partitions when data is inherently crisp.

6 Concluding Remarks

In this paper we have presented a semi-fuzzy variation to the assignment criterion
of ODAC, a clustering system for streaming time series. ODAC uses a top-down
strategy to construct a binary tree hierarchy of clusters with the goal of finding
highly correlated sets of variables. The main underlying concept in ODAC is the
clusters’ diameter. The split decision used in the algorithm focus on the crisp
boundary between two groups, generating uncertainty in the assignment since
it has to decide based on only a small subset of the entire data. In this work we
propose a semi-fuzzy approach to the assignment of variables to newly created

115

clusters, for a better trade-off between validity and performance. Experimental
results show that this new assignment criterion will find better hierarchies when
data is inherently fuzzy, without much loss in the quality of structures when
the data is inherently crisp. Current and future work is concentrated on several
areas, such as: the study of more complex membership functions; the inclusion
of the membership function in the decision parameters of the entire system,
such as the distance between variables and diameters computation; a post-prune
criterion to reduce the size of the structure focusing on repeated instances of
the same cluster; and a complete fuzzy assignment criterion for a complete fuzzy
system.

Acknowledgment

Pedro P. Rodrigues is supported by a PhD grant awarded by FCT (SFRH/BD/
29219/2006). The authors also wish to thank projects ALES II (POSC/EIA/
55340/2004) and RETINAE (PRIME/IDEIA/70/00078).

References

1. J. C. Bezdek, R. Ehrlich, and W. Full. Fcm: The fuzzy c-means clustering algo-
rithm. Computers and Geoscience, 10(2):191–203, 1984.

2. J. Gama and P. P. Rodrigues. Stream-based electricity load forecast. In Knowledge
Discovery in Databases: PKDD 2007, LNAI 4702, pages 446–453. Warsaw, Poland,
2007. Springer Verlag.

3. P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of
the Sixth ACM-SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 71–80, Boston, MA, 2000. ACM Press.

4. M. Halkidi, Y. Batistakis, and M. Varzirgiannis. On clustering validation tech-
niques. Journal of Intelligent Information Systems, 17(2-3):107–145, 2001.

5. W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

6. L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to
Cluster Analysis. John Wiley and Sons, Inc., New York, 1990.

7. R. N. Mantegna. Hierarchical structure in financial markets. The European Phys-
ical Journal B, 11(1):193–197, 1999.

8. Susana Nascimento. Fuzzy Clustering Via Proportional Membership Model, volume
119 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2005.

9. Karl Pearson. Regression, heredity and panmixia. Philosophical Transactions of
the Royal Society, 187:253–318, 1896.

10. P. P. Rodrigues, J. Gama, and J. P. Pedroso. ODAC: Hierarchical clustering of
time series data streams. In Srivastava, editors, Proceedings of the Sixth SIAM
International Conference on Data Mining (SDM 2006), pages 499–503,2006. SIAM.

11. D. M. Sherrill, M. L. Moy, J. J. Reilly, and P. Bonato. Using hierarchical clustering
methods to classify motor activities of copd patients from wearable sensor data.
Journal of Neuroengineering and Rehabilitation, 2(16), 2005.

12. X. L. Xie and G. Beni. A validity measure for fuzzy clustering. IEEE Transactions
Pattern Analysis and Machine Intelligence, 13:841–847, 1991.

13. L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

116

An Architecture for Context-Aware Adaptive Data Stream
Mining

Pari Delir Haghighi, Mohamed Medhat Gaber, Shonali Krishnaswamy, Arkady
Zaslavsky, and Seng Loke

Center for Distributed Systems and Software Engineering

Monash University, Australia
{pari.delirhaghighi, shonali.krishnaswamy, Arkady Zaslavsky}@infotech.monash.edu.au

CSIRO ICT Center, Australia
Mohamed.gaber@csiro.au

Department of Computer Science and Computer Engineering
La Trobe University, Australia

s.loke@latrobe.edu.au

Abstract. In resource-constrained devices, adaptation of data stream processing to
variations of data rates, availability of resources and environment changes is crucial
for consistency and continuity of running applications. Context-aware adaptation, as
a new dimension of research in data stream mining, enhances and optimizes
distributed data stream processing tasks. Context-awareness is one of the key aspects
of ubiquitous computing as applications’ successful operations rely on detecting
changes and adjusting accordingly. This paper presents a general architecture for
context-aware adaptive mining of data streams that aims to dynamically and
autonomously adjust data stream mining parameters according to changes in context
and resource availability in distributed and heterogeneous computing environments.

1. Introduction

Processing of data streams due to their unpredictable and continuous nature [1, 2] is a
challenging area of study. In the literature, various techniques and approaches have been
presented to address the issues associated with data stream processing both in data mining
and querying. However, recently the emergence and growth of mobile computing and
networking and importance of using mobile devices for data stream mining in certain
application domains (e.g. health or bushfire monitoring applications) have introduced new
research challenges that need to be addressed. Data stream applications running on
resource-constrained devices need not only to consider limitations of computational
resources such as memory, battery level and CPU speed but also to take into account the
issues of variable data rates, mobility, disconnections and environmental changes.

117

Nearly all pervasive systems utilize context to perform their tasks and this makes
context-awareness an essential requirement of these systems [3, 4]. To perform data
stream mining in heterogeneous and distributed computing environments, applications
need to monitor context changes and react or adapt to them in order to maintain consistent
and continuous operations.

Studying the current state-of-art in data stream mining [5-7] indicates that there are
methods and algorithms introduced for efficiently mining high speed data streams in
mobile devices such as Personal Digital Assistants (PDAs) but they have limited dynamic
ability to adjust to a multitude of changing contextual parameters and have not been
adequately equipped to cope with the distributed and heterogeneous nature of applications
or the mobility of the users/devices that these techniques aim to support. One of the
innovative adaptive works in data stream mining on resource-constrained devices is
Algorithm Output Granularity (AOG) [8, 9] that provides adaptability with respect to the
available memory on a device. Examples of light-weight data stream mining algorithms
that have been developed using the AOG include LWC, LWClass and LWF [10].
 In this paper we introduce a novel architecture for context-aware adaptive data stream
mining that aims to provide real-time and dynamic strategies for adaptation and cost-
efficiency by factoring in current context, availability of resources and distribution of
resources and processing. This approach will significantly contribute to a range of
application areas such as the mobile workforce, Intelligent Transportation Systems and
sensor network applications. The summary of our main contributions are as follows:
• Incorporating context-awareness into data stream processing as a meta-level concept

(i.e. situations) based on the Naïve Context Spaces (NCS) model;
• Enabling real-time and cost-efficient adaptation by matching context changes to a set of

pre-defined application-specific situations and responding to changes accordingly;
• Introducing adaptation strategies with data stream processing parameters that are

dynamically set/adjusted at run-time based on contextual changes, and shifting from
purely reactive to proactive behavior;

• Ensuring the continuity and consistency of running operations on resource-constrained
devices;
To explain different parts of our architecture throughout the course of the paper, we

will use an example of a health monitoring application for heart patients. The details of the
examples are only provided for the purpose of illustrating the points and may lack the
necessary medical accuracy and correctness. Applications for healthcare biosensor
networks are recently gaining popularity among people as they provide a convenient and
safe way to monitor patients remotely and generate warnings and emergency calls. One of
the main biosensors used for monitoring heart patients is ECG (Electrocardiogram)
sensors that send heart beat rates as a continuous data stream to a PDA [11] or to a base
station using an ISM band [12]. Data stream querying or mining needs to be performed on
the ECG sensor streams locally on a mobile device or on a central workstation for
monitoring and analyzing heart beats.

118

This paper is structured as follows: Section 2 provides a general view of our proposed
architecture for context-aware adaptive data stream mining. Section 3 discusses context
and situation modeling and how situations are inferred. Section 4 focuses on adaptation
strategy and correlation functions. Finally section 5 concludes the paper and discusses
future work.

2. An Architecture for Context-Aware Adaptive Data Stream Mining

In this section, we introduce an architecture for context-aware adaptive data stream
mining. The architecture consists of two parts as shown in Figure 1. The first part is a
situation manager that provides context-awareness and includes components for context
modeling and inference. The second part, strategy manager, is responsible for adjusting
adaptation strategy parameters based on correlation functions and invoking strategies.

Figure 1. A general architecture for context-aware adaptive data stream mining

119

3. Situation Manager

The situation manager consists of three components: Situation repository, Situation
Modeling and Situation Inference. These components work together to reason about the
occurring situation based on the current context attribute values. Contextual information
used for inferring situations may include sensed context collected from sensors, static
context or internal context such as battery level of mobile devices.

3.1 Situation Modeling

We have based our context representation and modeling on the Naïve Context Spaces
(NCS) Model [13, 14] but made changes to it to comply with our purpose. The NCS
model and its extension in [15] are used as a powerful tool for reasoning about context and
addressing uncertainties of sensed information. The core of the NCS model is the concept
of situations. The NCS model represents contextual information as geometrical objects in
multidimensional space called situations [13]. A situation space is a tuple of regions of
attribute values related to a situation. Each region is a set of accepted values for an
attribute based on a pre-defined predicate and each context state a collection of values of
context attributes at the given time.

The NCS model extends the definition of context by describing it as “the set of facts,
assumptions and predictions along with methods/algorithms of interpreting/ discovering/
processing that information” [15].

Using the NCS model, a situation occurs if every sensed context attribute value meets
the predicate of the region set for the same type of attribute. We consider these situations
as known situations. However, if the current context state does not match any of the pre-
defined situations, it indicates the occurrence of an unknown situation. Any unknown
situation can be similar/dissimilar to the situations already defined.

If we have an occurring situation
iS with a region of

jA , then for the sensed context

attribute of t
ia , we will have

j
t
i Aa ∈ , and

value
t
ivalue AaA maxmin ≤≤ for continuous values. For

any unknown situation there will be at least one context attribute value t
ia that does not

satisfy its associated region’s predicate.
Considering our example for monitoring heart patients, from a list of related context

attributes, we consider the following context attributes: temperature
1a (0-50), age

2a (20-

120), location
3a (HOME, NOT HOME), time

4a (24 hours), heart rate
5a (60-180), and

Battery_level
6a (0-100%). Weights are values from 0 to 1 that represent the importance

of each context attribute in a situation and can have the total value of 1 per situation. Table
1 shows examples of pre-defined situations based on the aforementioned context
attributes.

120

Table 1. Examples of situations

Situation Context attributes Regions and their predicates Weight

1S

sleep
1a

2a

3a

4a

5a

6a

<34
<85

HOME
>10pm AND <7am

<100
 >80%

0.1
0.02
0.03
0.35
0.4
0.1

2S

Heat_stroke_
threat

1a

2a

3a

4a

5a

6a

>34
>75

NOT HOME
>11am AND <8pm

>100
>40%

0.4
0.15
0.01
0.01
0.4
0.03

3S

critical
1a

2a

3a

4a

5a

6a

>34
>70

NOT HOME
>4pm AND <6pm (rush hour)

>100
<40%

0.2
0.03
0.05
0.02
0.6
0.1

3.2 Situation Repository

The situation repository contains a set of pre-defined situations that specify the most
important regions of context attributes for the application however any major changes in
context attribute values will be modeled as a situation (known or unknown) and used for
adaptation of strategy parameters.

We have used XML schema (as shown in Figure 2) for defining our context model and
XML documents for defining situations of different application domains.

We use JAXB to convert an XML document to java classes based on our XML schema.
XML is a powerful and easy tool for the sharing of data across different applications.
Applications can express their domain-related situations as an XML document in a simple
way without requiring the knowledge of the underlying situation model.

121

Figure 2. XML schema of the situation model

3.3 Situation Inference

Situation inference is here referred to as discovering which pre-defined situation matches
the current context state (collection of context attributes). Situation inference finds a
perfect match for known situations and the closest match for unknown situations.
1. Let },...,,{ 21 nsituations SSSR = be the set of pre-defined situations in the Situation

Repository.
2. Let context state },...,,{ 21

t
m

tt aaaC = be the set of context attributes’ values collected

at time t.

122

3. We use the function perfectMatch),(situations
t RC to find a pre-defined situation that

matches the current context state
tC . If there is not a perfect match, we find the most

similar situation
similarS using the State-Space difference space

state∆ measures [15]. The

function f calculates the distance between the context attribute and the region of
accepted values, and

iâ denotes the accepted region’s absolute size.

)ˆ,,(.
1

i
r
i

n

i

s
ii

space
state aaafw∑

=

=∆ . (1)

4. After computing the state-space difference for all the pre-defined situations, the

situation with the least difference value is selected as the most similar situation. The
difference between a sensed context attribute and its closest value in the accepted
region)(r

i

s

i aa − is later used for adjusting strategy parameters.

3.3.1 K-Nearest neighbor algorithm
To provide more accurate inference results we also perform the k-nearest neighbor
algorithm to classify unknown situations based on the closest pre-defined situations. We
first normalize instances and then measure Euclidean distance between the current context
state and pre-defined situations to find the closet situation. We have tested the algorithm
with k=1, k=3 and k=5, and the results are very similar. However, we intend to experiment
this further with larger number of training examples and different application domains to
determine the value of k.

4. Strategy Manager

To achieve real-time and dynamic adaptability, we use a set of parameterized adaptation
strategies with their correlation functions. At run-time, the changes in context attribute
values are used for adjusting parameter values in the corresponding strategy using its
matching function. The strategy manager includes strategy repository, correlation
functions and strategy invocation.

4.1 Strategy Repository

Every occurring situation may invoke a corresponding strategy to adjust the data stream
mining parameters. We initially define a set of strategies with their parameters for each

123

pre-defined situation. Table 2 illustrates some examples of these strategies for our
scenario.

Table 2. Examples of strategies

Strategies parameters Value Situations

1Str

2Str

Increase

Switch /change

window size (sec)

process

min= +5
max= +10
(non-linear)

lighter
weight
algorithm

1S Sleep

3Str

Decrease Window size (sec) -6

2S heat_stroke

4Str

5Str

Decrease

send
warning/emergency call

Window size (sec)

-

-12

-

3S Critical

4.2 Strategy Invocation

Depending on which situation is currently occurring, a corresponding strategy is selected.
1. Let },...,,{ 21 nstrategies StrStrStrR = be the set of pre-defined strategies in the strategy

repository.
2. The strategy invocation

irepositoryoccuring StrRSSI =),(returns the adaptation strategy for

the occurring situation.
Adaptation parameters need to be adjusted properly before they could be applied to

data stream mining tasks. We use correlation functions to adjust the value of parameters
based on context attribute values. For a data stream process

iP running on a data stream

iDS , the parameters that have been considered in resource-aware approaches [8, 16]

include Input rate, output rate, time frame, procesesing rate of data per unit, total time,
available memory, and sampling method. From the above parameters, those that can be
adjusted by an adaptation strategy are: Input rate, output rate, time frame, and sampling
method.

In addition to the above parameters, we consider the parameter of location ds
iL for data

streams, device
iL for the mobile device

iD , and orithma
iL lg for light weight algorithms that can

be transferred from one location/device to another. The parameter of location addresses
the aspect of mobility in devices and users as well as distribution of data streams and

124

algorithms on heterogeneous computing devices. Figure 3 illustrates adaptation of data
stream processing.

Figure 3. Adaptation of data stream processing

4.3 Correlation Functions

In order to make adjustments to strategy parameters, we use correlation functions that are
pre-defined functions and vary from linear to non-linear. Correlation functions calculate
strategy parameter values according to changes in context and the occurring situation. We
envisage this concept by providing an example of context-aware adaptation from our
scenario. In the heat-stroke-threat situation, the matching strategy reduces the window size
from 30 sec (set value) to 24 sec (-6) as shown in Table 2. For a similar situation that
meets all the accepted regions of the heat-stroke situation but its temperature value is 33

(refer to Table 1), we use a linear function (i.e. window size = ax+b where x=
r
i
s
i

a

a
∆ and a

and b are set values) to adjust the parameter of window size. We discuss this further in the
following steps:
1. Strategy invocation,

irepositoryoccuring StrRSSI =),(returns the corresponding strategy
iStr

for the current situation inferred by the situation manager.
2. Let },...,,{ 21 nfffCF = be a set of pre-defined correlation functions.

125

3. Let
iiii appaf →),(be a correlation function for

iStr that returns
iap the adjusted value

of the parameter
ip based on the relationship of the context attribute

ia and the parameter

ip where
ii Strp ∈ and

occuringi Sa ∈ .

4. The adjusted value
iap of parameter

ip is then used in the strategy
iStr .

As an example of cost-efficient adaptation, we include a strategy for the sleep situation
that uses a pre-defined non-linear function to increase the window size (i.e. reducing the
reading rates of heart beat) based on the attribute of time during the night in order to save
device resources. During the day (unknown situation), the window size is automatically
adjusted according to the relationship of the time and window size in the sleep situation
using a similar correlation function as shown in Figure 4. We consider sleep situation for
patients who mainly suffer from heart irregularities under stress and tension that are more
likely during the day.

Figure 4. Using a quadratic function for adjusting parameters for sleep situation

5. Conclusion and Future Work

In distributed and heterogeneous environments, data stream applications have to cope with
high data stream rates and limited computing resources such as memory or battery.
Moreover, these applications need to address mobility, disconnections and environmental
changes that are the norm in ubiquitous computing environments. Integrating data stream

126

processing with context-awareness enables applications to adjust to changes and continue
their operations as expected.

In this paper we introduced a general architecture for context-aware adaptive data
stream mining in heterogeneous computing environments. Our project is currently at the
initial stages and our intention is to build a middleware based on the proposed architecture
that will provide adaptation tasks and services on different data stream applications. While
our current focus is on data stream mining, we see the potential for generalizing the
approach for data stream processing including querying. Furthermore, there are still open
issues in terms of distribution of data streams and mining algorithms that we intend to
address in future work.

References

1. Babu, S., Widom, J.: Continuous Queries over Data Streams. ACM SIGMOD Record 30(3): pp.
109--120 (2001)

2. Golab, L., Ozsu, M.T.: Issues in Data Stream Management. SIGMOD Record 2003. 32(2): pp. 5-
-14 (2003)

3. Bunningen, A.H., Feng L. Apers, P.M.G.: Context for Ubiquitous Data Management. In:
Proceedings of the 2005 International Workshop on Ubiquitous Data Management (UDM'05),
pp. 17--28. IEEE Computer Society, Tokoyo (2005)

4. Davidyuk, O., Riekki, J., Rautio, V. Sun, J.: Context-Aware Middleware for Mobile Multimedia
Applications. In: Proceedings of the 3rd International Conference on Mobile and Ubiquitous
Multimedia. pp. 213--220. ACM Press, Maryland (2004)

5. Galan, M., Liu, H., Torkkola, K.: Intelligent Instance Selection of Data Streams for Smart Sensor
Applications. SPIE Defense and Security Symposium, Intelligent Computing: Theory and
Applications III., pp. 108-119. Orlando (2005)

6. Kargupta, H., Park, B, Pittie, S., Liu, L., Kushraj, D., pSarkar, K.: MobiMine: Monitoring the
Stock Market from a PDA. SIGKDD Explorations, 3(2): pp. 37--46 (20020

7. Kargupta, H., Bhargava, R., Liu, K., Powers, M., Blair, P., Bushra, S., Dull, J., Sarkar, K., Klein,
M., Vasa, M., Handy, D.: VEDAS: A Mobile and Distributed Data Stream Mining System for
Real-Time Vehicle Monitoring. In: Proceedings of the SIAM International Data Mining
Conference (SDM 2004), Orlando (2004)

8. Gaber, M.M., Krishnaswamy, Sh., and Zaslavsky, A., Resource-Aware Mining of Data Streams.
Journal of Universal Computer Science. 11(8): pp. 1440--1453.

9. Gaber, M.M., Krishnaswamy, S., and Zaslavsky, A., On-board Mining of Data Streams in Sensor
Networks, Advanced Methods of Knowledge Discovery from Complex Data, S. Badhyopadhyay,
Maulik, U., Holder, L., and Cook,, D. (eds.), pp. 307--337. Springer, (2005)

10.Gaber, M.M., Krishnaswamy, Sh., and Zaslavsky, A. Cost-Efficient Mining Techniques for Data
Streams. In: Proceedings of the 2nd Australasian Workshop on Data Mining and Web
Intelligence (DMWI2004). Australian Computer Society, pp. 109--114. New Zealand (2004)

11.Brettlecker, G., Schuldt, H., and Schatz, R. Hyperdatabases for Peer-to-Peer Data Stream
Processing. in Proceedings of the IEEE International Conference on Web Services (ICWS'04).
pp. 358. IEEE Computer Society, San Diego (2004)

127

12.Chen, C., Agrawal, H., Cochinwala, M. and Rosenbluth, D. Stream query processing for
healthcare bio-sensor applications. In: Proceedings of the 20th International Conference on Data
Engineering (ICDE'04). pp. 791--794. IEEE Computer Society, Boston (2004)

13.Padovitz, A., Loke, S.W. and Zaslavsky, A. Towards a Theory of Context Spaces. In:
Proceedings of the 2nd IEEE Annual Conference on Pervasive Computing and Communications,
Workshop on Context Modeling and Reasoning (CoMoRea). IEEE Computer Society. Orlando
(2004)

14.Padovitz, A., Loke, S.W., Zaslavsky, A. and Burg, B. . Towards a General Approach for
Reasoning about Context, Situations and Uncertainty in Ubiquitous Sensing: Putting
Geometrical Intuitions to Work. In: Proceedings of 2nd International Symposium on Ubiquitous
Computing Systems (UCS'04). Japan (2004)

15.Padovitz, A., Context Management and Reasoning about Situations in Pervasive Computing,
Caulfield School of Information Technology. Monash University: Australia. (2006)

16.Agarwal, I., Krishnaswamy, Sh., and Gaber M. M. Resource-Aware Ubiquitous Data Stream
Querying In: Proceedings of the International Conference on Information and Automation. Sri
Lanka (2005)

128

Efficient Secure Query Processing
in XML Data Stream

Dong-Chan An, Seog Park

Department of Computer Science & Engineering, Sogang University

C.P.O. Box 1142, Seoul Korea 100-611
{channy, spark}@sogang.ac.kr

Abstract. As various users and applications require the distribution and sharing
of information in XML documents, the need for an efficient secure access of
XML data in a ubiquitous data stream environment has become very important.
In this paper, we propose an efficient secure XML query processing method to
solve the two problems by using role-based prime number labeling and XML
fragmentation. A medical records XML document has the characteristic of an
infinite addition in width rather than in depth because of the increment of
patients. But a role-based prime number labeling method can fully manage the
size of documents that increases to infinity and can minimize the maintenance
cost caused by dynamic changes. Experimental evaluation clearly demonstrates
that our approach is efficient and secure.

1 Introduction

XML [1] is recognized as a standard for information representation and data exchange, and the
need for distribution and sharing in XML data basis is steadily increasing, making the efficient
and secure access to XML data a very important issue. Despite this, relatively little work has
been done to enforce access controls particularly for XML data in the case of query access.
Moreover, the current trend in access control within the traditional environment has been a
system-centric method under finite, persistent data environment and an access control under
static data environment. However, more recently, access control policies have become
increasingly needed in the continuous data stream [15] environment, and consequently, it has
been accepted that the pre-existing access control methods do not meet these needs.

This paper proposes an efficient secure XML query processing using role-based prime
number labeling method with regard to characteristics of XML data stream under ubiquitous
environment. The proposed method enables efficient and secure real-time processing of a query
in a mobile terminal, applying the characteristics of XML data stream.

2 Related Work

The traditional XML access control enforcement mechanism [4-13] is a view-based
enforcement mechanism. The semantics of access control to a user is a particular view of the
documents determined by the relevant access control policies. It provides a useful algorithm for

129

computing the view using tree labeling. However, aside from its high cost and maintenance
requirement, this algorithm is also not scalable for a large number of users.

To overcome the view-based problems, M. Murata et al. [16] proposed the filtering method
to filter out queries that do not satisfy access control policies. B. Luo et al. [17] took extra steps
to rewrite queries in combination with related access control policies before passing these
revised queries to the underlying XML query system for processing. However, the shared
Nondeterministic Finite Automata (NFA) of access control rules is made by a user (or a user’s
role). Thus, the shared NFA involves many unnecessary access control rules from the user’s
query point of view, which further result in time-consuming decisions during which the user’s
query should have already been accepted, denied, or rewritten.

2.1 Access Control Policy

General access control brings additional processing time. However, it is overlooked that such
time spent on unnecessary access control rules could be reduced when access control rules in
XML document basis should be expressed in XPath [2] and users request queries in XPath. In
other words, an XML document can, depending on a user's query, be classified into these three
parts: ancestor node, descendant node, and sibling node (following-sibling node and preceding-
sibling node). All access control rules needed, based on a user query, are just only access
controls described in the ancestor node or descendant node. Access controls described in
sibling nodes are unnecessary access control rules from the point of user query.

An authorization defined by a security manager is called explicit and an authorization
defined by the system, on the basis of an explicit authorization, is called implicit in the
hierarchical data model [3]. An implicit authorization is used with an appropriate 'propagation
policy' to benefit the advantage of storage. With an assumption that the optimized propagation
policy varies under each of the different environments, 'most-specific-precedence' is generally
used. On the other hand, 'denial-takes-precedence' is used to resolve a 'conflict' problem that
could be derived from propagation policy by such implicit authorization. Since positive
authorization and negative authorization are also used together, 'open policy', which authorizes
a node that does not have explicit authorization, and 'closed policy', which rejects access, are
used. The policies 'denial-takes-precedence' and 'closed policy' are generally used to ensure
tighter data security [16].

2.2 XFrag

The high practicality of mobile terminals and computing power is necessary for the feasibility
of ubiquitous computing. The efficiency of memory, energy, and processing time is also
especially needed. XML data has a hierarchical structure and the capacity might be very huge.
A method that can take XML data into appropriate fragmentation so as to process it in pieces is
consequently needed for the small memory of a mobile terminal to manage massive XML data
[18, 19]. When XML streams data, which is generated under a sensor network, the data is
structurally fragmented and transmitted and processed in XML piece stream, the efficiency of
memory and the processing time of mobile terminals can be reconsidered. Moreover, when
certain data is updated in an XML data stream, not the whole XML data but only the changed
fragment needs to be transmitted, taking advantage of a reduced transmission cost.

The recent Hole-Filler Model [20, 21] has been proposed as a method that fragments XML
data structurally. XFrag [21] and XFPro [22] proposed an XML fragmentation processing
method adopting the Hole-Filler Model. Nonetheless, this method has problems of late
processing time and waste of memory space due to additional information for the Hole-Filler
Model. The XFPro method has improved processing time by improving the pipeline, but is not

130

a solution for the problems that the Hole-Filler Model has. A medical records XML document
[25] is shown in Fig. 1, and a fragmented XML document by the Hole-Filler Model [21] is
shown in Fig. 2.

Fig. 1. Medical Records XML Document

Fig. 2. Fragmented XML Document by Hole-Filler Model

2.3 Prime Number Labeling

For the query processing of a dynamic XML document, a labeling technique, which is easily
applied to insert and delete elements, is needed. Some existing labeling techniques lack the
document updating capability and search whole XML document trees again to re-calculate the
overall label of the node, thus bringing costs higher [23].
 A new labeling technique has shown up as a consequence of the appearance of the dynamic
XML document. This technique is typical of the prime number labeling scheme [24] applied to
information which rarely affects other labels. This technique assigns a label for each node, a
prime number, to represent the ancestor-descendant relation and is designed not to affect the
label of other nodes when updating the document. However, since it searches a considerable
range of the XML tree again and re-records updated order information during the updating
process, it presents a higher updating cost.

 2.4 Problems

In sections 2.2 and 2.3, this paper pointed out the low practicability of existing access control
under XML data streams. This paper proposes a fine-grained access control using role-based

<stream:filler id=“1.1” tsid=“5”>
<patient>

 <pname> Mark </pname>
 <sex> Male </sex>
 <age> 56 </age>
 ...
 </patient>
</stream:filler>

<stream:filler id=“1” tsid=“1”>
 <hospital>
 <doctor>
 <dname> David </dname>
 <patients>
 <stream:hole id=“1.1” tsid=“5”/>
 ...
 </doctor>
 ...
 </hospital >
</stream:filler>

<stream:filler id=“1.1.1” tsid=“9”>
 <disease> Cancer </disease>
</stream:filler>

Hospital

Patient Doctor

Diagno

Date

DName

IM……………………………. n
GS

Record

DoctorDate

PName Diagno

Patient

Record

Date

Diagnosis DName

Patient

PName

'David' 'David' 'Mary'
'Mary'

'Angela' ‘Mark'

Bill Bill Bill

SexSexSex

BP BP
BP

Record…………………. ∞

DName PName

Doctor

131

prime number labeling method with regard to characteristics of XML data stream under a
ubiquitous environment. The proposed method enables the efficient and secure real-time
processing of a query in a mobile terminal, applying the characteristics of an XML data stream.

3 Proposed Method

The proposed environment of the role-based prime number labeling (RPNL) method is shown
in Fig. 3. It depicts medical records that need accurate real-time query answers by checking the
authority and the role of valid users via access control policy when a query is requested.

3.1 Role-Based Prime Number Labeling

The role-based prime number (RPN) labeling method is explained under a certain environment
as in Fig. 3. First of all, considering the characteristics of the proposed environment, the
fragmentation of the XML document in Fig. 1 is shown in Fig. 4. Problems such as low
processing time and waste of memory space needed due to additional information for the Hole-
Filler Model in existing XFrag [21] is minimized as shown in Fig. 4. This means that
information such as tag structure is no longer needed because the order of XML documents no
longer need to be considered.

Fig. 3. Query Processing of Mobile Terminal over XML Data Stream Environment

Fig. 4. Partial Fragmentation in XML Data Stream

<stream:filler id=“1”>
 <hospital>
 <deptname>GS</deptname>
 <record>
 <stream:hole id=“1.1”/>
 <stream:hole id=“1.2”/>
 …
 </record>
 </deptnamel >
 <deptname>IM</deptname>
 <record>
 <stream:hole id=“2.1”/>
 <stream:hole id=“2.2”/>
 …
 </record>
 </deptnamel >
 …
 </hospital>
</stream:filler>

Data
Sources
in
Sensor
Network

Query
Request

Query
Registration

Result

<stream:filler id=“1.1” >
 <date> 05-09-2007 </date>
 <doctor>
 <diagnosis> cancer </diagnosis>
 <dname> David </dname>
 </doctor>
 <bill>$40,000</bill>
 <patient>
 <pname> Mark </pname>
 <sex> Male </sex>
 <BT> 38 </BT>
 <BP> 150 </BP>
 ...
 </patient>
</stream:filler>

132

After a fragmenting procedure of XML data stream, proper role-based prime numbers are
assigned to nodes of the medical records XML data stream of Fig. 1 as shown in Table 1. Since
roles are limited in any organization, it is possible to represent roles with a prime number and a
prime number is expansible.

Table 1. Role-Based Prime Number Table

Roles Role-Based Prime Number

Patient 2

Doctor 3

Researcher 5

Insurer 7

Referring to Table 1, a role-based prime number labeling algorithm is performed in Fig. 5.

(1) Level 1 : integer number assign to department (1~n)

 - GS : 1, IM : 2

(2) Level 2 : 2nd level assign to sub node of department record

 - GS record’s sub node : (1.1), (1.2)...

 - IM record’s sub node : (2.1), (2.2)...

(3) Level 3 : 3rd level assign to role-based prime number in record’s sub nodes

 [department].[record].[sub node]

 - Date(*.*.210) : product of 2,3,5,7

 - Doctor(*.*.30) : product of 2,3,5

 - Diagnosis(*.*.30) : product of 2,3,5

 - DName(*.*.6) : product of 2,3

 - attribute value of terminal node : inherit role-based prime number of super node

 - Patient(*.*.210) : product of 2,3,5,7

 - Sex(*.*.210) : product of 2,3,5,7

 - PName(*.*.42) : product of 2,3,7

 - BP(*.*.30) : product of 2,3,5

(4) Order : out of consideration

Fig. 5. Role-Based Prime Number Labeling Algorithm

XML document acquired through Fig. 5 is shown in Fig. 6-(a).

Roles Role-Based Prime Number Label

Date 1.1.210

Doctor 1.1.30

Bill 1.1.14

Patient 1.1.210

PName 1.1.42

BP(Blood Pressure) 1.1.30

(a)

133

(b)

Fig. 6. (a) //GS/Record(1.1)’s RPN, (b) Medical Records XML Document's RPN

3.2 Query Processing by RPN

The proposed security system’s architecture is shown in Fig. 7. The query processing procedure
in Fig. 7 can be considered in two steps. The role check is done in Step 1 using the 'Role-Based
Prime Number Table' and final access authority is checked at Step 2 using the 'Role Privacy
Table'. Once a query from a mobile terminal is registered, access authority is checked at Step 1
by checking the prime number of the query terminal node. That is, access to Step 1 is permitted
when the remainder of the RPN divided by the role of user becomes zero. Accessibility is
finally checked at Step 2 referring to the 'Role Privacy Table' of Table 2. Moreover, as
indicated in Section 2.1, query access is rejected by ‘denial-takes-precedence’[16]. Details will
be verified in the following example

Fig. 7. The Architecture of Proposed Security System

• Example1 (predicate + positive access control + positive access control)
(1) //record/patient[pname=Mark]
(2) "David" with role of doctor requests a query
- step1, terminal node pname=Mark’s label is verified : 1.1.42
- David's role = doctor : 3

S
T
R
E
A
M

DTD

XML
Docu-
ments

ACR
(RPN)
Check

Fragmenting

Role-Based
Prime
Number
Labeling

Role Privacy
Check

C
L
I
E
N
T
S

Results

Query
Initiation

Reject
Query

Reject
Query

O
U
T
P
U
T

D
A
T
A

S
O
U
R
C
E
S

Hospital

Patient Doctor

Diagnosis

Date

DName

IM(2)………(n)GS(1)

Record(1.1)

Doctor(30) Date(210)

PName Diagnosis(30)
Dname(6)

Patient
(210)

Pname
(42)

Record(1.2)

DoctorDate

Diagnosis DName

Patient

PName

'David‘(6)
'David' 'Mary'

'Mary'
'Angela'‘Mark'

Bill Bill
Bill(14)

Sex Sex Sex(210)
1.1.30

1.2.210
1.1.210

2.1.210

2.1.301.2.30

BP

Record(2.1)……..(2. ∞)

BP(30)

BP

134

- 42%3=0, access is permitted
- step2, Only 1.1.* and 1.2.* is permitted for David by 'Role Privacy Table'
- finally, 1.1.42(//record/patient[pname=Mark]) access permitted
- response to the query

• Example 2 (positive access control + positive access control)
(1) //record/bill
(2) "AIG" with role of insurer requests a query
- step1, terminal node bill’s label is verified : *.*.14
- insurer's role : 3
- 14%7=0, access is permitted
- step2, Only 1.1.* and 1.2.* is permitted for AIG by 'Role Privacy Table'
- finally, access of 1.1.14 and 2.1.14 is permitted
- response to the query

• Example 3 (predicate + positive access control + negative access control)
(1) //record/patient[pname=Mark]
(2) "Angela" with role of doctor requests a query
- step1, terminal node pname=Mark’s is verified : 1.1.42
- Angela's role = doctor : 3
- 42%3=0, access is permitted
- step2, Only 2.1.* is permitted for Angela by 'Role Privacy Table'
- [pname=Mark] is 1.1.42, access rejected
- access to step1 permitted, access to step2 rejected.
- finally query access rejected

• Example 4 (negative access control)
(1) //record/patient/pname
(2) one with role of researcher requests a query
- step1, terminal node pname’s label is verified : *.*.42
- researcher's role : 5
- 42%5≠0, access is rejected
- finally, query rejected

Table 2. Role Privacy Table

Roles
Dept. Records

Patient Doctor Insurer Researcher

1.1 Mark David ING x

1.2 Mark David AIG x

... ... x
1

1.∞ ... x

2.1 Mary Angela AIG x

... ... x 2

2.∞ ... x

... x

n n.∞ x

As shown in Example 4, the proposed method has a strong point in that it processes the

rejection to a query quickly.

135

4 Experimental Evaluation

We used one PC with an Intel Pentium IV 3.0GHz CPU, with a main memory of 1GB using the
MS Windows XP Professional OS. The Programming language used was JAVA (JDK1.5.0).
Data for the experiment was used in the form of random medical records XML documents.
Performance was compared mainly in two aspects.

4.1 Experiment I: Accurate Detection of Rejection Query

A rejection query is a user query that has to be rejected at all cases. Thirty intended rejection
queries that suited each type of query were made up, and access control policy and actual
number of detection of rejection queries was compared to this. The result is shown in Fig. 8.
The experiment was conducted in three cases: "/" axis, "//" axis, and a case that has a predicate
in a terminal node. The result demonstrates that the intended 30 rejection queries were detected
100%.

30 30 30

0

5

10

15

20

25

30

35

with "/" axis with "//" axis with predicates

Kinds of Rejection Queries

N
um

be
r o

f Q
ue

rie
s

Rejection Queries

Fig. 8. The Result of Detection for Rejection Query

4.2 Experiment II: Processing Time of Query

Average query processing time was compared in two cases: one applied the access control
method proposed in this paper and the other did not.

Average processing time was measured according to random samples of XPath query
numbers (50, 100, 200, 300, and 500). Processing time is represented by an average time so that
error of measurement can be minimized. Role-based prime number labeling time was not
included in the response time in the proposed method because it is reconstructed when an
update such as insertion or deletion of medical records XML documents is made. Referring to
role prime number labeling which is generated before query process, and query processing time
including the pure procedure of authority checking was measured. Nonetheless, the fact that
referring to access control information does not affect the system performance was discovered.
Fig. 9 shows the result.

136

118

185

244
268

299

113

180

240
267

299

0

50

100

150

200

250

300

350

50 100 200 300 500
Number of Queries

Pr
oc

es
si

ng
 T

im
e

(m
s)

Proposed Access Control Not Apply to Access Control

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50 100 200 300 500
Number of Queries

Pr
oc

es
si

ng
 T

im
e

R
at

e
Not Apply to Access Control + Overhead for Proposed Access Control

 (a) (b)

Fig. 9. (a) The Processing Time of The Security Check on Queries, (b) The Overhead of The
Security Check on Queries

5 Conclusions

Considering the efficiency of memory, energy, and processing time in the performance of
mobile terminals frequently used under a ubiquitous environment, the processing of massive
XML data stream is impossible. Moreover, it is more challenge to implement access control on
mobile terminals under a ubiquitous environment. In addition to these, security becomes a very
important issue due to the increasing number of users, and the increase of the amount of data
being used. We proposed an efficient secure XML query processing method to solve those two
problems by using role-based prime number labeling. Medical records XML documents, and
the proposed environment, in this paper, have the characteristic of infinite additions in width
rather than in depth because of the increment of patients. In this manner, the role-based prime
number labeling method was able to fully manage the size of documents that increase to
infinity and can minimize the maintenance cost caused by dynamic changes. While the tree
structure of XML documents, in addition, should be searched more than twice for the
application of security during query processing in previous works, one search is possible for
real-time processing resulting in minimization of transmission cost through fragmentation of
XML documents by the proposed method. In terms of security, system load is minimized and a
perfect access control is implemented by application of two-step security. First of all, a query
by a user who does not have a role that does not meet access control rules is promptly rejected
applying the characteristics of the prime number and a stricter access control can be applied by
the application of two-step security. However, it is a little burdensome to keep the role privacy
table. Nonetheless, the experiment still showed the superiority of our proposed method.

Acknowledgements

This work was supported by the Korea Science and Engineering Foundation(KOSEF) grant
funded by the Korea government(MOST) (No. R01-2006-000-10609-0).

137

References

1. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau. Extensible Markup Language
(XML) 1.0, World Wide Web Consortium (W3C), 2004.

2. A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, and J. Siméon. XPath 2.0,
World Wide Web Consortium (W3C), 2005.

3. F. Rabitti, E. Bertino, W. Kim and D. Woelk. A Model of Authorization for Next-Generation Database
Systems. ACM Transaction on Database Systems, Vol 126, No 1. March 1991, PP. 88-131.

4. E. Damiani, S.Vimercati, S.Paraboschi, and P.Samarati. Securing xml document. In Proc. of the 2000
International Conf.on Extending Database Technology (EDBT2000), Konstan, Germany, March, 2000,
pp.121-135.

5. E. Damiani, S. Vimercati, S. Paraboachk and P.Samarati.XML Access Control Systems: A
Component-Based Approach. In Proc. IFIP WG11.3 Working Conference on Database Security, The
Netherlands, 2000. 8.

6. E. Damiani, S. Vimercati, S. Paraboachk and P.Samarati. Design and Implementation of Access
Control Processor for XML Documents. Computer Network, 2000.

7. E. Damiani, S. Vimercati, S. Paraboachk and P.Samarati.A Fine-grained Access Control System for
XML Documents. ACM Trans. Information and System Sec., Vol.5, No.2, May 2002.

8. E. Bertino, S. Castano, E. Ferrari, and M. Mesiti. Specifying and Enforcing Access Control Policies for
XML Document Sources. WWW Journal, Baltzer Science Publishers, Vol.3, N.3, 2000.

9. E. Bertino, S. Castano, and E. Ferrai. Securing XML documents with Author-x.IEEE Internet
Computing, May.June, pp.21-31, 2001.

10. E. Bertino and E. Ferrari. Secure and Selective Dissemination of XML Documents. TISSEC, 5(3), pp.
237-260, 2002.

11. E. Bertino, M. Braun, S. Castano, E. Ferrari, and M. Mesiti. Author-X: A Java-Based System for XML
Data Protection.In Proc. IFIP WG11.3 Working Conference on Database Security, Netherlands, 2002.

12. A. Gabillon and E. Bruno. Regulating Access to XML Documents. In Proc. IFIP WG11.3 Working
Conference on Database Security, 2001.

13. A. Stoica and C. Farkas. Secure XML Views. In Proc. IFIP WG11.3 Working Conference on Database
and Application Security, 2002.

14. XML 1.0, second edition, http://www.w3.org/TR/2000/REC-xml-20001006
15. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and Issues in Data Stream

Systems. Invited Paper in Proc. of PODS, 2002.
16. M. Murata, A. Tozawa, and M. Kudo. XML Access Control Using Static Analysis. In ACM CCS,

Washington D.C., 2003.
17. B. Luo, D. W. Lee, W. C. Lee, and P. Liu. Qfilter: Fine-grained Run-Time XML Access Control via

NFA-based Query Rewriting. CIKM 2004
18. XML Fragment Interchange, W3C Candidate Recommendation 2001.
19. Sujoe Bose, Leonidas Fegaras, David Levine and Vamsi Chaluvadi, A Query Algebra for Fragmented

XML Stream Data, DBLP 2003.
20. Leonidas Fegaras, David Levine, Sujoe bose and Vamsi Chaluvadi, Query Processing of Streamed

XML Data, CIKM 2002, pp. 126-133.
21. Sujoe Bose and Leonidas Fegaras, XFrag: A Query Processing Framework for Fragmented XML Data,

Web and Databases 2005.
22. Huan Huo, Guoren Wang, Xiaoyun Hui, Rui Zhou, BoNing, and Chuan Xiao, Effiecient Query

Processing for Streamed XML Fragments, DASFAA 2006.
23. Masatoshi Yoshikawa, Toshiyuki Amagasa, et al.,XRel: A Path-Based Approach to Storage and

Retrieval of XML Documents Using Relational Databases, ACM Transaction on Internet Technology,
2001.

24. Xiaodong Wu, Mong Li, Lee Wynne Hsu, A Prime Number Labeling Scheme for Dynamic Ordered
XML Trees, ICDE, 2004.

25. Wenfei Fan, Irini Fundulaki, Floris Geerts, Xibei Jia, Anastasios Kementsietsidis, A View
Based Security Framework for XML, AHM, 2006.

138

Author Index

İnan, Tolga, 47
Çadırcı, Isık, 47

An, Dong-Chan, 129

Boyrazoğlu, Burak, 47
Buhan, Serkan, 47

Carvalho, André Ponce de Leon F. de, 13

De Raedt, Luc, 83

Ermiş, Muammer, 47

Franke, Conny, 72

Gaber, Mohamed Medhat, 59, 72, 117
Gama, João, 13, 107
Gutmann, Bernd, 83

Haghighi, Pari Delir, 117
Hruschka Jr., Estevam R., 37

Iglesias, Juan R., 25

Küçük, Dilek, 47
Karnstedt, Marcel, 72
Krishnaswamy, Shonali, 117

Landwehr, Niels, 83
Last, Mark, 95
Lei, Hangsheng, 25
Loke, Seng, 117

Mohanty, Soumya, 25
Mukherjee, Soma, 25

Park, Seog, 129
Philipose, Matthai, 83
Phung, Nhan Duc, 59

Rodrigues, Pedro Pereira, 107
Roehm, Uwe, 59

Salor, Özgül, 47
Saveliev, Albina, 95
Schaal, Stefan, 1
Spinosa, Eduardo J., 13

Tang, Lappoon R., 25
Theodorou, Evangelos, 1
Thon, Ingo, 83
Ting, Jo-Anne, 1

Yoshida, Murilo Lacerda, 37

Zaslavsky, Arkady, 117

139

