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Preface

We are glad to have this year’s international workshop on knowledge discovery from
ubiquitous data streams at ECML/PKDD 2007. We have a strong workshop program
with 12 papers, an invited talk and a tutorial.

Ting, Theodorou and Schaal have introduced a modified Kalman Filter that can per-
form real-time outlier detection. Spinosa, Carvalho, and Gama have extended OLINDDA
(OnLIne Novelty and Drift Detection Algorithm) to multiple-class classification prob-
lems. Lei, Tang, Iglesias, Mukherjee, and Mohanty have presented a simlilarity-driven
clustering approach to address the scalalbility probelms in large datasets with an appli-
cation to Gravitational-Wave Astronomy Data. Yoshida and Hruschka Jr. have decribed
and evaluated experimentally a Quasi-Incremental Bayesian Classifier that could be
used in dynamic systems like sensor networks. Küçük, Inan, Boyrazoglu, Buhan, Sa-
lor, Çadirci, and Ermis have presented a data stream architecture for electrical power
quality (PQStream). Phung, Gaber and Roehm have extended their ERA-Cluster clusit-
ing algorithm to work in a distributed mode in wireless sensor networks. Karnstedt,
Franke and Gaber have introduced and described mathematically a model for quality
guaranteed resource-aware stream mining. Landwehr, Gutmann, Thon, Philipose, and
Raedt have described a ubiquitous computing application to recognize human activities
from sensory data. Last and Saveliev have enhanced the Information Network (IN) clas-
sification algorithm by preserving the model qulaity while reducing the coputational
cost. Rodrigues and Gama have extended their clustering technique Online Divisive-
Agglomerative Clustering (ODAC) using semi-fuzzy approach. Haghighi, Gaber, Kr-
ishnaswamy, Zaslavsky, and Loke have introduced an architecture for context-aware
adaptive data stream mining. Finally, An and Park have introduced an efficient secure
XML query processing method.

We hope that this proceedings will form an important and valuable addition to your
library. Finally, we thank all the authors for their significant contributions to the work-
shop.

August 2007 João Gama
Mohamed Medhat Gaber

Jesús S. Aguilar-Ruiz
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Learning an Outlier-Robust Kalman Filter

Jo-Anne Ting1, Evangelos Theodorou1 and Stefan Schaal1,2

1 University of Southern California, Los Angeles, CA 90089
2 ATR Computational Neuroscience Laboratories, Kyoto, Japan

{joanneti, etheodor, sschaal}@usc.edu

Abstract. In this paper, we introduce a modified Kalman filter that
performs robust, real-time outlier detection, without the need for manual
parameter tuning by the user. Systems that rely on high quality sensory
data (for instance, robotic systems) can be sensitive to data containing
outliers. The standard Kalman filter is not robust to outliers, and other
variations of the Kalman filter have been proposed to overcome this
issue. However, these methods may require manual parameter tuning,
use of heuristics or complicated parameter estimation procedures. Our
Kalman filter uses a weighted least squares-like approach by introducing
weights for each data sample. A data sample with a smaller weight has
a weaker contribution when estimating the current time step’s state.
Using an incremental variational Expectation-Maximization framework,
we learn the weights and system dynamics. We evaluate our Kalman
filter algorithm on data from a robotic dog.

1 Introduction

Systems that rely on high quality sensory data are often sensitive to data con-
taining outliers. While data from sensors such as potentiometers and optical
encoders are easily interpretable in their noise characteristics, other sensors such
as visual systems, GPS devices and sonar sensors often provide measurements
populated with outliers. As a result, robust, reliable detection and removal of
outliers is essential in order to process these kinds of data. For example, in the
application domain of robotics, legged locomotion is vulnerable to sensory data
of poor quality, since one undetected outlier can disturb the balance controller
to the point that the robot loses stability.

An outlier is generally defined as an observation that “lies outside some
overall pattern of distribution” [1]. Outliers may originate from sensor noise
(producing values that fall outside a valid range), from temporary sensor failures,
or from unanticipated disturbances in the environment (e.g., a brief change of
lighting conditions for a visual sensor). Note that some prior knowledge about
the observed data’s properties must be known. Otherwise, it is impossible to
discern if a data sample that lies some distance away from the data cloud is
truly an outlier or simply part of the data’s structure.

For real-time applications, storing data samples may not be a viable option
due to the high frequency of sensory data and insufficient memory resources. In
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this scenario, sensor data are made available one at a time and must be discarded
once they have been observed. Hence, techniques that require access to the entire
set of data samples, such as the Kalman smoother [2] are not applicable. Instead,
the Kalman filter [3] is a more suitable method, since it assumes that only data
samples up to the current time step have been observed.

The Kalman filter is a widely used tool for estimating the state of a dynamic
system, given noisy measurement data. It is the optimal linear estimator for
linear Gaussian systems, giving the minimum mean squared error [4]. Using
state estimates, the filter can also estimate what the corresponding (output)
data are. However, the performance of the Kalman filter degrades when the
observed data contains outliers. To address this, previous work has tried to
make the Kalman filter more robust to outliers by addressing the sensitivity of
the squared error criterion to outliers [5, 6]. One class of approaches considers
non-Gaussian distributions for random variables (e.g., [7–9]), since multivariate
Gaussian distributions are known to be susceptible to outliers. For example, [10]
uses multivariate Student-t distributions. However, the resulting estimation of
parameters may be quite complicated for systems with transient disturbances.

Alternatively, it is possible to model the observation and state noise as non-
Gaussian, heavy-tailed distributions to account for non-Gaussian noise and out-
liers, e.g., [11, 12]. Unfortunately, these filters are typically more difficult to im-
plement and may no longer provide the conditional mean of the state vector.
Other approaches use resampling techniques (e.g., [13]) or numerical integration
(e.g., [14]), but these may require heavy computation not suitable for real-time
applications.

Yet another class of methods uses a weighted least squares approach, as done
in robust least squares [15], where the measurement residual error is assigned
some statistical property. Some of these algorithms fall under the first category of
approaches as well, assuming non-Gaussian distributions for variables. Each data
sample is assigned a weight that indicates its contribution to the hidden state
estimate at each time step. This technique has been used to produce a Kalman
filter that is more robust to outliers (e.g., [16,17]). However, these methods usu-
ally model the weights as some heuristic function of the data (e.g., the Huber
function [15]) and often require manual tuning of threshold parameters for op-
timal performance. Using incorrect or inaccurate estimates for the weights may
lead to deteriorated performance, so special attention and care is necessary when
using these techniques.

In this paper, we are interested in making the Kalman filter more robust
to the outliers in the observations (i.e. the filter should identify and eliminate
possible outliers as it tracks observed data). Identifying outliers in the state is
an entirely different problem, left for another paper. We introduce a modified
Kalman filter that can detect outliers in the observed data without the need
for manual parameter tuning or use of heuristic methods. For ease of analytical
computation, we assume Gaussian distributions for variables and states. We il-
lustrate the performance of this robust Kalman filter on robotic data, comparing
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it with other robust Kalman filter methods and demonstrating its effectiveness
at detecting outliers in the observations.

2 Outlier Detection in the Kalman Filter

Let us assume we have data observed over N time steps, {zk}
N

k=1
, and the corre-

sponding hidden states as {θk}
N

k=1
(where θk ∈ <d2×1, zk ∈ <d1×1). Assuming

a time-invariant system, the Kalman filter system equations are:

zk = Cθk + vk

θk = Aθk−1 + sk

(1)

where C ∈ <d1×d2 is the observation matrix, A ∈ <d2×d2 is the state transition
matrix, vk ∈ <d1×1 is the observation noise at time step k, and sk ∈ <d2×1

is the state noise at time step k. We assume vk and sk to be uncorrelated
additive mean-zero Gaussian noise: vk ∼ Normal (0,R), sk ∼ Normal (0,Q),
where R ∈ <d1×d1 is a diagonal matrix with r ∈ <d1×1 on its diagonal, and
Q ∈ <d2×d2 is a diagonal matrix with q ∈ <d2×1 on its diagonal. R and Q are
covariance matrices for the observation and state noise, respectively. Fig. 1(a)
shows the graphical model for the standard Kalman filter. Its corresponding
filter propagation and update equations are, for k = 1, .., N :

Propagation:

θ
′
k = A 〈θk−1〉 (2)

Σ
′
k = AΣk−1A

T + Q (3)

Update:

S′
k =

(

CΣ
′
kC

T + R
)−1

(4)

K ′
k = Σ

′
kC

TS′
k (5)

〈θk〉 = θ
′
k + K ′

k

(

zk − Cθ
′
k

)

(6)

Σk = (I− K ′
kC)Σ

′
k (7)

where 〈θk〉
3 is the posterior mean vector of the state θk, Σk is the posterior

covariance matrix of θk, and S′
k is the covariance matrix of the residual prediction

error—all at time step k. In this problem, the system dynamics (C, A, R and
Q) are unknown, and it is possible to use a maximum likelihood framework to
estimate these parameter values [18]. Unfortunately, this standard Kalman filter
model considers all data samples to be part of the data cloud and is not robust
to outliers.

2.1 Robust Kalman Filtering with Bayesian Weights

To overcome this limitation, we introduce a novel Bayesian algorithm that treats
the weights associated with each data sample probabilistically. In particular, we

3 Note that 〈〉 denotes the expectation operator
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(b) Proposed robust Kalman filter

Fig. 1. Graphical Models: circular nodes are random variables, double circles are
observed random variables, and square nodes are point estimated parameters.

introduce a scalar weight wk for each observed data sample zk such that the
variance of zk is weighted with wk, as done in [19]. [19] considers a weighted
least squares regression model and assumes that the weights are known and
given. We model the weights to be Gamma distributed random variables, as
done previously in [20] for weighted linear regression. Additionally, we learn
estimates for the system dynamics at each time step. A Gamma prior distribution
is chosen for the weights in order to ensure they remain positive. Fig. 1(b) shows
the graphical model of this robust Kalman filter. The prior distributions are:

zk|θk, wk ∼ Normal (Cθk,R/wk)

θk|θk−1 ∼ Normal (Aθk−1,Q)

wk ∼ Gamma (awk
, bwk

)

(8)

We can treat this entire problem as an Expectation-Minimization-like (EM)
learning problem [21,22] and maximize the log likelihood log p(θ1:N ) (known as
the “incomplete” log likelihood with the hidden probabilistic variables marginal-
ized out). Due to analytical issues, we only have access to a lower bound of this
measure. This lower bound is based on an expected value of the “complete”
data likelihood 〈log p (θ1:N , z1:N ,w)〉, formulated over all variables of the learn-
ing problem. Since we are considering this problem as a real-time one (i.e. data
samples arrive sequentially, one at a time), we will have observed only data
samples z1:k at time step k. Consequently, in order to estimate the posterior
distributions of the random variables and parameter values at time step k, we
should consider the log evidence of only the data samples observed to date, i.e.,
log p (θ1:k, z1:k,w1:k).

The expectation of the complete data likelihood should be taken with respect
to the true posterior distribution of all hidden variables Q (w, θ). Since this
is an analytically intractable expression, we use a technique from variational
calculus to construct a lower bound and make a factorial approximation of the
true posterior [22] as follows: Q (w, θ) =

∏N

i=1
Q (wi)

∏N

i=1
Q (θi|θi−1)Q(θ0).

This factorization of θ considers the influence of each θi from within its Markov
blanket, conserving the Markov property that Kalman filters, by definition, have.
While losing a small amount of accuracy, all resulting posterior distributions over

4



hidden variables become analytically tractable. This factorial approximation was
chosen purposely so that Q(wk) is independent from Q(θk); performing joint
inference of wk and θk does not make sense in the context of our generative
model. The final EM update equations at time step k are:

E-step:

Σk =
(

〈wk〉C
T
k R−1

k Ck + Q−1

k

)−1
(9)

〈θk〉 = Σk

(

Q−1

k Ak 〈θk−1〉 + 〈wk〉C
T
k R−1

k zk

)

(10)

〈wk〉 =
awk,0 + 1

2

bwk,0 +
〈

(zk − Ckθk)
T

R−1

k (zk − Ckθk)
〉 (11)

M-step:

Ck =
(

∑k

i=1
〈wi〉 zi 〈θi〉

T
)(

∑k

i=1
〈wi〉

〈

θiθ
T
i

〉)−1

(12)

Ak =
(

∑k

i=1
〈θi〉 〈θi−1〉

T
) (

∑k

i=1

〈

θi−1θ
T
i−1

〉)−1

(13)

rkm = 1

k

∑k

i=1
〈wi〉

〈

(zim − Ck(m, :)θi)
2
〉

(14)

qkn = 1

k

∑k

i=1

〈

(θin − Ak(n, :)θi−1)
2
〉

(15)

where m = 1, .., d1, n = 1, .., d2; rkm is the mth coefficient of the vector rk; qkn

is the nth coefficient of the vector qk; Ck(m, :) is the mth row of the matrix Ck;
Ak(n, :) is the nth row of the matrix Ak; and awk,0 and bwk,0 are prior scale
parameters for the weight wk. (9) to (15) should be computed once for each time
step k (e.g., [23] [24]) when the data sample zk becomes available.

Since storing sensor data is not possible in real-time applications, (12) to
(15)—which require access to all observed data samples up to time step k—need
to be re-written using only values observed, calculated or used in the current
time step k. We can do this by collecting sufficient statistics in (12) to (15) and
rewriting them as:

Ck =
∑

wzθ
T

k

(

∑

wθθ
T

k

)−1

(16)

Ak =
∑θθ

′

k

(

∑θ
′
θ
′

k

)−1

(17)

rkm = 1

k

[

∑

wzz

km −2Ck(m, :)
∑

wzθ

km +diag
{

Ck(m, :)
∑

wθθ
T

k Ck(m, :)T
}]

(18)

qkn = 1

k

[

∑θ2

kn −2Ak(n, :)
∑θθ

′

kn +diag
{

Ak(n, :)
∑

θ
′
θ
′

k Ak(n, :)T
}]

(19)

where m = 1, .., d1, n = 1, .., d2, and the sufficient statistics, which are all a
function of values observed, calculated or used in time step k (e.g., 〈wk〉, zk,
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〈θk〉, 〈θk−1〉 etc.) are:

∑

wzθ
T

k = 〈wk〉 zk 〈θk〉
T

+
∑

wzθ
T

k−1
(20)

∑

wθθ
T

k = 〈wk〉
〈

θkθ
T
k

〉

+
∑

wθθ
T

k−1
(21)

∑

θθ
′

k = 〈θk〉 〈θk−1〉
T +

∑

θθ
′

k−1
(22)

∑θ
′
θ
′

k =
〈

θk−1θ
T
k−1

〉

+
∑θ

′
θ
′

k−1
(23)

∑

wzz

km = 〈wk〉 z2

km +
∑

wzz

k−1
(24)

∑

wzθ

km = 〈wk〉 zkmθk +
∑

wzθ

k−1,m (25)
∑θ2

kn =
〈

θ2

kn

〉

+
∑θ2

k−1,n (26)
∑θθ

′

kn = 〈θkn〉 〈θk−1〉 +
∑θθ

′

kn (27)

A few remarks should be made regarding the initialization of priors used in (9)
to (11), (16) to (19). In particular, the prior scale parameters awk,0 and bwk,0

should be selected so that the weights 〈wk〉 are 1 with some confidence. That
is to say, the algorithm starts by assuming most data samples are inliers. For
example, we set awk,0 = 1 and bwk,0 = 1 so that 〈wk〉 has a prior mean of
awk,0/bwk,0 = 1 with a variance of awk,0/b2

wk,0 = 1. By using these values, the
maximum value of 〈wk〉 is capped at 1.5. This set of values is generally valid
for any data set and/or application and does not need to be modified, unless
the user has a good reason to insert strong biases towards particular parameter
values. Since some prior knowledge about the observed data’s properties must
be known in order to distinguish whether a data sample is an outlier or part
of the data’s structure, this Bayesian approach provides a natural framework to
incorporate this information.

Secondly, the algorithm is relatively insensitive to the the initialization of A

and C and will always converge to the same final solution, regardless of these
values. For our experiments, we initialize C = A = I, where I is the identity
matrix. Finally, the initial values of R and Q should be set based on the user’s
initial estimate of how noisy the observed data is (e.g., R = Q = 0.01I for noisy
data, R = Q = 10−4I for less noisy data [25]).

2.2 Relationship to the Kalman Filter

With a little algebraic manipulation, we can show that the model derived in
Section 2.1 is indeed a variant of the Kalman filter. If we substitute the prop-
agation equations, (2) and (3), into the update equations, (4) to (7), we reach
recursive expressions for 〈θk〉 and Σk. By applying this sequence of algebraic
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manipulations in reverse order to (9) and (10), we arrive at the following:

Propagation:

θ
′
k = Ak 〈θk−1〉 (28)

Σ
′
k = Qk (29)

Update:

S′
k =

(

CkΣ
′
kC

T
k +

1

〈wk〉
Rk

)−1

(30)

K ′
k = Σ

′
kC

T
k S′

k (31)

〈θk〉 = θ
′
k + K ′

k

(

zk − Ckθ
′
k

)

(32)

Σk = (I − K ′
kCk)Σ

′
k (33)

Close examination of the above equations show that (9) and (10) in the Bayesian
model correspond to standard Kalman filter equations, with modified expressions
for Σ

′
k and S′

k and time-varying system dynamics. Σ
′
k is no longer explicitly

dependent on Σk−1 since Σk−1 does not appear in (29). However, the current
state’s covariance Σk is still dependent on the previous state’s covariance Σk−1

(i.e. it is dependent through the other parameters K ′ and Ck).
Additionally, the term Rk in S′

k is now weighted. Equation (11) reveals that if
the prediction error in zk is so large that it dominates the denominator, then the
weight 〈wk〉 of that data sample will be very small. As this prediction error term
in the denominator goes to ∞, 〈wk〉 approaches 0. If zk has a very small weight
〈wk〉, then S′

k, the posterior covariance of the residual prediction error, will be
very small, leading to a very small Kalman gain K ′

k. In short, the influence of
the data sample zk will be downweighted when predicting θk, the hidden state
at time step k.

The resulting Bayesian algorithm has a computational complexity on the
same order as that of a standard Kalman filter, since matrix inversions are still
needed (for the calculation of covariance matrices), as in the standard Kalman
filter. In comparison to other Kalman filters that use heuristics or require more
involved computation/implementation, this outlier-robust Kalman filter is prin-
cipled and easy to implement.

2.3 An Alternative Kalman Filter

We explored a variation of the previously introduced robust Kalman filter. In-
stead of performing a full Bayesian treatment of the weighted Kalman filter, we
use the standard Kalman filter equations, (2) to (7), and modify (4) so that the
output variance for zk, Rk, is now weighted—as in our original model in (8):

S′
k =

(

CkΣ
′
kC

T
k + 1

〈wk〉
Rk

)−1

.

We learn the weights 〈wk〉 using (11) from the robust Kalman filter and
estimate the system dynamics at each time step using a maximum likelihood
framework (i.e., using (16) to (19) from the robust Kalman filter). Σk is now
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explicitly dependent on Σk−1 (i.e. Σk−1 appears in the propagation equation
for Σk). We introduce this somewhat unprincipled and arbitrarily derived filter
for comparison with our weighted Kalman filter.

3 Experimental Results

We evaluated our weighted robust Kalman filter on data collected from a a
robotic dog, LittleDog, manufactured by Boston Dynamics Inc. (Cambridge,
MA), and compared it with three other filters. We omitted the filters of [16]
and [17], since we had difficulty implementing them and getting them to work.
Instead, we used a hand-tuned thresholded Kalman filter to serve as a baseline
comparison. The three filters consist of i) the standard Kalman filter, ii) the
alternative weighted Kalman filter introduced in Section 2.3, and iii) a Kalman
filter where outliers are determined by thresholding on the Mahalanobis distance.
If the Mahalanobis distance exceeds a certain threshold value, it is considered
an outlier and ignored. This threshold value is hand-tuned manually in order
to find the optimal value for a particular data set. If we have a priori access
to the entire data set and are able to tune this threshold value accordingly, the
thresholded Kalman filter gives near-optimal performance.

For this paper and these experiments, we are interested in the Kalman fil-
ter’s prediction of the observed (output) data and detection of outliers in the
observations. We are not interested in the estimation of the system dynamics or
in the estimation (or outlier detection) of the states. Estimation of the system
matrices for the purpose of parameter identification is a different problem, and
details on this difference are highlighted in [26]. Similarly, detecting outliers in
the states is a different problem and left to another paper.

3.1 LittleDog Robot

We evaluated all filters on a 12 degree-of-freedom robotic dog, LittleDog, shown
in Fig. 2. The robot dog has two sources that measure its orientation: a motion
capture (MOCAP) system and an on-board inertia measurement unit (IMU).
Both provide a quaternion q of the robot’s orientation: qMOCAP from the MO-
CAP and qIMU from the IMU.

qIMU drifts over time, since the IMU cannot provide stable orientation esti-
mation but its signal is clean. The drift that occurs in the IMU is quite common
in systems where sensors collect data that need to be integrated. In contrast,
qMOCAP has outliers and noise, but no drift. We would like to estimate the offset
between qMOCAP and qIMU, and this offset is a noisy slowly drifting signal con-

taining outliers. There are various approaches to estimating this slowly drifting
signal, depending on the quality of estimate desired. We can estimate it with
a straight line, as done in [20]. Alternatively, if we want to estimate the signal
more accurately, we can use the proposed outlier-robust Kalman filter to track
it. For optimal performance, we manually tuned C, A, R and Q for the standard
Kalman filter—a tricky and time-consuming process. The system dynamics of
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Fig. 2. LittleDog

the thresholded Kalman filter were learnt using a maximum likelihood frame-
work (i.e. using (16) to (19) without any weights). Its threshold parameter was
manually tuned for best performance on this data set.

Fig. 3(a) shows the offset data between qMOCAP and qIMU for one of the
four quaternion coefficients, collected over 6000 data samples, at 1 sample/time
step. As expected, the standard Kalman filter fails to detect and ignore the
outliers occurring between the 4000th and 5000th sample, as seen in Fig. 3(b).
When comparing our weighted robust Kalman filter with the other remaining
two filters, Fig. 3(c) shows that the thresholded Kalman filter does not react
as violently as the standard Kalman filter to outliers and, in fact, appears to
perform similarly to the weighted robust Kalman filter. This is to be expected,
given we hand-tuned the threshold parameter for optimal performance (i.e. the
thresholded Kalman filter is near-optimal in this experiment). Notice that the
weighted robust filter does not track noise in the data as closely as the alternative
filter. This is a direct result of higher Kalman gains and a consequence of Σk’s
explicit dependency on Σk−1 in the alternative filter.

In this experiment, the advantages offered by the weighted Kalman filter are
clear. It outperforms the traditional Kalman filter and alternative Kalman filter,
while achieving a level of performance on par with a thresholded Kalman filter
(where the threshold value is manually tuned for optimal performance).

4 Conclusions

We derived a novel Kalman filter that is robust to outliers in the observations by
introducing weights for each data sample. This Kalman filter learns the weights
and the system dynamics, without needing manual parameter tuning by the
user, heuristics or sampling. It performs as well as a hand-tuned Kalman filter
(that required prior knowledge of the data) on real robotic data. It provides an
easy-to-use competitive alternative for robust tracking of sensor data and offers
a simple outlier detection mechanism that can potentially be applied to more
complex, nonlinear filters.
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Abstract. OLINDDA (OnLIne Novelty and Drift Detection Algorithm)
addresses the problem of novelty detection in an online continuous learn-
ing scenario as an extension to a single-class classification problem. This
paper presents its current version, that evolved toward the discovery of
new concepts initially as emerging clusters and further as cohesive sets
of clusters. New strategies for validation and merging of clusters as well
as for dynamically adapting the number of clusters are discussed and
experimentally evaluated.

Key words: Novelty detection, Unsupervised learning, Clustering, K-
Means

1 Introduction

Novelty Detection (ND) in the context of machine learning [6] is the identification
of novel profiles in data. Along with the ability to deal with concept drift [10], it
is an important attribute of any learning system applied to problems in which
data distribution may change over time. Typical applications of ND include
the identification of faults in various types of machines, attacks in computer
networks, novel topics in news documents, regions of interest in medical images,
among others.

Problems involving data streams can benefit from online learning algorithms
capable of detecting novel profiles, such as the one presented herein. Working
with data streams imposes, however, a series of restrictions [1] that are not
addressed in this paper, whose focus is to present a new approach to ND while
considering data streams as a promising future application.

The text is organized as follows. The next section presents the motivations for
this work, while briefly mentioning some related works. Section 3 describes the

? Alternate e-mail: ejspin@yahoo.com
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proposed approach. Sub-section 3.8 closes by commenting on the improvements
of its current version over the one previously published [8]. Section 4 discusses
experiments aimed at comparing both versions. Finally, Section 5 concludes the
paper and presents future challenges.

2 Related works

ND is frequently treated as a one-class classification problem [9], where only
information regarding a single class is available for training. That given class
usually represents the normal or expected condition. Such an approach requires
the ability to learn from positive-only examples, which is a much harder task than
standard classification, since negative or counter-examples play an important role
in defining the degree of generalization of a description.

Several machine learning techniques can be modified and have been employed
to perform ND [4] [5]. However, most of them focus solely on solving the one-class
classification problem, i.e., comparing a new example to a single static model to
decide whether the example itself is a novelty. The terms anomaly, surprising
event or outlier [2] are also sometimes applied, even though the meaning of these
terms may not be the same.

Another aspect that is usually not addressed by the ND techniques described
in the literature is the incorporation of novel profiles to the knowledge structure.
This is an important attribute, considering that many typical applications of ND
involve dealing with data distributions that change over time.

The k-means clustering algorithm, which is used by proposed approach, has
been previously applied for one-class classification [9]. In that work, the deci-
sion boundaries are positioned in a way that forces a certain percentage of the
examples of the target class to be placed outside the target description, which
is defined by a fixed parameter. The number of clusters k is also manually set.
Furthermore, as in many other ND techniques, any new example that does not
fit the target description is considered novelty, and learning is performed in a
single training phase.

In another cluster-based approach to ND [3], k-means is applied to improve
the quality of clusters originally generated by a standard leader-follower algo-
rithm. The detection of novelty is then performed by observing changes that
may occur to each cluster’s density function.

The approach proposed in this paper does not consider a single example
as novelty, since a single example may appear due to noise, or be an outlier.
It intends to take the single-class classification problem one step forward by
attempting to discover novelty as a novel concept, represented by a cohesive
cluster of examples that share similar characteristics and emerges from those
that have not been previously and individually explained. We believe that this
is a natural approach considering the continuous learning aspect inherent to ND:
as time passes and new examples are received, those that have not been explained
may start to make sense together in the form of a cohesive cluster. By doing so,
we intend to produce robust predictions of emerging classes, in an attempt to
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approximate to the real class structure at any time in an unsupervised way. In
addition to that, the approach proposed in this paper continuously incorporates
the knowledge of newly discovered concepts, since such knowledge is likely to be
useful in explaining a larger number of examples in the future.

The following section describes the proposed approach.

3 Proposed approach

OLINDDA (OnLIne Novelty and Drift Detection Algorithm) implements our
approach to ND. It builds on our initially proposed algorithm [8] and advances
in the direction of continuously identifying, incorporating and merging concepts
over time. This section describes the current version of the algorithm. Changes
from the one previously published are discussed in Section 3.8.

3.1 Model structure

OLINDDA uses three hypersphere-based models to store knowledge about (1)
the normal profile, (2) extensions to this normal profile and (3) novel profiles.
The normal model is the only static one, remaining as a reference to the ini-
tial learning stage. It corresponds to what is usually employed by most ND
techniques. The extension and novelty models can be created and continuously
updated, allowing OLINDDA to deal with concepts that appear or change over
time. Once newly discovered concepts become part of these two models, they
will also help to explain future examples, thus reducing the cost of exploring
regions of the feature space that have already been explored. Additionally, such
an incremental structure allows the algorithm to start with a basic description,
weakening the requirement of an initial set that thoroughly describes the normal
profile.

3.2 Initial learning phase

OLINDDA starts by modeling the normal or expected behavior in the domain
under investigation, by analyzing a set of normal examples. They usually belong
to a single class, hence the term one-class classification. In the problem of in-
trusion detection in computer networks, for instance, this initial data set would
be built from standard network traffic, without any examples of attacks.

To model the normal profile, OLINDDA produces k clusters using the k-
means clustering algorithm. The normal model is composed of k hyperspheres,
built in feature space, obtained directly from the clusters and represented by
their centers and radii. Each hypersphere center is the centroid of its cluster, and
its radius is the Euclidean distance from the centroid to the farthest example of
the respective cluster.
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3.3 Continuous unsupervised learning phase

The arrival of new (unseen) examples marks the start of a continuous unsuper-
vised learning phase. For each new example, the algorithm first checks if it can
be explained by the knowledge acquired until that point, represented by (up to)
the three models previously described. If the coordinates of the example in fea-
ture space lie inside a hypersphere of any of the existing models, it is considered
explained by the corresponding model; statistics are updated, and the example is
discarded. Otherwise, the example is marked as a member of an unknown profile
and moved to a short-time memory for further analysis.

Initially, OLINDDA is capable of distinguishing regions that correspond to
the normal profile (inside any of the hyperspheres of the normal model) from
those that have not been explored yet, named unknown. In a stable situation,
the normal model is expected to explain the majority of the new examples. As
new concepts emerge and are added to the extension and novelty models, it will
also be able to explain examples of such concepts.

3.4 Learning new concepts by validating emerging clusters

OLINDDA learns new concepts initially as clusters, formed by examples pre-
viously considered unknown, that comply with certain restrictions. In order to
discover these clusters, each time a new unknown example is found, k candidate
clusters are generated from the examples currently available at the short-time
memory of unknown profiles. These candidate clusters are then evaluated in an
attempt to determine if any of them presents enough evidence of the appearance
of a new concept, represented by a so-called valid cluster.

This is not a trivial task, since it is a totally unsupervised process. On the
other hand, the fact that no labels are required allows its application to a large
amount of data that could not be manually classified.

Several metrics can be used to evaluate clusters from various points of view.
OLINDDA considers a cluster’s density and the number of examples as the
criteria for validating clusters. The density d of a cluster c is defined as:

d(c) =
ne(c)
V (c)

(1)

where ne (c) is the number of examples that belong to c and V (c) is the
volume of the hypersphere whose radius is the distance from the cluster’s centroid
to the farthest example that belongs to c. The volume V (c) in an n-dimensional
space is given by:

V (c, n) =
π

n
2 Rn

Γ
(

n
2 + 1

) (2)

where Γ is the gamma function, defined by:
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For a candidate cluster to be considered valid, the first condition is that its
density be equal to or higher than the minimum density among the clusters of
the normal model.

To avoid clusters with too few examples, a minimum number of examples
per cluster is required as a second condition, defined as a parameter. A value
between 3 and 5 has been empirically determined as adequate.

3.5 Attempting to determine the nature of new concepts

Once a valid cluster is identified, OLINDDA proceeds to assess its similarity
to the normal concept. We consider that an extension of the normal concept
should naturally present some similarity to it, which, in terms of distances in
feature space, means that the new concept should be located in the vicinity of
the region associated to the normal concept. On the other hand, a new concept
that is dissimilar to normal may represent a novel concept, or novelty.

To materialize this notion of vicinity of the normal concept, OLINDDA cre-
ates a hypersphere centered at the centroid of the centroids of the clusters of
the normal model, and whose radius is the distance to the farthest centroid. If
the centroid of the new valid cluster is located inside this hypersphere, the new
concept is labeled extension. Otherwise, it is considered novelty.

As previously mentioned, newly discovered concepts update their correspond-
ing models, which facilitates the classification of future examples. Since models
are composed mainly of the coordinates of centroids and radii, besides a few
other distances and statistics, model updating is fast and performed incremen-
tally, which is an important issue in applications involving, for instance, data
streams, where time and space constraints apply.

3.6 Merging similar clusters to produce cohesive concepts

A new valid cluster may itself represent a new concept. However, depending on
the data distribution, a concept may be more adequately described by a set of
clusters. For that reason, OLINDDA will also evaluate the similarity between
the new concept and existing concepts of the corresponding model. It does that
by checking if the new valid cluster intercepts any of the previous clusters. If it
does not, then the cluster is considered a new concept on its own and receives
a new label. However, if the new valid cluster intercepts one or more existing
clusters, they are grouped under the same label and their statistics are merged.

A single cluster may trigger a sequence of mergers, and this process tends to
produce a smaller number of concepts (labels) that are usually easier to analyze.

A typical experiment would be to present OLINDDA with examples of a
single class (representing the normal profile) in the initial phase, and allow the
algorithm to discover the remaining classes as novel concepts. In that scenario,
our final goal would be to have produced a class structure as similar as possible
to the real one, and the merging of concepts helps directing the algorithm toward
that.
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3.7 Dynamically adapting the number of clusters

The number of clusters k is an intrinsic parameter of the k-means clustering
algorithm, which is used by OLINDDA (1) to create the initial normal model,
as described in Section 3.2 and (2) to periodically generate candidate clusters in
the online phase, as described in Section 3.4.

In the initial model, k is fixed and defined as a parameter, since it depends on
the data distribution. For the generation of candidate clusters in the online phase,
however, k is dynamically adapted to optimize the chance of discovering a valid
cluster. This is done by increasing or decreasing k according to certain conditions.
If the value of k is lesser than the optimum, the algorithm will generate clusters
whose densities are lesser than the required threshold for cluster validation. On
the other hand, if the value of k is greater than the optimum, the candidate
clusters will tend to have fewer examples than the required minimum.

The automatic adaptation of k takes place after each iteration in which candi-
date clusters were generated. If at least one candidate cluster is considered valid,
the value of k is maintained. Otherwise, OLINDDA checks what prevented each
cluster from being accepted: too low density or too few examples. Then, con-
sidering the most frequent cause of failure for all candidate clusters, it decides
how to adapt the value of k. If the majority of failures is due to low density,
k is increased. If too few examples is the most frequent cause of failure, k is
decreased. After a few iterations, k tends to stabilize around the optimum value
that generates valid clusters.

3.8 Changes from the previous version

The initially published version of OLINDDA [8] has been greatly improved. It
differs from the present version, described in Section 3, in the following aspects:

Management of k The previous version of the algorithm did not employ a
dynamic adaptation of k aimed at optimizing the discovery of valid clusters.
The value of k was not fixed either. It was set according to the number of
examples available for clustering at the short-time memory of unknown profiles
at any time. This was achieved by imposing an average number of examples per
cluster as a parameter, and calculating k according to the number of examples
available.

Cluster validation criteria The previous version considered the average dis-
tance between examples and the respective centroid as the criterion for cluster
validation. The average of this metric for the normal model was taken as a higher
threshold for acceptance.

Merging of clusters The previous version did not merge intercepting clusters.
The merging of clusters allows OLINDDA to discover concepts formed by more
than one cluster, reducing the number of labels, which may also ease the analysis.
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4 Experimental evaluation

This section compares results obtained with the current version of OLINDDA
to those that have been previously published [8]. OLINDDA was implemented
in R [7] and makes use of its built-in implementation of k-means.

4.1 Data and setup

Experiments were performed with the data sets depicted in Figure 1. To simulate
novel concepts, for each data set, each class was selected as the normal profile,
while the remaining classes were considered novel concepts to discover. All met-
rics represent the average of 10 runs performed for each experiment. Datasets
were scaled and shuffled prior to each run.

Data set (Source)
Classes (Number of examples per class)

Class 1 Class 2 Class 3

Balance Scale (UCI) 4 625 Balanced (49) Left (288) Right (288)

5 194 Carrier (67) Normal (127) -

Breast Cancer Wisconsin (UCI) 9 683 Benign (444) Malignant (239) -

Ionosphere (UCI) 33 351 Bad (126) Good (225) -

Iris (UCI) 4 150

32 47 A (23) GC (24) -

Mushroom (UCI) 22 8124 Edible (4208) Poisonous (3916) -

Number of 
attributes

Number of 
examples

Biomed (StatLib)

Setosa (50) Versicolor (50) Virginica (50)

Lymphoma32A (Alizadeh, Reduced version)

Fig. 1. Data sets used in the experiments.

Regarding parameters, the two versions of OLINDDA used different criteria
for defining k (see Section 3.7 for the current version and Section 3.8 for the
previous version). To produce comparable results, the value of k for the initial
normal model has to be the same. This is achieved by setting the initial k in
the current version as the number of examples in the initial batch of normal
examples divided by the average number of examples per cluster that has been
used in the experiments with the previous version.

4.2 Evaluating the distinction between normal and unknown

The distinction between normal and unknown examples, which corresponds to
the one-class classification phase, is evaluated by the false-unknown error rate,
defined by: eFUnk = FUnk

Nor , where FUnk is the number of normal examples
wrongfully identified as unknown, and Nor is the total number of normal ex-
amples; and by the false-normal error rate, defined by: eFNor = FNor

Unk , where
FNor is the number of unknown examples wrongfully identified as normal, and
Unk is the total number of unknown examples.

As previously mentioned, in order to simulate novel concepts, one class is
selected as the normal profile while the remaining classes serve as novel concepts
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we wish to discover. For this initial distinction between normal and unknown,
unknown examples are those that belong to any class other than the one which
has been selected as normal.

A high value of one of these metrics indicates either overfitting or underfit-
ting. To assess how the current version of OLINDDA compares to its previous,
we analyze the average and standard deviation of these two error rates over 10
runs. Figure 2 displays the results.

Data set

Parameters Normal concept is Class 1 Normal concept is Class 2 Normal concept is Class 3
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ea
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ea

n

Previous 40 10 - 0.13 0.14 0.80 0.07 0.19 0.05 0.23 0.07 0.17 0.07 0.25 0.06
40 - 4 0.04 0.06 0.83 0.07 0.09 0.03 0.24 0.10 0.10 0.03 0.24 0.08

Previous 20 10 - 0.18 0.11 0.85 0.12 0.15 0.09 0.25 0.08
20 - 2 0.19 0.09 0.72 0.18 0.10 0.09 0.29 0.16

Previous 50 10 - 0.10 0.06 0.02 0.03 0.19 0.08 0.23 0.19
50 - 5 0.06 0.02 0.03 0.03 0.12 0.03 0.34 0.23

Ionosphere
Previous 100 10 - 0.25 0.11 0.98 0.01 0.15 0.03 0.07 0.03

100 - 10 0.23 0.10 0.99 0.01 0.11 0.05 0.11 0.07

Iris
Previous 20 10 - 0.13 0.13 0.00 0.00 0.12 0.10 0.16 0.04 0.12 0.09 0.28 0.12

20 - 2 0.11 0.07 0.00 0.00 0.14 0.11 0.14 0.05 0.13 0.11 0.29 0.11

Mushroom
Previous 1000 8 - 0.31 0.01 0.33 0.02 0.28 0.02 0.52 0.01

1000 - 125 0.04 0.01 0.00 0.00 0.02 0.01 0.01 0.01

OLINDDA's 
Version eFUnk eFNor eFUnk eFNor eFUnk eFNor

S
D

ev

S
D

ev

S
D

ev

S
D

ev
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D

ev

S
D

ev

Balance 
Scale Currrent

Biomed
Currrent

Breast 
Wisconsin Currrent

Currrent

Currrent

Currrent

Fig. 2. Comparison between the current and the previous versions of OLINDDA in
terms of distinction between normal and unknown.

In general, the current version performs as well as or better than the previous
in terms of the distinction between normal and unknown. For the Mushroom data
set, the performance gain is more evident. Of the 14 experiments, the current
version only fails to obtain an adequate generalization degree in three cases,
where very high values of eFNor indicate underfitting (gray area). However,
two of these three failures happen in experiments where an unnatural choice was
made for the normal profile: Biomed with Class 1 (Carrier) as normal as opposed
to the natural choice (Class 2: Normal), and Ionosphere with Class 1 (Bad) as
normal as opposed to the natural choice (Class 2: Good).

It is important to stress that the error rates in one-class classification are not
directly comparable to those of standard classification, since only members of a
single class are available, which makes this a much harder task.

4.3 Evaluating the discovery of valid clusters

One of the major goals that guided OLINDDA’s development has been the
discovery of new concepts. This is naturally influenced by the cluster validation
criteria, but also benefits from the dynamic adaptation of the number of clusters
introduced by the current version.
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To evaluate OLINDDA’s ability to discover valid clusters, we analyze how
such clusters are formed in terms of the real classes. Figure 3 compares the
class distribution by the end of the learning process for the previous and current
versions. Since cluster validation affects the algorithm’s ability to discover new
concepts as either novelty or extension, not the distinction between these two,
we merged, under a single column named discovered, statistics corresponding to
examples that formed valid clusters of either extension or novelty and examples
identified as members of a previously discovered concept of either extension
or novelty. Ideally, given Class 1 as the normal profile, for instance, a high
percentage of the elements of this class would appear under ident nor (identified
as normal), a high percentage of the members of the remaining classes would
appear under discovered, leaving few examples in the unknown column.

In order to evaluate if valid clusters are composed of elements that share sim-
ilar characteristics, we measure each cluster’s purity, defined by the percentage
of examples of the predominant class. The purity column in Figure 3 displays
the average purity for all clusters discovered over 10 runs.

The increase in the average percentage of patterns discovered shows that the
current version of OLINDDA highly improves the identification of valid clusters.
Moreover, high values of purity indicate that the discovered concepts are indeed
composed of a coherent set of examples, as intended.

4.4 Illustration of the merging of concepts

By merging similar concepts as described in Section 3.6, OLINDDA proceeds
toward generating a class structure that aims at approximating to the real one.
Figure 4 displays an example of the merging of clusters over time. These are
the results of a single run with the Iris data set, using 30 examples of the class
Iris-versicolor to build the initial normal model.

Each chart represents the class structure obtained by OLINDDA at a cer-
tain point of the learning process, from 10% to 100%. The set of charts on the
left corresponds to concepts of the novelty model, and the ones on the right
are concepts found as an extension of the normal behavior. The black bar indi-
cates examples identified as normal. Each color represents a concept, including
examples that either formed the clusters or were explained by them. There is
no correspondence between the colors of concepts on the left and on the right
set of charts, which means that, in this case, OLINDDA has found two different
concepts marked in red: one small concept of extension and one of novelty. This
red novelty concept is the result of at least 2 mergers: first with the green col-
ored concept and later with the magenta colored concept. The resulting concept
corresponds to the real class Iris-Setosa. The dark blue and light blue concepts
have also merged into a single concept that corresponds to Iris-Virginica. This
example shows OLINDDA’s ability to build cohesive concepts that make sense
in terms of the real class structure.
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5 Conclusion

The detection of novel concepts is a very important aspect of a learning system.
This paper presents OLINDDA, an approach that intends to take novelty de-
tection beyond one-class classification. By detecting emerging coherent clusters
of examples and, further, by merging intercepting clusters, OLINDDA proceeds
toward the construction of a class structure that aims at reproducing the real
one in an unsupervised continuous learning fashion.

Experimental results show that the current version improved in both the
distinction between normal and unknown and the discovery of new concepts.
Yet, several topics are still to be investigated, including other clustering algo-
rithms that may provide more flexible models and/or improve stability, and the
application of OLINDDA to problems involving data streams.
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terms of discovery of valid clusters.
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Abstract. Clustering is to classify unlabeled data into groups. It has been well-
researched for decades in many disciplines. Clustering in massive amount of as-
tronomical data generated by multi-sensor networks has become an emerging new
challenge; assumptions in many existing clustering algorithms are often violated
in these domains. For example, K means implicitly assumes that underlying dis-
tribution of data is Gaussian. Such an assumption is not necessarily observed in
astronomical data. Another problem is the determination of K, which is hard to
decide when prior knowledge is lacking. While there has been work done on dis-
covering the proper value for K given only the data, most existing works, such as
X-means, G-means and PG-means, assume that the model is a mixture of Gaus-
sians in one way or another. In this paper, we present a similarity-driven clustering
approach for tackling large scale clustering problem. A similarity threshold T is
used to constrain the search space of possible clustering models such that only
those satisfying the threshold are accepted. This forces the search to: 1) explicitly
avoid getting stuck in local minima, and hence the quality of models learned has
a meaningful lower bound, and 2) discover a proper value for K as new clusters
have to be formed if merging them into existing ones will violate the constraint
given by the threshold. Experimental results on the UCI KDD archive and re-
alistic simulated data generated for the Laser Interferometer Gravitational Wave
Observatory (LIGO) suggest that such an approach is promising.

1 Introduction

Clustering is unsupervised classification of unlabeled data, which has been a well-
researched problem in many disciplines. A large portion of clustering algorithms were
developed by computer scientists but much motivation came from applications of an
interdisciplinary nature. It is common for modern applications in business data mining,
physics, astronomy and environmental sciences to deal with a large amount of data.

While many clustering algorithms are available and work well in small scale data
sets [9, 12, 16], comparative study showed that only K-means and its variants are suited
for mining very large data sets [15, 22]. The K-means method is more computationally
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efficient than other commonly used clustering methods such as hierarchical clustering
[22, 7] and Kohonen’s self organizing map (SOM) [14]. When data set size is large,
hierarchical clustering and SOM can be computationally prohibitive.

However, K-means also has its own weaknesses: i) sensitive to initial partition, ii)
converge to local minima, iii) the number of cluster, K, must be determined before
hand, and iv) outliers from the centroid may pull the centroid away from the real one.
Initial partition problem can be alleviated by repeating different initial seed settings.
Local convergence is still an open problem. But in most cases, locally optimal solution
is satisfactory if global optimization is too costly. Discovering K is a big weakness and
several algorithms have been proposed to tackle the problem. The X-means algorithm
was presented to learn K [19]. This algorithm tries many values of K and uses Bayesian
Information Criterion (BIC) to score each resulting model. The K that produces the
highest BIC score is chosen. Besides BIC, other scoring systems, such as Akaike Infor-
mation Criterion [3] and Minimum Description Length [20] can be applied. X-means is
a straightforward extension of regular K-means. The difficulty it faces is: how many K
values should be chosen and compared? When the data set is large and data distribution
is non-trivial, the range of possible number of clusters can be large.

Addressing problems in X-means where overfitting of data can occur, the G-means
algorithm [13] is proposed to grow K from a small number. A statistical normality test
is applied to each cluster to see whether it has high confidence of Gaussian distribution.
If not, split the current cluster into two clusters and continue with the statistical test for
the rest of the clusters. Like X-means, this algorithm is also a wrapper around K-means.
It will generate a hierarchical tree of clusters. While the approach is intuitively mean-
ingful, applying normality tests can become difficult when the set of data is extremely
large (e.g. on the order of tens of thousands). The one dimensional projection of the data
will be very high in dimension and tend to look Gaussian according to the Central Limit
Theorem [6] and hence the need of splitting a cluster could not be detected even when
it is not Gaussian. Powerful normality test like the Shapiro Wilk test [21] can handle a
sample size of at most 5000. Also, the assumption of having Gaussian distribution in
clusters is too strong in many real data, such as in Astronomy time series. It has been
extensively tested within the LIGO community and it is known that LIGO data is not
necessarily Gaussian in nature [2].

Similar to G-means, there are a number of algorithms that rely on statistical tests
to check the ”goodness of fit” of data according to some distribution. For example,
PG-means projects both the data set and learned clusters to one dimension and then
applies the Kolmogorov-Smirnov test (KS) to check the goodness of fit of the data to
distribution implied by the clusters where model parameters are learned by Expectation
Maximization (EM) [8]. Combining normality test and splitting for discovering K can
be problematic due to application of possibly costly statistical tests and difficulty in
applying the distribution test itself when data dimension is high.

Due to advances in multi-sensor networks, large amounts of astronomical data have
been gathered in the form of sensor information. Discovering interesting patterns in
these astronomical data has profound implication for making new discoveries in Astro-
Physics, for instance, in opening up new understanding of the nature of the universe.
Since sensor data can be gathered on a rate of terabytes per week, processing such
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a gigantic amount of data requires at least semi-automated data mining mechanisms.
Hence, clustering large amounts of astronomical data has recently become an interest-
ing problem in the time series data community [10, 18]. Astronomical data are usually
plagued with noise, very high in dimension, and not necessarily Gaussian in distribu-
tion. Limitations in current approaches motivated us to present a similarity driven clus-
tering algorithm that we call S-means. Instead of specifying the number of clusters K,
a similarity threshold T is used as a quality constraint in the search of optimal solutions
to the clustering problem.

The rest of the paper is organized as follows. In Section 2, we provide a background
on K-means, then the S-means algorithm is described afterward. Its time complexity
and convergence are also discussed. In Section 3, we describe the experimental domains
and experimental evaluation are demonstrated in which S-means is compared to exist-
ing approaches like K-means and G-means. Finally, conclusion and future work are
presented in Section 4.

2 From K-means to Similarity driven clustering

Before we describe our similarity driven approach to clustering, we need to first revisit
the classic K-means algorithm.

2.1 K-means

Two clustering algorithms are most popularly used: hierarchical clustering and K-means.
Hierarchical clustering produces a nested hierarchy of clusters according to a pairwise
distance matrix of all the given points. The hierarchy gives intuitive visualization. A
user does not need to have expertise in Computer Science since no parameter excepts
distance measure is needed in hierarchical clustering. However, the distance matrix
limits its application to small data sets (both time complexity and space complexity are
O(n2) or higher).

K-means basically divides a given data set into K clusters via an iterative refining
procedure. The procedure simply consists of three steps:

1. initialize K centroids ( ci, 1 ≤ i ≤ K) in the vector space.
2. Calculate the distances from every point to every centroid. Assign each point to

group i, if ci is its closest centroid.
3. Update centroids. Each centroid is updated as the mean of all the points in its group.
4. If no point changed its membership or no centroid moved, exit, otherwise, go to

step 2.

The iterative procedure uses hill climbing to minimize the objective function:

J =
K∑

i

N∑

j

‖x(i)
j − ci‖2 (1)

where ‖x(i)
j − ci‖2 denotes Euclidean distance between point xj to corresponding cen-

troid ci. The Euclidean distance can be substituted by any distance measure.
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Although the procedure will always terminate, K-means might converge to a local
minima. K-means is a simple algorithm that has been employed in many problem do-
mains. However, one of the major problems of K-means is that we do not know the
right number of clusters in advance. There is no existing theoretical solution to find
the optimal number of clusters for any given data set. A common approach is to score
the results of multiple runs with different K values according to a given criterion. The
criterion might incur new risk and parameter setting problems. We propose to use a
similarity driven approach to clustering that does not require specification of K.

2.2 S-means: Similarity Driven Clustering

The clustering problem we need to solve is: given N data points, group them into
clusters such that within each cluster, all members have similarity ≥ T with the cen-
troid where T is a user-defined threshold. Similarity is a central notion in classifica-
tion problem. The definition of cluster also implies that the cluster members should
have high similarity with each other. The most popular Euclidean distance is a dis-
similarity measure, which can be converted to a similarity measure in Gaussian form:
k(xi, yj) = exp(−γ‖xi−yj‖2). This is also called the Radial Basis Function (RBF ker-
nel) in kernel machines. Kernel methods all use similarity measures instead of dissimi-
larity. Similarity value is usually normalized to between 0 and 1; a confidence threshold
in [0, 1] also makes intuitive sense to users. There are a large number of similarity
measures available beside the RBF, such as correlation r, R-squared (the square of
r). Indeed, any kernel function can be considered a similarity measure. Therefore, the
clustering problem, if defined in terms of similarity, is more user-friendly and will likely
gain more popularity due to the increasing amount of interests in kernel methods.

S-means starts from K = 1 by default and a user can specify any starting K. Note
that the starting K is only an optional parameter in S-means. First, same as in K-means,
we initialize K centroids. Second, calculate the similarities from every point to every
centroid. Then, for any point, if the highest similarity to centroid ci is ≥ T , group it
to cluster i, otherwise, add it to a new cluster (the K + 1th cluster). Third, update each
centroid, using the mean of all member points by default. If one group becomes empty,
remove its centroid and reduce K by 1. Repeat the second and third step until no new
cluster is formed and none of the centroids moves.

Note that S-means is similar to K-means but with some differences. The major
difference lies in the second step, which basically groups all the points to a new cluster
whose highest similarity to existing centroids is below the given threshold . In K-means,
all points must go to one of the existing K groups, which is unfair for some points when
their similarities to corresponding closest centroid are very low. This simple difference
makes big impact on the output of clusters. Also, we can let K starts from 1 and it will
converge to a value, which eliminates the need of specifying a fixed K value. Also, there
is a minor difference in the third step. While K is incremented by 1 if a new cluster is
formed, it is decremented when some groups become empty. It is not unusual that as
K keeps increasing, some old groups would disappear (as points in existing clusters
could change membership as new clusters are formed). This way, K will not go beyond
control.
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The following is the pseudo code of S-means in Matlab style. The running code in
Matlab is downloadable from our website1.

S-means
Inputs: N data points X = [x1,x2, · · · ,xN ] and similarity threshold T .
Outputs: number of clusters K , centroids C = [c1, c2, · · · , cK ] and labels Y .

1: K = 1; /* starting number can be specified*/
2: Randomly choose K centroids C;
3: change=1;
4: while change==1 do
5: NewCluster = []; /*initialize to empty */
6: for i = 1 to N do
7: for j = 1 to K do
8: SimToClusters(i, j) = Similarity(xi, cj);
9: end for

10: end for/*End of similarity calculation */
11: for i = 1 to N do
12: maxSim = max(SimToClusters(i, :));
13: if maxSim ≥ T then
14: Y (i) = find(SimToClusters(i, :) == maxSim); /*Assign label */
15: else
16: NewCluster = [NewCluster, xi]; /* Add to a new cluster */
17: Y (i) = K + 1; /*Assign label (K + 1)*/
18: end if
19: end for/*End of label assignment*/
20: for i = 1 to K do
21: ci = mean(find(X(:, find(Y == i))));
22: if ci is empty then
23: remove ci; /* K will also reduce by 1 */
24: end if
25: end for/*End of centroid update*/
26: if NewCluster is empty and no centroid changed then
27: change==0;
28: end if;
29: end while. /*end of algorithm*/

For the sake of simplifying description, two for loops are used to calculate the simi-
larities in line 6-10. The loops are usually slow in Matlab. Using matrix dot product will
be very efficient. Since many similarity measures can be implemented in dot product,
the matrix product in Matlab can be utilized. The loop in line 11-19 varies from 1 to N .
Matlab can also provide an efficient way to implement it using built-in functions like
find and max. Interested readers should reference our Matlab real code.

The convergence of the S-means is guaranteed, because in the extreme case when
K equals N every point has 100% similarity to itself. Of course, the extreme case is not
desired. The result of K depends on threshold T . Intuitively, a high T produces more

1 http://blue.utb.edu/hlei/Smeans/Smeans V01.zip
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clusters. When T = 0, S-means is reduced back to K-means. In this sense, S-means is
a flexible generalization of K-means.

If S-means converges to K clusters, then time complexity is O(N ∗ (1 + 2 + · · ·+
K)) ≈ O(N ∗K2/2). Recall that the time complexity of K-means is O(NKL), where
L is the number of iterations, strongly related to K and the distribution of data points.
If using model selection based method to try different K and choose the best one, then
the time complexity is approximately O(N ∗ K2/2 ∗ L), assuming K value varies
from 1 to desired number of clusters. Besides avoiding the use of statistical tests (since
both the number of data points and the data dimensionality could be high), S-means
has advantages in low time complexity. In the following section, extensive experiments
were performed to evaluate S-means from different perspectives.
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Fig. 1: S-means converges on dataset SCT in less than 30 iterations. a) the maximum number of
clusters is restricted (up-bound is set 6). b) without restriction (up-bound is set 600).

3 Experiments

First, a small dataset was used to evaluate the convergence and execution speed of
S-means. Second, a medium size dataset with ground-truth class labels was used to
evaluate the accuracy of S-means in comparison with K-means and G-means. Third, we
applied S-means to mine compact clusters in a simulated large dataset of Gravitational-
wave time series. All the following experiments were performed in Matlab on a SUN
Ultra 40 microsystem that has 2.8Ghz CPU and 3.0G RAM memory.

3.1 Convergence and Execution speed

We adopted the popular toy dataset Synthetic-Control time series dataset (SCT) to test
the convergence and robustness of S-means [4]. SCT contains 600 samples of syntheti-
cally generated control charts. The length of each sample is 60. The similarity measure
used is R-squared (squared Pearson’s r) which is essentially equivalent to Euclidean
distance after mean-variance normalization [17].

Fig. 1 show the convergence of S-means with T = 0.7 with/withoud restriction on
the maximum number of clusters. Without restriction, S-means need more iterations
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to finish and more clusters are generated. The average similarity of all points to their
corresponding centroids is an equivalent measure of the objective function described
in equation (1). Like K-means, S-means is also a hill-climbing algorithm. Although
global optimum might not be reached, convergence is guaranteed.

We varied T from 0.05 to 0.75 by step 0.05 to watch the changing of the number
of clusters on the SCT dataset. The result is illustrated in fig. 2, from which we can
see that the number of returned clusters are sensitive to the threshold setting. Increasing
similarity threshold T significantly increases the number of clusters, because it imposes
the requirement that all cluster are compact (minimum similarity to the centroid is no
less than T ). Depending on the similarity adopted and the mining target, intuitive T
should be properly set. Big T tends to lead to overfitting, which can be considered
as one weakness of S-means. But from perspective of outlier detection, it is a good
phenomenon that some outliers are grouped as single-item stand-alone clusters. That is,
the clusters with only one elements are outliers which might interest user.
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Fig. 2: The number of returned clusters with respect to the similarity threshold T setting.

S-means was compared in execution time with standard K-means and fast K-means
with triangle inequality acceleration [11]. The source codes for standard K-means and
fast K-means in Matlab are provided by the authors’ of fast K-means. For K-means,
we let K vary from 1 to 20 on the SCT dataset. For S-means, we let the up-bound
number of clusters varied from 1 to 20. In this way, the comparison in execution time
is fair. The results are plotted in Fig. 3. S-means has the same level of speed with fast
the K-means when K beyond 5. S-means has a peak execution time when K=4. The
cause is that S-means has to force itself to converge when the clusters reaches up-bound.
S-means is fast because: i) in every iteration only one new cluster is added and ii) as
the total number of clusters increase, a large portion of old cluster centroids do not
move (already converged), thus, there is no necessity to recalculate distances from all
the points to those converged centroids.

3.2 Clustering Accuracy

One of the major concerns for new algorithm is whether it is accurate. Classification
accuracy usually depends on both (dis)similarity measure and classification strategy. To
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Fig. 3: Execution time comparison between S-means (dot point), standard K-means (star point
and fast K-means (diamond point).

compare S-means and K-means fairly in accuracy, we still used the R-squared measure
in S-means and equivalent Euclidean distance in K-means. The benchmark dataset used
was Pendigit [5], which has been widely used in evaluating classification algorithms.
It has 10 classes (digit 0 to 9). Total training samples is 7494 and test samples 3498.
Each sample has 16 attributes (x-, y- coordinates). We concatenated x-, y- coordinates
and made each sample a 32-length vector. All the vectors were normalized by mean-
variance before input for clustering.

First, accuracy was compared in clustering the training dataset by K-means, G-
means and S-means respectively. Suppose we don’t know how many classes in Pendigit.
For K-means, the necessary step is to guess K=1 up through to some up-bound P (P
was set 20 in our experiments). In G-means, a confidence threshold is needed in place
of K. The default confidence is set 0.001 in the original G-means package [13]. We
let confidence vary from 0.0001 to 0.002 by step 0.0005. We recorded the accuracy of
clustering results against the ground-truth labels in each step. For S-means, the neces-
sary step is to vary T if no prior knowledge about the number of clusters. T was varied
from 0 to 0.95 by step 0.05 and the up-bound number of clusters P was set 20, same as
K-means.

Calculating clustering accuracy is a tricky task. Suppose K cluster are returned
and the cluster assignment is L = [l1, l2, · · · , lN ], 1 ≤ li ≤ K. And suppose the
ground-truth number of clusters is Kt and the true labels are Lt = [lt1, lt2, · · · , ltN ],
1 ≤ lti ≤ Kt. Note that K does not necessarily equal Kt. We used the following
pseudo code to calculate accuracy:

1: for i = 1 to K do
2: for j = 1 to Kt do
3: Common(i, j) =

NumberOfCommonMemebers(find(L == i), find(Lt == j));
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4: end for
5: end for
6: count=0;
7: for i = 1 to Kt do
8: count = count + max(Common(:, i));
9: end for

10: Accuracy = count/N ;

0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
C

lu
st

e
ri
n
g
 a

cc
u
ra

cy

Steps of guess

Fig. 4: Accuracy comparison between S-means (dot point), fast K-means (star point) and G-
means (circle point). K varies from 1 to 20 in K-means. Confidence varies from 0.0001 to 0.002
in G-means. T varies from 0 to 0.95 with step 0.05 and up-bound of clusters is set 20 in S-means.

Line 3 computes the maximum common number of members between two clusters.
The nested for loops (line 1-5) find the best matching between two sets of clusters. Line
7-9 sums up all the number of common members (which are correctly assigned). Fig.
4 shows the clustering accuracy with S-means and K-means on each step of guess. In
step 9, S-means reaches its peak accuracy (when T=0.40). K-means reaches its peak
accuracy when K=10. S-means’s peak accuracy is significantly high than K-means’s
peak accuracy. After step 10, both algorithms decreases in accuracy, which is because
the number of returned clusters run farther away from the true number of classes. G-
means shows poor performance due to the weak assumption of Gaussian distribution.
According to our experience, the real data’s statistical distribution is usually not as
simple as Gaussian.

3.3 Mining Gravitational-wave Astronomy time series

The detection of Gravitational waves is the next frontier in astronomy. Several large
scale detectors have been constructed around the world, such as the Laser Interferomet-
ric Gravitaitonal wave Observatory (LIGO) in the U.S. [1]. These detectors are part of
a world wide network that is collecting data at the rate of several Tb per week. Mining
gravitational wave data for useful information is a daunting task and one of the major
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challenges in the area of astronomical data analysis. The following simulation is an ex-
ample of a typical clustering task that arises in such an analysis and also demonstrates
the application of the S-means.

A dataset consisting of 20020 time series with length 1024 were artificially gener-
ated. Each sequence is first generated by a single Gaussian modulated sinusoid signal.
The amplitude is scaled such that the matched filtering signal to noise ratio (SNR) is 1 in
white Gaussian noise with zero mean and unit variance. Then, a single Gaussian pulse is
added to the signal in random position. The pulse amplitude is also scaled with SNR=1
in white Gaussian noise. Fig. 5a shows the typical shape of the each cluster. The sim-
ulated time series is a close representation of the actual triggers in Gravitational-wave
Astronomy time series.
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Fig. 5: (a) Samples of simulated Gravitational-wave time series. (b)Centroids mined by S-means
when T = 0.1.

Although Gaussian process is used here, the possible clusters inside the dataset does
not follow Gaussian distribution. As discussed in the introduction, GW events dot not
follow any known statistical distribution. As a part of GW data analysis, clustering time
series based on shapes (which can be matched by similarity measures) is a reliable
method.

Same as experiments above, the simple similarity measure R-squared was used in
S-means. Since the number of clusters in the dataset is unknown, our goal is to mine
how many compact clusters exist. With high similarity threshold T , it is expectable
that many time series will be stand-alone clusters. Therefore, we started with low T .
Initially, we set T=0.1. We found that S-means converges to 8 clusters in less than 50
iterations. The centroids are as shown in Fig. 5b. The convergence was completed in
34.1 seconds. The average similarity of each item to its corresponding centroid was
also converged to about 0.55, as shown in Fig. 6. Note that the average similarity times
the number of items is equivalent to the objective function in equation (1). This means,
S-means converges via a hill-climbing approach to minimize the object function and at
the same time discover the number of clusters according to the similarity requirement.
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Fig. 6: S-means converges to 8 clusters in 50 interations when T = 0.1.

Then, we varied T from 0.2 to 0.6 by step 0.1 and recorded the number of clusters,
iteration, execution time and average similarity on each step. The results are shown in
Table 1 The number of clusters increases dramatically when T = 0.4 to unbound 1000.
Correspondingly, and execution time and number of iterations changes sharply at step
4, while the average similarity increases steadily. So, we can see it is not worth to set
T ≥ 0.4 in mining this dataset. We can conclude that the simulated dataset has 8 to 16
compact clusters, depending on parameter T .

Table 1: Number of clusters, iterations, execution time and average similarity change as similarity
threshold T increases.

Threshold T 0.1 0.2 0.3 0.4 0.5 0.6
Number of clusters 8 11 15 1000+ 1000+ 1000+

Number of iterations 48 29 20 1008 1003 1001
Execution time (secs) 34.1 23.1 23.3 1673.8 1221.8 1064.5

Average similarity 0.563 0.575 0.612 0.643 0.663 0.675

4 Conclusions and future work

S-means eliminates the necessity of specifying K (the number of clusters ) in K-
means clustering. An intuitive argument, similarity threshold T is used instead of K
in S-means. Experiments demonstrates the efficiency and effectiveness of S-means in
comparison with standard K-means, fast K-means and G-means. S-means mines the
number of compact clusters in a given dataset without prior knowledge in its statistical
distribution. We applied S-means to simulated Gravitations-wave time series analysis
and discovered the existence of compact clusters.

While we believe S-means is promising in its simplicity, efficiency and effective-
ness, we are aware that more extensive comparative experiments are needed to further
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validate the algorithm with other clustering algorithms. For instance, the clustering re-
sult is very sensitive to threshold T and the number of returned clusters can be unex-
pectedly large when T is high (e.g, T > 0.4). Also, it is necessary to evaluate S-means
with different similarity measures such as Dynamic Time Warping and kernel functions
in our future work.
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Abstract. This paper describes and empirically evaluates a Quasi-Incremental 
Bayesian Classifier (QBC) designed to be used when a classification task must 
be performed in dynamic systems such as sensor networks, which are 
continuously receiving new piece of information to be stored in huge databases. 
Therefore, the knowledge that needs to be extracted from these databases is 
continuously evolving and the learning process may need to go on almost 
indefinitely. The induction proposed by QBC is performed in two steps; in the 
first one a traditional Bayesian Network (BN) induction algorithm is performed 
using an initial amount of data. As far as new data is available, only the 
numerical parameters of the classifier are updated. The conducted experiments 
showed that QBC tends to maintain the average correct classification rates 
obtained with non-incremental classifiers while decreasing the time needed to 
induce the classifier.   

Keywords: Bayesian Networks, Bayesian Classifiers, Incremental Learning. 

1   Introduction 

Data Mining, also called KDD (Knowledge Discovery from Databases), is an 
important research area and its main objective is to study, investigate, propose and 
implement techniques, methodologies and algorithms to extract knowledge from great 
amounts of data.  

One of the biggest challenges in KDD is to cope with huge datasets. These datasets 
are common in many real application domains as e-commerce and financial market. 
In addition, the most recent advances in miniaturization and sensor technology lead to 
sensor networks, gathering spatio-temporal data about the environment and revealing 
a new area that needs to deal with massive datasets. In such domains, thousands of 
measurements are done every day, thus the amount of information to be stored in 
databases is huge and continuously growing. Therefore, the knowledge extracted from 
these databases need to be continuously updated, otherwise it may become obsolete or 
incorrect. 

The main problem of using traditional (non-incremental) learning algorithms (used 
to extract knowledge from databases in a KDD task) with these huge and 
continuously growing datasets, is the high computational effort needed. Therefore, it 
is not feasible to continuously execute them and an alternative approach must be used.  
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Incremental learning algorithms [23] represent a suitable approach to overcome the 
aforementioned problem [5]. The main idea behind these algorithms is to induce 
dynamic models that can be updated as far as new data is aggregated into a dataset. In 
this sense, the computational effort can be reduced and the knowledge extracted from 
the databases can be constantly updated.  

Although there are some incremental algorithms proposed in the literature, this 
class of algorithm is not yet consolidated.  In this paper, a Quasi-Incremental 
Bayesian Classifiers, named QBC, is proposed. The induction proposed by QBC is 
performed in two steps; in the first one a traditional Bayesian Network (BN) induction 
algorithm is performed using an initial amount of data and generating a Bayesian 
Classifier (BC). As far as new data is available, only the numerical parameters of the 
classifier are updated. Considering that a BC is formed by a graph structure and 
numerical parameters and, in addition, learning the graph structure demands a higher 
computational effort [18], QBC minimizes the use of a BN structure learning 
algorithm (applying it only once) and explores the numerical parameters to update the 
classifier. This idea is based on some previous work on BCs [2][16][25]; QBC, 
however, proposes some innovation to the traditional algorithms aiming at becoming 
a method suitable to real problems applications. 

The remainder of this paper is organized as follows. The next section focuses on 
incremental learning, Bayesian Networks and related works found in the literature. 
Section 3 describes our Quasi-Incremental Bayesian Classifier (QBC), which will be 
evaluated in classification problems and the achieved results compared with those 
obtained using a traditional non-incremental learning algorithm. Section 4 reports our 
simulation results in four datasets that are benchmarks for data mining methods. 
Finally, Section 5 describes the conclusions and points out some future work. 

2   Incremental Learning, Bayesian Classifiers and Related Work 

The quasi-incremental approach proposed in this paper explores some incremental 
algorithms constraints and Bayesian Network Classifiers foundations. Therefore, this 
section reviews some basic concept of incremental learning and Bayesian Networks 
and Bayesian classifiers related works. 

2.1   Incremental Learning 

Some authors consider self-adaptation as a prerequisite for general intelligence [19]. 
Following along this line, the learning process should involve the ability to improve 
performance over time. In addition, it is known that humans acquire knowledge in an 
incremental fashion over time. These can be considered as the initial main 
motivations for developing incremental learning algorithms [8].  

The recent and fast development of areas such as e-commerce, databases, 
electronic sensors and ubiquitous computation generated a new motivation for 
incremental learning algorithms investigation [24]. These technologies allow dynamic 
systems to be designed and employed in real world applications. Such dynamic 
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system are continuously receiving new piece of information to be stored in huge 
databases. Therefore, the knowledge present in the databases is continuously evolving 
and the learning process may need to go on almost indefinitely, thus a non-
incremental learning algorithm may become ineffective. Most machine learning 
algorithm, however, are not incremental. 

 Incremental learning algorithms have been investigated focusing on many specific 
tasks. In [8] was proposed one of the first incremental learning algorithms and it was 
devoted to clustering tasks. In [11] an overview of incremental clustering algorithms 
developed in the 80’s is presented and such algorithms can be considered precursors 
of incremental learning in machine learning and data mining. 

Following the definition given in [15], an incremental learning algorithm should be 
able to use its learned knowledge to carry out its performance task at any stage of 
learning. It should also be computationally efficient when incorporating experience 
(training data) into memory during the learning procedure; and should not use 
unreasonable space (memory) to store its experience (already used training dataset).  

An alternative definition can be found in [6][5]. In these works, the authors focus 
on learning from dynamic datasets that keep growing continuously. In this sense, to 
be considered incremental, a learning algorithm [5]: 
• “must require small constant time per record, otherwise it will inevitably fall 

behind the data, sooner or later. 
• must use only a fixed amount of main memory, irrespective of the total 

number of records it has seen. 
• must be able to build a model using at most one scan of the data, since it may 

not have time to revisit old records, and the data may not even all be available in 
secondary storage at a future point in time. 
• must make a usable model available at any point in time, as opposed to only 

when it is done processing the data, since it may never be done processing. 
• Ideally, it should produce a model that is equivalent (or nearly identical) to the 

one that would be obtained by the corresponding ordinary database mining algorithm, 
operating without the above constraints. 
• When the data-generating phenomenon is changing over time (i.e., when 

concept drift is present), the model at any time should be up-to-date, but also include 
all information from the past that has not become outdated.” 

The literature also presents other different definitions of incremental learning. In 
spite of this, instead of reviewing all these alternatives (to identify the most 
appropriate one to develop our approach), we propose to use a Quasi-Incremental 
algorithm which follows some of the aforementioned constraints, but do not need to 
be strictly in accordance with any incremental learning formal definition. Following 
this idea, some classical learning algorithms, such as k-NN [16] and naïve Bayes 
classifier [9] can be considered as having incremental learning features and based on 
this fact we developed our approach presented in section 3. 
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2.2   Bayesian Networks and Bayesian Classifiers Related work 

Bayesian Networks (BNs) are graphical representations of multivariate joint 
probability distributions. They are described by directed acyclic graphs in which the 
nodes represent the attributes and the arcs represent probabilistic dependencies 
between connected nodes (attributes). The strength of each dependency is given by 
the conditional probability P(xi|πxi), where xi and πxi are the i-th attribute and the set 
of parents of xi in the graph, respectively. The use of conditional independence is the 
key to the ability of BNs to provide a general-purpose compact representation for 
complex probability distributions [18][21].  

BNs can be built directly from domain knowledge or they can be automatically 
learned from data. It is also possible to combine both strategies. Learning BNs from 
data became an effervescent research topic in the last decade, and there are two main 
classes of methods to perform this task [18]: methods based on heuristic search and 
methods based on conditional independence tests. Our work is based on the classic 
K2 algorithm [3], which uses a heuristic search to learn a Bayesian network from 
data. 

Bayesian networks incremental learning is not a mature research field, hence, there 
are not many different approaches dealing with this theme. Nevertheless, there are 
some very relevant works that can be divided into two main groups, the first one 
considers the BN structure update and the second one considers the numerical 
parameters update.  

When concerning the BN structure update some relevant ideas were presented in 
[14][10][24]. Nevertheless, considering that the method proposed in our work focuses 
on the numerical parameters update, the BN structure update approaches will not be 
further discussed in this paper. 

Considering the numerical parameters update, in [2][16] and [25], the authors 
define the BN structure based on human expert knowledge and then, only the 
numerical parameters are updated in order to incorporate the new information in the 
knowledge represented by the BN. Such numerical parameters update may be done 
using one of the three different techniques: discretization of parameters, Dirichlet 
distributions, and Gaussian distributions. Still concerning only on the numerical 
parameters update, another relevant work is the one presented in [4] in which is 
assumed that the parameter distribution is given by a product of Gaussian 
distributions. The aforementioned approaches were designed to be used mainly in 
situations where the instances contained in the database are incomplete, the BN 
structure can be obtained from an external font (e.g. a human expert) and the form of 
the variables probability distributions are known (or can be estimated using prior 
knowledge). Under these circumstances, the proposed methods are good options when 
trying to perform an incremental learning of Bayesian Networks. Our proposed 
Quasi-Incremental Bayesian Classifier, on the other hand, is designed to be applied in 
situations where these assumptions do not hold. 
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3   Quasi-Incremental Bayesian Classifier - QBC 

It is already known that when learning a BN from data, the correctness of the learned 
network (structure and numerical parameters) depends on the amount of training data 
available. Thus, when the training data is not large enough, the literature recommends 
employing prior knowledge about the domain to improve the accuracy of learned 
models [20]. Based on this understanding, some incremental BN learning algorithms  
require a domain expert to fully specify the network structure of the BN and focus 
only in the numerical parameter learning. Therefore, the network structure specified 
by the expert domain is used as a set of constraints to learn the conditional probability 
tables (CTPs) that rule the BN. 

In real world applications, however, it is not common to have an expert domain at 
hand. In addition, as mentioned before, in domains such as sensor networks, the lack 
of data to be used in a learning task is not frequent. Therefore, the QBC approach 
considers that the initial amount of data available to be used in the learning task is 
large enough to induce a consistent network structure to be used in a classification 
task. Accordingly, the QBC initially uses a BN learning algorithm to induce a first 
model to be used as a classifier (as in a non-incremental procedure). As long as new 
data arise, only the numerical parameters are updated. Such an update is based on the 
previous induced BN structure. Considering that learning the BN structure needs 
more computational effort than learning the numerical parameters (when knowing the 
BN structure), the main idea is to minimize the need of inducing the entire BN every 
time that new data is available.   

Another interesting feature present in the QBC is the numerical parameters 
induction approach. Instead of looking for an adequate probability distribution to 
model the variables behavior, as done in other proposals [2][16][25][4], our approach 
uses the dataset to estimate the relative frequency of the variables and thus, build the 
CPTs. It is important to state that we are not claiming that the frequentist approach is 
always better than the one pointed in the aforementioned papers. The frequentist 
approach, however, is simpler to implement and very adequate when no prior 
knowledge about the variables behavior is known, and because of its simplicity, it is 
commonly employed in data mining tasks. In addition, as showed in [26], assuming a 
variable distribution (e.g. gaussian) without being certain may implicate in bad 
results.  On the other hand, when having a sufficiently large dataset, the relative 
frequency can be used to estimate the probability distribution [13]. 

Figure 2 presents the QCB in an algorithmic fashion. In this figure, it is shown that 
QBC receives a dataset D as input and, as output it produces a Bayesian Classifier BC 
and a data structure NP that represents the classifier numerical parameters. 

The procedure Learn_Structure (in Figure 2) was implemented for this work 
using the K2 structure learning algorithm (described in [3]). This procedure, however, 
can be implemented using other approaches described in the literature [18]. The line 3 
in the algorithm for example, can be omitted from the QBC when intending to use a 
naïve Bayes classifier [9] in the classification task. In spite of minimizing the 
computational effort in the first run of QBC, the use of a naïve Bayes classifier is not 
suitable in situations where the classification results are used for decision-making, for 
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example. It happens, mainly because precise estimates of class probabilities are 
crucial for decision-making. As stated in [12], a classifier is often only one part of a 
larger decision process, for which accurate class probability estimates provide 
additional utility. For instance, knowing the class probability may give much 
information about costs of incorrect predictions [22]. For this reason, QBC uses as 
classifier an unrestricted Bayesian Network (that gives more precise probability 
estimates) instead of a simpler Bayesian Classifier. 

Figure 2. QBC Algorithm 

The first run of QBC must be executed when having a considerable amount of data. 
Doing so, in the first run the BN structure will be built (Learn_Structure 
procedure in Figure 2) using a fair sampling of the probability distribution that 
governs the variables domain. Subsequently, as far as new data arrives, QBC must be 
executed again. Considering that the BN structure is already built, from this point and 
on, only the numerical parameters will be learned and updated.    

The procedure Learn_num_parameters receives as input a dataset D and the 
previous numerical parameters information (stored in a specific data structure NP), 
and updates NP. In the first run of the algorithm, NP is an empty input. The data 
structure used to store the learnt numerical parameters can be an AD-Tree [17], thus, 
only the sufficient statistics is stored. An AD-tree can be seen as a sparse data 
structure used to store counts of the records from datasets and its time performance is 
independent of the number of records in the dataset [24]. Therefore it is suitable in 
domains like sensor networks data streams learning. 

The Build_Classifier procedure has as inputs a BN structure (previously 
built in line 3) and the data sufficient statistics stored in NP. Thus, it merges these 
inputs creating a complete BN having the structure and its corresponding numerical 
parameters which will be used as a classifier (BC). 

QBC Algorithm 
Input:  D:  dataset 
Output: BC: Bayesian Classifier 

NP: updated Numerical Parameters 
 1. Begin 
 2.  If it is the first run then 
 3.   Learn_Structure(D,Structure); 
 4.  else 
 5.   Load(NP); 
 6.  end {if} 
 7.  Learn_num_parameters(D,NP); 
 8.  Build_Classifier(Structure,NP,BC); 
 9.  Store(NP); 
10.   Return(BC); 
11. End. 
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As mentioned before, QBC is designed to be used in domains like sensor networks 
data streams learning. In such domains, it is worth having algorithms able to update 
the knowledge stored in a classifier in the light of new data instances using a 
reasonable computing time and memory space. In addition, as done in most 
incremental learning approaches [24], QBC is based on the assumption that all data in 
the stream are sampled from the same probability distribution, therefore, QBC does 
not need to handle concept drift as the underlying domain probability distribution 
does not change over time.  

4   Experiments 

Trying to verify the soundness of the proposed QBC approach, when compared to a 
non-incremental algorithm, a number of empirical classification experiments were 
conducted using the K2 algorithm as a non-incremental approach. The main aspects to 
be considered when concerning the QBC behavior are twofold: the Average Correct 
Classification Rates (ACCRs) and the time needed to build the classifier. The 
remaining of this section initially describes the knowledge domains used in the 
experiments as well as the experimental methodology adopted. The results from the 
experiments are then presented and analyzed. 

Four well-known Bayesian Network domains, namely Alarm [1], Asia [7], Credit 
[7]  and Engine fuel system [7] were used in our experiments. The description of each 
domain can be obtained in [7]. Table 1 summarizes datasets characteristics. 

The main motivation of using domains described by known Bayesian Networks is 
the possibility to generated new data (using a sampling strategy) whenever it is 
necessary. In addition, it is possible to identify a suitable variable ordering to each 
domain. 

Table 1. Datasets Description with dataset name (Data), number of attributes plus class 
(#Attributes), number of instances (#Instances) and number of classes (#Classes). 

Data Alarm Asia Credit Fuel Engine 
#Attributes  37 8 12 9 
#Instances 30000 15000 15000 15000 
#Classes 2 2 2 2 

 
The experiments were conducted considering three scenarios for each domain. The 

main idea is to picture 3 different situations where the initial dataset (used to construct 
the complete BN: structure + numerical parameters) has different sizes. In the first 
scenario, the initial dataset can be considered as a small one and it keeps growing as 
far as new scenarios are created. Therefore, in the third scenario, the initial dataset is 
larger than the ones defined in the first and second scenarios. Table 2 shows the initial 
dataset size for each scenario considering each domain. The second and third 
scenarios are different in the Alarm domain (when compared to the other domains) 
because it is the largest domain in our experiments. 
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Table 2. Datasets Description with dataset name (Data), number of attributes plus class 
(#Attributes), number of instances (#Instances) and number of classes (#Classes). 

 Alarm Asia Credit Engine 
1st scenario 1000 1000 1000 1000 
2nd scenario 5000 3000 3000 3000 
3rd scenario 10000 5000 5000 5000 

 
Considering the Alarm domain, in the first scenario, after executing the first QBC 

run (with the initial dataset), 500 new instances were added to the experiment and the 
QBC was executed again. It was done 38 times, thus QBC was executed once using 
only the initial dataset (1000 instances) and then, executed other 38 times simulating 
new data arrivals. The last QBC execution in this scenario used a dataset containing 
20000 instances. 

For the second scenario, as the initial dataset contains 5000 instances, the QBC was 
executed 30 times to simulate the new data (500 instances) arrivals. Thus, in the last 
execution, the dataset was formed by 20000 instances. The third scenario followed the 
same strategy and, thus, QBC was executed once with the original dataset (10000 
instances) and more 20 times with new data (500 instances) arrivals. 

For each scenario, the process was repeated 10 times and Table 3 shows the 
obtained results. The time and ACCRs presented in Table 3 are the average values 
obtained after the 10 executions. To calculate the correct classification rates 10000 
new instances (not used in the QBC executions) were used. 

Analyzing results for the Alarm domain, it is possible to verify that the ACCRs 
obtained using QBC are close to the ones obtained with K2. On the other hand, the 
time needed to execute the non-incremental algorithm (every time that new data is 
available) is considerably lower with QBC.  On average, QBC spent less than 35% of 
the time spent by K2.  

One interesting aspect to be highlighted is that in the first scenario the QBC was 
faster than in the following ones. Considering that in the third scenario QBC was 
executed only 21 times, while in the first scenario it was executes 39 times, this result 
may seem counterintuitive. Observing, however, that in the third scenario the initial 
dataset has ten thousand instances while in the first scenario it has only one thousand, 
it is possible to understand such behavior. It means that the time spent in the first 
QBC run is higher in the third scenario than in the first one. In other words, the size of 
the initial dataset used in the first QBC run (when the BN structure is induced) has 
more influence in the average time showed in Table 3 than the number of times that 
QBC is executed. 

For the next three domains, the same strategy employed to the Alarm domain was 
also used. The only difference is the size of the initial datasets which are smaller in 
Asia, Credit and Engine domains. Results presented in Table 3 show that the ACCRs 
obtained with both QBC and K2 are similar in all the three domains. When 
concerning the time needed by both algorithms, on average, QBC spent less than 30% 
of the time spent by K2. These results confirm the same behavior present in the Alarm 
domain. 

As happened with the Alarm domain, in the experiments with the Credit domain, 
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the size of the initial dataset (used in the first QBC run) had more influence in the 
average run time than the number of times that QBC was executed. The same fact did 
not occur with Asia and Engine domains. Considering that Asia and Engine are 
smaller domains (8 and 9 variables respectively), such behavior was already expected. 
In this sense, the conducted experiments showed that, when concerning runtime 
obtained with employed datasets, large domains (having many variables) with large 
datasets tends to take more advantage of QBC characteristics. 

Table 3. Results with Alarm, Asia, Credit and Fuel Engine domains. Where Time ± SD:  time 
and standard deviation; ACCR: Average Correct Classification Rates; #exec: number of runs.  

Alarm 
Incremental – QBC Non-incremental – K2 

Scenario 
Time ± SD ACCR #exec Time ± SD ACCR #exec 

1st  31.7 ± 3.9 91.2 ± 8.3 39 2,566.0±30.9 93.9 ± 6.1 39 
2nd 58.4 ± 0.7 85.6 ± 9.1 31 2,374.6±25.5 91.2 ± 8.4 31 
3rd 112.2 ± 12.9 94.7 ± 6.1 21 2,075.7±294.0 95.3 ± 5.1 21 

Asia 
Incremental – QBC Non-incremental – K2 

Scenario 
Time ± SD ACCR #exec Time ± SD ACCR #exec 

1st  1.3 ± 0.6 99.9 ± 0.0 18 5.3 ± 0.9 99.9 ± 0,0 18 
2nd 1.7 ± 0.6 99.9 ± 0.0 14 5.0 ± 0.7 99.9 ± 0,0 14 
3rd 1.3 ± 0.6 100.0 ± 0.0 10 4.0 ± 0.8 100.0 ± 0,0 10 

Credit 
Incremental – QBC Non-incremental – K2 

Scenario 
Time ± SD ACCR #exec Time ± SD ACCR #exec 

1st  2.7 ± 0.6 69.3 ± 3.3 18 27.6 ± 2.0 64.2 ± 4.5 18 
2nd 2.6 ± 0.3 70.7 ± 5.1 14 26.3 ± 0.9 65.1 ± 2.7 14 
3rd 3.2 ± 0.6 64.4 ± 3.9 10 22.0 ± 0.5 64.7 ± 1.9 10 

Engine 
Incremental – QBC Non-incremental – K2 

Scenario 
Time ± SD ACCR #exec Time ± SD ACCR #exec 

1st  1.5 ± 0.5 99.5 ± 0.0 18 5.4 ± 0.4 99.5 ± 0.0 18 
2nd 1.4 ± 0.6 99.5 ± 0.0 14 4.6 ± 0.4 99.5 ± 0.0 14 
3rd 1.4 ± 0.4 99.6 ± 0.1 10 4.2 ± 0.6 99.6 ± 0.1 10 

5   Conclusions and Future Work 

In this paper we proposed a Quasi-Incremental Bayesian Classifier (QBC) designed to 
induce classifiers in dynamic systems such as sensor networks. QBC is a tow-fold 
approach, at first a BC is induced using an initial amount of data. Subsequently, as far 
as new data is available, only the numerical parameters of the classifier are updated.  

The conducted experiments showed that QBC tends to maintain the ACCRs 
obtained with a non-incremental classifier while decreasing the induction time. In 
addition, large domains (having many variables) with large datasets tends to take 
more advantage of QBC characteristics than small ones. We intend next to investigate 
the appropriateness of other non-incremental BN learning as well as the use of 
simpler classifiers induction algorithms in conjunction to QBC.  
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Abstract. In this paper, a data stream architecture is presented for electrical 
power quality (PQ) which is called PQStream. PQStream is developed to 
process and manage time-evolving data coming from the country-wide mobile 
measurements of electrical PQ parameters of the Turkish Electricity 
Transmission System. It is a full-fledged system with a data measurement 
module which carries out processing of continuous PQ data, a stream database 
which stores the output of the measurement module, and finally a Graphical 
User Interface for retrospective analysis of the PQ data stored in the stream 
database. The presented model is deployed and is available to PQ experts, 
academicians and researchers of the area. As further studies, data mining 
methods such as classification and clustering algorithms will be applied in order 
to deduce useful PQ information from this database of PQ data.  

Keywords: Data Streams, Data Stream Applications, Electrical Power Quality. 

1   Introduction 

The proliferation of time-involving and data-intensive applications such as sensor 
networks, network traffic monitoring systems and financial applications led to the 
emergence of data stream models and issues related to the management of these 
models as well. Considerable research have been carried out on data streams 
including the studies on data stream management systems such as STREAM [1], 
those ones on tracking cross-correlation in data streams [2, 3], studies on mining data 
streams such as StreamCube [4], and finally those studies that present real world 
applications of data streams such as GigaScope [5]. We refer interested readers to    
[6, 7] for in-depth surveys of the literature on data streams. 

In this paper, a data stream architecture is presented, which is called PQStream, for 
processing and managing electrical power quality (PQ) data. The feasibility and 
effectiveness of the proposed architecture is demonstrated on the PQ data obtained by 
a mobile PQ measurement system [8] monitoring the transformer substations of the 
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Turkish Electricity Transmission System where this measurement system is also part 
of the PQStream architecture.  

The rest of the paper is organized as follows: Section 2 presents a brief review of 
electrical power quality and power quality parameters. In Section 3, general 
PQStream architecture and its main components are described in detail with its 
application on field PQ data. Finally, conclusions and future research directions are 
presented in Section 4. 

2   Electrical Power Quality Parameters 

Electrical power is one of the most essential items used by commerce and industry 
today. It is an unusual commodity because it is required as a continuous flow - it 
cannot be conveniently stored in quantity - and it cannot be subject to quality 
assurance checks before it is used [9]. The reliability of the supply must be known 
and the resilience of the process to variations must be understood. In reality, of 
course, electricity is very different from any other product – it is generated far from 
the point of use, is fed to the grid together with the output of many other generators 
and arrives at the point of use via several transformers and many kilometers of 
overhead and possibly underground cabling. Where the industry has been privatized, 
these network assets will be owned, managed and maintained by a number of 
different organizations. Hence assuring the quality of delivered power at the point of 
use is no easy task. 

Consumers of electricity are being increasingly affected by PQ problems due to 
augmentation of disturbing loads in electric power systems. Throughout the study, PQ 
parameters given at IEC 61000-4-30 [10] are used. In the following subsections, basic 
electric power definitions and brief descriptions of some PQ parameters can be found. 
At the end of this section, event types such as sag, swell, unbalance and interrupt are 
explained as well. 

2.1   Power  

Electric power is defined as the amount of work done by an electric current, or the 
rate at which electrical energy is transferred. In alternating current circuits, energy 
storage elements such as inductance and capacitance may result in periodic reversals 
of the direction of energy flow. The portion of power flow that averaged over a 
complete cycle of the AC waveform, which results in net transfer of energy in one 
direction is known as real power. That portion of power flow due to stored energy that 
returns to the source in each cycle is known as reactive power. The relationship 
between real power, reactive power and apparent power can be expressed by 
representing the quantities as vectors (Fig.1). The apparent power vector is the 
hypotenuse of a right triangle formed by connecting the real and reactive power 
vectors [11].  
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Fig. 1. Relation between Real, Reactive, and Apparent Powers 

2.2   Demand 

Electric power demand is directly proportional to the current demand of consumer. 
Hence consumer’s power demand profile may obtained by sampling the current 
demand values.  Power demand is mainly characterized by fundamental harmonic 
component of the load current.  

2.3   Voltage and Current RMS 

RMS (Root-Mean-Square) value is defined to be square root of the arithmetic mean of 
the squares of the instantaneous values of a quantity taken over a specified time 
interval. The average power consumed by a sinusoidally driven linear two-terminal 
electrical device is a function of the RMS values of the voltage across the terminals 
and the current passing through the device, and of the phase angle between the 
voltage and current sinusoids.  

2.4   Frequency 

The mains frequency is the frequency at which alternating current is transmitted from 
a power plant to the end user. In most parts of the world, it is typically 50 or 60 Hz. 
Mains frequency is fixed to 50 Hz for the Turkish Electricity Transmission System. 
However due to practical load demand variations, supply frequency appears to be in a 
frequency band rather than having a constant value. Hence, mains frequency turns out 
to be an important PQ parameter indicating the frequency stability of the particular 
utility grid. 

2.5   Harmonics 

Ideally, voltage and current waveforms are perfect sinusoids. However, as reported in 
[12], because of the increased popularity of electronic and other non-linear loads, 
these waveforms often become distorted. This deviation from a perfect sine wave can 
be represented by harmonics—sinusoidal components having a frequency that is an 
integral multiple of the fundamental frequency (Fig. 2). Thus, a pure voltage or 
current sine wave has no distortion and no harmonics, and a non-sinusoidal wave has 
distortion and harmonics. To quantify the distortion, the term total harmonic 
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distortion (THD) is used. The term expresses the distortion as a percentage of the 
fundamental (pure sine) of voltage and current waveforms.  

 

Fig. 2. Distorted Waveform Composed of Fundamental and 3rd Harmonic 

2.6   Flicker 

The power supply network voltage varies over time due to perturbations that occur in 
the processes of electricity generation, transmission and distribution. Interaction of 
electrical loads with the network causes further deterioration of the electrical PQ. 
High power loads that draw fluctuating current, such as large motor drives and arc 
furnaces, cause low frequency cyclic voltage variations that result in flickering of 
light sources which can cause significant physiological discomfort, physical and 
psychological tiredness, and even pathological effects for human beings. Hence, 
flicker is quantified based on models of light sources and human sensation [13].  

2.7 Events 

Voltage sag, swell, unbalance and interruption are detected as PQ events throughout 
the measurements. These events are briefly described below [10]:  

 
• Voltage Sag:  Sag indicates an under-voltage situation. On poly-phase 

systems, voltage sag begins when the voltage of one or more channels is 
below a sag threshold (%85 of nominal) and ends when voltage on all 
measured channels is equal to or above the sag threshold plus the hysteresis 
voltage. 
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• Voltage Swell:  Swell indicates an over-voltage situation. On poly-phase 
systems, a swell begins when the voltage of one or more channel rises above 
the swell threshold (%110 of nominal) and ends when the voltage on all 
measured channels is equal to or below the swell threshold minus the 
hysteresis voltage. 

 
• Unbalance: Channels of poly-phase systems should have sinusoidal voltages 

having same amplitude.  Balanced three-phase system should have the same 
amplitude on all phases. Unbalance is a measure which indicates how much 
the amplitude of phases different from each other. 

 
• Interruption:  On poly-phase systems, a voltage interruption begins when the 

voltage of all channels is below the voltage interruption threshold (%5 of 
nominal) and ends when the voltage of any one channel is equal to or greater 
than the voltage interruption threshold plus the hysteresis.  

3   PQStream Architecture 

PQStream is an architecture offered for efficient processing and management of PQ 
data. PQ data has an inherent time-dependency and this data when measured at 
relevant frequencies requires almost unbounded storage and processing capabilities 
compared to other data types stored in conventional relational database management 
systems.  

We have used PQStream architecture for mobile measurements of PQ data in the 
Turkish Electricity Transmission System and describe the architecture accordingly, 
yet it is a generic architecture and can be used for managing any PQ data acquired in 
other means with little or no customization. 

An abstract representation of PQStream presented in Fig. 3. In the following 
subsections, we firstly introduce the mobile PQ measurements application which 
corresponds to the PQ measurement module in Fig. 3 and describe how the resulting 
data is transferred to the stream database. Following this, we describe the stream 
database with its conceptual data model and finally the PQStream GUI. 

 
 

 
Fig. 3. Abstract Representation of PQStream Architecture 
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3.1   PQ Data Measurement Module 

Mobile PQ measurements in the Turkish Electricity Transmission System are carried 
out for a period of seven consecutive days for each measurement point.  Measurement 
points are feeders and busbars in the transformer substations. At the time this paper is 
written, measurements have been completed for 144 bus-bars, 205 feeders, 59 
transformer substations all over the country. 

Mobile measurement program is developed in LabView development environment 
[14] using its proprietary visual programming language called G where the sampling 
frequency of the program is 3200 Hz, that is, it acquires 3200 raw samples per second 
for each PQ parameter. The program calculates and outputs the averages 
corresponding to the PQ parameters according the PQ standards [10] in an online 
fashion. It outputs raw PQ data as well in case of events as will be clarified in the 
upcoming paragraphs.  

Output traffic load of the PQStream measurement module is presented in Table 1 
for each PQ data measurement point. Storage and processing requirements of 
PQStream database could be estimated using the total bit rate values in this table and 
number of measurement points.  

Table 1.  Outgoing Data Traffic of PQStream Measurement Module (Based on Mobile PQ 
Measurements of the Turkish Electricity Transmission System).  

Parameter Precision Update Rate 
(Averaging 

Interval) 

Three 
Phase 

Average PQ Data Bit 
Rate (bps) 

Active Power Double every second Yes 192 
Reactive Power Double every second Yes 192 
Apparent Power Double every second Yes 192 
Power Factor Double every second Yes 192 
33 Voltage 
Harmonics 

Double every 3 secs. Yes 2.112 

33 Current 
Harmonics 

Double every 3 secs. Yes 2.112 

RMS Current and 
Voltage 

Double every 0.2 secs. Yes 1.920 

Event Length Integer variable No 4 
Event Type String variable No 10 
Event Raw 
Current1 Data 

Double variable Yes 614.400 

Event Raw 
Voltage Data 

Double variable Yes 614.400 

Short Term 
Flicker 

Double every 10 mins. Yes 0,32 

Demand Double every 15 mins. Yes 0,213 
Frequency Double every second No 64 
   Total (with Events) 1.235.790,533 
   Total (without Events) 6.990,533 

 
 
                                                           

1 614400 bps = 3200 samples/sec*8 bytes/sample*8 bits/byte*1 sample/phase*3 phase 
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The output of the program is a set of directories and files for each PQ parameter 
where exact directory structure of this output is presented in Fig. 4.  

 
 

 
Fig. 4. Directory Structure of Mobile PQ Measurements 

 
In order to store and manage this PQ measurement data in a stream database, a 

daemon program executes on the data in order to transfer them to the database. The 
program simply reads the measurement files for PQ parameters and inserts each 
sample in these files to the corresponding tables in the stream database.  

However, not all values in all files in Fig. 4 are directly stored in the database due 
to space and processing limitations. The files under the directories of Sag, Swell, 
Unbalance, and Interruption include raw data corresponding to the actual samples 
during the entire period of each event and are simply stored as compressed files in the 
file system in a specific directory layout instead of storing their contents in the 
database. Only absolute paths of these files are stored in the database. Event 
measurement file in Fig. 4 has an entry for each of these events so that this 
information will be available through the database and if the actual raw data is 
required for an event, it will be provided to the user as a file. We refer interested 
readers to [8] for an in-depth description of the mobile PQ measurements application. 

3.2   Data Stream Model for PQ Data 

The output of the PQStream data measurement module, which corresponds to the 
computed averages of PQ parameters according to the averaging intervals provided in 
Table 1, should be effectively stored in a database for retrospective analysis of the PQ 
data. For this purpose, we have proposed a conceptual data model for PQ data and 
presented this model as a Unified Modeling Language (UML) class diagram in Fig. 5.  

PQStream database is constructed by implementing each of the classes in Fig. 5 as 
tables of a database using open-source object relational PostgreSQL as the backend 
database system. These classes are briefly described below: 
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Fig. 5. Conceptual Data Model for PQ Data Represented with a UML Class Diagram 

 
• Measurement_Point class holds information about the busbars or feeders 

(measurement points) where PQ measurements take place. The attributes of 
this class are crucial since they could be used to group stream data (hence 
will be in the group by clause when the required data is represented as a 
Structured Query Language (SQL) query or a query in one of the other 
languages based on SQL). Some of the most significant attributes of this 
class are load_type (which can take on one of the values of Heavy Industry, 
Industry+Urban, and Urban Only), city_name, region_name, and 
voltage_level. 

 
• Transfer_File class is for holding information related to the transfer file and 

actual data transfer time. Since each PQ measurement sample has a 
corresponding timestamp; this value must also be stored in the stream 
database. But, frequency of each PQ parameter is determined according to 
PQ standards (provided as averaging intervals in Table 1), that is, duration 
between consecutive timestamps are known in advance, hence we use an 
attribute called measurement_date for each Transfer_File instance to 
represent the measurement time of the last sample in that file so that the 
timestamps for the remaining samples could be determined according to the 
PQ parameter type.    

 
• Event class is used to model an entry for each and every event that occurred 

during the entire measurement period. The attributes of this class include 
event_type (one of sag, swell, interruption or unbalance), 
event_starting_time, event_ending_time, and event_size_in_samples. 
Although raw data corresponding to each event occurrence is also stored in 
the directory structure in Fig. 4 as a file for each event type under 
corresponding directories, they are not individually modeled in the 
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conceptual design due to space and processing limitations (the number of 
event occurrences is bounded only by the total measurement period) and we 
store these files in compressed form in a certain directory structure for each 
measurement point as explained at the end of Section 3.1. The absolute path 
of each of these raw data files is modeled with the file_path attribute of the 
Event class.   

  
• Event_Stat is a class introduced for efficiency reasons. It is used to model a 

summary of the events occurred in a measurement point. The attributes of 
Event_Stat include event_count, sag_count, swell_count, interruption_count 
and unbalance_count. With this class implemented as a database table, most 
of the aggregation queries on PQStream will be faster (since they will scan 
Event_Stat table instead of the larger Event table). 

 
• Among the remaining classes, Flicker_PST models short term, and 

Fliker_PLT models long term flicker measurements. Long term flicker (Plt) 
is calculated from short term flicker (Pst) with the formula (1) taking N=12 
where Psti (i=1..N) are consecutive values of Pst. As their names imply, the 
classes Demand, Frequency, RMS and Power are for modeling respective PQ 
parameters. 

 

 

 

(1) 

3.3   PQStream Graphical User Interface (GUI) 

A user-friendly interface is essential for the effective querying of the presented 
PQStream database. Furthermore, this interface should provide high-quality 
visualization facilities to its users since graphics is probably the best way to present 
PQ data.  

For this purpose, a GUI for PQStream has been developed using Java 
programming language, with its Swing Application Programming Interface (API), in 
Eclipse development environment. The characteristics of PQStream GUI are 
summarized below: 

 
• It enables its users to query each of the PQ parameters and results can be 

represented using different visualization options such as tables, bar/pie 
charts, or time-series graphics. Graphics facilities are implemented using the 
open-source JFreeChart API [15]. In Fig. 6, flicker panel of PQStream GUI 
is presented where the query provided through the GUI results in the 
graphical representation of short term flicker for a measurement point, 
namely, EZİNE TM 154/34.5 KV TRAFO PRİMERİ. 
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Fig. 6. PQStream GUI (with Flicker Query Panel) 

 
• Users can provide aggregation queries through PQStream GUI so that 

summary information can be obtained about PQ parameters. For instance, 
the aggregation query provided in the Event query panel of the GUI in Fig. 7 
can be represented in SQL as follows: 

 
 select  sum(es.sag_count), sum(es.swell_count),  
    sum(es.unbalance_count), 
   sum(es.event_count), mp.load_type 

 from    event_stat es, measurement_point mp 
 where  es.measurement_point_id = mp.id 
 group by  mp.load_type 

 
• We have used Apache XML-RPC [16], Apache's Java implementation of 

XML-RPC protocol, for the communication between the stream database 
and PQStream GUI for its simplicity and compactness. Apache's Tomcat 
[17] web server is used to deploy server side PQStream code. 
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Fig. 7. PQStream GUI (with Event Query Panel) 

4   Conclusion 

Electrical PQ data is a time-evolving type of data and measuring it at high frequencies 
without any processing leads to unfeasibly large volumes requiring almost unbounded 
processing capabilities compared to other types of data stored in conventional 
relational database management systems. In this paper, we have described a data 
stream architecture for electrical PQ data, which, to our knowledge, is the first 
attempt to model PQ data as data streams, and shown its feasibility on real-world 
(field) PQ data.  

The main modules of PQStream architecture are a measurement module which 
processes continuous PQ data and computes averages according PQ standards, a 
stream database for storing the averages that the measurement module computed and 
finally a GUI for retrospective analysis and visualization of the stored PQ data. 
PQStream chooses not to store raw PQ data to lower the storage requirements of the 
acquired PQ data and uses some summary relations to speed up query processing. It 
supports aggregation queries over PQ data and with its proprietary GUI it enables 
users to access summaries of PQ data with relevant visualization facilities such as 
bar/pie charts and time-series graphs which are typical ways of presenting PQ data. 
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As further studies, we will employ data mining techniques on PQStream database 
such as classification and clustering algorithms to group those measurement points 
from which PQ data are acquired as well as sequence mining techniques to see the 
time-evolution of PQ problems. With the results of these data mining attempts on 
PQStream, experts of PQ domain will be able to take the necessary measures to detect 
and reduce PQ problems in electricity transmission systems. 
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Abstract. Online data mining in wireless sensor networks is concerned with the 
problem of extracting knowledge from a large continuous amount of data streams 
with an in-network processing mode. Unlike other types of networks, the limited 
computational resources require the mining algorithms to be highly efficient and 
compact. We propose a distributed resource-aware online data mining framework 
for wireless sensor networks which can be used to enable existing mining techniques 
to be applied to sensor network environments. We have applied the framework to 
develop and implement a distributed resource adaptive online clustering algorithm 
on the novel Sun MicrosystemTM Small Programmable Object Technology Sun 
SPOT platform. We have evaluated the performance of the algorithm on the actual 
sensor nodes. Experimental results show that the clustering algorithm can improve 
significantly in resource utilization while maintaining acceptable accuracy level. 

Keywords: distributed clustering, resource adaptivity, data mining, sensor networks 

1   Introduction 

Online data mining in wireless sensor networks has attracted research attention in recent 
years. This is because deployments of large-scaled distributed sensor networks are now 
possible owning to hardware advances and increasing software support. Online data 
mining, also called data stream mining is concerned with extracting patterns from 
continuous data streams such as those generated by sensor networks. Because of the 
massive amount of data and the speed of which the data are generated, many data mining 
applications in sensor networks require in-network processing such as aggregation to 
reduce sample size and the communication overhead. 

Adding up to the challenges are the extremely limited size of memory, available 
energy and processing power of the sensor nodes. These factors imply that traditional data 
mining techniques in order to be used in sensor network need to be highly energy efficient 
and compact. One of the methods is to improve the resource utilization via enabling 
resource-awareness for the mining techniques. With resource-awareness, the mining 
algorithm can automatically adjust its configuration in real time according to resource 
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availability levels. This can prolong network lifetime and it can also improve the mining 
techniques performance under resource-scare scenarios. Whilst there is research work on 
resource adaptivity in wireless sensor network, none of them provide a generic 
mechanism to enable resource-awareness for data mining in sensor networks. 

In this paper, we propose a distributed resource-aware online data mining framework 
for wireless sensor network which can be applied for many mining techniques that 
requires constantly monitoring, aggregation of data and in-network processing. We apply 
the framework to implement a distributed resource-aware online clustering algorithm, 
which we termed DERA-Cluster, on an actual sensor platform – the Sun SPOT. We have 
implemented and evaluated the algorithm on the actual sensor networks. Experimental 
results show that our clustering algorithm with resource-awareness greatly improves 
resource utilization while being able to maintain acceptable accuracy. 

This paper is organised as follows. Section 2 reviews the related work in this field and 
Section 3 briefly discusses the background of the resource-aware framework. In Section 4, 
we introduce our DERA cluster algorithm, and we discuss implementation issues in 
Section 5. Section 6 evaluates the validity of this approach in terms of resource-awareness 
and accuracy. Section 7 concludes this paper. 

2   Related Work 

We discuss an approach to adapt mining data stream techniques to resource availability. 
Online data stream mining has attracted more and more research attention in recent years. 
Gaber et al. [3] have done an in-depth survey of mining data streams. There are several 
existing approaches to adapt data stream techniques to changes in resource constraints.  

The first approach is the threshold-based approach for clustering algorithms. BIRCH 
[1] was the first threshold-based algorithm that uses an adjustable threshold to allow large 
datasets to fit into memory. Recently, it has been adopted in new algorithms such as 
CluStream [2] and LWC [3], which adds more features and/or modifies its structures to be 
able to adapt to streaming environments. Online stream clustering also has been termed by 
Aggarwal et al. [2] as microclustering.  

The second family of algorithms is frequent itemset mining which concerns with 
finding sets of items occurring together frequently. Giannella et al. [4] have proposed a 
method to extend the traditional FP tree for finding frequent item sets to mine streaming 
data in a time-sensitive way. Franke et al. [5] have discussed methods to measure the 
quality of data stream mining algorithms. In [5], they have used these measurements to 
analyze and enhance a frequent itemset mining technique. The enhanced technique can 
estimate the quality of output depending on the current resource situation (mainly 
available memory) as well as allocate resources needed for guaranteeing user-specified 
quality requirements. 

Teng el al. [6] have proposed the RAM-DS algorithm, which uses a wavelet-based 
approach to control the resource requirements. The algorithm is used to mine temporal 

60



 

patterns and is be used in conjunction with a regression-based stream mining algorithm 
proposed by the authors. 

An overview of recent research and application on distributed data mining can be 
found in [7]. Bandyopadhyay et al. described a K-Means-like technique for clustering 
homogeneously distributed data streams in a peer-to-peer environments like sensor 
networks [8].  

3   Background 

The resource-aware framework is a theoretical generic approach to provide resource-
awareness for data stream mining first proposed by Gaber and Yu [9]. It promotes a 
holistic approach that jointly considers adjusting the settings of the mining algorithm 
input, output and/or processing endpoints according to resource availability. Gaber and 
Yu [9] have coined the algorithm input settings as Algorithm Input Granularity AIG, the 
algorithm output setting as Algorithm Output Granularity AOG and the processing 
settings as Algorithm Processing Granularity APG. In general, they are referred to as the 
Algorithm Granularity Settings or AGS.  

The AIG represents the process of changing the data rates that feed into the algorithm 
such as sampling rates or data structure. The AOG represents the process of changing the 
output size of an algorithm such as the number of clusters formed by a clustering 
algorithm. The APG represents the process of changing the algorithm parameters to 
consume less processing power while changing the randomization factor is an example of 
an APG setting. The resource-aware framework consists of three main components: 
1. A resource monitoring component that periodically monitors the availability of various 

resources. The implementation of the resource monitoring component is platform 
dependant and the resources to be monitored can also vary. Common resources are 
battery charge, remaining memory, CPU load, communication buffers or bandwidth.  

2. The data mining algorithm processes data in real-time. 
3. The algorithm granularity settings that is responsible for adjusting the mining 

algorithm parameters according to resource availability.  

 
Fig. 1. The resource-aware framework by Gaber and Yu [9]. 

Gaber and Yu [9] have implemented a resource-aware clustering algorithm in Matlab, 
called RA-Cluster, which uses the resource monitoring component to adapt to resource 
availability. RA-Cluster adjusts its microcluster creation radius threshold according to 
remaining memory, sampling rate according to remaining battery and the randomization 
factor according to CPU utilization. By increasing the radius threshold, RA-Cluster 
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discourages the formation of new microclusters, thus, reduces memory consumption. This 
is done in combination with the removal of outliers and inactive microclusters to free 
more memory. The randomization factor affects a strategy called randomized assignment. 
The randomized assignment means that when determining a new data point, only a 
random number of existing microclusters are examined instead of all microclusters. The 
higher the randomization factor is, the less number of microclusters are examined. RA-
Cluster uses adaptor threshold bounds to adjust the trade off between the resource 
adaptation and accuracy loss of the algorithms. 

In our previous work, we have developed a generic resource-aware framework for 
wireless sensor networks. The framework has been used to implement a resource-aware 
clustering algorithm, which we termed Extended Resource-aware Cluster or ERA-Cluster. 
We have implemented and tested the framework in an actual sensor node. The sensor 
platform is the novel Sun Small Object Programmable Technologies sensor node from 
Sun Microsystems, a.k.a. Sun SPOT. Sun SPOT uses the Squawk Virtual Machine, which 
is a high performance JVM written mostly in Java and designed specifically for resource-
constrained devices. Applications for the Sun SPOT node is written entirely in Java and 
can be deployed and run from the node. Details about the non-distributed ERA-Cluster 
algorithm can be found in [10]. 

This paper presents the complete distributed resource-aware framework for wireless 
sensor networks. By distributed, we mean a hierarchical structure, in which each node can 
do some data processing such as clustering but the results will be integrated at a parent 
node which in turn sends to other higher level parents or to base station to answer some 
queries or for further offline data mining. Firstly, we will discuss the issues coming up 
within the design of the framework, our solution as well as other alternatives. Secondly, 
we describe our specific implementation on the Sun SPOT platform.  

4   Distributed Resource-aware Online Data Clustering 

In the following, we describe our approach to distributed resource-aware data clustering in 
sensor networks, termed DERA-Cluster. We start by defining the problem we want to 
solve. After that, we describe our clustering algorithm and how it can adapt to 
computational resource availabilities. In particular, we focus on how to react to low 
battery resources in a distributed way in order to meet the lifetime goal with maximal 
result accuracy. We describe our solutions with respect to the feasibility of the 
development platform as well other possible alternatives. 

4.1   Problem definition 

We consider a system of a hierarchical or peer-to-peer wireless sensor network that 
comprises hundreds of nodes. Each node monitors the environments and does clustering 
over these collected online data. We propose DERA-Cluster, a distributed resource-aware 
online clustering algorithm, which can adapt to computational resource availabilities. In a 
distributed computational model, the main goal is that given a user-specified running time 
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and a task such as data clustering, the aim is that our network is able to complete the 
preset runtime and produce as accurate results as possible. The other objective is to 
minimize the accuracy loss in case few nodes die or stop working due to low availability 
of resources such as running out of battery, full of memory, and/or full of CPU utilization. 
Our approach is to migrate current results from a near-dead node to another ‘best’ 
neighbour. This gives rise to three main questions: 

- Which neighbour to migrate to? 
- When to migrate? 
- How to migrate (and merge these clustered data)? 
In general, the issues are divided into three aspects: migration of data, predicting 

dynamic thresholds and wireless sensor networking issues. 

4.2   The core algorithm 

The core of DERA-Cluster is based on our previous work in [10] where we developed a 
resource-adaptive online clustering algorithm called Extended Resource-aware Cluster or 
ERA-Cluster. Via ERA-Cluster, we wanted to show a typical AGS scheme – the way the 
algorithm adjusting to resource availability. To the best of our knowledge, ERA-Cluster is 
the first resource-aware algorithm that runs on a sensor node with limited resource 
availability. ERA-Cluster is an online threshold-based clustering algorithm, which can be 
used to reduce or summarize streaming data into microclusters. We allow mechanisms to 
control the accuracy of the algorithms.  

In this paper, we extend this work to DERA-Cluster, a fully distributed clustering 
approach. The core algorithm runs locally on each node where it subscribes to the 
resource monitor to receive resource events, and adapts to changes in battery level, 
remaining memory and CPU utilization similar to what we introduced in [10]. Beside this  
local adaptation, we introduce a new distributed strategy: If the battery level drops below 
a minimal threshold, a node will migrate its microclusters to a suitable neighbour, where 
they will be merge with the existing microclusters. In the following, we present the details 
of our approaches to migrate microclusters – when, where, and how –  in DERA-Cluster. 

4.3   Using linear extrapolation model to estimate dynamic migration threshold 

A node has to dynamically estimate if the node is able to complete the runtime at each 
timeframe. If not possible then it will migrate its current result to the best neighbour. In 
order to answer the question when to migrate, we use a simple linear regression model to 
dynamically and iteratively estimate three thresholds in descending order: 

1. the adaptive threshold,  
2. the best-neighbour-finding threshold, and  
3. the migrating threshold. 
The adaptive threshold is the one that triggers the resource adaptation process. This is 

described in details in [10]. However, there are cases which resource adaptation cannot 
improve much the situation. In that case, we choose to migrate its existing results before it 
dies. The second threshold is called best-neighbour-finding threshold. As its name 
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suggests, when resources drop below this threshold, the node starts to broadcast request to 
its neighbours. Information in the replies is the remaining resource levels. The link quality 
can also be estimated from the replies.  From this information, a ‘best’ neighbour will be 
marked. Finally, when resources reach the migrating threshold, which typically just 
enough energy for it to send its data before it dies, this node will migrate its data to the 
selected neighbour.  One simple approach to know when to adapt to resource availability 
or to migrate data is to use some predefined threshold. For instance, when the battery level 
reaches 70%, a node can start to adapt to resource availabilities; when battery reaches 
30%, it starts to query for best neighbour and when the battery reaches 10%, it migrates 
results.  This approach is simplest and also easiest to implement. Under some cases such 
as where all nodes do the same operation and the resources are consumed steadily, 
perhaps this is the best approach. However, we are also interested in developed a more 
dynamic scheme whereas user does not need to specify these predefined threshold but the 
node dynamically estimate these thresholds. We choose to use a simple linear 
extrapolation model to estimate whether a node is able to complete its specified runtime. 
It is the only suitable regression model because non-linear regression model are 
complicated to implement and cost a significant amount of energy and computational 
resources.  

 

Fig. 2. Linear extrapolation model. 

Fig. 2 shows our linear extrapolation model. Suppose, a node is programmed to run for 
10 minutes, which is marked t10. At each time frame t0, t1, t2 the node checks its 
availability resources but it keeps only the most recent time frame resource record. The y-
axis shows the battery level. Soon after started running, at time t0, the node measures its 
battery level. At time t1, it re-measures the battery and calculates the line equation 
through t0 and t1 which is used to check if it can complete 10 minutes runtime. In this 
case, it does so the node continues run normally. At time t2, the node re-measures the 
battery level. In this case, battery drops significantly and it detects that it cannot reach 10 
minutes runtime. Thus, it starts the resource adaptation process. Later, if the node detects 
that resource adaptation cannot improve the situation, it starts to query for best neighbour. 
Finally, it will migrate result when battery level reaches the minimum amount necessary 
for sending data. Currently, this minimum battery level is pre-defined for the sake of 
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simplicity. Given a certain sensor platform, we can measure or estimate level by 
experimenting with the node.  

4.4   Selecting ‘best’ neighbour 

To find the ‘best’ neighbour to migrate data to, a node can broadcast a query to all of its 
neighbors asking for their current computational resources level. From the replies, it can 
also detect the link quality. Most platforms allow this feature. In our approach, we use 
such broadcasting and then built a two dimensional matrix to represent this information 
and we have a weighting scheme and a formula to determine the ‘best’ neighbour. For 
example, remaining battery is given the best priority; second comes link quality and 
remaining memory; last is CPU utilization. 

4.5 Migrating data.  

Data is sent in byte array format, not string, to minimal the amount of transferred data. 
As current SPOT’ API does not support the serializable mechanism directly, we need to 
create our own mechanism to marshal/unmarshal objects to byte array. Basically, we 
define an IPersistence interface which contains the persist() and resurrect() methods. The 
Cluster class, which represents microcluster, extends this interface and implements these 
two methods defining how its attributes are actually persisted and revived. We also create 
a class called VectorHelper to serialize the Vector class, which contains collection of 
microclusters. Upon migration, ERA-Cluster persists all of its current microclusters to 
byte array then delegate to the Communicator class to send this data.  Communicator is 
responsible for fragmenting this data into multiple datagram, adding appropriate header 
and flags before sending off the datagrams. At destination, the data is received and 
assembled by the Server class. 

4.6 Merging data at destination. 

 
At the destination node, the new arrival clustered data will be merged with the existing 

data on the node. The merging method depends on the mining algorithms. For our DERA-
Cluster, the algorithm to merge the data is as follows: 

FOR EACH new microcluster 
     find the minimum distance min_dist  to all existing microclusters 
  IF min_dist > cluster_creation_ threshold 

keep this new microcluster 
  ELSE 

merge this new microcluster with the microcluster with min_dist. 

 
Fig. 3. DERA-Cluster's merging algorithm. 
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The merging formula can be a simple calculation of average mark with weights. Given 
two microclusters (a1, a2... aN) with K number of records and (b1, b2… bN) with L number 
of records. Each new attribute of the new microcluster is given by (1): 

                                              (1) 

The number of records of the new cluster is K + L. 

4.7   Networking issues 

Firstly, most of current sensor node platform supports two basic type of communication: 
the packet-based or datagram-based communication and the streaming communication. 
The communication is, however, also one of the most significant factors that consume 
energy of the node. Thus, in general case, we choose datagram-based communication 
because it cost much less energy compared to streaming communication. The unreliability 
factor can be taken into account during implementation.   

     Secondly, when a node is querying for ‘best’ neighbour, broadcasting will be used 
as sensor networks may not necessarily have a robust routing system implemented. When 
broadcasting, we should assume we only get replies from ‘direct’ neighbours or the 
neighbours within the range of the sensor node. One issue that should also be noticed here 
is that the network follows a hierarchical structure, thus, one might consider the case that 
a child node always migrate to the parent node whenever it runs out of resources. That is a 
much simpler model and easier to implement. However, it is not always the best solution 
as it may lead to a bottleneck at the parent node. Migrating-to-parents can be used in a 
heterogeneous network in which parent nodes are of different kind than child nodes and 
have more resources. However, with a network that uses similar nodes, migrating to 
parent nodes is not the optimum solution.  

5   Implementation of the Distributed  Resource-Aware Framework 

This section discusses issues we faced during the design and implementation of our 
distributed resource-aware framework for online data mining on the Sun SPOT platform.  

5.1   Architectural design of the resource-aware framework 

We use a couple of software design patterns to make the framework generic, 
extensible and maintainable and easy to implement on any platforms. Design patterns are 
classified in the well-known ‘Gang-of-Four’ book [11]. 

Firstly, we use the publish/subscribe pattern to decouple the resource monitor and the 
adaptive mining algorithms that subscribe to receive resource availability updates. By this 
way, we can support one or many processing techniques that subscribe to enable resource-
awareness. Besides, future extension or modification can be made to the resource monitor 
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without any change to the rest of the system. As can be seen from Fig. 4, we have 
implemented our ResourceMonitor extends the Publisher class, which keeps a list of 
references to the subscribers. The algorithms that wish to receive resources updates need 
to implement the Subscriber interface. The ResourceMonitor can then use the method 
notifySubscriber (Object resourceEvent) to dispatch resource events. 

 

 

Fig. 4. Publish-Subscribe pattern of resource-awareness framework. 

Secondly, we have implemented an abstract factory pattern for the data stream 
generator. We have a Sensor class to generate actual data stream sensed from the 
environment. Currently, data are light, temperature and 3D acceleration values, x, y and z. 
However for experimental purposes, there is the need for some synthetic data generator 
that gives us control on the evaluation parameters. For this purpose, we implemented a 
RandomDS class, which generates random data suitable to test our clustering algorithm.   

In order to uncouple the data stream generator with the clustering algorithm, we use 
the factory design pattern. Following this pattern, we create a generic class called 
DSGenerator from which both Sensor and RandomDS extend. DSGeneratorFactory is 
responsible for creating DSGenerator. The implementation of DSGenerator is 
encapsulated and unknown to outsiders. Therefore, we can alternate between Sensor and 
RandomDS without changing the rest of the code. Fig. 5 shows the class diagram of the 
factory pattern.  

 

Fig. 5. Factory pattern.                                   Fig. 6. Singleton pattern. 
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Thirdly, instead of creating a new resource event object for each update, we choose to 
have only one static singleton object of the ResourceEvent class. This can minimize the 
consumption of limited virtual memory of the node. Following this pattern (Figure 6), the 
constructor of each class is marked private instead of the normally public keyword. This 
means outside classes cannot arbitrarily create new object of this class. We then have a 
public and static method named getInstance() to return an object of this class. This 
method will return the existing object if there is already one or create a new object. 
Besides the resource event, some entities such as the battery simulation class and CPU 
utilization class are desired to be unique throughout the scope of the application. 
Therefore, we also apply the singleton pattern to these classes.   

5.2 Resource Monitor 

The responsibility of the resource monitor is to periodically examine remaining battery, 
memory and CPU utilization and publish the resource report, which contains status of 
various resource availabilities. We allow two ways of updating the resource report, 
periodic and aperiodic updating schemes. The periodic scheme is the traditional way of 
updating. This means that the resource monitor notifies the subscribed processing 
techniques over fixed time frames. The drawback of this approach is that if there is 
stability in the resource level, CPU utilization will be wasted as there is no need to adjust 
the algorithm settings. Thus, we have implemented an alternative method, which is the 
aperiodic scheme. The aperiodic scheme only notifies subscribed processing techniques 
when the accumulative change in resource level is greater than a significant threshold. 
This threshold is submitted to the resource monitor during the algorithm’s subscription. 
For example, an algorithm can request to be notified only if there is more than 10% or 5% 
changes in resource level. This approach can greatly reduce processing and 
communication cost. To further reduce the use of the limited memory size of the node, 
there is only one resource event object follows the singleton pattern.  

The current implementation of the resource monitor allows monitoring of battery 
charge, free memory and CPU utilization. For the memory, we use the available API 
provided by Sun SPOT as memory can be consumed quickly. However, we create two 
simulations for the battery and the CPU utilization to facilitate the manipulation of 
resource availability, thus, make it easier to experiment with resource adaptation and 
accuracy of the algorithm. The battery simulation employs a credit point system, which is 
used by Younis and Fahmy in [12]. With this approach, each activity of the sensor node is 
assigned an amount of points and the maximum battery capacity is defined. Activities 
such as sleep mode, send/receive radio signal, sensing data and computational processing 
are defined. During operation, the battery charge is decreased gradually according to the 
sensor activities. With the CPU simulation, we use a simple queuing model that has a 
fixed queue length and tasks with random generated service time. The CPU utilization is 
computed as the percentage of total service time of existing tasks in the queue over 
maximum load. Both simulations have methods to set the resource to a specified level to 
facilitate experimental setup. 
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5.3   High level architectural diagram 

Fig. 7 illustrates the high level architecture of the system. The ERA-Cluster and the 
resource monitor block are existing components from our previous project. We add the 
Communicator to facilitate the sending of datagram and the ServerDeamon is responsible 
for listening for incoming request and act accordingly. These building blocks make up the 
basis for the system.  

 

Fig. 7. Distributed Resource-aware Framework 

6   Experimental Evaluation 

We conducted a small experimental evaluation of our resource-aware framework. We 
focus on proving two issues: The first is the resource adaptiveness of the framework. In 
other words, how effective the mining algorithms adapt to resource changes. This issue is 
to examine by comparing the resources – memory, battery, CPU utilization consumption 
pattern of the mining algorithm with against without the resource adaptiveness. The 
second issue of the evaluation deals with proving that the accuracy of the mining 
algorithm is acceptable even with its parameters adjusted to resource levels. This can be 
done by using another well known algorithm as a benchmark. For example, we compare 
the accuracy of our DERA-Cluster with the Weka’s [13] simple K-Means clustering. 
Results show that DERA-Cluster’s accuracy is comparable to Weka K-Means under 
normal operation (with resource adaptiveness). Under high CPU load, the accuracy will 
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be reduced. However, the overall accuracy is still acceptable. These experiments and 
results are detailed  in [10]. 

For the distributed case, we aim to show that the accuracy of the migrated results at 
the destination node is acceptable. Similar to the previous approach, we use Weka K-
Means clustering algorithm as a benchmark. The rationale behind using K-Means as a 
benchmark are also discussed in [10]. 

     We use synthetic data for the experiments. Values are drawn from an uniform 
random integer of the range 0 to 100. We use a network comprising of two nodes for the 
experiments. We run node 1 for 10 seconds then migrate its clustered result to node 2. 
This migrated result is then merged with existing clustered result by the algorithm. We 
investigate the accuracy of this merged result. The original synthetic data set used up to 
that moment of node 1 and node 2 are combined. We then run K-Means 3 times over this 
synthetic data with k = n, n is the number of microclusters of the merged result. We sort 
all of the results of the merged result and three K-Means according to ascending order of 
mean value of the microclusters. We then plot the mean value of DERA-Cluster against 
the average mean value of K-Means. Figures 8 and 9 shows the results of this experiment.  

 
Fig.8. Accuracy of merged result compared to K-Means.  Fig.9. Result deviation of merged result and K-Means. 

     From Figure 8, we can see a closed match between the two results despite some 
deviations. To justify these deviations, we calculate the result deviation of the merged 
result with K-Means, which is the absolute value of the deviation between the merge 
result and K-Means average over the maximum range of the mean value. Figure 9 shows 
that these deviations are small with the maximum accuracy loss are less than 10% while 
The average result deviation was less than 0.05. In other words, average accuracy loss is 
less than 5%. 
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7   Conclusions 

This paper has presented a distributed resource-aware framework which can be used to 
enable resource adaptiveness for selective mining algorithms to be used in wireless sensor 
networks, in particular the Sun SPOT environment. The design of the framework is 
detailed and our approach to migrate results when nodes run out of battery are described.  

Using the framework, we have implemented a distributed resource-aware online 
clustering algorithm termed DERA-Cluster. We have evaluated the accuracy of the 
migrated and merged results at the target node. Experimental results show that the loss of 
accuracy is acceptable. Possibilities for further work include: a) Evaluate the performance 
of the frame work on actual sensor data and with a network of multiple nodes. b) 
Implementation and study of the framework in another sensor platform such as Berkeley’s 
Mote for comparison. c) Using the resource-aware framework to implement other online 
mining algorithms. 
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Abstract. Data streams are produced continuously at a high speed.
Most data stream mining techniques address this challenge by using
adaptation and approximation techniques. Adapting to available resources
has been addressed recently. Although these techniques ensure the conti-
nuity of the data mining process under resource limitation, the quality of
the output is still an open issue. In this paper, we propose a generic model
that guarantees the quality of the output while maintaining efficient re-
source consumption. The model works on estimating the quality of the
output given the available resources. Only a subset of these resources
will be used that guarantees the minimum quality loss. The model is
generalized for any data stream mining technique.

1 Introduction

In the past years, data streams emerged as a new kind of data source. Analyzing
data streams thus becomes more and more important as new areas of application
are identified. Applications like click stream analysis and the analysis of records
from networking and telephone services are among the most popular examples for
data stream mining, i.e., the discovery of patterns and rules in the data. Another
important area of application is the stream processing in sensor networks, where
continuously generated data is processed as far as possible onboard the sensor
node in order to preserve the limited bandwidth and energy.

Due to the unique characteristics of data streams, like their potentially infi-
nite nature and the vast amount of data they are carrying, data stream mining
requires a different processing than mining on databases and data warehouses.
Efficient resource consumption is one of the major objectives when designing
stream mining algorithms. Rather than storing the incoming data and process-
ing it offline like in traditional data mining, data stream mining is much more
constraint in terms of available resources.

Most data stream algorithms provide approximate results, often by using a
summarization of the stream (called a synopsis) and determining precise error
bounds. Thus, a notion of output quality is immediately associated with this
process. Which information from the data stream is stored is crucial for the
quality of the data mining results. Note that we explicitly refer to the output
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quality of the mining technique, in contrast to aspects of the input quality, which
is a related but still different field of research.

Well-known state-of-the-art of stream mining algorithms reveal that while
many of the algorithms strive for minimizing the resources they need, most of
them are not designed with regard to adaptation to resource availability. Specif-
ically, they fail to provide well-defined routines for situations where the avail-
able resources are exhausted. Most algorithms are designed to work in a static
manner, without taking into account that the algorithm’s resource requirements
might exceed the amount of resources provided. In such a case the algorithm’s
behavior depends in its implementation, and thus might be undefined. Recent
approaches (e.g., [1]) identified this issue, but still lack a clear consideration of
correlations between resource-adaptation and output quality.

When dealing with complex stream mining systems, where usually a set of
queries runs continuously and resources are shared among them, we additionally
have to consider the interactions between different mining operators. In such
systems, algorithmic output quality is usually referred to as Quality-of-Service
(QoS) [2]. Note that, when combining resource and quality aspects of multi-
ple, possibly dependent, mining operators, we start closing the mentioned gap
between input quality and output quality of mining techniques.

In this work, we consider all of the aforementioned aspects and integrate
them into one single framework. We propose a generic three layer model for
quality guaranteed resource-aware (QGRA) data mining on data streams. The
model is designed to be applicable to a wide variety of stream mining techniques.
Our model assesses the output quality and the current status of resources and
adapts the algorithm’s resource consumption accordingly. This way, we are able
to maintain resource efficiency and we may use lesser resources to achieve the
same level of accuracy in the output. At any time, we will be having the max-
imum achievable quality according to the resources. Most static data stream
mining algorithms leave excess resources unused. With our framework, available
resources are utilized in an optimal way at any point in time.

The model utilizes a set of functions that is provided by the applied algo-
rithm to control the adaptation. One function is used to determine the algorith-
mic parameters from the assessed resources. Then, a second function is used to
determine the output quality based on the chosen algorithmic parameters. Other
functions are used to compute lower bounds for the algorithmic parameters in or-
der to maintain the quality of the output. Using this strategy, our model bridges
the gap between quality-aware mining and general resource-adaptivity in data
stream mining by monitoring the resource consumption.

The remainder of this paper is organized as follows. In Section 2 we provide
some background about data mining quality and resource-aware data stream
processing. Our formal model is introduced in Section 3. There, we give a brief
description of the functionalities and a formalization of all elements. Finally,
Section 4 concludes this paper and outlines areas for future work.
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2 Background

2.1 Data Mining Quality

approximation QMa

Quality of Reaction time
QTcinterestingness QMi

Quality of Time range
QTr

Time granularity
QTg

Methodical quality QM Temporal quality QT

Quality Q

Fig. 1. Different quality measures

Most data mining algorithms have control parameters to determine how well
their output approximates the actual result. These control parameters differ for
each technique and data mining goal, but they can be arranged into classes of
related parameters. Typical examples include the number of microclusters main-
tained during clustering, or the maximum frequency error in frequent itemset
mining. The values of these parameters have a strong influence on the workload
of the algorithm as well as on the size of the synopsis it maintains. In general,
the better the approximation of the output should be, the more resources the
algorithm consumes. Due to this close correlation between these parameters and
the output quality of an algorithm, we will refer to this set of parameters as
adaptation factors. After identifying the adaptation factors of an algorithm, we
are able to adapt its resource requirements and output quality.

In analogy to a classification of adaption factors, affected quality measures
can be classified, too. We distinguish several different classes of quality measures,
which are categorized in Figure 1. This classification is comprehensive, yet ex-
tensible without restricting the proposed framework. All QT∗ are identical for
different mining problems and symbolize concrete quality measures, while QM∗
represent classes of measures that are always specific to the investigated prob-
lem and the applied algorithm(s). For example, in the context of clustering these
measures involve the clustering quality, e.g., SSQ, diameter and other standards
to evaluate the final result of a clustering. One traditional measure for the prob-
lem of frequent itemset mining is the error rate ε, which defines the maximal
deviation of the observed frequency to the actual frequency of an itemset. For
several specific mining applications, special interestingness measures (QMi) have
been proposed in the literature (e.g., [3]). In the context of frequent itemsets the
support is one such interestingness measure.

As many existing algorithms take time sensitiveness into account, we define
time as another important quality measure. QTr describes how far we can look
back into the history of the processed data stream and QTg how exact we can do
this, which means which time granularity we can provide.QTc corresponds to one
of the main challenges of stream mining: the actual time necessary to register
changes in the stream. As might be expected, adaptation factors sometimes
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influence more than one of these quality measures, making them dependent from
each other. For more details on the different quality classes we refer to [4]. For
the remainder of this paper, if we refer to all quality measures as a whole, we
will use the symbol of the superclass Q and the general term ‘quality’.

2.2 Resource and Quality Awareness

Most data stream mining algorithms are designed to use as little resources as
possible. However, they are often not aware of the actual amount of resources
available and thus may either fail to utilize them completely or may not be able
to work properly with the given resource constraints. We therefore distinguish
algorithms that are aware of the available resources and are able to adapt their
requirements accordingly. When talking about resources, we do not only consider
memory consumption, despite this being the main factor in most streaming
applications. In addition, since data streams are often generated at a rapid rate,
algorithms must need only minimal time to process the data in order to keep up
with the pace of the stream. In the example of sensor networks, bandwidth and
battery power are additional constraint resources.

Apart from the adaptation factors, properties of the data stream also have
a strong impact on an algorithm’s resource requirements. One of the most im-
portant properties is the streaming rate. Another one are characteristics of the
individual elements in the data stream, like the range and distribution of their
values, and their size. This correlates to adaptation methods like sampling and
load shedding [5], which can be used on the input level of mining techniques to re-
duce the workload, and thus the resource requirements, by decreasing the volume
of the incoming stream. Due to their generic nature, they are applicable to all
mining algorithms, since they do not require any changes to the algorithm itself.
As a consequence, however, applying these methods results in the loss of guar-
anteed error bounds which the original algorithm may have provided. Instead,
only probabilistic error bounds can be established. This may be a non-desirable
tradeoff for some applications. Moreover, determining these probabilistic bounds
should be expected to be very complicated and, due to the evolving character of
streams, potentially erroneous.

Other levels of resource-adaptation throughout the whole process of stream
mining have been identified and discussed in recent works. Methods that can
be applied to most data stream mining algorithms have been proposed for ex-
ample in [6]. Most other approaches either do not formalize their approaches
accordingly or focus on single, rather limited, levels of adaption. Moreover, to
the best of our knowledge, all of them lack the combination of resource and qual-
ity awareness. That means, although they deal with resource adaptation, they
do not take quality aspects and guarantees into consideration.
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3 QGRA Model

3.1 Model Description

Gaber et al. [6] have proposed and developed a generic model to adapt data
stream mining algorithms to the current availability of computational resources.
The model aims at prolonging the life-time of the running technique in critical
situations of low availability of computational resources. It has been coined as
Algorithm Granularity (AG). AG can adapt the consumption of computational
resources according to measured patterns of consumption over a pre-set time
window.

AG has been classified into three classes according to the adaptation end-
points. Algorithm Input Granularity (AIG) adapts the input streaming data
to the mining algorithm. On the other hand, Algorithm Output Granularity
(AOG) changes the output size of the algorithm. Finally, Algorithm Processing
Granularity (APG) can adapt the algorithm parameters to consume less CPU
cycles. The changes in AG affect the accuracy of the output. Therefore, the model
sets bounds on the AG settings in order to keep the accuracy loss bounded. These
AG settings have been used to develop an online clustering algorithm termed as
Resource-Aware Cluster (RA-Cluster).

Although the AG model has proven its applicability to change the resource
consumption, the model is still facing the following issues:

– The bounds over the AG settings have no guarantee over the quality of the
output. Because the quality relies on many other interleaving factors such
as data distribution and the running mining technique.

– The changes in the AG settings are not quality-aware. That means the algo-
rithm changes according only to the availability of computational resources.
This may lead to accuracy loss and/or extra use of computational resources,
because in some cases, we can gain the same accuracy using less resources.

– The AG settings do not take into consideration the interaction among the
different settings. Addressing this issue can optimize the use of resources.

In this paper, we propose a new model QGRA that extends AG in order to
address the above issues. The model is able to adapt in real-time according to
resource consumption patterns as well as the quality of output. Franke et al. [4]
have proposed a quality-aware data stream mining model. This model will be
extended to assess the quality of the output in real-time. This assessment will
be used to choose the best combination of AG settings that minimize resource
consumption, and maximize the quality of output.

The model has three layers. The first one is the resource monitoring that
works over dynamic time intervals. Unlike the AG model, the time window is
dynamic and changes according to the criticality of the available computational
resources. The second component is the real-time quality assessment. This will
be able to provide information about the quality of the output given the avail-
ability of resources. It will also be able to provide the system with information
about preserving computational resources while maintaining the same quality
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Fig. 2. Three layer model

level. The output of the second component will be passed to the AG settings
(AGS) component. This third component feeds the mining algorithms with in-
put, output and processing settings.

3.2 Formalization

The QGRA model relies on the notion of variables v ∈ V , which comprises all
dynamic components the internal formulas and mechanisms are built on. We
define a partitioning V̆ over V , where each v belongs to a certain class Ĉ of
variables, described as follows. As V̆ is a partitioning,

∀Ĉ1, Ĉ2 ∈ V̆ , Ĉ1 6= Ĉ2 : Ĉ1 ∩ Ĉ2 = ∅

holds. That is, each variable v belongs to exactly one class Ĉ of variables.
On the one side of the adaptation framework, we assume a set of resources

R̂ ∈ V̆ ,

R̂ := {r|r is a limited resource consumed by the algorithm}.

Main representatives of R̂ are the consumed memory and the number of CPU
cycles needed. This corresponds to the kinds of resources already considered in
previous works like [6, 4, 1].

The basis of the framework is enriched by quality awareness, defined in terms
of quality measures Q̂ ∈ V̆ ,

Q̂ := {q|q is a quality measure of interest}.

There is a wide variety of quality measures that might be integrated into Q̂. We
present a brief classification in Section 2.1, which is based on the more detailed
work in [4].

On the contrary side of the framework, we expect any stream mining algo-
rithm to define a set of parameters P̂ ∈ V̆ ,

P̂ := {p|p influences resource requirements and/or
output quality of the algorithm}.
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These parameters can be seen as the “tuning knobs” of the particular method.
This includes representatives of adaptation factors corresponding to the afore
mentioned classes AIG, APG and AOG, e.g., sampling rate, internally used
thresholds or number of output objects (like the number of output clusters). In
addition, we also include parameters that cannot be adjusted but the method
exhibits some dependence on, in either resource requirements, output quality, or
both. Examples of this kind of parameters are distribution models the stream
data follows or the fraction of noise. More on the specific requirements an algo-
rithm has to meet can be found in Section 3.3.

In [6] the sets R̂ and P̂ were used in order to implement a one-way resource
adaptation. This means, predictions for relevant r ∈ R̂ are used to adapt p ∈ P̂
accordingly, while the prediction of future resources is based on the observed
recent resource consumption. Now, we introduce how to combine this idea with
the quality-awareness proposed in [4].

We define an instance F (Ĉ) as a materialization of all variables from class
Ĉ ∈ V̆ which are actually involved in the adaptation process, i.e.,:

F : V̆ → V ×<
F (Ĉ) := {v, f(v)|v ∈ Ĉ∧ 6 ∃w 6= v : w ∈ Ĉ

∧f(v) is the current value of v}.

As v only defines which variable is concerned, f(v) represents an actual value of
that variable. To improve readability, we use C short for F (Ĉ). In other words,
C represents all variables from class Ĉ together with the corresponding values.
For instance, we use R to represent all limited resources and their actual amount
currently consumed by a specific algorithm.

Informally speaking, Ĉ represents the schema level of the variable classifica-
tion, i.e., a description of which variables belong together in a class. Accordingly,
C denotes an instance of Ĉ, that is, it associates each variable v ∈ Ĉ with an
actual value f(v). In the above definition of C, we write 6 ∃w 6= v : w ∈ Ĉ to
denote ∀(v, f(v)) ∈ F (Ĉ) : v ∈ Ĉ ∧ ∀v ∈ Ĉ : (v, f(v)) ∈ F (Ĉ). That is, on the
instance level we have exactly one value f(v) for each v ∈ Ĉ. Note that distin-
guishing between classes Ĉ and instances C is not urgently necessary to make the
model work. However, we believe that this makes the model more flexible, result-
ing in more algorithms and approaches being applicable to it. For instance, the
introduced notion allows for an easy but still mathematically consistent integra-
tion of “schema-based” functions, e.g., which select actually considered quality
measures from the set of all possible ones.

On the notion of the variables and instances we introduce two more kinds of
sets. First, we define RL to represent current resource limits and QL to represent
requested quality guarantees. Whether these limits are met or not is described
by two functions:

Φ(RL, R) :=

{
true if ∀(v, x) ∈ RL : (v, y) ∈ R ∧ x ≥ y

false else

78



The resource limits RL are met in R, i.e., Φ(RL, R) = true, if for each v ∈ R̂ its
value y in the instance R is less than or equal to its limit x in RL.

Ψ(QL, Q) :=

{
true if ∀(v, x) ∈ QL : (v, y) ∈ Q ∧ x ≤ y

false else

The quality guarantees QL are met in Q, i.e., Ψ(QL, Q) = true, if for each v ∈ Q̂
its value y in the instance Q is greater than or equal to its limit x in QL.

Finally, we define timelined variable instances CT . A set CT corresponds to
an instance C enriched by a timestamp t, which represents the time the according
values were effective. Thus,

CT := {v, x, t|(v, x) ∈ C∧ 6 ∃(w, y) 6= (v, x) : (w, y) ∈ C
∧(v, x) was effective at time t}.

CT associates each pair (v, x) ∈ C with a timestamp t. In the following, if we
refer to an instance of one specific time t we write Ct for short.

On the introduced sets we define the following functions:

ρ : RL ×RT × PT → {−1, 0, 1} (1)
φ : P → R (2)
ψ : P → Q (3)
τ : RL ×RT × PT → P (4)
ω : QL ×QT × PT × P → P (5)

The first formula ρ is used to decide whether future resource consumption should
be increased (underload situation, ρ = 1), decreased (overload situation, ρ = −1)
or nothing is to be done at all (ρ = 0). This decision is based on provided resource
limits, recent resource consumption and recent parameters. There are different
approaches for handling this issue. [6] proposes to calculate the number of time
frames remaining until resources are exhausted, whereas [4] uses a filling factor
describing the percentage of available resources already consumed.

φ and ψ take as input an instance of parameters and map them to the result-
ing instance of resources and quality measures, respectively. τ and ω can each be
seen as a kind of inverse function, mapping an instance of resources, respectively
quality measures, to an instance of parameters. As additional input, both τ and
ω accept recent parameter values and recent resources/quality measures. In or-
der to align the quality-based decision with a preceding resource-based decision,
ω also takes suggested parameters P as an input.

Based on these sets and functions the QGRA model works as illustrated in
Algorithm 1.

As mentioned before, the time intervals in which the QGRA method is ap-
plied are set dynamically. In the beginning, all parameters are set to achieve
highest possible quality. The algorithmic steps from Algorithm 1 are then ap-
plied at any time t. Based on the current resource consumption in time t provided
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Algorithm 1 General QGRA algorithm at time t
1: Rt = res-mon(t)
2: if 0 6= ρ(RL,∪t

i=1Ri, Pt) then
3: P = τ(RL,∪t

i=1Ri, Pt)
4: P ′ = ω(QL,∪t

i=1Qi, Pt, P )
5: if Φ(RL, ψ(P ′)) then
6: P = P ′

7: end if
8: if !(Φ(RL, φ(P )) ∧ Ψ(QL, ψ(P ))) then
9: return false

10: end if
11: else
12: P = Pt

13: end if
14: Qt+1 = {q, x, t+ 1|(q, x) ∈ ψ(P )∧ 6 ∃(u, y) 6= (q, x) : (u, y) ∈ ψ(P )}
15: Pt+1 = {p, x, t+ 1|(p, x) ∈ P∧ 6 ∃(o, y) 6= (p, x) : (o, y) ∈ P}
16: set parameters P
17: return true

by the resource monitoring component (line 1) and (dynamically) provided re-
source limits, ρ is used to decide whether resource utilization should be increased,
decreased or maintained (line 2). If any adaptation is necessary, a new set of pa-
rameters is determined using τ on the provided resource limits and on recent
resource consumption as well as parameters (line 3). In the next step, we re-
fine these parameters using ω on the QoS requirements and on recent quality
measures as well as recent parameters (line 4). In order not to work contrary,
ω also takes the set of parameters suggested before by the resource adaptation
as additional input. Only if the parameters modified like this still meet the re-
source limits (line 5), they are accepted (line 6). After all adaptation steps, the
new parameters are checked for resource and QoS requirements again (line 8).
If they are not acceptable, the failed resource and/or quality requirements are
signalized and reaction is left to the system or user. Otherwise, the resulting
qualities and parameters are stored for later access (lines 14 & 15) and finally
set (line 16). Note that, if no adaptation takes place, parameters for time t+ 1
are set to those from time t in order to build the timelined sets (line 12).

It is worth to note that formulas 4 and 5 involve solving a kind of optimization
problem, which is left to the specific mining technique. By this, the interaction
between different kinds of resources, quality measures and adaptation end-points
is regarded. A significantly more complex approach is to include qualities and
resources into one single optimization problem. But we expect any such problem
to be much too complex in order to be solved in practicable time.

Applying the model as proposed, there is only one question unanswered until
now: What quality is provided when querying the mining result of an arbitrary
time interval? As stream mining algorithms should support such queries but
quality measures differ between different time intervals, the answer to this ques-
tion is fundamental to support meaningful quality awareness. Thus, we define a
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last function

ξ : QT ×N ×N → Q (6)

which determines an instance Q of quality measures extracted from the gathered
timelined qualities QT with respect to a given interval of time.

3.3 Requirements on Algorithms

Though we try to capture most of the existing data mining algorithms on data
streams, the proposed framework is not applicable to all mining algorithms.
There are some basic requirements that algorithms need to fulfill in order to be
extendable using our model.

Naturally, one of the crucial requirements is that parameters must exist in
the algorithm, so that we can choose adaption factors. Moreover, a strong cor-
relation between the adaption factors and the algorithm’s resource requirements
aids precisely estimating the quality of the output. Also, in order to antici-
pate an algorithm’s resource requirements as well as the quality of its output,
the algorithm must show homogeneous behavior when provided with an input
stream whose properties are maintained homogeneous as well. For example, most
threshold based stream mining algorithms meet these requirements.

Another important property is that there should exist a partitioning into
independent sections in the mining result of an algorithm. That means that
different values of the adaption factors only have “local” effects in the mining
results. This also indicates that it must be possible to query each of these in-
dependent sections separately, since otherwise the lowest quality setting of the
adaption factors in the history of the data stream processing will determine the
quality of the overall mining results. As an example, consider frequent itemset
stream mining using a landmark window model, where the error threshold is
one of the adaption factors. Since we can only query the complete history of the
stream, the lowest value of the error threshold ever used while processing the
stream will determine the overall output quality of this algorithm. Note that
this last aspect is not a strict requirement but rather a helpful property. If an
algorithm does not satisfy this requirement, it will still be applicable for the pro-
posed framework, but it will not be able to “recover” from low quality adaption
factor settings.

Currently, we are adopting the resource- and quality-aware mining techniques
we proposed in former works to the presented framework. Despite some last
formulas, this is almost done, which shows that the introduced formalization is
suitable for application to existing and future proposals.

4 Conclusions and Future Work

Mining data streams stresses our computational resources with regard to pro-
cessing power, memory requirements, energy and communication. In order to
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ensure the continuity and consistency of a data stream mining process, adap-
tation to available resources is required. Although adaptation is crucial for the
success of the data mining process, its effect on the quality is of concern. Thus,
in this paper we propose a Quality Guaranteed Resource-Aware (QGRA) data
stream mining approach. The objective of this approach is two-fold. Firstly, the
adaptation is done while maintaining a guaranteed QoS set by the user. Sec-
ondly, utilization of resources is achieved through mapping of required resources
to quality measures. If the same quality could be achieved with less resources,
only the required resources are consumed with appropriate parameter settings.

Our work provides the mathematical foundation to add quality-guaranteed
resource awareness to most stream mining algorithms. Concrete instances of the
formulas given in this paper must be implemented by the respective algorithm.
We are currently working on applying our model to existing algorithms for the
three main data mining tasks, clustering, classification, and frequent itemset
mining.

The paper presents a pioneering work to address the two most important
challenges in data stream mining, namely, resource constraints and quality of
the output model. We believe in the flexibility and suitability of the proposed
framework in order to cover existing and following approaches as well as meeting
the special challenges of stream mining. By this, we built a valuable and essential
basis for future work on quality guaranteed resource-aware stream mining.
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Abstract. The ability to recognize human activities from sensory information
is essential for developing the next generation of smart devices. Many human
activity recognition tasks are — from a machine learning perspective — quite
similar to tagging tasks in natural language processing. Motivated by this sim-
ilarity, we develop a relational transformation-based tagging system based on
inductive logic programming principles, which is able to cope with expressive
relational representations as well as a background theory. The approach is exper-
imentally evaluated on two activity recognition tasks and compared to Hidden
Markov Models, one of the most popular and successful approaches for tagging.

1 Introduction

Smart systems that assist humans must be able to recognize the current context of the
user and the activity she is performing in order to suggest or take actions in an intelligent
manner. To recognize the context and activity, such systems can rely on streams of past
activities, context, and dense sensory information, as it is often gathered in ubiquitous
computing environments. Recognizing the current activity or context then corresponds
to inferring the activity or context from such sequential information. From a machine
learning perspective, this task is akin to many tagging tasks pursued in natural language
processing (NLP). For instance, in part-of-speech tagging, a form of “shallow parsing”,
the words in a sentence are to be labeled with the corresponding parts-of-speech (word
categories). In this paper, we will investigate this relationship and explore how tagging
techniques can be applied in activity recognition domains.

In NLP, many techniques have been developed and employed for tagging purposes.
Two popular techniques for part-of-speech tagging are Hidden Markov Models and
transformation-based learning [1]. While Hidden Markov Models have been applied in
many different areas, ranging from speech-recognition to activity recognition and bio-
informatics, to the best of the authors’ knowledge, transformation based learning has
only seldomly been applied outside the field of natural language processing.
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Because the structure of natural language is quite rigid as compared to that of typical
activity recognition tasks, the existing transformation-based learners cannot directly
be applied for activity recognition. Therefore, we develop a more flexible relational
transformation-based tagger. This does not only provide an expressive representation,
which allows to easily model complex sensory information, but also an easy way to
incorporate prior domain knowledge in the learning process. Thus the key contribution
of this paper is the application of the transformation-based tagging methodology to rich
sensor data streams, which is realized by extending transformation-based tagging with
a relational representation based upon inductive logic programming principles.

The presented relational transformation-based tagger also extends earlier work on
relational transformation-based learning by [2] in that it focuses on tagging rather than
classification. More specifically, from inductive logic programming (and the work by
[2]) our technique inherits its search and refinement techniques (including a branch-
and-bound algorithm) and from transformation-based learning the error driven stacking
of rules.

The proposed method is evaluated in two activity recognition domains: “Activities
of Daily Living” (ADL) recognition from a stream of “object interaction” data [3], and
mobile phone profile prediction based on data collected by [4]. Experiments show that
obtained tagging accuracies are competitive with those of HMM-based approaches, and
it is easy to incorporate human-supplied background knowledge into the learning pro-
cess. Furthermore, and that is perhaps the key advantage of the relational transformation-
based tagger, the method can easily be extended to deal with variants of the tagging
problem, for instance the prediction of structured output tags (as in Logical Hidden
Markov Models [5]), and to cope with rich background knowledge.

2 Activity Recognition

Activity Recognition, in the broadest sense, is concerned with labeling a stream of sen-
sor data with a context or activity label. The sensor data stream is typically collected
from an ubiquitous computing environment, such as sensors embedded in everyday
objects [3] or data gathered from mobile phones [4]. The context or activity label pre-
dicted at every step in time can characterize the physical activity a user is performing,
her state of mind or intentions, or additional context information that cannot directly
be observed through sensors. Activity Recognition and related problems are important
challenges when designing the next generation of smart devices: knowing e.g. a user’s
intentions can make a device adapt to the current situation and thus improve usability.
Furthermore, the collection of data about human behavior can be interesting in its own
right, e.g. in elderly care. Here, it can be interesting to automatically generate reports
about an elderly person’s activities of daily living to detect medical problems at an early
stage, without need for continous human supervision in an elderly care facility.

The gathered sensor data takes the form of a continous, dense and often heteroge-
nous data stream. Depending on the complexity of the available sensor information,
the data might also be structured, i.e. not easily representable with simple flat symbols
from a fixed alphabet. As an example, consider the Activities of Daily Living (ADL)
domain visualized in Figure 1. In ADL recognition, objects which are used in activities
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Relational
Representation

tag(w1, toastBread) tag(w2, toastBread) tag(w3, toastBread) ...
tag(w4, f lavorToast) tag(w5, f lavorToast) tag(w6, f lavorToast) ...

sensor(w1, toast) sensor(w2, toaster) sensor(w3, toast) ...
sensor(w4, knife) sensor(w5, butter) sensor(w6, toast) ...

time(w1, 1, 2) time(w2, 3, 6) time(w3, 7, 8) ...
time(w4, 9, 11) time(w5, 12, 13) time(w6, 14, 15) ...
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... ... ... ...
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Fig. 1. Relational representation of the ADL recognition problem. While a person is perform-
ing activities of daily living (such as preparing breakfast), a stream of object interaction data is
generated from a wearable RFID reader (“sensor reading”). This can be represented in a rela-
tional form by collapsing identical sensor readings to one sequence element wi, and encoding
the starting point and duration of the observation in another predicate. Furthermore, additional
background knowledge can be used to encode prior knowledge about the domain.

of daily living such as making breakfast are equipped with small RFID tags that can be
picked up by a wearable reader while a person performs an activity [3]. The task is to
recover the activity currently performed from the stream of sensor data. Note that the
stream of object data obtained from the sensor has some internal structure, as an object
observation has a starting point and duration in time, which can be easily represented
in a relational formalism.

At an abstract level, predicting activities is a sequence tagging problem, and explor-
ing applications of sequence tagging methods to activity recognition will be the main
focus of the paper. At the same time, the problem is an instance of data stream mining—
the analysis of a continuous, potentially infinite stream of data. In this context, issues
such as online learning (with only one pass through the data necessary) are of consider-
able interest. However, we will not address these issues in the paper, and instead assume
that a limited amount of training data is given a priori. Extending the proposed methods
to an online-learning scenario is an interesting direction for future work.

The following section reviews sequence tagging from a natural language processing
perspective. Section 4 discusses a relational extension of transformation-based tagging
for activity recognition. Finally, Section 5 presents experimental results and Section 6
conclusions and related work.

3 Sequence Tagging

Sequence tagging is the task of assigning to each element in a given sequence an appro-
priate label or tag. Let W = {w1, ..., wk} denote the vocabulary of sequence elements,
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Algorithm 1 Basic transformation-based tagging algorithm.

tb-tagging(input: sequences S; true sequence tags L)

1 L̂ := initial-tags(S, L)
2 initialize R = []
3 repeat
4 r := find-best-rule(S, L̂, L)

5 update L̂ := apply-rule(L̂, r)
6 update R := append(R, r)
7 until (no improvement)
8 return R

and T = {t1, ..., tm} the vocabulary of tags. In natural language processing, the two
most common tagging approaches are transformation-based taggers (rule-based) and
probabilistic methods (hidden Markov models or related techniques). Both of these ap-
proaches yield competitive results, and have received much attention.

3.1 Transformation-based Tagging

Transformation-based learning is a rule-based learning approach which iteratively stacks
rules on top of each other to improve performance [1]. The basic transformation-based
learning algorithm for the tagging problem is summarized in Algorithm 1. The algo-
rithm takes as input a set S of sequences with known true tags L. During learning,
it maintains a set of current tags L̂ for all s ∈ S. L̂ is initialized with some simple
scheme, such as assigning to every element w ∈ W its most common tag t ∈ T in the
training data (procedure initial-tags). The algorithm then tries to improve the current
tagging L̂ with respect to the true tagging L by learning a list of transformation rules
R. Transformation rules can re-tag sequence elements based on the context they appear
in. A transformation rule has the form t′ ← t : context and simultaneously replaces all
occurrences of tag t in all sequences with t′ whenever the constraint context is satisfied.

Example 1. As an example from NLP, the word “move” could be initially tagged as
“verb”, but would be re-tagged as “noun” if the preceding word was tagged as “article”:

noun← verb : word = move, preceding tag = article

The transformation rule languages employed in traditional transformation-based tag-
ging are mostly simple instantiations of some template—for instance, querying in context
the word and tag at the current position and the next or preceeding position(s). In every
iteration, the transformation rule which yields the greatest reduction in error between
L̂ and L is greedily selected (find-best-rule), applied to the current tagging L̂ and ap-
pended to the rule list R. As conditions of rules in R match not only sequence elements
but also currently predicted tags L̂, rules can effectively bootstrap the current predic-
tions. This makes transformation-based learning strictly more powerful than standard
rule learning [1].
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Fig. 2. Example lattice generated by unrolling a tagging HMM to a sequence w1, ..., w5. Infer-
ence in this model is carried out with the Viterbi algorithm, which yields the most likely joint
state of the hidden variables t1, ..., t5 given the observations on w1, ..., w5.

3.2 Hidden Markov Model Tagging

Tagging with hidden Markov models is typically performed with a model in which there
is a hidden state qt for every possible tag t, and state emission symbols correspond to
symbols w ∈ W . That is, the observed sequence of symbols is seen as being gener-
ated by the hidden sequence of tags. Formally, the joint probability of an observation
sequence s = w1...wn with hidden tag sequence t1...tn is given by

P (w1...wn, t1...tn) = P (t1)
n−1∏
i=1

P (ti+1 | ti)P (wi | ti)

where P (t1) is an initial probability for tag t1 and P (wi | ti), P (ti | ti−1) are condi-
tional probabilities for the emitted word wi and next tag ti+1 given the current tag ti.
When such a model is applied to a sequence w1...wn, it is unrolled into a lattice as
depicted in Figure 2, and the Viterbi algorithm [6] is employed to efficiently compute

t̂1...t̂n = arg max
t1...tn

P (t1...tn | w1...wn),

the most likely sequence of tags for the given sequence. This technique has been used
successfully for tagging problems in many domains.

4 Relational Transformation-based Tagging

The general motivation for our work is to apply the transformation-based tagging method-
ology to complex datastreams, which are generated for instance by sensors or sensor
networks in ubiquitous computing environments. In many cases, such complex datas-
treams are most easily represented in an expressive relational formalism. Consequently,
we will extend the template-based rule language traditionally used in transformation-
based learning to a more flexible relational rule language, which can take advantage
of such richer representations for sequence elements. Furthermore, this allows to in-
corporate domain-specific background knowledge into the learning process. Analyzing
such relational sequences has received considerable attention recently, for instance with
relational extensions of Hidden Markov Models [5] or n-gram models [8].

Example 2. As an example, consider the ADL (“Activities of Daily Living”) recogni-
tion problem, which is visualized in Figure 1. It is obvious that this kind of data is less
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rigidly structured than natural language data: there are no “grammatical rules” which
determine the exact sequence of touching knife, toast, butter and jam when adding fla-
vor to a toast. Nevertheless, context information can help determine the right tag. For
instance, using a spoon can indicate activities FlavorTea or EatCereals. This ambiguity
can be resolved by looking at the context: the observation of a spoon closely followed
by sugar indicates activity FlavorTea, while observation of a spoon after milk and ce-
reals indicates activity EatCereals. A relational rule language can exploit this structure,
and express flexible rule conditions such as object x has (not) been observed less than
t seconds before/after the current time-step or the most frequent (currently estimated)
tag around the current time-step is t using manually defined background knowledge.

The next section will discuss the formal learning setting for relational transformation-
based tagging, before discussing learning algorithms and experimental results.

4.1 Learning Setting

The relational transformation-based tagging problem can be formalized as follows:

Given

– a relational languageW for describing sequence elements, i.e., a set of typed first-
order logical predicates

– a set of tags T ;
– a set of training sequences S = {s1, ..., sm} with sequence elements described in
W and corresponding true tags L over T ;

– a scheme for setting initial tags given by a function init;
– a language L of transformation rules t′ ← t : q where t, t′ ∈ T , q = l1, ..., lr and

the li are atoms inW .

Find an ordered lists of transformations R = [R1, ..., Rl], Ri ∈ L, such that applying
the initial tagging scheme and afterwards transformation rules R1, ..., Rl minimizes

error(L̂) =
∑
s∈S

ns∑
i=1

δ(lis, l̂is)

where ns is the length of sequence s and lis, l̂is denote the tag assigned to element i in
sequence s according to L and L̂.

In contrast to standard (propositional) transformation-based tagging approaches, the
languages W (sequence elements) and L (rules) employed are relational; that is, rule
conditions q are first-order queries of the form l1, ..., lk where the li are first-order log-
ical atoms. Applying a first-order transformation rule t′ ← t : q means simultaneously
replacing all tags t in L̂ by t′ wherever the first-order context constraint q matches the
relational description of the corresponding sequence element.

Example 3. As an example rule in the ADL recognition domain consider

FlavorTea← EatCereals :
sensor(X, spoon), near(X, sugar, 10), not(near(X, bowl, 5))
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where the variable X is bound to the sequence element under consideration and the
background predicate near(X, bowl, 5) is true if the object bowl has been observed
within ±5 seconds from X . This rule re-tags objects of type spoon from EatCereals
to FlavorTea if implied by the context.

4.2 A Branch-and-Bound Learning Algorithm

For learning the list R of relational transformation rules, a large space of possible rules
has to be searched. However, structure on the search space can be exploited to make
this search more efficient. More specifically, the algorithm we use combines ideas from
transformation-based learning (branch-and-bound search based on upper bounds for the
error reduction of a transformation rule) and inductive logic programming (refinement
search in a generalization/specialization lattice). It is closely related to the algorithm
presented in [2].

Recall that the goal of learning is to find a list R of transformation rules which
minimize error(L̂) on a set of training sequences S with known true labels L. As in
propositional transformation-based learning [1], the rule list is learned greedily: starting
with an empty list, the algorithm incrementally adds one rule after the other, at every
step selecting the rule which yields the greatest reduction in error(L̂) and updating the
current tagging L̂ (cf. Algorithm 1).

When searching for an individual rule with maximum error reduction, a signifi-
cant part of the search space can be pruned away by computing upper bounds for the
error reduction a rule can achieve. One obvious bound for the reduction achievable
by a transformation rule ti ← tj : context is given by the number of sequence ele-
ments whose true tag (in L) is ti and which are currently (in L̂) assigned tag tj . LetM
denote the current confusion matrix, i.e., M[i, j] denote the number of sequence ele-
ments with true tag ti currently tagged as tj . This can be exploited by considering rules
ti ← tj : context in (decreasing) order of their potential M [i, j] for error reduction
and keeping track of the best error reduction ∆best found so far. All rules of the form
ti ← tj : context withM[i, j] ≤ ∆best can be removed from consideration (cf. [1]).

This idea can be taken one step further if it is combined with a general-to-specific
search for the first-order constraint context [2]. As a complete search in the space of
first-order constraints is infeasible in most cases, a greedy general-to-specific search is
performed. Specializations of the current condition q are generated by a so-called re-
finement operator ρ. For our purposes, the refinement operator specializes a condition
q = l1, · · · , ln simply by adding a new literal l to the clause yielding h← l1, · · · , ln, l.
This operator is monotone in the sense that for q′ ∈ ρ(q) the number of matches in
the data can only decrease. Consequently, the maximum gain achievable from special-
izations of a transformation rule ti ← tj : q can be bounded in terms of the current
matches. More specifically, assume that a constraint q matches on a number of sequence
elements in the training data S, and that for pq of these it has a positive effect (current
tag is tj , but true tag is ti) and for nq it has a negative effect (current and true tag are
tj). The error reduction of applying the transformation ti ← tj : q is ∆q = pq − nq. It
is now obvious that no specialization ti ← tj : q′ with q′ ∈ ρ∗(q) can achieve an error
reduction greater than Γq = pq.

89



Algorithm 2 Branch-and-bound algorithm for relational transformation-based tagging

rtb-tagging(input: sequences S; true sequence tags L; language bias L)

1 L̂ := initial-tags(S, L)
2 initialize R := []
3 repeat
4 initialize ∆best := 0

5 computeM := confusion-matrix(L̂, L)
6 for all i, j ∈ {1, ..., k}, i 6= j, sorted byM[i, j] descending do
7 initialize Γ :=M[i, j]
8 initialize q := true
9 while (Γ > ∆best) do

10 for all q′ ∈ ρ(q,L) do
11 compute ∆q′ := error-reduction(tj ← ti : q′)
12 compute Γq′ := max-reduction(tj ← ti : q′)
13 end for
14 let q := argmaxq′ ∆q′

15 let ∆best := max(∆best, ∆q)
16 let Γ := Γq

17 end while
18 end for
19 let r := ti ← tj : q be a rule with error reduction ∆best

20 update L̂ := apply-rule(L̂, r)
21 update R := append(R, r)
22 until (no improvement)
23 return R

A greedy branch-and-bound algorithm exploiting these two bounds is outlined in
Algorithm 2. It takes as input a set of training sequences S, true sequence tags L, and the
language bias L. The algorithm starts with an empty rule list R and initial tags assigned
in L̂. Transformation rules are then greedily added to R, and their effect applied to the
current tagging L̂ (lines 3–21). Transformations are considered in order of decreasing
M[i, j] (line 6). At every step of the search for a single transformation ti ← tj : q
(lines 6–18), the algorithm keeps track of the largest reduction ∆best achieved by a rule
so far. During refinements of the context constraint q (lines 9–17) a bound Γq for the
maximum reduction that any specialization of a rule q can still achieve is computed
(max-reduction), and only parts of the search space for which Γ is greater than ∆best

are explored.

5 Experiments

The proposed method was implemented in the RETRO (for RElatational TRansfOrmation-
based tagging) system and experimentally evaluated in two real-world domains: Activ-
ity of Daily Living recognition (ADL) and mobile phone profile prediction (Phone).
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Relation Description
sensor(Id, Object) The object observed at sequence element Id is Object

duration(Id, T ) The object observation at sequence element Id lasted T seconds

close(Id, Obj, T )
The object Obj has been observed within T seconds of

sequence element Id

time bin(T, Bin) The time span T falls into the bin Bin ∈ {short, medium, long}

closest tag(Id, Act)
The closest sequence position to Id for which an activity

(i.e., a tag 6= “no activity”) is assigned in L̂ is tagged with Act

close used(Id, Act, T )
Less than T seconds away from sequence element Id an object

has been observed which is typically used in Act
Table 1. Example relations used to describe the activity data. Some relations are directly derived
from the data (e.g. sensor, duration, close), others include human-supplied prior knowledge
(e.g. close used).

Relational
Representation

cell(w1, 6672) cell(w2, 6671) cell(w3, 6673) ...

time(w1, 1, 15) time(w2, 16, 25) time(w3, 26, 38) ...

usr activity(w1, act) usr activity(w2, idle) usr activity(w3, act) ...

active app(w1, 101) active app(w1, 102) active app(w3, 101) ...

comm(125, sms, incoming) comm(390, call, outgoing) ... ...

Phone profile normal silent normal meeting
Cell 6672 6671 6673 7409 6673 6671 7409 7410 6739

Fig. 3. Illustration of the Phone data (predicates for cell location, duration, user activity, active
applications, and communication events).

In the ADL recognition domain, object-interaction data for a user having breakfast
at home has been gathered by a wearable RFID reader and RFID tags on objects such
as milk, cereals, kettle, water tap, cutlery etc. (23 objects in total). The stream of tags
picked up by the RFID reader indicates which object is close (approximately 10–15 cen-
timeters) to the wrist of the user at a particular point in time. A single object observation
is returned at every second—if several tags are within reach, one is returned randomly.
Note that the data is relatively noisy: tags might sometimes be missed, or a tag not re-
lated to a particular activity can be reported by the reader because the corresponding
object is accidentally close. The task is to predict the current activity performed, out of
a set of 24 possible activities such as boiling water, toasting bread, reading a newspaper
or “no activity”. The sequence data obtained from the RFID reader is represented in a
relational form by collapsing identical observations into one observation with a start-
ing point and duration in time (cf. Figure 1 for an illustration). Furthermore, additional
background predicates have been defined, see Table 1 for examples.

In the Context Phone domain, data about user communication behavior has been
gathered using a software running on Nokia Smartphones. The software automatically
logs communication and context data, such as the current provider cell, incoming and
outgoing calls and text messages, and other phone status information. The task is to
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Algorithm ADL Phone

Majority tag 19.5± 22.3 56.7± 13.1
HMM Tagger 74.9± 12.5 56.7± 13.1
RETRO 75.4± 7.8 67.7± 10.3

Table 2. Average F-measure on the ADL Recognition and Phone problems based on a leave-one-
sequence-out cross-validation.

Learned Rules
ObtainNewspaper ← ReadNewspaper: close(Id, Obj, T ), Obj = door,

time bin(T, medium)

FlavorTea ← EatCereals: closest tag(A, F lavorTea)

SteepTeaBag ← DrinkTea: close(Id, Obj, T ), Obj = stove

PourCereal ← ObtainNewspaper: close used(Id, PourCereal, T ),
not(close used(Id, ObtainNewspaper, T ′)), time bin(T, short)

SteepTeaBag ← noActivity: duration(Id, T ), time bin(T, long),
closest tag(ID, SteepTeaBag)

Table 3. Examples for rules learned by RETRO on the ADL dataset.

predict the active profile of the phone (silent, meeting, or normal) at every point in
time. See Figure 3 for an illustration of the data and the predicates used.

For comparison, we have also conducted experiments with a (propositional) HMM
tagger on the two datasets. As it is not possible to encode all relevant information propo-
sitionally, we have selected the most relevant information to be used as the propositional
alphabet W . For the ADL recognition problem, this is the sequence of objects observed.
For the phone domain, it is the sequence of cells the phone was located in.

For initializing the tagging L̂ in the transformation-based tagger, RETRO simply
assigns the most frequent tag given the propositional symbol w ∈W :

init(w) = argmax
t∈T

C(w, t)

where C(w, t) is the number of times symbol w was tagged with t in the training data.
More elaborate initialization schemes (such as using the HMM tagging as an initializa-
tion for the transformation-based tagger) are an interesting direction for future work.
Furthermore, instead of a simple greedy search as outlined in Algorithm 2, a beam
search with beam size K = 10 is used. The main loop of the algorithm is terminated if
no rule with a gain of at least min gain = 10 is found.

Table 2 lists the average F-measure for RETRO and HMM tagging based on a leave-
one-sequence-out cross-validation. For the ADL recognition problem, there is no sig-
nificant difference between the two approaches. In the phone domain, the HMM tag-
ger fails to improve upon the majority tag prediction, while RETRO yields a (border-
line) significant increase in F-measure (paired sampled t-test, p = 0.051). This shows
that transformation-based approaches can be competitive with probabilistic methods in
complex tagging domains. However, the presented experiments are still preliminary,
and more empirical evaluation is needed to assess the potential of the method in more
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Fig. 4. Effectiveness of the two pruning schemes Bound I (maximum gain attainable from chang-
ing a certain tag into a certain other tag) and Bound II (maximum gain attainable from specializing
a given rule). Results are averaged over a leave-one-sequence-out cross-validation.

detail. Note furthermore that although HMM tagging is a standard approach in activity
recognition, more advanced probabilistic methods have recently been developed which
would possibly yield slightly higher accuracy in this domain [9].

Examples for rules learned by RETRO on the ADL recognition task are shown in
Table 3. For instance, consider the last rule: it encodes that if a sequence element cor-
responding to a long object observation is tagged with noActivity and the closest cur-
rently predicted activity is SteepTeaBag, this sequence element should also be tagged
with SteepTeaBag. This rule is useful for “filling in gaps” as SteepTeaBag only
causes characteristic object observations at the beginning and end of the activity.

Finally, Figure 4 visualizes the effectiveness of the pruning schemes based on the
two upper bounds discussed above on the ADL recognition problem. More specifi-
cally, Figure 4 (left) shows the fraction of pairs (ti, tj) that have to be considered when
searching for rules ti ← tj in lines 6–18 of Algorithm 2 as a function of the algorithm
iteration. This pruning scheme is very effective, reducing the search space by 93%–
99%. It is more effective in earlier iterations as it is easier to find a rule with yields
a large reduction in error. Figure 4 (right) shows which fraction of refinements is re-
moved from the beam when rules are refined in lines 10–13 of Algorithm 2 because
no further specialization can reach the performance of the best rule found so far. Note
that this form of pruning does not affect the computational complexity of the algorithm
but rather allows a more thorough search through the space of possible rules (given
a limited beam size) by effectively reducing the branching factor of the search. On av-
erage, the branching factor is about halfed, this is independent of the algorithm iteration.
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6 Conclusions and Related Work

Motivated by the needs of activity recognition problems, we have introduced a rela-
tional transformation-based tagging system. It tightly integrates principles of inductive
logic programming (especially search, representations, operators, background knowl-
edge) with transformation-based tagging (error-driven search, branch-and-bound idea).
The approach has been evaluated on two activity recognition data sets and the results are
competitive with those of a Hidden Markov Model approach. Perhaps more important
than the experimental results obtained so far is the ease with which one can extend the
transformation-based tagging approach beyond the propositional HMM setting. Impor-
tant directions in this regard include: the use of rich sources of background knowledge
(that take not only into account the inputs but also the already available produced tags),
the prediction of structured output sequences (predicting sequences of logical atoms, cf.
[10], such as call(anna,10) denoting the prediction that anna will be called in 10 min-
utes), and relaxing the purely sequential nature of the output (which is important for
the ADL dataset where different activities may overlap in time, and therefore ordering
them is not always possible).

Acknowledgments We would like to acknowledge support for this work from the Re-
search Foundation-Flanders (FWO-Vlaanderen).

References

1. Brill, E.: Transformation-based error-driven learning and natural language processing: A
case study in part-of-speech tagging. Computational Linguistics 21(4) (1995) 543–565

2. Dehaspe, L., Forrier, M.: Transformation-based learning meets frequent pattern discovery.
In Cussens, J., ed.: Proceedings of the 1st Workshop on Learning Language in Logic, Bled,
Slovenia (1999) 40–51

3. Patterson, D., Fox, D., Kautz, H., Philipose, M.: Fine-grained activity recognition by aggre-
gating abstract object usage. In: Proceedings of ISWC 2005, Osaka (2005)

4. Raento, M., Oulasvirta, A., Petit, R., Toivonen, H.: ContextPhone - a Prototyping Platform
for Context-aware Mobile Applications. IEEE Pervasive Computing 4(2) (2006) 51–59

5. Kersting, K., De Raedt, L., Raiko, T.: Logical hidden markov models. Journal of Artificial
Intelligence Research 25 (2006) 425–456

6. Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recog-
nition. Proceedings of the IEEE 77(2) (1989) 257–286

7. Wilson, D., Philipose, M.: Maximum a posteriori path estimation with input trace pertur-
bation: Algorithms and application to credible rating of human routines. In: Proceedings of
IJCAI 2005, Edinburgh, Scotland (August 2005)

8. Landwehr, N., De Raedt, L.: r-grams: Relational grams. In: Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence, Hyderabad, India (2007) 907–912

9. Wang, S., Pentney, W., Popescu, A.M., Choudhury, T., Philipose, M.: Common sense based
joint training of human activity recognizers. In: Proceedings of the 20th International Joint
Conference on Artificial Intelligence. (2007) 2237–2242

10. Kersting, K., De Raedt, L., Gutmann, B., Karwath, A., Landwehr, N.: Relational sequence
learning. In De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S., eds.: Application of
Probabilistic ILP. Springer (2007) to appear.

94



Enhanced Anytime Algorithm for Induction of Oblivious 

Decision Trees 

Mark Last
1
, Albina Saveliev

1
 

 
1Department of Information Systems Engineering, Ben-Gurion University of the Negev, 

 POB 653, Beer-Sheva, 84105 Israel 

{mlast, albinabu}@bgu.ac.il 

Abstract. Real-time data mining of high-speed and non-stationary data 

streams has a large potential in such fields as efficient operation of machinery 

and vehicles, wireless sensor networks, urban traffic control, stock data analysis 

etc.. These domains are characterized by a great volume of noisy, uncertain 

data, and restricted amount of resources (mainly computational time). Anytime 

algorithms offer a tradeoff between solution quality and computation time, 

which has proved useful in applying artificial intelligence techniques to time-

critical problems. In this paper we are presenting a new, enhanced version of an 

anytime algorithm for constructing a classification model called Information 

Network (IN). The algorithm improvement is aimed at reducing its 

computational cost while preserving the same level of model quality. The 

quality of the induced model is evaluated by its classification accuracy using 

the standard 10-fold cross validation. The improvement in the algorithm 

anytime performance is demonstrated on several benchmark data streams.  

Keywords: anytime algorithms, classification, information theory, 

Information Network algorithm, classification accuracy, computation cost 

1 Introduction 

Systems that deal with continuous data streams are becoming increasingly 

important primarily due to the emergence of sensors and similar small-scale 

embedded computing devices that continuously produce large volumes of data they 

obtain from their environment. The complex nature of real-world, streaming data has 

increased the difficulties and challenges of data mining applications in terms of 

knowledge induction and decision making within the limited time scope. 

 Data generated by wireless sensor networks (WSN) is one of the important 

examples. WSN are now used in many application areas including environment and 

habitat monitoring, health care, home automation, and traffic control. Each sensor 

node of such network records as streams time-stamped observations, taken at varying 

time frequency. A typical observation includes measurements of various physical or 

environmental parameters such as temperature, sound, vibration, pressure, as well as 

sensor location. While real-time tracking of environmental conditions is extremely 
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important for handling a chemo/bio contamination, seismic detection etc., continuous 

transmission of all recorded observations by the meter-reading chips to the nearest 

hub node and, subsequently, to the central station may be infeasible due to the limited 

battery life of the chips and the local hubs. The intuitive solution is to use data-mining 

techniques to analyze and induce time-dependent models of observed behavior and 

transfer these models to the central station rather then the streamed data. At the same 

time, the high rate of data changes requires to generate the model rapidly within the 

allocated time frame.  

 The anytime algorithms give intelligent systems the capability to trade 

computational time for the quality of results. This capability is efficient for solving 

time-constrained problems such as decision making in dynamic environment, sensor 

interpretation, and planning [    17]. The term anytime algorithm was introduced by 

Dean et al. in the mid-1980s in their work on time-dependent planning [  4], [  5]. 

Similar approaches termed flexible computation by Horvitz [   10], [   11] and imprecise 

computation by Liu et al. [   15] are based on a general idea that many computational 

tasks are too complicated to be completed at real-time speeds, therefore it is important 

to build a system that can generate good approximate results in a much shorter time 

period.  

According to Zilberstein [   17], the desired properties of anytime algorithms 

include the following: measurable solution quality, which can be easily determined at 

run time, monotonicity (quality is a non-decreasing function of time), consistency of 

the quality w.r.t computation time and input quality, diminishing returns of the quality 

over time, interruptibility of the algorithm, and preemptability with minimal 

overhead.  

 In this paper, we propose a new, enhanced version of an anytime algorithm 

for inducing a classification model called Information Network (IN). The original 

algorithm was developed by Last et al. [  13]. The model is a tree-like structure that 

represents relationship between input (predictive) features and target (classification) 

attributes. Unlike most other decision-tree models, the information network uses the 

same input attribute across all nodes of a given layer (level) and thus it can be 

considered an oblivious decision-tree. The method was shown theoretically and 

empirically to have the basic properties of interruptible anytime algorithms [  12]. The 

enhanced method presented in this paper is aimed at improving the anytime 

performance of the IN algorithm by reducing its computational time while 

maintaining the same quality level of the induced model. The most time-intensive 

operation in network construction is choosing, at each iteration of the algorithm, an 

input attribute, which provides the maximum significant increase in mutual 

information relative to the previous layer. Therefore the idea is to filter out the least 

significant attributes, before the classifier construction, and afterwards to build a 

model using a reduced subset of candidate input attributes.  We evaluate the 

performance of the algorithm on eleven benchmark datasets from various sources (see 

Section 4).  

 The paper is organized as follows. Section 2 reviews the related works in the 

fields of anytime classification algorithms and resource-aware knowledge discovery 

in data streams. The enhanced anytime algorithm for induction of oblivious decision 

trees is described by us in Section 3. Experimental results are presented and discussed 
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in Section 4. Finally we conclude the paper and present the possible future research 

directions in Section 5. 

2   Related work 

2.1 Anytime Decision Tree Induction 

 

Last et al. [  12] introduced an interruptible anytime information-theoretic 

classification algorithm. Their method constructs a compact and accurate decision-

tree model called Information Network. The algorithm has several objectives, such as: 

maximizing the mutual information between a set of predictive attributes and the 

target (classification) attribute, finding a minimal set of features involved in the 

induced model (hence, it can be also used as a feature selection method), and 

verifying the statistical significance of the discovered patterns.  

Esmeir et al. [  6] presented interruptible anytime algorithms for iterative 

improvement of decision trees. The motivation of their research is different from our 

goal of saving the computational resources. They explore the problem of how to 

produce better decision trees for hard-to-learn concepts when more time resources are 

available. Their framework consists of two anytime algorithms. The first one, called 

Sequencing LSID3 converts the recent LSID3 contract algorithm to an interruptible 

version, which does not require the allocated time in advance and can be interrupted 

at any time. The second is Interruptible Induction by Iterative Improvement (IIDT) 

which repeatedly selects a sub tree whose reconstruction is estimated to yield the 

highest marginal utility and rebuilds it, exploiting extra time allocation. 

2.2 Resource-aware Data Mining Techniques 

 

Gaber et al. [  7] presented a framework for resource-aware computing in data 

stream analysis. The streaming information is often generated, received or processed 

by computational devices such as wireless sensors. These devices are limited in terms 

of energy, memory, computational speed and communication bandwidth. The main 

goal of the research is to apply data mining techniques to continuous data streams 

within the scope of constrained device resources. This generic framework proposes 

Algorithm Granularity Settings (AGS). The idea is to periodically change algorithm 

settings from the input, output, and/or processing end points according to resource 

consumption pattern measurements performed over the last time period as well as a 

measure of resource criticality. In [  7] this method is applied to a novel threshold-

based micro-clustering algorithm, called RA-Cluster.  The strategy of adapting the 

CPU demand is done using the Randomized Assignment approach. As the CPU load 
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increases, only a pre-specified fraction of the current micro-clusters is examined when 

making the micro-cluster assignment for a new data point. 

 Phung et al. [   16] extended the previous work [  7] for Wireless Sensor 

Networks.  Their approach was applied to online clustering algorithm (ERA-Cluster), 

which uses the resource monitoring of the Sun SPOT sensor nodes from Sun 

Microsystem™ to adapt to resource availability. The CPU adaptation of [   16] is also 

based on the Randomized Assignment approach. 

2.3 Anytime Properties of the IN Algorithm 

 

If the network quality is measured by its predictive accuracy, we can easily verify 

the algorithm conformity with the anytime properties defined by Zilberstein [  17] 

using a line of arguments similar to [  12]:  

• Measurable quality.  The predictive accuracy after each iteration of the 

algorithm can be estimated using 10-fold cross-validation or any other 

validation procedure. 

• Recognizable quality.  Due to the inherent compactness of IN models, 

counting the number of validation errors is a relatively fast procedure. 

• Monotonicity.   A new attribute is added by the algorithm to the set of input 

attributes only if it causes an increase in the mutual information.  According 

to Fano’s inequality [   3],an increase in mutual information implies an 

expected decrease in the error rate.  

• Consistency.  The theoretical run time of the algorithm has been shown by us 

in [  13] to be quadratic-logarithmic in the number of records and quadratic 

polynomial in the number of initial candidate input attributes. 

• Diminishing returns.  This property is very important for algorithm’s 

practical usefulness: it means that after a small part of the running session, 

the results are expected to be sufficiently close to the results at the 

completion time.  We could prove this property mathematically, if we could 

show that the mutual information is a concave function of the number of 

input attributes.  Though the last proposition is not true in a general case, it is 

possible to conclude from Fano’s inequality [  3] that the mutual information 

is bounded by a function, which behaves this way.  This conclusion is 

empirically confirmed by the results of Section 4. 

• Interruptibility.  The algorithm can be stopped at any time and provide the 

current list of selected attributes.   Each iteration forms, what is called, a 

contract anytime algorithm, i.e. the corrections of predictive accuracy are 

available only after termination of an iteration. 

• Preemptability. Since the algorithm maintains the training data, the list of 

selected input attributes, and the current structure of the information-

theoretic network, it can be easily resumed after an interrupt.  If the 

suspension is expected to be long, all relevant information may be stored on 

a hard disk. 
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3 Enhanced Algorithm for Anytime Induction of Oblivious 

Decision Trees 
 

We aim at enhancing the Information Network algorithm by reducing the time needed 

to construct a classification model, while maintaining the same level of its predictive 

accuracy. At each iteration, the algorithm builds a new hidden layer by choosing an 

input attribute (either discrete, or continuous), which provides the maximum 

significant increase in mutual information relative to the previous layer. The 

computational complexity of evaluating a discrete attribute is the complexity of 

calculating its conditional mutual information MI(Ai;T/z) (1).  The complexity of 

evaluating a continuous attribute consists of calculating its conditional mutual 

information MI (Th; T/S, z) for a given split (2), as well as discretizing it into a 

number of discrete intervals. Both these operations are performed in each hidden layer 

of information network for all candidates in that layer. Hence, to reduce the 

computational cost of the Information Network algorithm we propose the following 

“fast feature filtering” procedure to be applied before the network construction: 

• Generate a random sample of training instances. The sample size is a pre-

specified percentage of the training examples. Based on the experimental 

results described in Section 4, the recommended sample size can be as low 

as 5%. 

• Compute the estimated mutual information for each candidate input attribute 

using the random sample of training instances.   Due to the small sample size 

(5%), this calculation is expected to take much less time than the first 

iteration of the algorithm based on the entire training set.  The mutual 

information calculated by the IN algorithm is shown in [  14] to be a much 

more efficient feature selection method than two alternative feature selection 

algorithms (Relief and ABB). 

• Filter out the least significant features, having the lowest values of estimated 

mutual information. The percentage of selected features is determined in 

advance. Based on the experimental results, described in Section 4, the 

recommended percentage is 30%, i.e., 70% of significant input attributes are 

removed from consideration by the algorithm. We call this approach Fast 

Feature Filtering (FFF). 

 

The Information Network induction is performed subsequently on the subset of 

selected features using all training examples. 

The pseudocode of the “fast feature filtering” procedure is given below: 

 
Input:  the set of n training instances; the set CI of 

m candidate input attributes (discrete and continuous); 

the target (classification) attribute T; the percentage 

of randomly selected training instances sample_size; the 

percentage of selected attributes from m candidate input 

attributes significant_Set_size. 

Output: a set I of selected significant input 

attributes. 
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I = Ø 

Create random sample of sample_size training instances. 
For each candidate input attribute A

i
∉ I do 

 If A
i 
is discrete then 

  Return the statistically significant 
conditional mutual    information cond_MI

i 

between A
i 
and T. 

 Else return the best threshold splits of A
i 
and the 

statistically
    

significant conditional 
mutual information cond_MI

i 
between    A

i 
and T. 

 If cond_MI
i 
> 0, then   

  Update the set I of selected input 
attributes: I = I ∪  A

i*
 

End do 
Sort the set I of selected input attributes according 

to increasing its cond_MI
i
  

For each i ← significantSet_size to I  

 Exclude the less significant input attribute A
i 
from 

the set I: 
 I = I - A

i* 

 
i ← i + 1; 

End do 
Return a set I of selected significant input 

attributes.  

4 Experimental Results 

According to [   17], the performance profile (PP) of an anytime algorithm denotes 

the expected output quality as a function of the execution time t. Since there are many 

possible factors affecting the execution time, the performance profile, in many cases, 

has to be determined empirically and not analytically. 

 To study the performance profile of the enhanced method for induction of 

oblivious decision trees, we have applied it to eleven real-world datasets, including 

five datasets (Housing, Image Segmentation, Spambase, Waveform, Adult) from the 

UCI Machine Learning Repository [  1], five Traffic Direction datasets provided by the 

Traffic Control Center of Jerusalem, and the Intrusion Detection database originally 

used for the Third International Knowledge Discovery and Data Mining Tools 

Competition (current available from the UCI KDD Archive [  8]).The characteristics of 

each dataset are shown in Table 1. The size of the datasets varies between 506 and 

10,000 cases. The total number of candidate input attributes is from 11 up to 57, 

including nominal and continuous features. It should be noted that the Traffic 

Direction, Intrusion Detection and Adult datasets have actually more than 10,000 

instances, but due to the memory constraints we have confined ourselves to this 

amount of training examples.   

We have measured the quality of the induced model by the standard 10-fold 

cross validation procedure. To evaluate the attribute filtering method we have 

experimented with three different sample sizes of 5%, 10% and 20% accordingly. 
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Using each sample of the training set, we have calculated the mutual information for 

all candidate input attributes and selected 20%, 30%, 40%, 50%, 60% and 70% of the 

most significant features. With each subset of selected significant attributes, we have 

built 10 Information Networks, using the ten-fold cross validation procedure. This 

experiment has been repeated eighteen times for each dataset, using six different 

amounts of selected attributes and three different samples of the training set. The 

results of each experiment, which are the averages of 10 cross-validation models, are 

compared to the results of the original method (not using fast feature selection). After 

each iteration of the algorithm, we have computed the accuracy of the current model 

and the time needed to induce the new hidden layer of that model. These parameters 

are compared with the same parameters of the original algorithm, which induces a 

classification model from all candidates, without filtering out less significant 

attributes.  

 Based on the results of experiments we can say that on average, only three 

hidden layers are built in all 10 models over 11 datasets. We have found also, that 

after the third iteration the cross-validation accuracy of most models stops to increase 

significantly (see the “simplicity first” approach proposed in [ 9]). Measuring the run 

time and the predictive accuracy of the enhanced algorithm over three different 

sample sizes (5%, 10%, 20%), we have found that the 5%-sample preserves the same 

performance level as the larger samples. Considering these facts we have presented in 

Figure 2 the performance profile of only three-layered networks induced from various 

sets of significant attributes selected by a 5% random sample. To simplify the 

comparison of the results of the novel approach with the original one, as well, for 

better illustration, we have normalized the execution time of each experiment with 

respect to the execution time of the original algorithm. For the run time equal to zero, 

the average accuracy over 11 datasets is computed by means of the majority rule.  

Several important observations can be made from Figure 2. First, we can see, 

that the average performance profiles are concave functions of time. After the first 

iteration of the algorithm, the accuracy of the model is sufficiently close (85%) to the 

accuracy at completion time. It proves the very important anytime property of the 

algorithm: diminishing returns (see subsection 2.3).  Second, we can observe that 

execution time of the enhanced approach varies between 20-50% of run time using 

the original method, where the lowest computational time of 20% refers to induction 

of the model from 30% of selected significant attributes and the highest time of 50% 

refers to construction of the model from 70% subset accordingly. Finally, we note that 

with a 20% subset of selected features, the induced model has only two layers in eight 

datasets out of eleven (Housing, Adult, five Traffic Direction datasets, and Intrusion 

Detection). Hence, we exclude the 20% subset of significant attributes from our study, 

and compute the average performance for a three-layered network, regarding this 

network as a minimal model in all 11 datasets. 

The run time of the enhanced method with the 5% sample starts with 93.8 

msec. for the Traffic-Direction2 datasets and goes up to 87,895 msec. for the 

Spambase dataset, which has 4,601 records and 57 continuous attributes. Due to space 

limitations, Figure 3 shows the performance profiles of five datasets only. 
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Figure2. Average performance profile of the enhanced anytime algorithm over eleven datasets, 

sample size 5%. 

Our research is primarily aimed at reducing the computational time of the IN 

algorithm while keeping the same quality level of the classification model. To study 

how the sample size affects the accuracy and the execution time of constructing the 

Information Network, the average value of these parameters have been calculated for 

each sample size (see Table 2) 
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Figure3. Performance profiles of the enhanced anytime algorithm for five datasets, sample size 

5% 
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Table 1. The characteristics of eleven benchmark datasets 

Dataset Data 

size 

Class

es 

Conti

nuous 

Nomi

nal 

Total 

Attributes 

Housing 506 3 12 1 13 

Image Segment. 2,100 7 19 0 19 

Spambase 4,601 2 57 0 57 

Waveform 5,000 3 21 0 21 

Adult 10,000 2 6 8 14 

Traffic-Direction1 10,000 4 6 5 11 

Traffic-Direction2 10,000 4 6 5 11 

Traffic-Direction3 10,000 4 6 5 11 

Traffic-Direction4 10,000 4 6 5 11 

Traffic-Direction5 10,000 4 6 5 11 

Intrusion Detect. 10,000 4 14 2 16 

 

Table2. Average accuracy, execution time and standard deviation of three-layered model over 

eleven datasets and various percentages of selected significant attributes 

Sample 

Size 

(%) 

Average 

attributes 

filtering 

time (sec.) 

Average 

accuracy  

Average 

execution 

time (sec) 

STDEV 

of  

mean 

accur. 

STDEV 

of  

mean 

time 

Slope 

(*10-4) 

5 1,8 0.79 31,7 0.013 6 2.5 

10 1,8 0.80 32,1 0.013 6 2.49 

20 2 0.79 32,2 0.014 6 2.45 

 
As one can see from Table 2, the sample size affects the induction time of 

the classifier and does not affect its accuracy. To evaluate the trade-off between these 

characteristics we calculate their ratio called the Slope using the following equation: 

 

SLOPE = 
t

tQ

∆

∆ )(
 (3) 

 

Where,  

)(tQ∆  = the difference between the accuracy of the complete (three-

layered) model and the initial (majority rule) accuracy;  

t∆  = the execution time of inducing a complete (three-layered) model 

 

According to the value of Slope we can suggest that the 5% sample size is 

slightly more preferable than the 10% and 20% sample sizes.     

 Another question is which percentage of selected significant attributes is 

preferable for optimizing the accuracy-time relationship. To answer this question, we 
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are summarizing in Table 3, the average accuracy and execution time, for each subset 

of significant attributes, comparing these parameters to the results of the original 

method, without the fast feature filtering (FFF), where the average accuracy is 0.806 

and execution time is 88,115 msec. 

The decrease in accuracy and execution time (see Table 3, columns 2 and 3) 

is computed relative to the 100 % set of candidate attributes. As we can see, the 

maximal reduction of time (79.9%) is reached with the 30% set. It is important to note 

that, the decrease in accuracy vs. the original method (see Table 3, column 5) has not 

been found statistically significant as for various sample sizes, as for various 

percentages of selected attributes. To find the optimal percentage of significant 

features we have calculated the Slope for each subset of selected attributes. According 

to the Slope value we can say that the 30% percentage of significant features is 

optimal for accuracy-time optimization task.  

Finally, we can conclude, based on analysis of the experimental results obtained 

for eleven datasets that best trade-off between the accuracy of the three-layered 

Information Network and computational time needed for its construction is achieved 

on a 30% subset of significant attributes selected by a 5% random sample. In this 

case, the execution time is reduced by almost 80%. 

Table 3. Average accuracy, execution time and standard deviation of three-layered model, over 

eleven datasets and various sample sizes  

Percent  

signif. 

attrib. 

Aver. 

accur. 

after 

FFF 

Aver. 

time 

(sec.) 

after 

FFF 

Slope 

(*10
-4

) 

Decre

ase 

accur. 

after 

FFF 

(%) 

Decre

ase 

time, 

after 

FFF 

(%) 

STDEV 

of mean 

accurac

y after 

FFF 

STDEV 

of mean 

time, 

after 

FFF 

30 0.788 17,6 4.38 4 80 0.018             5  

40 0.792 25,7 3.08 2 71 0.018 6 

50 0.793 33,2 2.39 2 62 0.018 8 

60 0.801 39,3 2.04 1 55 0.015 9 

70 0.804 44,0 1.83 0.3 50 0.015 11 

 

 One of the important benefits of the proposed FFF approach is that it allows 

capturing the tradeoff between the solution quality and the time saved and/or 

complexity of classification represented by the number of the most significant input 

attributes.  The anytime interruptability of the algorithm allows stopping it after each 

iteration to provide an approximate solution that is close to the complete result. This 

can be crucial for real-time classification algorithms working with a large number of 

input attributes and/or with timing constraints.  
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5 Conclusions 
    

In this paper, we have proposed a new, “Fast Feature Filtering” version of an anytime 

algorithm for constructing a classification model called Information Network (IN). 

We have studied and improved the important anytime property diminishing returns of 

the algorithm. The new method enables to reduce significantly its computation cost 

while preserving the same level of model quality. This goal is achieved by means of 

monitoring the relationship between the random sample size of training examples and 

the percentage of most significant input attributes selected by this sample. The 

proposed algorithm is evaluated on eleven benchmark datasets available from 

different sources. The quality of the induced model is measured by its classification 

accuracy using the standard 10-fold cross validation. The performance profiles of the 

new version have been shown to be concave functions of time. Based on the 

experimental results, the optimal tradeoff between accuracy of a three-layered 

Information network and execution time needed for its construction is achieved with a 

30% subset of significant attributes selected using a 5% random sample. In this case, 

the accuracy rate is very close to the accuracy of the original algorithm, whereas the 

execution time is reduced by almost 80%. Topics for future research include 

predicting the expected quality for a given execution time (and vice versa), and 

integrating the enhanced version of the algorithm with real-time learning systems 

such as IOLIN [  2]. 
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Abstract. The Online Divisive-Agglomerative Clustering (ODAC) is an
incremental approach for clustering streaming time series using a hierar-
chical procedure over time. It constructs a tree-like hierarchy of clusters
of streams, using a top-down strategy based on the correlation between
streams. The system also possesses an agglomerative phase to enhance a
dynamic behavior capable of structural change detection. However, the
split decision used in the algorithm focus on the crisp boundary between
two groups, which implies a high risk since it has to decide based on only
a small subset of the entire data. In this work we propose a semi-fuzzy
approach to the assignment of variables to newly created clusters, for a
better trade-off between validity and performance. Experimental work
supports the benefits of our approach.

Keywords: fuzzy clustering, streaming time series, hierarchical models.

1 Introduction

The task of clustering streaming time series is not widely studied. Data streams
usually consist of variables producing examples continuously over time. The basic
idea behind it is to find groups of variables that behave similarly through time,
which is usually measured in terms of time series similarities. Clustering time
series has been already studied in various fields of real world applications. Many
of them, however, could benefit from a data stream approach. For example:

– in electrical supply systems, clustering demand profiles (ex: industrial or
urban) decreases the computational cost of predicting each individual sub-
network load [2];

– in medical systems, clustering medical sensor data (such as ECG, EEG, etc.)
is useful to determine correlation between signals [11];

– in financial markets, clustering stock prices evolution helps preventing bank-
ruptcy [7];
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All of these problems address data coming from a stream at high rate. Hence,
data stream approaches should be considered to solve them.

In the next section we present an overview on ODAC and its main characteris-
tics, while Section 3 proposes the new semi-fuzzy assignment criterion. Section 4
enunciates the validity indices used in Section 5 to validate our proposal, while
Section 6 presents some concluding remarks.

2 ODAC Overview

The Online Divisive-Agglomerative Clustering (ODAC) is an incremental ap-
proach for clustering streaming time series using a hierarchical procedure [10]. It
constructs a tree-like hierarchy of clusters of streams, using a top-down strategy
based on the correlation between streams. The system also possesses an ag-
glomerative phase to enhance a dynamic behavior capable of structural change
detection. The splitting and agglomerative operators are based on the diameters
of existing clusters and supported by a significance level given by the Hoeffding
bound [5]. Accordingly, we observe that:

– the update time and memory consumption does not depend on the number of
examples, as it gathers sufficient statistics to compute the correlations within
each cluster; moreover, anytime a split is reported, the system becomes faster
as less correlations must be computed;

– the system possesses an anytime compact representation, since a binary hi-
erarchy of clusters is available at each time stamp, and does not need to
store anything more than the sufficient statistics and the last example to
compute the first-order differences;

– an agglomerative phase is included to react to structural changes; these
changes are detected by monitoring the diameters of existing clusters;

– this online system was not designed to include new streams along the exe-
cution; however, it could be easily extended to cope with this feature;

– given its hierarchical core, the system possesses a inherently adaptable con-
figuration of clusters;

As reported by the authors, this is one of the systems clearly proposed to address
clustering of multiple streams. It copes with high-speed production of examples
and reduced memory requirements, with constant time update. It also presents
adaptability to new data, detecting and reacting to structural drift.

2.1 Dissimilarity Measure

The system must analyze distances between incomplete vectors, possibly with-
out having any of the previous values available. Thus, these distances must be
incrementally computed. The system uses Pearson’s correlation coefficient [9] be-
tween time series as similarity measure. This way, the sufficient statistics needed
to compute the correlation are easily updated at each time step.
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2.2 Splitting Criterion

One problem that usually arises with approximate models is the definition of a
minimum number of observations necessary to assure convergence. One approach
is to apply techniques based on the Hoeffding bound [5] to solve this problem.
The Hoeffding bound has the advantage of being independent of the probability
distribution generating the observations [3], stating that after n independent ob-
servations of a real-valued random variable r with range R, and with confidence
1 − δ, the true mean of r is at least r − ǫ, where r is the observed mean of the
samples and

ǫ =

√

R2ln(1/δ)

2n
(1)

As each leaf is fed with a different number of examples, each cluster ck will
possess a different value for ǫ, designated ǫk.

Let d(a, b) be the distance measure between pairs of time series, and Dk =
{(xi, xj) | xi, xj ∈ ck, i < j} be the set of pairs of variables included in a specific
leaf ck. After seeing n samples at the leaf, let

(x1, y1) = argmax
(x,y)∈Dk

d(x, y)

be the pair of variables with maximum dissimilarity within the cluster ck, and
in the same way considering D′

k = Dk\{(x1, y1)}, let

(x2, y2) = argmax
(x,y)∈D′

k

d(x, y)

Let d1 = d(x1, y1), d2 = d(x2, y2) and ∆d = d1 − d2 be a new random variable,
consisting on the difference between the observed values through time. Applying
the Hoeffding bound to ∆d, if ∆d > ǫk, one can confidently say that, with
probability 1− δ, the difference between d1 and d2 is larger than zero, and select
(x1, y1) as the pair of variables representing the diameter of the cluster. With
this rule, the ODAC system will only split the cluster when the true diameter
of the cluster is known with statistical confidence given by the Hoeffding bound.
However, to prevent the hierarchy from growing unnecessarily, another criterion
is defined in ODAC which has to be fulfilled in order to perform the splitting,
which falls out of the scope of this work.

2.3 Assigning Criterion

When a split point is reported, the pivots are variables x1 and y1 where d1 =
d(x1, y1), which are separated into each of the newly created clusters. The system
then assigns each of the remaining variables of the old cluster to the cluster which
has the closest pivot. This crisp assignment is the key object of our proposal in
this work. When considering the expansion of the structure, the strict splitting
of variables appears as a possible drawback, in the sense that a previous decision
of moving a variable to a leaf, when there was no statistical confidence on the
decision of assignment, may split variables that should be together. Left plot
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of figure 1 presents an example of a possible configuration where the problem
could arise. An approach based on fuzzy sets [13] would let forthcoming examples
decide what to do with those variables. Section 3 introduces our proposal to deal
with this uncertainty.

2.4 Aggregation Criterion

The main setting of the system is the monitoring of existing clusters’ diameters.
On stationary data streams, the diameter of a cluster decreases every time a
split occurs. Nevertheless, usual real-world problems deal with non-stationary
data streams, where time series that were correlated in the past are no longer
correlated to each other, in the current time period, and might be approaching
time series of other clusters. The strategy that is adopted in ODAC to detect
changes in the structure is based only on the analysis of the diameters. In fact,
the diameter of each two new clusters should be less or equal than their parent’s
diameter. In this way, no computation is needed between the variables of the
two siblings.

3 ODAC with a Semi-Fuzzy Assignment Criterion

When a split point is reported, ODAC determines two variables as pivots and
assigns each of the remaining variables to the cluster which has the closest pivot.
This is usually a good heuristic, as it often finds an optimal border hyperplane.
It is a lot faster than the heuristic performed by DIANA [6], since it is not needed
to compute the average distances to decide which leaf will receive each variable.
However, this may lead to erroneous situations if the moving variable is equally
distant from the two pivots, there is no way of determining to which cluster it
should be assigned.

This issue has a possible solution. The Hoeffding bound can be used to control
the expansion of a cluster. We could include this notion of the Hoeffding bound
as a decision support tool to the decision of moving a variable considering the
two pivots. Let x and y be the pivots of the clusters a and b, respectively, and
m be the moving variable. The expansion is decided as follows:

– if d(y, m) − d(x, m) > ǫk move variable to cluster a;
– else if d(x, m) − d(y, m) > ǫk move variable to cluster b;
– else move m into both clusters a and b, with a given degree of membership;

An example of application of this semi-fuzzy assignment is explained in the
right plot of figure 1. This option may in fact allow the system to try different
combinations of objects. However, this expansion eliminates the characteristic of
speeding up the process with structure growth. Another example of this behavior
follows when, given a crisp data set, the final specification is presented in figure 2
illustrating the difference between the two approaches. Top plot shows the result
for strict clustering, where nodes 4, 5, 6 and 7 represent the real clusters defined
for the crisp data set.
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Fig. 1. Example of a dissimilarity structure between ten variables, produced by three
clusters, and the comparison on the assignment method: strict (left) and semi-fuzzy
(right). Variables x1 and x2 are the chosen pivots for splitting at first level this set
of variables. Dot-dashed lines represent the first-level splitting while continuous lines
present a second-level splitting.

The fuzzy approach enables a wider observation on the relations between
clusters, as they appear in different configurations. However, if crisp sets are
fuzzified, a later pruning action could be considered. The diameters of the first
ancestors of the leaves or the leaves themselves could act as a post-prune cri-
terion. Preliminary results suggest it may have a very important role in time
series incremental clustering, and it is scheduled for future work. Moreover, this
approach is a simple variation of the ODAC algorithm that might be useful
in applications where the data reveals a fuzzy characteristic. Nevertheless, this
simple technique must be complemented with the right membership function, in
order to be evaluated by fuzzy clustering validity indices.

3.1 Membership Function

A fuzzy clustering procedure enables an object to belong to different clusters,
with some membership function [8], using the concept of fuzzy sets [13]. However,
in hierarchical procedures, different possibilities arise. A simple way of applying
fuzzy clustering in ODAC is to consider that, at each split where a variable
is not clearly closer to one pivot than the other, the degree of membership of
the variable to the new clusters should be equal, assigning the variable to both
clusters with same probability. This will enable the definition of accurate validity
indices for fuzzy clustering structures.

The result of a fuzzy clustering procedure is usually defined as a matrix
U = [uic] where each uic is the degree of membership of a vector xi to cluster c.
In our case, the vectors are the variables. At the root level, all variables belong
to one cluster, so if cluster r is the root node, uir = 1 for all variables i. Every
time a split occurs on a cluster p, the membership of variable i to each offspring
cluster c (it was assigned to) should depend on the degree of membership uip.
So, our approach is to compute it as

uic = uip ∗ βip (2)
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Fig. 2. ODAC structure compari-
son: strict (top) vs fuzzy (bottom)
clustering (crisp data set).

Variables

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

High-level Nodes, uic

node 1 1 1 1 1 1 1 1 1 1 1

node 2 1 1 2
−1

2
−1

2
−1

2
−1

2
−1

node 3 1 1 1 2
−1

2
−1

2
−1

2
−1

2
−1

node 4 1 1 4
−1

4
−1

4
−1

4
−1

node 5 2
−1

4
−1

4
−1

4
−1

4
−1

node 6 1 1 1 4
−1

4
−1

4
−1

4
−1

node 7 2
−1

4
−1

4
−1

4
−1

4
−1

Final Clusters, uic

node 8 1 1

node 9 4
−1

4
−1

4
−1

4
−1

node 10 2
−1

node 11 4
−1

4
−1

4
−1

4
−1

node 12 1 1 1

node 13 4
−1

4
−1

4
−1

4
−1

node 14 2
−1

node 15 4
−1

4
−1

4
−1

4
−1

Table 1. U Matrix for the fuzzy clustering
structure gathered for crisp data set (zero-
valued cells removed).

where p is the parent cluster of c and βip is the distribution of membership due to
possible fuzzy assignment of variable i when splitting cluster p. The β function
can be computed based on several parameters, including the diameters of p, c
and c’s siblings. However, a first approach will consider β = (nip)

−1, where nip

is the number of new clusters to which variable i was assigned when splitting
cluster p. For a clear strict assignment, we consider β = 1−1 = 1. For a fuzzy
assignment after a binary split, we would have β = 2−1 = 0.5.

For the example presented in figure 2, the values for U are presented in
table 1. It is easy to observe that the sum of membership values for each variable
to all final clusters is 1. Values of U for non-leaf nodes are also presented to enable
a clear insight on the splitting procedure.

4 Fuzzy Cluster Validity

Simple insights on the fuzziness of the clustering structure can be extracted using
only the memberships values uij . Simple indices have been proposed such as the
partition coefficient (PC) and the partition entropy (PE), defined next.

The partition coefficient index [1] is defined as

PC =
1

N

N
∑

i=1

nc
∑

c=1

u2
ic (3)

with range in [1/nc, 1], where nc is the number of clusters. The closer the
index is to 1 the crisper the clustering is. In case that all membership values to
a fuzzy partition are equal, the closer the value of PC is to 1/nc, and the fuzzier
the clustering is.
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The partition entropy coefficient [4] is a slight variation defined as

PEa = −
1

N

N
∑

i=1

nc
∑

c=1

uic · loga(uic) (4)

for values of U greater than zero, where a is the base of the logarithm, thus the
index values range in [0, loga(nc)]. The closer the value of PE is to 0, the crisp
the clustering is.

Regarding the correspondence between the fuzzy clustering and the real data,
a more robust criteria is the Xie-Beni index [12], also called the compactness and
separation validity function. It is based on several measures of the clustering
structure, with respect to the real data. The fuzzy deviation of variable i from
cluster c, fic, is the distance between i and the center of cluster c, vc, weighted
by the fuzzy membership degree of data point i to cluster c, i. e.:

fic = uic · d(i, vc) (5)

We can compute the variation of cluster c as σc =
∑nc

i=1 f2
ic. The sum of all

the variations of final clusters, σ =
∑nc

c=1 σc, is called total variation of the data
set. The compactness of cluster c is calculated as the average variation in cluster
c, πc = σc/nc, where nc is the number of variables belonging to cluster c. Hence
the compactness of the whole partition is π = σ/n. The separation of the fuzzy
partition, dmin, is defined as the minimum centroid linkage between any two
clusters. The index is defined as

XB = π/dmin (6)

Small values of XB are expected for compact and well-separated clusters. How-
ever, attention should be paid as it monotonically decreases with the number of
clusters nc.

5 Experimental Evaluation

In order to compare the fuzziness of the structures gathered by the system, we
have applied the algorithm to a real data set published in the 2004 ICML Phys-
iological Data Mining Competition, which has no clear crisp structure. Visually,
we can only stress that there is high correlation between sensor3 and sensor5.
For the data belonging to user01 (93344 observations), presented in figure 3, it is
easy to note that only sensor3 and sensor5 are clearly correlated. The resulting
ODAC structure is the left-most plot of figure 5, and the membership values are
presented in table 2. The indices for both the crisp and user01 data sets present
concordant directions. While the crisp data set was partitioned with PC = 0.650
and PE2 = 0.900, the user01 set produced a partitioning with PC = 0.594 and
PE2 = 0.875. One can note that the PC index reveals a fuzzier structure in
the outcome of user01, as expected. Accordingly, the PE2 shows that the en-
tropy of crisp data set result is higher, revealing that less fuzzy structure was
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Fig. 3. Batch DIvisive ANAlysis clustering
structure for the user01 in PDMC data set,
using the same correlation-based measure.

Sensors

s2 s3 s4 s5 s6 s7 s8 s9

Final Clusters, uic

node 14 1 1

node 15 2
−1

2
−1

node 27 4
−1

2
−1

node 31 2
−1

node 32 4
−1

2
−1

2
−1

node 29 4
−1

2
−1

node 33 2
−1

2
−1

2
−1

node 34 4
−1

Table 2. U Matrix for the final clusters
obtained for the user01 PDMC data set
(zero-valued cells removed).

found. Evidence appears that the user01 data set has some inherit fuzziness,
which was absent in the crisp data set. The proposed method relies on a con-
fidence test based on the Hoeffding bounds. This way, sensitivity analysis must
be performed to assess the level of dependence of the method to this parameter.
Figure 4 presents the analysis on the user01 data set. We can observe that, for
usual values of δ, the system reveals low sensitivity, being the best results ob-
served for δ parameter values between 0.02 and 0.06. From this point, we chose
to fix δ = 0.05.

Fig. 4. ODAC quality sensitivity to the δ

parameter, for the user01 data, for PC,
PE2 and the Xie-Beni index for the semi-
fuzzy (XB) and crisp (XB

′) partitioning.

user01 user06 user25

Value, (nc)
PC 0.594 (8) 0.672 (9) 0.938 (5)
PE2 0.875 (8) 0.688 (9) 0.125 (5)
XB 0.051 (8) 0.123 (9) 0.134 (5)
XB(strict) 0.059 (4) 0.199 (4) 0.059 (4)

Table 3. Fuzzy validity indices for PDMC
data sets. Last line presents the Xie-Beni
index for the resulting structure using
strict assignment (δ = 0.05).

However, in order to assess the sensitivity of the method to different lev-
els of fuzziness, we have applied the algorithm to two other users’ data from
the PDMC data set (80182 and 141251 observations). Figures 5 and 6 present
the resulting structures for the three users. The resulting crisp clusters are the
same in the three sets, although the hierarchy may be different. When using
semi-fuzzy assignment, user25 revealed much less fuzziness in the final struc-
ture than the remaining two sets, with almost the same clusters as the strict
assignment method. Table 3 presents the values for the two partition indices
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Fig. 5. ODAC semi-fuzzy structure for the PDMC users (user01, user06 and user25).

Fig. 6. ODAC strict structure for the PDMC users (user01, user06 and user25).

and the Xie-Beni index for the three users, with the XB index also computed
for the strict assignment method. While for the user01 and user06 data sets
the semi-fuzzy approach resulted in better values of XB, the user25 appears to
contradict our approach. The strict assignment resulted in a much better value
for the index, indicating that a fuzzy clustering would probably not be a good
approach. Accordingly, when looking to the resulting hierarchy we can state that
the semi-fuzzy assignment resulted in an almost strict partition of the variables,
supporting the notion that, although semi-fuzzy, this approach will nonetheless
find crisp partitions when data is inherently crisp.

6 Concluding Remarks

In this paper we have presented a semi-fuzzy variation to the assignment criterion
of ODAC, a clustering system for streaming time series. ODAC uses a top-down
strategy to construct a binary tree hierarchy of clusters with the goal of finding
highly correlated sets of variables. The main underlying concept in ODAC is the
clusters’ diameter. The split decision used in the algorithm focus on the crisp
boundary between two groups, generating uncertainty in the assignment since
it has to decide based on only a small subset of the entire data. In this work we
propose a semi-fuzzy approach to the assignment of variables to newly created
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clusters, for a better trade-off between validity and performance. Experimental
results show that this new assignment criterion will find better hierarchies when
data is inherently fuzzy, without much loss in the quality of structures when
the data is inherently crisp. Current and future work is concentrated on several
areas, such as: the study of more complex membership functions; the inclusion
of the membership function in the decision parameters of the entire system,
such as the distance between variables and diameters computation; a post-prune
criterion to reduce the size of the structure focusing on repeated instances of
the same cluster; and a complete fuzzy assignment criterion for a complete fuzzy
system.
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Abstract. In resource-constrained devices, adaptation of data stream processing to 
variations of data rates, availability of resources and environment changes is crucial 
for consistency and continuity of running applications. Context-aware adaptation, as 
a new dimension of research in data stream mining, enhances and optimizes 
distributed data stream processing tasks. Context-awareness is one of the key aspects 
of ubiquitous computing as applications’ successful operations rely on detecting 
changes and adjusting accordingly. This paper presents a general architecture for 
context-aware adaptive mining of data streams that aims to dynamically and 
autonomously adjust data stream mining parameters according to changes in context 
and resource availability in distributed and heterogeneous computing environments. 

1. Introduction 

Processing of data streams due to their unpredictable and continuous nature [1, 2] is a 
challenging area of study. In the literature, various techniques and approaches have been 
presented to address the issues associated with data stream processing both in data mining 
and querying. However, recently the emergence and growth of mobile computing and 
networking and importance of using mobile devices for data stream mining in certain 
application domains (e.g. health or bushfire monitoring applications) have introduced new 
research challenges that need to be addressed.  Data stream applications running on 
resource-constrained devices need not only to consider limitations of computational 
resources such as memory, battery level and CPU speed but also to take into account the 
issues of variable data rates, mobility, disconnections and environmental changes.  
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Nearly all pervasive systems utilize context to perform their tasks and this makes 
context-awareness an essential requirement of these systems [3, 4]. To perform data 
stream mining in heterogeneous and distributed computing environments, applications 
need to monitor context changes and react or adapt to them in order to maintain consistent 
and continuous operations.  

Studying the current state-of-art in data stream mining [5-7] indicates that there are 
methods and algorithms introduced for efficiently mining high speed data streams in 
mobile devices such as Personal Digital Assistants (PDAs) but they have limited dynamic 
ability to adjust to a multitude of changing contextual parameters and have not been 
adequately equipped to cope with the distributed and heterogeneous nature of applications 
or the mobility of the users/devices that these techniques aim to support. One of the 
innovative adaptive works in data stream mining on resource-constrained devices is 
Algorithm Output Granularity (AOG) [8, 9] that provides adaptability with respect to the 
available memory on a device. Examples of light-weight data stream mining algorithms 
that have been developed using the AOG  include LWC, LWClass and LWF [10].   
 In this paper we introduce a novel architecture for context-aware adaptive data stream 
mining that aims to provide real-time and dynamic strategies for adaptation and cost-
efficiency by factoring in current context, availability of resources and distribution of 
resources and processing. This approach will significantly contribute to a range of 
application areas such as the mobile workforce, Intelligent Transportation Systems and 
sensor network applications. The summary of our main contributions are as follows: 
• Incorporating context-awareness into data stream processing as a meta-level concept 

(i.e. situations) based on the Naïve Context Spaces (NCS) model;  
• Enabling real-time and cost-efficient adaptation by matching context changes to a set of 

pre-defined application-specific situations and responding to changes accordingly;  
• Introducing adaptation strategies with data stream processing parameters that are 

dynamically set/adjusted at run-time based on contextual changes, and shifting from 
purely reactive to proactive behavior; 

• Ensuring the continuity and consistency of running operations on resource-constrained 
devices;  
To explain different parts of our architecture throughout the course of the paper, we 

will use an example of a health monitoring application for heart patients. The details of the 
examples are only provided for the purpose of illustrating the points and may lack the 
necessary medical accuracy and correctness. Applications for healthcare biosensor 
networks are recently gaining popularity among people as they provide a convenient and 
safe way to monitor patients remotely and generate warnings and emergency calls. One of 
the main biosensors used for monitoring heart patients is ECG (Electrocardiogram) 
sensors that send heart beat rates as a continuous data stream to a PDA [11] or to a base 
station using an ISM band [12]. Data stream querying or mining needs to be performed on 
the ECG sensor streams locally on a mobile device or on a central workstation for 
monitoring and analyzing heart beats.  
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This paper is structured as follows: Section 2 provides a general view of our proposed 
architecture for context-aware adaptive data stream mining.  Section 3 discusses context 
and situation modeling and how situations are inferred. Section 4 focuses on adaptation 
strategy and correlation functions. Finally section 5 concludes the paper and discusses 
future work. 

2. An Architecture for Context-Aware Adaptive Data Stream Mining 

In this section, we introduce an architecture for context-aware adaptive data stream 
mining. The architecture consists of two parts as shown in Figure 1. The first part is a 
situation manager that provides context-awareness and includes components for context 
modeling and inference. The second part, strategy manager, is responsible for adjusting 
adaptation strategy parameters based on correlation functions and invoking strategies.  

 

Figure 1. A general architecture for context-aware adaptive data stream mining  
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3. Situation Manager 

The situation manager consists of three components: Situation repository, Situation 
Modeling and Situation Inference. These components work together to reason about the 
occurring situation based on the current context attribute values. Contextual information 
used for inferring situations may include sensed context collected from sensors, static 
context or internal context such as battery level of mobile devices.  

3.1 Situation Modeling  

We have based our context representation and modeling on the Naïve Context Spaces 
(NCS) Model [13, 14] but made changes to it to comply with our purpose. The NCS 
model and its extension in [15] are used as a powerful tool for reasoning about context and 
addressing uncertainties of sensed information. The core of the NCS model is the concept 
of situations. The NCS model represents contextual information as geometrical objects in 
multidimensional space called situations [13]. A situation space is a tuple of regions of 
attribute values related to a situation. Each region is a set of accepted values for an 
attribute based on a pre-defined predicate and each context state a collection of values of 
context attributes at the given time. 

The NCS model extends the definition of context by describing it as “the set of facts, 
assumptions and predictions along with methods/algorithms of interpreting/ discovering/ 
processing that information” [15].   

Using the NCS model, a situation occurs if every sensed context attribute value meets 
the predicate of the region set for the same type of attribute. We consider these situations 
as known situations. However, if the current context state does not match any of the pre-
defined situations, it indicates the occurrence of an unknown situation. Any unknown 
situation can be similar/dissimilar to the situations already defined.  

If we have an occurring situation 
iS  with a region of

jA , then for the sensed context 

attribute of t
ia , we will have 

j
t
i Aa ∈  , and   

value
t
ivalue AaA maxmin ≤≤  for continuous values. For 

any unknown situation there will be at least one context attribute value t
ia  that does not 

satisfy its associated region’s predicate.  
Considering our example for monitoring heart patients, from a list of related context 

attributes, we consider the following context attributes: temperature 
1a  (0-50), age 

2a (20-

120), location 
3a (HOME, NOT HOME), time 

4a (24 hours), heart rate 
5a (60-180), and 

Battery_level 
6a (0-100%).  Weights are values from 0 to 1 that represent the importance 

of each context attribute in a situation and can have the total value of 1 per situation. Table 
1 shows examples of pre-defined situations based on the aforementioned context 
attributes.  
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Table 1. Examples of situations  

Situation Context attributes Regions and their predicates Weight 

1S  

sleep 
1a  

2a  

3a  

4a  

5a  

6a  

 
<34 
<85 

HOME 
>10pm AND <7am 

<100 
 >80% 

 
0.1 
0.02 
0.03 
0.35 
0.4 
0.1 

2S  

Heat_stroke_
threat 

1a  

2a  

3a  

4a  

5a  

6a  

 
>34 
>75 

NOT HOME 
>11am AND <8pm 

>100 
>40% 

 
0.4 
0.15 
0.01 
0.01 
0.4 
0.03 

3S  

critical 
1a  

2a  

3a  

4a  

5a  

6a  

 
>34 
>70 

NOT HOME 
>4pm AND <6pm (rush hour) 

>100  
<40% 

 
0.2 
0.03 
0.05 
0.02 
0.6 
0.1 

3.2 Situation Repository  

The situation repository contains a set of pre-defined situations that specify the most 
important regions of context attributes for the application however any major changes in 
context attribute values will be modeled as a situation (known or unknown) and used for 
adaptation of strategy parameters.  

We have used XML schema (as shown in Figure 2) for defining our context model and 
XML documents for defining situations of different application domains.  

We use JAXB to convert an XML document to java classes based on our XML schema. 
XML is a powerful and easy tool for the sharing of data across different applications. 
Applications can express their domain-related situations as an XML document in a simple 
way without requiring the knowledge of the underlying situation model.  
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Figure 2. XML schema of the situation model  

3.3 Situation Inference  

Situation inference is here referred to as discovering which pre-defined situation matches 
the current context state (collection of context attributes). Situation inference finds a 
perfect match for known situations and the closest match for unknown situations.  
1. Let },...,,{ 21 nsituations SSSR =  be the set of pre-defined situations in the Situation 

Repository. 
2. Let context state },...,,{ 21

t
m

tt aaaC = be the set of context attributes’ values collected 

at time t.  
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3. We use the function perfectMatch ),( situations
t RC  to find a pre-defined situation that 

matches the current context state 
tC . If there is not a perfect match, we find the most 

similar situation 
similarS  using the State-Space difference space

state∆  measures [15]. The 

function f calculates the distance between the context attribute and the region of 
accepted values, and 

iâ  denotes the accepted region’s absolute size. 

 

)ˆ,,(.
1

i
r
i

n

i

s
ii

space
state aaafw∑

=

=∆ . (1) 

 
4. After computing the state-space difference for all the pre-defined situations, the 

situation with the least difference value is selected as the most similar situation. The 
difference between a sensed context attribute and its closest value in the accepted 
region )( r

i

s

i aa −  is later used for adjusting strategy parameters.  

3.3.1 K-Nearest neighbor algorithm 
To provide more accurate inference results we also perform the k-nearest neighbor 
algorithm to classify unknown situations based on the closest pre-defined situations. We 
first normalize instances and then measure Euclidean distance between the current context 
state and pre-defined situations to find the closet situation. We have tested the algorithm 
with k=1, k=3 and k=5, and the results are very similar. However, we intend to experiment 
this further with larger number of training examples and different application domains to 
determine the value of k. 

4. Strategy Manager 

To achieve real-time and dynamic adaptability, we use a set of parameterized adaptation 
strategies with their correlation functions. At run-time, the changes in context attribute 
values are used for adjusting parameter values in the corresponding strategy using its 
matching function. The strategy manager includes strategy repository, correlation 
functions and strategy invocation. 

4.1 Strategy Repository 

Every occurring situation may invoke a corresponding strategy to adjust the data stream 
mining parameters. We initially define a set of strategies with their parameters for each 
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pre-defined situation. Table 2 illustrates some examples of these strategies for our 
scenario.   

Table 2. Examples of strategies 

Strategies parameters Value Situations 

1Str  

 
 

2Str  

 

Increase  
 
 
Switch /change  

window size (sec) 
 
 
process 

min= +5 
max= +10 
(non-linear) 
 
lighter 
weight 
algorithm 

1S   Sleep 

3Str  

 
Decrease  Window size (sec) -6 

2S  heat_stroke 

4Str  

 
5Str  

 

Decrease   
 
send 
warning/emergency call 

Window size (sec) 
 
- 

-12 
 
- 

3S Critical 

4.2 Strategy Invocation 

Depending on which situation is currently occurring, a corresponding strategy is selected.  
1. Let },...,,{ 21 nstrategies StrStrStrR =  be the set of pre-defined strategies in the strategy 

repository. 
2. The strategy invocation 

irepositoryoccuring StrRSSI =),(  returns the adaptation strategy for 

the occurring situation. 
Adaptation parameters need to be adjusted properly before they could be applied to 

data stream mining tasks. We use correlation functions to adjust the value of parameters 
based on context attribute values. For a data stream process 

iP  running on a data stream 

iDS , the parameters that have been considered in resource-aware approaches [8, 16] 

include Input rate, output rate, time frame, procesesing rate of data per unit, total time, 
available memory, and sampling method. From the above parameters, those that can be 
adjusted by an adaptation strategy are: Input rate, output rate, time frame, and sampling 
method. 

In addition to the above parameters, we consider the parameter of location ds
iL  for data 

streams, device
iL  for the mobile device 

iD , and orithma
iL lg  for light weight algorithms that can 

be transferred from one location/device to another. The parameter of location addresses 
the aspect of mobility in devices and users as well as distribution of data streams and 
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algorithms on heterogeneous computing devices. Figure 3 illustrates adaptation of data 
stream processing. 

 

Figure 3. Adaptation of data stream processing 

4.3 Correlation Functions   

In order to make adjustments to strategy parameters, we use correlation functions that are 
pre-defined functions and vary from linear to non-linear. Correlation functions calculate 
strategy parameter values according to changes in context and the occurring situation. We 
envisage this concept by providing an example of context-aware adaptation from our 
scenario. In the heat-stroke-threat situation, the matching strategy reduces the window size 
from 30 sec (set value) to 24 sec (-6) as shown in Table 2. For a similar situation that 
meets all the accepted regions of the heat-stroke situation but its temperature value is 33 

(refer to Table 1), we use a linear function (i.e. window size = ax+b where x=
r
i
s
i

a

a
∆ and a 

and b are set values) to adjust the parameter of window size. We discuss this further in the 
following steps:  
1. Strategy invocation, 

irepositoryoccuring StrRSSI =),(  returns the corresponding strategy 
iStr  

for the current situation inferred by the situation manager. 
2. Let },...,,{ 21 nfffCF =  be a set of pre-defined correlation functions. 
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3. Let 
iiii appaf →),(  be a correlation function for 

iStr  that returns 
iap  the adjusted value 

of the parameter
ip based on the relationship of the context attribute

ia and the parameter 

ip  where 
ii Strp ∈  and 

occuringi Sa ∈ .  

4. The adjusted value 
iap of parameter 

ip  is then used in the strategy 
iStr . 

As an example of cost-efficient adaptation, we include a strategy for the sleep situation 
that uses a pre-defined non-linear function to increase the window size (i.e. reducing the 
reading rates of heart beat) based on the attribute of time during the night in order to save 
device resources. During the day (unknown situation), the window size is automatically 
adjusted according to the relationship of the time and window size in the sleep situation 
using a similar correlation function as shown in Figure 4. We consider sleep situation for 
patients who mainly suffer from heart irregularities under stress and tension that are more 
likely during the day.  

 

Figure 4.  Using a quadratic function for adjusting parameters for sleep situation 

5. Conclusion and Future Work 

In distributed and heterogeneous environments, data stream applications have to cope with 
high data stream rates and limited computing resources such as memory or battery. 
Moreover, these applications need to address mobility, disconnections and environmental 
changes that are the norm in ubiquitous computing environments. Integrating data stream 
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processing with context-awareness enables applications to adjust to changes and continue 
their operations as expected.  

In this paper we introduced a general architecture for context-aware adaptive data 
stream mining in heterogeneous computing environments. Our project is currently at the 
initial stages and our intention is to build a middleware based on the proposed architecture 
that will provide adaptation tasks and services on different data stream applications. While 
our current focus is on data stream mining, we see the potential for generalizing the 
approach for data stream processing including querying. Furthermore, there are still open 
issues in terms of distribution of data streams and mining algorithms that we intend to 
address in future work.   
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Abstract. As various users and applications require the distribution and sharing 
of information in XML documents, the need for an efficient secure access of 
XML data in a ubiquitous data stream environment has become very important. 
In this paper, we propose an efficient secure XML query processing method to 
solve the two problems by using role-based prime number labeling and XML 
fragmentation. A medical records XML document has the characteristic of an 
infinite addition in width rather than in depth because of the increment of 
patients. But a role-based prime number labeling method can fully manage the 
size of documents that increases to infinity and can minimize the maintenance 
cost caused by dynamic changes. Experimental evaluation clearly demonstrates 
that our approach is efficient and secure. 

1   Introduction 

XML [1] is recognized as a standard for information representation and data exchange, and the 
need for distribution and sharing in XML data basis is steadily increasing, making the efficient 
and secure access to XML data a very important issue. Despite this, relatively little work has 
been done to enforce access controls particularly for XML data in the case of query access. 
Moreover, the current trend in access control within the traditional environment has been a 
system-centric method under finite, persistent data environment and an access control under 
static data environment. However, more recently, access control policies have become 
increasingly needed in the continuous data stream [15] environment, and consequently, it has 
been accepted that the pre-existing access control methods do not meet these needs.  

This paper proposes an efficient secure XML query processing using role-based prime 
number labeling method with regard to characteristics of XML data stream under ubiquitous 
environment. The proposed method enables efficient and secure real-time processing of a query 
in a mobile terminal, applying the characteristics of XML data stream.  

2   Related Work 

The traditional XML access control enforcement mechanism [4-13] is a view-based 
enforcement mechanism. The semantics of access control to a user is a particular view of the 
documents determined by the relevant access control policies. It provides a useful algorithm for 
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computing the view using tree labeling. However, aside from its high cost and maintenance 
requirement, this algorithm is also not scalable for a large number of users.  

To overcome the view-based problems, M. Murata et al. [16] proposed the filtering method 
to filter out queries that do not satisfy access control policies. B. Luo et al. [17] took extra steps 
to rewrite queries in combination with related access control policies before passing these 
revised queries to the underlying XML query system for processing. However, the shared 
Nondeterministic Finite Automata (NFA) of access control rules is made by a user (or a user’s 
role). Thus, the shared NFA involves many unnecessary access control rules from the user’s 
query point of view, which further result in time-consuming decisions during which the user’s 
query should have already been accepted, denied, or rewritten.  

2.1   Access Control Policy 

General access control brings additional processing time. However, it is overlooked that such 
time spent on unnecessary access control rules could be reduced when access control rules in 
XML document basis should be expressed in XPath [2] and users request queries in XPath. In 
other words, an XML document can, depending on a user's query, be classified into these three 
parts: ancestor node, descendant node, and sibling node (following-sibling node and preceding-
sibling node). All access control rules needed, based on a user query, are just only access 
controls described in the ancestor node or descendant node. Access controls described in 
sibling nodes are unnecessary access control rules from the point of user query.  

An authorization defined by a security manager is called explicit and an authorization 
defined by the system, on the basis of an explicit authorization, is called implicit in the 
hierarchical data model [3]. An implicit authorization is used with an appropriate 'propagation 
policy' to benefit the advantage of storage. With an assumption that the optimized propagation 
policy varies under each of the different environments, 'most-specific-precedence' is generally 
used. On the other hand, 'denial-takes-precedence' is used to resolve a 'conflict' problem that 
could be derived from propagation policy by such implicit authorization. Since positive 
authorization and negative authorization are also used together, 'open policy', which authorizes 
a node that does not have explicit authorization, and 'closed policy', which rejects access, are 
used. The policies 'denial-takes-precedence' and 'closed policy' are generally used to ensure 
tighter data security [16]. 

2.2   XFrag  

The high practicality of mobile terminals and computing power is necessary for the feasibility 
of ubiquitous computing. The efficiency of memory, energy, and processing time is also 
especially needed. XML data has a hierarchical structure and the capacity might be very huge. 
A method that can take XML data into appropriate fragmentation so as to process it in pieces is 
consequently needed for the small memory of a mobile terminal to manage massive XML data 
[18, 19]. When XML streams data, which is generated under a sensor network, the data is 
structurally fragmented and transmitted and processed in XML piece stream, the efficiency of 
memory and the processing time of mobile terminals can be reconsidered. Moreover, when 
certain data is updated in an XML data stream, not the whole XML data but only the changed 
fragment needs to be transmitted, taking advantage of a reduced transmission cost.  

The recent Hole-Filler Model [20, 21] has been proposed as a method that fragments XML 
data structurally. XFrag [21] and XFPro [22] proposed an XML fragmentation processing 
method adopting the Hole-Filler Model. Nonetheless, this method has problems of late 
processing time and waste of memory space due to additional information for the Hole-Filler 
Model. The XFPro method has improved processing time by improving the pipeline, but is not 
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a solution for the problems that the Hole-Filler Model has. A medical records XML document 
[25] is shown in Fig. 1, and a fragmented XML document by the Hole-Filler Model [21] is 
shown in Fig. 2. 

 
Fig. 1. Medical Records XML Document 

 
 

 
Fig. 2. Fragmented XML Document by Hole-Filler Model 

2.3   Prime Number Labeling  

For the query processing of a dynamic XML document, a labeling technique, which is easily 
applied to insert and delete elements, is needed. Some existing labeling techniques lack the 
document updating capability and search whole XML document trees again to re-calculate the 
overall label of the node, thus bringing costs higher [23].  
    A new labeling technique has shown up as a consequence of the appearance of the dynamic 
XML document. This technique is typical of the prime number labeling scheme [24] applied to 
information which rarely affects other labels. This technique assigns a label for each node, a 
prime number, to represent the ancestor-descendant relation and is designed not to affect the 
label of other nodes when updating the document. However, since it searches a considerable 
range of the XML tree again and re-records updated order information during the updating 
process, it presents a higher updating cost.   

 2.4   Problems 

In sections 2.2 and 2.3, this paper pointed out the low practicability of existing access control 
under XML data streams. This paper proposes a fine-grained access control using role-based 

<stream:filler id=“1.1” tsid=“5”> 
<patient> 

    <pname> Mark </pname>     
    <sex> Male </sex> 
    <age> 56 </age>  
   ...  
  </patient> 
</stream:filler> 

<stream:filler id=“1” tsid=“1”> 
  <hospital> 
   <doctor> 
      <dname> David </dname> 
        <patients> 
          <stream:hole id=“1.1” tsid=“5”/>
   ... 
   </doctor> 
   ... 
  </hospital > 
</stream:filler> 

<stream:filler id=“1.1.1” tsid=“9”> 
  <disease> Cancer </disease> 
</stream:filler>  

Hospital 

Patient Doctor

Diagno

Date

DName

IM…………………………….  n 
GS 

Record 

DoctorDate 

PName Diagno

Patient 

Record 

Date 

Diagnosis DName

Patient 

PName 

'David' 'David' 'Mary'
'Mary' 

'Angela' ‘Mark'

Bill Bill Bill 

SexSexSex 

BP BP 
BP 

Record…………………. ∞ 

DName PName 

Doctor 
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prime number labeling method with regard to characteristics of XML data stream under a 
ubiquitous environment. The proposed method enables the efficient and secure real-time 
processing of a query in a mobile terminal, applying the characteristics of an XML data stream. 

3   Proposed Method 

The proposed environment of the role-based prime number labeling (RPNL) method is shown 
in Fig. 3. It depicts medical records that need accurate real-time query answers by checking the 
authority and the role of valid users via access control policy when a query is requested.  

3.1   Role-Based Prime Number Labeling 

The role-based prime number (RPN) labeling method is explained under a certain environment 
as in Fig. 3. First of all, considering the characteristics of the proposed environment, the 
fragmentation of the XML document in Fig. 1 is shown in Fig. 4. Problems such as low 
processing time and waste of memory space needed due to additional information for the Hole-
Filler Model in existing XFrag [21] is minimized as shown in Fig. 4. This means that 
information such as tag structure is no longer needed because the order of XML documents no 
longer need to be considered. 

 
Fig. 3. Query Processing of Mobile Terminal over XML Data Stream Environment 

 

 
Fig. 4. Partial Fragmentation in XML Data Stream 

<stream:filler id=“1”> 
  <hospital> 
   <deptname>GS</deptname> 
      <record> 
          <stream:hole id=“1.1”/> 
          <stream:hole id=“1.2”/> 
      …              
      </record> 
   </deptnamel > 
  <deptname>IM</deptname> 
      <record> 
          <stream:hole id=“2.1”/> 
          <stream:hole id=“2.2”/> 
      …              
      </record> 
   </deptnamel > 
  … 
  </hospital> 
</stream:filler> 

Data 
Sources 
in 
Sensor 
Network 

Query 
Request 

Query 
Registration 

Result

<stream:filler id=“1.1” > 
  <date> 05-09-2007 </date> 
  <doctor> 
    <diagnosis> cancer </diagnosis> 
    <dname> David </dname> 
  </doctor> 
  <bill>$40,000</bill> 
  <patient> 
    <pname> Mark </pname>     
    <sex> Male </sex> 
    <BT> 38 </BT>  
    <BP> 150 </BP> 
   ...  
  </patient> 
</stream:filler> 
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After a fragmenting procedure of XML data stream, proper role-based prime numbers are 
assigned to nodes of the medical records XML data stream of Fig. 1 as shown in Table 1. Since 
roles are limited in any organization, it is possible to represent roles with a prime number and a 
prime number is expansible. 

Table 1. Role-Based Prime Number Table 

Roles Role-Based Prime Number 

Patient 2 

Doctor 3 

Researcher 5 

Insurer 7 

 
Referring to Table 1, a role-based prime number labeling algorithm is performed in Fig. 5. 

(1) Level 1 : integer number assign to department (1~n)  

    - GS : 1, IM : 2  

(2) Level 2 :  2nd level assign to sub node of department record 

    - GS record’s sub node : (1.1), (1.2)...  

    - IM record’s sub node : (2.1), (2.2)...   

(3) Level 3 : 3rd level assign to role-based prime number in record’s sub nodes 

      [department].[record].[sub node]  

      - Date(*.*.210) : product of 2,3,5,7  

      - Doctor(*.*.30) : product of 2,3,5  

      - Diagnosis(*.*.30) : product of 2,3,5  

      - DName(*.*.6) : product of 2,3  

    - attribute value of terminal node : inherit role-based prime number of super node 

      - Patient(*.*.210) : product of 2,3,5,7  

      - Sex(*.*.210) : product of 2,3,5,7  

      - PName(*.*.42) : product of 2,3,7  

      - BP(*.*.30) : product of 2,3,5     

(4) Order : out of consideration  

Fig. 5. Role-Based Prime Number Labeling Algorithm 
 
XML document acquired through Fig. 5 is shown in Fig. 6-(a). 

Roles Role-Based Prime Number Label 

Date 1.1.210 

Doctor 1.1.30 

Bill 1.1.14 

Patient 1.1.210 

PName 1.1.42 

BP(Blood Pressure) 1.1.30 

(a) 
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(b) 

Fig. 6. (a) //GS/Record(1.1)’s RPN, (b) Medical Records XML Document's RPN 

3.2   Query Processing by RPN  

The proposed security system’s architecture is shown in Fig. 7. The query processing procedure 
in Fig. 7 can be considered in two steps. The role check is done in Step 1 using the 'Role-Based 
Prime Number Table' and final access authority is checked at Step 2 using the 'Role Privacy 
Table'. Once a query from a mobile terminal is registered, access authority is checked at Step 1 
by checking the prime number of the query terminal node. That is, access to Step 1 is permitted 
when the remainder of the RPN divided by the role of user becomes zero. Accessibility is 
finally checked at Step 2 referring to the 'Role Privacy Table' of Table 2. Moreover, as 
indicated in Section 2.1, query access is rejected by ‘denial-takes-precedence’[16]. Details will 
be verified in the following example 
 

 
Fig. 7. The Architecture of Proposed Security System 

 
• Example1 (predicate + positive access control + positive access control) 
(1) //record/patient[pname=Mark]  
(2) "David" with role of doctor requests a query  
- step1, terminal node pname=Mark’s label is verified : 1.1.42  
- David's role = doctor : 3  
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- 42%3=0, access is permitted  
- step2, Only 1.1.* and 1.2.* is permitted for David by 'Role Privacy Table'  
- finally, 1.1.42(//record/patient[pname=Mark]) access permitted 
- response to the query  
 
• Example 2 (positive access control + positive access control) 
(1) //record/bill  
(2) "AIG" with role of insurer requests a query  
- step1, terminal node bill’s label is verified : *.*.14  
- insurer's role : 3  
- 14%7=0, access is permitted  
- step2, Only 1.1.* and 1.2.* is permitted for AIG by 'Role Privacy Table'  
- finally, access of 1.1.14 and 2.1.14 is permitted  
- response to the query  
 
• Example 3 (predicate + positive access control + negative access control) 
(1) //record/patient[pname=Mark]  
(2) "Angela" with role of doctor requests a query  
- step1, terminal node pname=Mark’s is verified : 1.1.42  
- Angela's role = doctor : 3  
- 42%3=0, access is permitted  
- step2, Only 2.1.* is permitted for Angela by 'Role Privacy Table' 
- [pname=Mark] is 1.1.42, access rejected  
- access to step1 permitted, access to step2 rejected.  
- finally query access rejected  
 
• Example 4 (negative access control) 
(1) //record/patient/pname  
(2) one with role of researcher requests a query  
- step1, terminal node pname’s label is verified : *.*.42  
- researcher's role : 5  
- 42%5≠0, access is rejected  
- finally, query rejected  

Table 2.  Role Privacy Table 

Roles 
Dept. Records 

Patient Doctor Insurer Researcher 

1.1 Mark David ING x 

1.2 Mark David AIG x 

... ...   x 
1 

1.∞  ...  x 

2.1 Mary Angela AIG x 

... ...   x 2 

2.∞  ...  x 

... ...   ... x 

n n.∞    x 

 
As shown in Example 4, the proposed method has a strong point in that it processes the 

rejection to a query quickly.  
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4   Experimental Evaluation 

We used one PC with an Intel Pentium IV 3.0GHz CPU, with a main memory of 1GB using the 
MS Windows XP Professional OS. The Programming language used was JAVA (JDK1.5.0). 
Data for the experiment was used in the form of random medical records XML documents. 
Performance was compared mainly in two aspects. 

4.1   Experiment I: Accurate Detection of Rejection Query 

A rejection query is a user query that has to be rejected at all cases. Thirty intended rejection 
queries that suited each type of query were made up, and access control policy and actual 
number of detection of rejection queries was compared to this. The result is shown in Fig. 8. 
The experiment was conducted in three cases: "/" axis, "//" axis, and a case that has a predicate 
in a terminal node. The result demonstrates that the intended 30 rejection queries were detected 
100%.  
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Fig. 8. The Result of Detection for Rejection Query 

4.2   Experiment II: Processing Time of Query  

Average query processing time was compared in two cases: one applied the access control 
method proposed in this paper and the other did not. 

Average processing time was measured according to random samples of XPath query 
numbers (50, 100, 200, 300, and 500). Processing time is represented by an average time so that 
error of measurement can be minimized. Role-based prime number labeling time was not 
included in the response time in the proposed method because it is reconstructed when an 
update such as insertion or deletion of medical records XML documents is made. Referring to 
role prime number labeling which is generated before query process, and query processing time 
including the pure procedure of authority checking was measured. Nonetheless, the fact that 
referring to access control information does not affect the system performance was discovered. 
Fig. 9 shows the result. 
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Fig. 9. (a) The Processing Time of The Security Check on Queries, (b) The Overhead of The 
Security Check on Queries 

5   Conclusions 

Considering the efficiency of memory, energy, and processing time in the performance of 
mobile terminals frequently used under a ubiquitous environment, the processing of massive 
XML data stream is impossible. Moreover, it is more challenge to implement access control on 
mobile terminals under a ubiquitous environment. In addition to these, security becomes a very 
important issue due to the increasing number of users, and the increase of the amount of data 
being used. We proposed an efficient secure XML query processing method to solve those two 
problems by using role-based prime number labeling. Medical records XML documents, and 
the proposed environment, in this paper, have the characteristic of infinite additions in width 
rather than in depth because of the increment of patients. In this manner, the role-based prime 
number labeling method was able to fully manage the size of documents that increase to 
infinity and can minimize the maintenance cost caused by dynamic changes. While the tree 
structure of XML documents, in addition, should be searched more than twice for the 
application of security during query processing in previous works, one search is possible for 
real-time processing resulting in minimization of transmission cost through fragmentation of 
XML documents by the proposed method. In terms of security, system load is minimized and a 
perfect access control is implemented by application of two-step security. First of all, a query 
by a user who does not have a role that does not meet access control rules is promptly rejected 
applying the characteristics of the prime number and a stricter access control can be applied by 
the application of two-step security. However, it is a little burdensome to keep the role privacy 
table. Nonetheless, the experiment still showed the superiority of our proposed method.  
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