
THE 18TH EUROPEAN CONFERENCE ON MACHINE LEARNING
AND

THE 11TH EUROPEAN CONFERENCE ON PRINCIPLES AND PRACTICE
OF KNOWLEDGE DISCOVERY IN DATABASES

PROCEEDINGS OF THE

GRAPH LABELLING WORKSHOP
AND WEB SPAM CHALLENGE

GRAPHLAB’07

September 17, 2007

Warsaw, Poland

Editors:
Carlos Castillo
Yahoo! Research, Spain
Brian D. Davison
Lehigh University, USA
Ludovic Denoyer and Patrick Gallinari
LIP6 - University Pierre et Marie Curie, France

Preface

Topics

The workshop focus is on the Graph labelling problem. The goal of the graph labelling
task is to automatically label the nodes of a graph (with or without content information
on the nodes of the graph). The generic task has a lot of applications in many different
domains: Web spam detection, Social networks,.....

The scope of this workshop is the development of new models for graph labelling
and all the applications where the data can be represented as a graph :

– Generic graph labelling models
– Tree annotation models
– Models for large graph
– Web spam detection
– XML annotation
– Wiki, Blog, Web retrieval
– Web classification and clustering
– Social networks

The workshop particularly focuses on a key application which is Web Spam de-
tection where the goal is to label the nodes (the Web pages or Web hosts) of a graph
as spam or not spam. This workshop presents the results obtained by different research
teams on the second phase of the PASCAL WebSpam Challenge1.

The workshop has been opened to any submission concerning theoretical models or
large size applications of graph labelling with a particular focus on internet graphs.

Graph Labelling

Many domains and applications are concerned with complex data composed of ele-
mentary components linked according to some structural or logical organization. These
data are often described as a graph where nodes and links hold information. In Com-
puter Vision for example, a picture can be described by a graph which corresponds to
the organization of the different regions of the pictures – each node of the graph corre-
sponding to a region. In the text domain, the diffusion of new data formats like XML and
HTML has considerably changed the domains of Information Retrieval. On the Web,
documents are organized according to a graph structure where nodes correspond to the
Web page and edges correspond to the hyper links between the pages. Moreover, Web
pages are also structured documents containing both a content information and a logi-
cal information encoded by the HTML tags, and can be viewed as labelled trees. Other
application domains concerned with graph data include image processing, multimedia
(video), natural language processing, social networks, biology, etc. Handling structured

1 http://webspam.lip6.fr

data has become a main challenge for these domains and different communities have
been developing for some years their own methods for dealing with structured data. The
ML community should be a major actor in this area. Graph labelling which consists in
labelling all the vertices of a graph from a partial labelling of the graph vertices has
been identified as a generic ML problem with many fields of application.

Web Spam detection

Web spam detection is becoming a major target application for web search providers.
The Web contains numerous profit-seeking ventures that are attracted by the prospect
of reaching millions of users at a very low cost. There is an economic incentive for
manipulating search engine’s listings by creating pages that score high independently
of their real merit. In practice such manipulation is widespread, and in many cases,
successful.

Traditional IR methods assumed a controlled collection in which the authors of the
documents being indexed and retrieved had no knowledge of the IR system and no
intention of manipulating its behaviour. On Web-IR, these assumptions are no longer
valid, specially when searching at global scale.

Almost every IR algorithm is prone to manipulation in its pure form. A ranking
based purely on the vector space model, for instance, can be easily manipulated by
inserting many keywords in the document; a ranking based purely on counting citations
can be manipulated by creating many meaningless pages pointing to a target page, and
so on.

Of course, ideally the search engine administrators want to stay ahead of the spam-
mers in terms of ranking algorithms and detection methods. Fortunately, from the point
of view of the search engine, the goal is just to alter the economic balance for the
would-be spammer, not necessarily detecting 100% of the Web spam. If the search en-
gine can maintain the costs for the spammers consistently above their expected gain
from manipulating the ranking, it can really keep Web spam low.

The adversarial Information Retrieval on the Web (AIRWeb) series of workshops
was started in 2005 by the academic community. Many existing heuristics for detection
are often specific to a specific type of spam and can not be used if a new Web spam
technique appears. We need to propose new models able to learn to detect any type of
Web Spam and that can be adapted quickly to new unknown spam techniques. Machine
learning methods are the key to achieve this goal.

Carlos Castillo
Brian D. Davison
Ludovic Denoyer
Patrick Gallinari

Workshop Organization

Workshop Chairs

Carlos Castillo (Yahoo! Research)
Brian D. Davison (Lehigh University)
Ludovic Denoyer (LIP6 - University Pierre et Marie Curie)
Patrick Gallinari (LIP6 - University Pierre et Marie Curie)

ECML/PKDD Workshop Chair

Marzena Kryszkiewicz (Warsaw University of Technology)

Workshop Program Committee

Kumar Chellapilla
Brian D. Davison
Ludovic Denoyer
Dennis Fetterly
Patrick Gallinari
Remi Gilleron
Marco Gori

Mark Herbster
Massimiliano Pontil
Juho Rousu
John Shawe Taylor
Alessandro Sperduti
Tanguy Urvoy

Table of Contents

Semi-Supervised Learning: A Comparative Study for Web Spam and Telephone
User Churn . 1

András A. Benczúr and Károly Csalogány and László Lukács and Dávid
Siklósi

A Fast Method to Predict the Labeling of a Tree . 9
Sergio Rojas Galeano and Mark Herbster

A Semi-Supervised Approach for Web Spam Detection using Combinatorial Feature-
Fusion . 16

Ye Tian and Gary M. Weiss and Qiang Ma

Web Spam Challenge 2007 Track II - Secure Computing Corporation Research . . 24
Yuchun Tang and Yuanchen He and Sven Krasser and Paul Judge

Semi-supervised classification with hyperlinks . 32
Jacob Abernethy and Olivier Chapelle

Webspam detection via Semi-Supervised Graph Partitioning 33
Chris Biemann and Hans Friedrich Witschel

SpamChallenge 2007 - Track II: France Telecom RD Submissions 35
Pascal Filoche and Tanguy Urvoy and Marc Boullé

Author Index . 37

Semi-Supervised Learning: A Comparative Study for
Web Spam and Telephone User Churn?

András A. Benczúr Károly Csalogány László Lukács Dávid Siklósi

Informatics Laboratory
Computer and Automation Research Institute

Hungarian Academy of Sciences
11 Lagymanyosi u, H-1111 Budapest

and
Eötvös University, Budapest

{benczur, cskaresz, lacko, sdavid}@ilab.sztaki.hu
http://datamining.sztaki.hu/

Abstract. We compare a wide range of semi-supervised learning techniques
both for Web spam filtering and for telephone user churn classification. Semi-
supervised learning has the assumption that the label of a node in a graph is
similar to those of its neighbors. In this paper we measure this phenomenon both
for Web spam and telco churn. We conclude that spam is often linked to spam
while honest pages are linked to honest ones; similarly churn occurs in bursts in
groups of a social network.

1 Introduction

Semi-supervised learning, a new field of machine learning surveyed e.g. in [27] also
exploits information from unlabeled data for learning. We focus on the applicability of
classifying Web spam and telephone churn, i.e. users who cancel their telephone line.
Our assumption is that the label (spam and churned, respectively) of a node in a graph
is similar to those of its neighbors.

We compare various means of stacked graphical learning, a meta-learning scheme
in which a base learner is augmented by expanding the features of one node with pre-
dictions on other related nodes in a graph is introduced recently by Kou and Cohen
[15]. The methodology is used with success for Web spam detection in [5]: they use the
average label of the neighbors as a new feature for the classifier.

We run our tests on the Web Spam Challenge datasets. The baseline decision tree
utilized all graph based features related to a node (i.e. features related to the “home
page” or the “maximum PageRank node within site” are not computed) [5] and a Naive
Bayes classifier of the machine learning toolkit Weka [24] over the content based fea-
tures of the Web Spam Challenge Phases I and II data. Depending on the data set the
best forms of graph stacking improve the F-measure by 1-10% as shown in Section 3.2.

The other data set we use for evaluating and comparing graph labeling methods
is a telephone call graph, a data type that appears less in the publications of the data
? Support from a Yahoo! Faculty Research Grant, projects NKFP-2/0024/2005 and NKFP-2004

Language Miner http://nyelvbanyasz.sztaki.hu.

1

mining community. Closely related to our work are the churn prediction results by ma-
chine learning methods on real data [23, 1, etc.]; these results however do not exploit
neighborhood information embedded in the call graph.

The telephone call graph is formed from the call detail record, a log of all calls
within a time period including caller and callee id, duration, cost and time stamp. The
vertex set consists of all nodes that appear at least once as caller or calle; over this set
calls form directed edges from caller to callee.

Churn classification uses customer information (price package, time since in ser-
vice etc.) as well as traffic aggregates in various call zones and directions. We use one
year call detail record and all customer information up to a given time; the classifica-
tion target consists of users who leave service in the fourth month “in future” (in a time
period with no information available for the classifier). Due to the sparsity of positive
instances (below 1% churn in a month) and a large amount of churn explained by ex-
ternal reasons such as the customer moves churn classification is a hard task; baseline
reaches F = 0.08 and this is improved to 0.1 by stacked graphical learning. In the
industrial practice the goodness of the churn classification is measured by the recall of
the top list of 10% of the customers, i.e. they are willing to involve a maximum of 10%
of their customers in direct marketing campaigns and want to maximize the potential
churn reached. In this sense our baseline classification has a recall of 40.8%, improved
to 47% by stacked graphical learning.

In this paper we concentrate on spreading trust (or no churn) and distrust (churn)
information from known nodes with the help of hyperlink based similarity measures.
Our main goal is to identify features based on similarities to known honest and spam
pages that can be used to classify unknown pages. We propose a set of spam and churn
classification methods that combine graph based similarity to labeled nodes [2] with
trust and distrust propagation both backward and forward. For example given a link
farm alliance [10] with one known target labeled as spam, similarity based features will
automatically label other targets as spam as well.

Our stacked graphical learning algorithms generate features by averaging known
and predicted labels for similar nodes of the graph by the measures in Section 2.1. We
compare various similarity measures, including simple and multi-step neighborhood,
co-citation, cosine and Jaccard similarity of the neighborhood as well as their multi-
step variants [8] described in detail in Section 2. For the purposes of evaluation we
consider these algorithms separately, by performing one classification experiment for
each feature.

1.1 Related results

Identifying and preventing spam is cited as one of the top challenges in web search en-
gines in [13]. major search engines incorporate anchor text and link analysis algorithms
into their ranking schemes, Web spam appears in sophisticated forms that manipulate
content as well as linkage [11]. Spam hunters use a variety of both content [7, 19] and
link [12, 6, 25, 3, 2] based features to detect Web spam; a recent measurement of their
combination appears in [5].

Recently several results has appeared that apply rank propagation to extend initial
trust or distrust judgments over a small set of seed pages or sites to the entire web, such

2

as trust [12, 26], distrust [20, 6] propagation in the neighborhood or their combination
[25] as well as graph based similarity measures [2]. These methods are either based
on propagating trust forward or distrust backwards along the hyperlinks based on the
idea that honest pages predominantly point to honest ones, or, stated the other way,
spam pages are backlinked only by spam pages. Trust and distrust propagation in trust
networks originates in Guha et al. [9] for trust networks; Wu et al. [25] is the first to
show its applicability for Web spam classification.

Trust and distrust propagation are in fact forms of semi-supervised learning sur-
veyed by Zhu [27], a methodology to exploit unlabeled instances in supervised clas-
sification. Stacked graphical learning introduced by Kou and Cohen [15] is a simple
implementation that outperforms the computationally expensive variants [15, 5].

Identifying spam pages is somewhat analogous to classifying web documents into
multiple topics. Several results [21, and the references therein] demonstrate that classi-
fication accuracy can be significantly increased by taking into account the class labels
assigned to neighboring nodes. In accordance with [2], Qi and Davison [21] found that
most of the improvement comes from the neighborhood defined by co-citation.

Several link-based algorithms were designed to evaluate node-to-node similarities
in networks that can be used to give alternate, similarity based weights to node pairs.
We refer to [16] for an exhaustive list of the available methods ranging from co-citation
to more complex measures such as max-flow/min-cut-based similarities of [17] in the
vicinity graph of the query. Co-citation is in fact used in [9] as an elementary step of
trust propagation. Another method [18] penalizes the biconnected component of a spam
page in a subgraph obtained by backward distrust propagation.

2 The stacked graphical learning framework

2.1 Feature generation

For a given unknown node u and edge weight function w (that may be in or out-degree,
cocitation, PageRank etc.), our algorithm selects the k largest weight neighbors of u to
generate a new feature based on the known spam and honest hosts in this set. As in [2]
we extract four different features from this set of size k or possibly less if u has less
than k neighbors. Each element v is either classified as spam with weight p(v) or else
labeled spam or nonspam; in these cases we let p(v) be 0 and 1, respectively. Let s and
h be the sum of p(v) and 1−p(v) in the set; remember s+h < k is possible. We define
a weighted version s∗ and h∗ as the sum of w(uv) · p(v) and w(uv) · (1− p(v)).

We define our features as follows.

– Spam Ratio (SR): fraction of the number of spam within labeled spam and honest
pages, s/(s + h).

– Spam over Non-spam (SON): number of spam divided by number of honest pages
in the top list, s/h.

– Spam Value Ratio (SVR): sum of the similarity values of spam pages divided by
the total similarity value of labeled spam and honest pages under the appropriate
similarity function, s∗/(s∗ + h∗).

3

– Spam Value over Non-spam Value (SVONV): similarity value sum for spam di-
vided by same for honest, s∗/h∗.

In most of the experiments we use SVR that also performed best in [2]; a small com-
parison is made in Section 3.2.

We add the new feature defined by either of the above to the existing ones and repeat
the classification process with the extended feature set. Since the features are unstable
if the neighborhood N(u) is small, we also define versions SR’, SON’, SVR’, SVONV’
by regressing towards the undecided 1/2 or 1 value:

SR′ = 1/2+(SR−1/2)·(1−1/
√
|N(u)|); SON′ = 1+(SON−1)·(1−1/

√
|N(u)|).

2.2 Direction of propagation

We may use both the input directed graph, its transpose by changing the direction of
each edge, or the undirected version arising as the union of the previous two graphs.
We will refer to the three variants as directed, reversed and undirected versions. For
an edge weight function d : V × V → R we use d−(u, v) = d(v, u) for the reversed
and d± = d + d− for the undirected version. We extend this notion for an arbitrary
similarity measure sim(u, v) computed over edge weights d and compute sim−(u, v)
over d− and sim±(u, v) over d±.

Performance of directed, reversed or undirected varies problem by problem: the
templatic nature of a Web spam farm is best characterized by similarity of out-links
(directed), honest pages have incoming links from honest ones (reversed) and finally
similarity in a telephone call graph is best characterized by the undirected graph since
communication is typically bidirectional regardless of the actual caller–callee direction.

2.3 Multi-step propagation

There are several variants of weighting neighbors at distance k. We may consider reach-
ability and exact reachability as dk(u, v)reach = 1 if v is reachable from u by a walk
over k edges, 0 otherwise, respectively dk

exact(u, v) = 1 if v is reachable from u in ex-
actly k steps and over no shorter paths, 0 otherwise. We may take the number and the
weighted number of such walks: dk

num(u, v) is the number of walks over k edges that
reach from u to v and dk

wnum(u, v) is the probability of reaching v when starting at u and
at each step choosing a random neighbor with probability proportional to the outgoing
edge weights. The main multi-step feature we use is PPR(u), PageRank personalized
to p(v), the estimated spamicity of node v as in Section 2.1:

PPR(u) =
∑

k

c(1− c)k
∑

v

p(v) · dk
wnum(u, v).

2.4 Cocitation, Jaccard and cosine

The cocitation coc(u, v) is defined as the number of common in-neighbors of u and
v. This measure turned out most effective for Web spam classification [2]. By the no-
tation of Section 2.2 coc−(u, v) denotes bibliographic coupling (nodes pointed to by

4

F-measure graph stacking
×1000 none d coc coc− coc± Jac Jac− Jac± cosine PPR
iterations 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Web Spam I 689 695 707 709 669 677 722 724 715 703 689 690 679 680 698 699 715 719
Web Spam II
small, text

592 589 601 605 598 599 599 601 590 590 592 594 593 595 600 601 599 600

Web Spam II
small, link

762 752 788 793 774 765 748 738 756 762 782 777 766 756 760 760 731 737

Web Spam II
large, link

939 962 983 984 987 988 983 984 984 985 975 976 961 953 982 982 958 960

Churn 086 102 063 052 079 088 102 083 067 065 059 066 097 089 084 065 092 087
Churn, nonchurn
sampled

161 155 141 142 197 200 114 121 254 265 153 147 175 158 267 280 277 257

Table 1. 1000 times the F-measure shown for different data sets and edge weights.

both u and v) and coc±(u, v) is the undirected cocitation. We may also use cocitation
downweighted by degree, coc(u, v)/d(u) · d(v).

The Jaccard and cosine similarity coefficients are useful for finding important con-
nections and ignoring “accidental” unimportant connections. The Jaccard coefficient
Jac(u, v) is the ratio of common neighbors within all neighbors. The coefficient has
variants that use the reversed or undirected graphs. For a weighted graph we may di-
vide the total weight to common neighbors by the total weight of edges from u and v.
This measure performs poor if for example edges ux and vy have low weight while uy
and vx have very high since the Jaccard coefficient is high while the actual similarity is
very low.

Cosine similarity fixes the above problem of the Jaccard coefficient. We consider the
row of the adjacency matrix corresponding to node u as vector u. The cosine similarity
of nodes u and v is simply cos(u, v) = uT v. We may similarly define cos−(u, v) over
the transpose matrix and cos±(u, v) over the sum.

Since filling a quadratic size matrix is infeasible, we calculate Jaccard and cosine
only for existing edges. The resulting scheme downweights unimportant edges but is
unable to add “uncaught contacts” to the network. It is possible to find all pairs with
weight above a given threshold by fingerprinting techniques; we leave performance tests
for future work.

3 Experiments

3.1 Data sets

For Web spam classification we follow the same methodology as Castillo et al. [5]. We
use the Web Spam Challenge Phase I dataset WEBSPAM-UK-2006 [4] that consists of
71% of the hosts classified as normal, 25% as spam and the remainder 4% as undecided
as well as the Phase II data set WEBSPAM-LIP6-2006. In this preliminary experiment
we consider three tasks. First we use Phase I data (the Domain Or Two Humans clas-
sification that introduces additional nonspam domains and gives 10% spam among the
5622 labeled sites) with the publicly available features of [5] and then classify by the

5

d coc coc± Jac Jac± cosine PPR
SON’ 602 615 602 600 599 599 599
SON 600 614 602 599 599 599 598
SR’ 603 618 609 611 606 610 608
SR 601 619 611 610 605 610 603
SVONV’ 602 607 602 598 596 597 599
SVONV 600 606 602 598 596 598 599
SVR’ 603 618 609 603 606 604 600
SVR 601 619 611 600 604 601 600 0.6

 0.602

 0.604

 0.606

 0.608

 0.61

 0.612

 0.614

 0.616

 0.618

 0.62

 0 1000 2000 3000 4000 5000 6000

cocit
jaccard
cosine

Table 2. Left: 1000 times the F-measure shown for different data weights and feature generation
methods. Right: the effect of the top list size for SVR.

cost sensitive C4.5 implementation of the machine learning toolkit Weka [24] with bag-
ging. Then we use the Phase II data set features and use the Naive Bayes classifier of
Weka. Finally we compute all graph based features of [5] for the Phase II data graph
and classify by C4.5 again. We combined the text and graph classifiers by SVM.

For churn classification we use data from a small Hungarian landline telephone
service provider. We form features based on aggregated call cost duration in different
cost segments, including daytime and off-peak, weekday and weekend as well as local
and different long-distance call volumes. Part of the users perform calls via an alternate
provider by dialing a prefix; these calls are aggregated similarly for each user. We also
use the pricing package information that also includes a distinction of company and
family lines as well as the start date of the service usage. For a time range of 12 months,
after aggregating calls between the same pairs of callers we obtained a graph with n =
66, 000 nodes and m = 1, 360, 000 directed edges.

We use the cost sensitive C4.5 implementation of the machine learning toolkit Weka
[24] with bagging. Since the running times on the full data set were over 10 hours we
also compiled a smaller data set where a random sample of non-churned users were
dropped, resulting in 7, 151 users but we kept the entire graph.

3.2 Classification results

Table 1 shows the first three digits of the F-measure for the best selected settings, with
the best result in bold. For the Web spam data we measure over the testing labels while
for churn we use 10-fold crossvalidation. Since the text and link SVM-combined Web
Spam II experiment is computationally very expensive, we only computed the base and
the simple neighbor methods that give 0.738 and improve to 0.748 for the small and
0.338 vs. 0.449 for the large graph.

In Table 2 we can see that the difference between the feature generation methods
of Section 2.1 are minor and the length of the top list has little effect in the range of
k between 100 and 1000, although for cocitation the very long and for others the very
short lists deteriorate the performance. Results are shown for the text features of the
small Phase II graph and single-iteration stacked graphical classification.

6

4 Conclusion and Future Work

We presented Web spam and landline telephone churn classification measurements over
the Web Spam Challenge Phase II and a small Hungarian landline telephone provider
year 2005 datasets. Our experiments demonstrated that stacked graphical learning in
combination with graph node similarity methods improve classification accuracy in
both cases. Due to the large number of possible feature generation methods the results
are by no means complete but show a very good performance of co-citation and little
actual use of the neighborhood beyond two steps in the graph.

For future work we plan testing more complex multi-step variants of cocitation and
the Jaccard coefficient. Jeh and Widom [14] define SimRank as a multi-step generaliza-
tion of downweighted cocitation. In an alternate formulation [22] the k-step SimRank
Sim(k)

v1,v2
equals the total weight of pairs of walks with length k′ ≤ k that both end at u

and one of them comes from v1 while the other one from v2. The weight of the pair of
walks is the expected (1− c) meeting distance as defined in [14]; notice we get down-
weighted cocitation if k = 1. Computing the full SimRank matrix requires quadratic
space; we may use the algorithm of [22] instead. Finally Fogaras and Rácz [8] describe
XJaccard as the weighted sum of Jaccard coefficients of the distance k neighborhoods
and give an efficient randomized approximation algorithm to compute it.

References

1. W.-H. Au, K. C. C. Chan, and X. Yao. A novel evolutionary data mining algorithm with
applications to churn prediction. IEEE Trans. Evolutionary Computation, 7(6):532–545,
2003.

2. A. A. Benczúr, K. Csalogány, and T. Sarlós. Link-based similarity search to fight web spam.
In Proceedings of the 2nd International Workshop on Adversarial Information Retrieval on
the Web (AIRWeb), held in conjunction with SIGIR2006, 2006.

3. A. A. Benczúr, K. Csalogány, T. Sarlós, and M. Uher. SpamRank – Fully automatic link spam
detection. In Proceedings of the 1st International Workshop on Adversarial Information
Retrieval on the Web (AIRWeb), held in conjunction with WWW2005, 2005. To appear in
Information Retrieval.

4. C. Castillo, D. Donato, L. Becchetti, P. Boldi, S. Leonardi, M. Santini, and S. Vigna. A
reference collection for web spam. SIGIR Forum, 40(2):11–24, December 2006.

5. C. Castillo, D. Donato, A. Gionis, V. Murdock, and F. Silvestri. Know your neighbors: Web
spam detection using the web topology. Technical report, DELIS – Dynamically Evolving,
Large-Scale Information Systems, 2006.

6. I. Drost and T. Scheffer. Thwarting the nigritude ultramarine: Learning to identify link spam.
In Proceedings of the 16th European Conference on Machine Learning (ECML), volume
3720 of Lecture Notes in Artificial Intelligence, pages 233–243, Porto, Portugal, 2005.

7. D. Fetterly, M. Manasse, and M. Najork. Spam, damn spam, and statistics – Using statistical
analysis to locate spam web pages. In Proceedings of the 7th International Workshop on the
Web and Databases (WebDB), pages 1–6, Paris, France, 2004.

8. D. Fogaras and B. Rácz. Scaling link-based similarity search. In Proceedings of the 14th
World Wide Web Conference (WWW), pages 641–650, Chiba, Japan, 2005.

9. R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and distrust. In
Proceedings of the 13th International World Wide Web Conference (WWW), pages 403–412,
2004.

7

10. Z. Gyöngyi and H. Garcia-Molina. Link spam alliances. In Proceedings of the 31st Interna-
tional Conference on Very Large Data Bases (VLDB), Trondheim, Norway, 2005.

11. Z. Gyöngyi and H. Garcia-Molina. Web spam taxonomy. In Proceedings of the 1st Interna-
tional Workshop on Adversarial Information Retrieval on the Web (AIRWeb), Chiba, Japan,
2005.

12. Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Combating web spam with TrustRank. In
Proceedings of the 30th International Conference on Very Large Data Bases (VLDB), pages
576–587, Toronto, Canada, 2004.

13. M. R. Henzinger, R. Motwani, and C. Silverstein. Challenges in web search engines. SIGIR
Forum, 36(2):11–22, 2002.

14. G. Jeh and J. Widom. SimRank: A measure of structural-context similarity. In Proceed-
ings of the 8th ACM International Conference on Knowledge Discovery and Data Mining
(SIGKDD), pages 538–543, 2002.

15. Z. Kou and W. W. Cohen. Stacked graphical models for efficient inference in markov random
fields. In SDM 07, 2007.

16. D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. In
Proceedings of the 12th Conference on Information and Knowledge Management (CIKM),
pages 556–559, 2003.

17. W. Lu, J. Janssen, E. Milios, and N. Japkowicz. Node similarity in networked information
spaces. In Proceedings of the Conference of the Centre for Advanced Studies on Collabora-
tive research, page 11, 2001.

18. P. T. Metaxas and J. Destefano. Web spam, propaganda and trust. In Proceedings of the First
International Workshop on Adversarial Information Retrieval on the Web, 2005.

19. A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly. Detecting spam web pages through
content analysis. In Proceedings of the 15th International World Wide Web Conference
(WWW), pages 83–92, Edinburgh, Scotland, 2006.

20. PR10.info. BadRank as the opposite of PageRank, 2004.
http://en.pr10.info/pagerank0-badrank/ (visited June 27th, 2005).

21. X. Qi and B. D. Davison. Knowing a web page by the company it keeps. In Proceedings of
the 15th Conference on Information and Knowledge Management (CIKM), 2006.

22. T. Sarlós, A. A. Benczúr, K. Csalogány, D. Fogaras, and B. Rácz. To randomize or not
to randomize: Space optimal summaries for hyperlink analysis. In Proceedings of the 15th
International World Wide Web Conference (WWW), pages 297–306, 2006. Full version avail-
able at http://www.ilab.sztaki.hu/websearch/Publications/.

23. C.-P. Wei and I.-T. Chiu. Turning telecommunications call details to churn prediction: a data
mining approach. Expert Syst. Appl., 23(2):103–112, 2002.

24. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, second edition,
June 2005.

25. B. Wu, V. Goel, and B. D. Davison. Propagating trust and distrust to demote web spam. In
Workshop on Models of Trust for the Web, Edinburgh, Scotland, 2006.

26. B. Wu, V. Goel, and B. D. Davison. Topical TrustRank: Using topicality to combat web
spam. In Proceedings of the 15th International World Wide Web Conference (WWW), Edin-
burgh, Scotland, 2006.

27. X. Zhu. Semi-supervised learning literature survey. Technical Report 1530, Computer Sci-
ences, University of Wisconsin-Madison, 2005.

8

A Fast Method to Predict the Labeling of a Tree

Sergio Rojas Galeano and Mark Herbster

1 Department of Computer Science
University College London

Gower Street, London WC1E 6BT, UK
{M.Herbster

2 S.Rojas}@cs.ucl.ac.uk

Abstract. Given an n vertex weighted tree with (structural) diameter
SG and a set of ` vertices we give a method to compute the correspond-
ing ` × ` Gram matrix of the pseudoinverse of the graph Laplacian in
O(n+ `2SG) time. We discuss the application of this method to predict-
ing the labeling of a graph. Preliminary experimental results on a digit
classification task are given.

1 Introduction

Classification methods which rely upon the graph Laplacian (see [2, 10, 5] and
references therein), have proven to be useful for transductive and semi-supervised
learning. A key insight of these methods is that unlabeled data can be used to
improve the performance of supervised learners. These methods reduce to the
problem of labeling a graph whose vertices are associated to the data points and
the edges to the similarity between pairs of data points. The labeling of the graph
can be achieved either in a batch [2, 10] or in a online manner [5]. These methods
can all be interpreted as different kernel methods: ridge regression in the case
of [2], minimal semi-norm interpolation in [10] or the perceptron algorithm in [5].
Therefore, in all cases an important preprocessing step is the computation of the
kernel3, which is the pseudoinverse of the graph Laplacian or a matrix related to
it [5]. This computation usually scales cubically with the quantity of unlabeled
data, which may prevent the use of these methods on large graphs. In the case of
unbalanced bipartite graphs [7] presents a method which significantly improves
the computation time of the pseudoinverse. Finally [3] presents a non-Laplacian-
based method for predicting the labeling of tree based on computing the exact
probabilities of a Markov random field.

In this paper, we are concerned with the practical scenario in which only a
relatively small number of vertices of a large graph need to be labeled. Specifi-
cally, we divide the vertices into three sets, V (`), V (p), and V (u), which are the
set of labeled vertices, the set of unlabeled vertices for which we will give predic-
tions, and the set of remaining unlabeled vertices (no predictions is required on
them), respectively. Therefore, if V (n) denotes the set of n vertices of the graph,

3 Computation in the primal is also possible with a comparable time expenditure.

9

we have that n = `+u+p, where ` is number of labeled vertices, p is the number
of predictive unlabeled vertices and u is the number of nonpredictive unlabeled
vertices. Typically ` is much smaller than both p and u, and p is much smaller
than u.

In this paper, we propose a technique to improve the computational complex-
ity of Laplacian-based learning methods. The method is based on approximating
the original graph with a tree. Computationally our method requires an O(n)
initialization step and after that any element of the pseudoinverse of the Lapla-
cian of a tree may be computed in O(SG) time, where SG is the structural
diameter of the tree G. The pseudoinverse of the Laplacian may then be used
as a kernel [6, 5] for a variety label prediction methods. We consider as specific
examples the kernel perceptron and ridge regression (see e.g., [9]). Thus if we
are given an n vertex tree and assume that the time to compute the inverse
of a matrix is cubic in the dimension then with ` labeled vertices and p pre-
dictive vertices the total time required to predict with the kernel perceptron is
O(n+`2SG+p`SG) and with kernel ridge regression is O(n+`2SG+`3 +p`SG).
The promise of our technique is that if (l + p + SG) � n and a tree is given, our
method requires O(n) time versus O(n3) for standard methods and when only
a similarity function on the data is given then our method requires O(n2) time
and O(n) space.

2 Preliminairies

In this paper any graph G is assumed connected, to have n vertices, and to have
edge weights. The set of vertices of G is denoted V = {1, . . . , n}. Let A denote
the n× n symmetric nonnegative weight matrix of the graph such that Aij ≥ 0,
and define the edge set E(G) := {(i, j) : 0 < Aij , i < j}. We say that G is a
tree if it is connected and has n− 1 edges. The graph Laplacian G is the n× n
matrix defined as

G := D−A,

where D = diag(d1, . . . , dn) and di is the weighted degree of vertex i, di =∑n
j=1 Aij . The Laplacian is positive semidefinite and induces the semi-norm

‖w‖2G := w>Gw =
∑

(i,j)∈E(G)

Aij(wi − wj)2. (1)

The reproducing kernel [1] associated with the above semi-norm is G+, where
“+” denotes pseudoinverse (see [6, 5] for further details). As the graph is con-
nected, it follows from equation (1) that the null space of G is spanned by the
constant vector 1 only. The weighted graph may be seen as a network of resis-
tors where edge (i, j) is a resistor with resistance πij = A−1

ij . Then the effective
resistance rG(i, j) may be defined as the resistance measured between vertex
i and j in this network and may be calculated using Kirchoff’s circuit laws or
directly from G+ using [8]

rG(i, j) = G+
ii + G+

jj − 2G+
ij . (2)

10

The effective resistance is a metric distance on the graph [8] as well as the
geodesic dG and structural sG distances. The structural (geodesic) distance be-
tween vertices i, j ∈ V is

sG(i, j) := min{|P (i, j)| : P (i, j) ∈ P} ,

dG(i, j) := min{
∑

(p,q)∈P(i,j)

πpq : P (i, j) ∈ P} ,

where P is the set of all paths in G and P (i, j) is the set of edges in a particular
path from i to j. The diameter is the maximum distance between any two points
on the graph hence the resistance, structural, and, geodesic diameter are

RG = max
i,j∈V

rG(i, j) , SG = max
i,j∈V

sG(i, j) , and DG = max
i,j∈V

dG(i, j) ,

respectively.

3 Computing the Pseudoinverse of a Tree Quickly

In the following we give our method to compute the pseudoinverse of a tree.
The principle of the method is that when a graph is a tree, there is a unique
path between any two vertices hence the effective resistance is simply the sum
of resistances along that path (see for example [8, 5]) and hence on trees the
geodesic distance is equivalent to the resistance distance. We now additionally
assume that G is a tree, the root vertex of the tree is indexed as 1. The parent
of vertex i is denoted ↑(i) while the children of i are ↓(i) and the descendants
of i are

↓*(i) :=

{
↓(i) ∪

∑
j∈↓(i) ↓*(j) if ↓(i) 6= ∅

∅ if ↓(i) = ∅
.

We define Z :=
∑n

i=1G
+
ii , R(i) :=

∑
j 6=i rG(i, j) and R :=

∑n
i=1R(i). In

equations (3) and (5) we give the formulas which we use to compute G+.The
off-diagonal elements are computed with

G+
ij =

G+
ii + G+

jj − rG(i, j)
2

. (3)

as follows from (2). Observe that

G+
ii = −

∑
j 6=i

G+
ij (4)

since the null space of G is spanned by the constant vector 1. Thus we may
substitute (3) into (4) to obtain

G+
ii = −1

2

(n− 1)G+
ii +

∑
j 6=i

G+
jj −

∑
j 6=i

rG(i, j)

 ,

11

thus

G+
ii =

R(i)− Z

n
and Z =

R

2n
. (5)

We now describe a method to initially compute G+
ii , R(i), i = 1, . . . , n, R and Z

in O(n) time and then with these precomputed values we may compute entries
as needed in G+

ij from equation (3) by computing rG(i, j) in O(SG) time. The
number of descendents of i (including i) is κ(i) = 1 + | ↓*(i)|, while T (i) (resp.
S(i)) is the sum of the resistances of vertex i to each descendant (resp. non-
descendent), hence,

T (i) =
∑

j∈↓*(i)

rG(i, j) , S(i) =
∑

j 6∈↓*(i)

rG(i, j) .

We compute κ(i) and T (i) (for i = 1, . . . , n) with leaves-to-root recursions while
we compute S(i) with a root-to-leaves recursion. These 3n quantities are com-
puted with the following recursions,

κ(i) :=

{
1 +

∑
j∈↓(i) κ(j) ↓(i) 6= ∅

1 ↓(i) = ∅
,

and

T (i) :=

{∑
j∈↓(i)(T (j) + πijκ(j)) ↓(i) 6= ∅

0 ↓(i) = ∅

by computing κ(1) then T (1) and caching the intermediate values. We observe
that R(1) = T (1). We now descend the tree caching each calculated

S(i) :=

{
S(↑(i)) + T (↑(i))− T (i) + (n− 2κ(i))πi ↑(i) i 6= 1
0 i = 1

.

Now as R(i) = S(i) + T (i), the diagonal of G+ is calculated from (5) with a
cumulative computation time of O(n). We now observe to compute G+

ij (see
Equation (3)) we need rG(i, j) which is simply the sum of resistances along the
path from i to j, this path may be computing by separately computing the path
from i–to–1 and j–to–1 (O(SG) time) and summing the resistances along each
edge that is either in i–to–1 or j–to–1 but not both. In the full paper we will show
that if we need to calculate an `× ` submatrix of G+ this may be accomplished
in O(n + `2 + `SG) time.

4 Tree Construction

In the previous discussion, we have considered that a tree has already been given.
In the following, we assume that a graph G or a similarity function is given and
the aim is to construct an approximating tree. We will consider both the mini-
mum spanning tree (MST) as a “best” in norm approximation; and the shortest

12

path tree (SPT) as an approximation which maintains a mistake bound [6, 5] guar-
antee. Moreover, we comment on the time and space complexity of constructing
such trees. Given a graph with a “cost” on each edge the MST is a subgraph
with n− 1 edges such that the total cost is minimized. A SPT(i) at vertex i is
a subgraph such that geodesic distance in “costs” is minimized from i to every
other vertex. In our set-up the cost of edge (i, j) is πij therefore,

MST(G) = arg min
T⊆G

{
∑

(i,j)∈E(T)

πij : |T| = n− 1,T is a tree},

SPT(G, i) = arg min
T⊆G

{
n∑

j=1

rT(i, j) : |T| = n− 1,T is a tree} .

Observe that for a graph with unit costs every tree is a MST but not necessarily
a SPT. A MST is also the tree whose Laplacian best approximates the Laplacian
of the given graph according to the trace norm, that is,

MST(G) = arg min
T⊆G

{‖G−T‖tr : |T| = n− 1,T is a tree} .

We now provide a justification for approximating the given graph by a SPT. It
relies upon the analysis in [5, Theorem 4.2], where the cumulative number of
mistakes of the kernel perceptron with the kernel K = G+ + 11> was upper
bounded by

|MA| ≤ (‖u‖2G + 1)(RG + 1), (6)

for consistent labelings u ∈ {−1, 1}n. To explain our argument, first we note
that when we approximate the graph with a tree T the term ‖u‖2G is always
decreasing, while the term RG is always increasing by Rayleigh’s monotonicity
law (see for example [5, Corollary 3.1]). The resistance diameter RT of an SPT
subgraph is bounded by twice the geodesic diameter of the original graph,

RT ≤ 2DG, (7)

since for any path between p and q in the graph G there is in the SPT a path from
p to the root and then to q which can be no longer than 2DG. Thus, if the original
graph was unweighted and consisted of a few dense clusters each uniquely labeled
and with only a few cross-cluster edges, the tree built with a SPT would still have
a non-vacuous mistake bound. This fact follows from equations (6) and (7). No
such bound as (7) holds for a MST subgraph. For example, consider a bicycle
wheel graph whose edge set is the union of n spoke edges {(0, i) : i = 1, . . . , n}
and n rim edges {(i, i + 1 mod n) : i = 1, . . . , n} with costs on the spoke edges
of 2 and on the rim edges of 1, the MST diameter is then n + 1 while an SPT
diameter is ≤ 8.

In general, we may not be given a tree rather we may be given a graph or
a similarity function which may be then used to compute a tree. The MST and
SPT trees may be constructed with Prim and Dijikstra algorithms [4] respec-
tively in O(n log n + |E(G)|) time if implemented with a Fibonacci Heap. In the

13

general case of a non-sparse graph or similarity function the time complexity is
Θ(n2), however as both Prim and Dijikstra are “greedy” algorithms their space
complexity is O(n) which may be dominant consideration in a large graph.

5 Experiments

We provide results on preliminary experiments to study the feasibility of our
methods. In this exploratory study we have not yet implemented the fast com-
putation technique described. Rather the aim of these experiments is to see if
there is a significant performance decrease in using a tree subgraph rather than
the original graph. The initial results are promising as we find (see Figure 1)
that the accuracy of the predictor with an MST approximation is competitive
with the original graph.

We performed experiments using the USPS digits dataset, with the aim of
classifying ‘1’ vs. ‘2’ and then ‘3’ vs. ‘8’. Each OCR’d digit (a 16×16 array with
256 levels of gray) is represented as a vector x ∈ [−1, 1]256. The adjacency matrix
for the graph was set to Aij = exp(−a‖xi − xj‖2). The parameter a was then
selected by grid search as the value which optimized generalization performance
of the complete weighted graph (n = 1024) for both digit recognition tasks (‘1’
vs. ‘2’ : a = 0.1; ‘3’ vs. ‘8’ : a = 0.05). MST and SPT weighted subgraphs were
then constructed. For each of the three graphs we computed the graph kernel
K = G+ + 11> + I (where I is the identity matrix) as discussed in [5, equa-
tion (10)]. A training set V (`) of 8 labeled points of 4 positives and 4 negatives
was randomly selected. A kernel perceptron was then trained for 3 epochs on
V (`). The accuracy of each of the three classifiers was then measured on a ran-
domly selected predictive set V (p) of 50 points. This protocol was performed for
n = 128, 256, 512, 1024. Each such experiment was repeated 50 times, the mean
accuracy is accordingly reported in Figure 1.

0.4

0.6

0.8

1

G
ra

ph

0.78 0.79 0.84 0.85

0.4

0.6

0.8

1

M
S

T

0.77 0.81 0.83 0.84

128 256 512 1024
0.4

0.6

0.8

1

S
P

T

0.76 0.81 0.83 0.83

0.4

0.6

0.8

1

G
ra

ph

0.81 0.86 0.81 0.86

0.4

0.6

0.8

1

M
S

T

0.85
 0.9 0.92 0.93

128 256 512 1024
0.4

0.6

0.8

1

S
P

T

0.81 0.84 0.84 0.84

Digits ‘1’ vs. ‘2’ Digits ‘3’ vs. ‘8’

Fig. 1. Digit Classification (Left: Accuracy; Bottom: Vertex Set Size |V (n)|)

14

The motivation for our methodology is the idea that accuracy can be im-
proved by increasing the quantity of unlabeled data even if the quantity of la-
beled data is fixed at only a linear increase in computation cost. Experimentally
this trend of increasing accuracy is seen for the graph and both the MST and the
SPT; however this result is not conclusive as it may be an artifact of the tuning
procedure for a and hence deserves further study. Interestingly the performance
of the MST versus the complete weighted graph was found to be better in 5 out
of 8 experiments even though the parameter a was optimally tuned for the com-
plete graph. The SPT though competitive with the complete graph consistently
under performed relative to the MST. We believe that these initial results show
promise for our technique and we plan to implement the methods of Section 3
to compute the graph Laplacian pseudoinverse in order to scale our experiments
to larger datasets.

Acknowledgements: We would like to thank José Luis Balcázar for valu-
able discussions and Massimiliano Pontil for valuable discussions and detailed
comments on this manuscript. Finally, we would also like to thank Dimitrios
Athanasakis and Sudhir Shankar Raman for useful preliminary experimentation.
This work was supported in part by the IST Programme of the European Com-
munity, under the PASCAL Network of Excellence, IST-2002-506778 and Sergio
Rojas Galeano is supported under the DHPA Research Councils UK Scheme.

References

1. N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337–
404, 1950.

2. M. Belkin and P. Niyogi. Semi-supervised learning on riemannian manifolds. Ma-
chine Learning, 56:209–239, 2004.

3. A. Blum, J. Lafferty, M. R. Rwebangira, and R. Reddy. Semi-supervised learning
using randomized mincuts. In ICML ’04: Proceedings of the twenty-first interna-
tional conference on Machine learning, page 13, New York, NY, USA, 2004. ACM
Press.

4. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

5. M. Herbster and M. Pontil. Prediction on a graph with a perceptron. In
B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 577–584. MIT Press, Cambridge, MA, 2007.

6. M. Herbster, M. Pontil, and L. Wainer. Online learning over graphs. In ICML
’05: Proceedings of the 22nd international conference on Machine learning, pages
305–312, New York, NY, USA, 2005. ACM Press.

7. N.-D. Ho and P. V. Dooren. On the pseudo-inverse of the laplacian of a bipartite
graph. Appl. Math. Lett., 18(8):917–922, 2005.

8. D. Klein and M. Randić. Resistance distance. Journal of Mathematical Chemistry,
12(1):81–95, 1993.

9. J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

10. X. Zhu, J. Lafferty, and Z. Ghahramani. Combining active learning and semi-
supervised learning using gaussian fields and harmonic functions. In In Proc. of
the ICML 2003 workshop on The Continuum from Labeled to Unlabeled Data in
Machine Learning and Data Mining, pages 58–65, 2003.

15

A Semi-Supervised Approach for Web Spam Detection
using Combinatorial Feature-Fusion

Ye Tian, Gary M. Weiss, Qiang Ma

Department of Computer and Information Science
Fordham University

441 East Fordham Road
Bronx, NY 10458

{tian,gweiss,ma}@cis.fordham.edu

Abstract: This paper describes a machine learning approach for detecting web
spam. Each example in this classification task corresponds to 100 web pages
from a host and the task is to predict whether this collection of pages represents
spam or not. This task is part of the 2007 ECML/PKDD Graph Labeling
Workshop’s Web Spam Challenge (track 2). Our approach begins by adding
several human-engineered features constructed from the raw data. We then
construct a rough classifier and use semi-supervised learning to classify the
unlabelled examples provided to us. We then construct additional link-based
features and incorporate them into the training process. We also employ a
combinatorial feature-fusion method for “compressing” the enormous number
of word-based features that are available, so that conventional machine learning
algorithms can be used. Our results demonstrate the effectiveness of semi-
supervised learning and the combinatorial feature-fusion method.

Keywords: feature construction, classification, link mining, information
fusion, class imbalance.

1 Introduction

Search engines perform a vital role in permitting users to quickly and efficiently find
information on the World Wide Web. Because web pages that are pointed to by many
other web pages are favored by most search engines, spam web pages, which are
created for the sole purpose of influencing search engine results, have become quite
common. If the quality of search engine results is to be preserved, automated means
of identifying these spam pages must be developed. The ECML/PKDD Graph
Labeling Workshop’s Web Spam Challenge supports the development of these
methods, by providing a forum for researchers to develop, evaluate, and compare the
effectiveness of a variety of methods. The second track of this challenge focuses on
machine learning methods for identifying web spam, and in this paper we describe
our machine learning entry for that challenge.

Our machine learning approach starts by supplementing the raw data provided by
the Web Spam Challenge with additional, human-engineered content-based [1] and
link-based [2] features. We then build a rough classifier using the raw data and these
supplemental features, and use this classifier to label all of the unlabeled graph nodes

16

provided by the Web Spam Challenge. Thus, we perform semi-supervised learning.
We use the actual labels for the training data and the predicted labels for the other
nodes to generate additional link-based features. In addition to the use of semi-
supervised learning, we also use a combinatorial feature-fusion method, described in
previous work [3,4], to “compress” the enormous number of content-based features,
so that conventional classifier induction algorithms, which do not handle sparse
features, can be used. Our results indicate that both semi-supervised learning and
combinatorial feature fusion are effective at improving web spam detection.

This paper is organized as follows. In Section 2 we provide background on the
combinatorial feature-fusion method. Then in Section 3 we describe the Web Spam
Challenge data and the features that we manually engineer in order to improve the
performance of our system. Section 4 describes our experimental methodology,
including the feature-fusion method and use of semi-supervised learning. Our results
from the Web Spam Challenge are then presented in Section 5. Finally, we describe
our conclusions and areas for future work in Section 6.

2 Background on the Combinatorial Feature Fusion Method

In this section we describe the terminology and concepts associated with the
combinatorial feature-fusion method, described in detail in previous work [3,4]. We
use a simple example to describe the method. Our feature fusion method currently
only handles numeric features, but this is not an issue for the Web Spam Challenge.

A data set is made up of examples, or records, each of which has a fixed number of
features. Consistent with previous work on information fusion [3], we view the value
of a feature as a score. Table 1 introduces a sample data set, with the score values in
Table 1a replaced by rank values in Table 1b. The ranks in Table 1b have been
computed in the straightforward manner, where a low score yields a low rank. This
will not always be the case. As we will shortly see, the higher scores will receive
lower ranks if this ranking scheme yields improved predictive performance.

Table 1. A sample data set with the data (a) unmodified and (b) with score values replaced by
rank. The original data set contains eight examples, labeled A-H, with five numeric features
and a binary class variable. In this example class 1 is the minority class and accounts for 3/8, or
37.5%, of the examples.

 (a) (b)

 F1 F2 F3 F4 F5 Class
A 1 4 3 2 8 1
B 3 3 5 5 4 0
C 5 5 2 6 7 1
D 7 6 15 3 2 0
E 11 13 16 7 14 0
F 15 16 4 13 11 0
G 9 7 14 1 18 1
H 17 15 9 8 3 0

F1 F2 F3 F4 F5
A 1 2 2 2 5
B 2 1 4 4 3
C 3 3 1 5 4
D 4 4 7 3 1
E 6 6 8 6 7
F 7 8 3 8 6
G 5 5 6 1 8
H 8 7 5 7 2

17

Next we show how to compute the performance of a feature, using feature F2 from
the sample data set as an example. For our purposes, the performance of a feature
indicates how well its rank performs at predicting minority-class examples. The
records in the data set are sorted by the rank value of F2 and the results are shown in
Table 2a. The performance of F2 is then computed as the fraction of the records at the
“top” of the table that belong to the minority class. The number of records considered
is based on the percentage of minority-class examples in the training data, so in this
case we look at the top 37.5%, or 3, records. In this case the performance of F2 is 2/3.
Table 2b shows the performance values for all of the features.

Table 2. The results of ordering the examples by the rank of F2 is shown in Table 2a. The top
three records are then used to compute the performance of F2, which in this case is 2/3, since 2
of the 3 records are associated with the minority class. The performance of all five feataures is
provided in Table 2b.

 (a) (b)

This method is also used to compute the performance of combined (i.e., fused)
features. However, to do this we need to determine the rank of a fused feature, so we
can sort the examples by this rank. We compute this using a rank combination
function, which averages the ranks of the features to be combined. This is done for
each record. As an example, if we want to fuse features F1–F5 and create a new
feature, then the rank of this fused feature for record A is computed as: (rank(F1) +
rank(F2) + rank(F3) + rank(F4) + rank(F5))/5 = (1+2+2+2+5)/5 = 2.4. Once the rank
values are computed, the performance value can be computed as before.

3 Data and Data Engineering

In this section we describe the raw data provided to us as part of the Web Spam
Challenge and then describe the features that we design/engineer based on this raw
data. We do not discuss the features automatically generated by our feature-fusion
method or the link-based features generated as part of semi-supervised learning until
Section 4.

The data utilized in this paper was provided as part of the Web Spam Challenge
(track II, Corpus #1), held in conjunction with the 2007 ECML/PKDD Graph
Labeling workshop. The data describes the content and link structure of about 9,000
examples, where each example describes 100 web pages from an Internet host. Each
example can be viewed as a node in a graph, where nodes are connected if there are

 F2 Rank Class
B 1 0
A 2 1
C 3 1
D 4 0
G 5 1
E 6 0
H 7 0
F 8 0

Feature Performance
F1 0.67
F2 0.67
F3 0.67
F4 0.67
F5 0

18

hyperlinks between them. The data is physically distributed over the following four
data sets:

1. Feature Vectors: these vectors correspond to the TF-IDF vectors over the 100
web pages for a host. Thus this data set contains word frequency information.
These are sparse vectors in that if a word does not occur, then it is not
represented in the vector.

2. Link Matrix: each non-zero entry in this data set represents an edge in the
graph and thus determines which nodes are connected by hyperlinks.

3. Training Labels: identifies the class label (spam or normal) for each node in the
training set.

4. Validation Labels: identifies the class label (spam or normal) for each node in
the “validation” set.

The raw data from the first two data sets are used to generate the examples for our
classifier (we discuss this shortly). The training labels data set determines which
examples are used for training while the validation labels data set determines which
examples are used to evaluate the classifier to generate our preliminary results. The
training data consists of 907 examples (hosts) and the validation data set contains
1800 examples. The test set labels are maintained by the Web Spam Challenge
organizers, who use these labels to score the classifier results that are submitted by
the challenge competitors. The class distribution of data, for both the training and
validation set, is approximately 80% normal and 20% spam. This data is skewed,
which can lead to some difficulties when learning a predictive model [5]. Since the
training and validation data sets contain a total of 2,707 examples, 6,365 of the 9,072
examples are left unclassified. These examples could be ignored, but we use semi-
supervised learning [6] to exploit them and improve our predictive model.

We manually engineered (i.e., constructed) seven features from the raw Web Spam
Challenge data. Each feature is associated with a node/host and is computed based on
information associated with that node/host. Table 3 summarizes the engineered
features used in this study. Note hotwords are the words (i.e., content-based features)
that appear in the greatest percentage of the 9,072 nodes provided in the Web
Challenge Data. In order to limit the number of features for consideration we track
only the top 500 hotwords (this may be too restrictive and should be increased in
future work).

Table 3. Summary of Engineered Features. The first three features are content-based features
and the remaining featurs are link-based features.

1 %HotwordsCovered Percentage of the 500 hotwords found in the node
2 %Hotwords Percentage of unique words in a node that are hotwords
3 TFIDF-Above-0.2 1 if any of the TF-IDF values is above 0.2; 0 otherwise

4 InboundLinks The number of inbound links to this host
5 OutboundLinks The number of outbound links from this host
6 InboundFraction The fraction of total links that are inbound links
7 OutboundFraction The fraction of total links that are outbound links

19

4 Experimental Methodology

We describe our experiments in this section. In Section 4.1 we describe the learning
algorithms that we employ. Then in Section 4.2 we describe the basic procedure for
encoding the examples for our learning problem. In Section 4.3 we describe how we
generate new link-based features by using semi-supervised learning and in Section
4.4 we describe how we use combinatorial feature-fusion to construct new features.

4.1 Learning Algorithm

In this paper we evaluate three classifier induction algorithms, which are part of the
Weka data mining package [7]. These algorithms are ADTree, an alternating decision
tree algorithm [8], SMO, an implementation of a support vector machine, and Bayes,
an implementation of a naïve Bayes classifier. Note that for alternating decision trees
the ultimate classification is determined by multiple paths through the tree rather than
a single path through the tree. Since our preliminary results showed that ADTree
performed best, only classifiers induced using this algorithm were used as part of the
official Web Spam Challenge.

4.2 Example Generation

The examples for the training and validation data sets start with the features included
in the feature vector data set described in Section 3. These include the TF-IDF values
for the content-based features. Since this information is provided using a sparse
representation and our machine learning methods do not handle sparse
representations of features, we insert null entries for the missing features. Because
our learning algorithms can not handle the enormous number of resulting content-
based features, we prune all but the top 200 such features based on the performance
values produced by our feature-fusion method on the training data, as described in
Section 2. This should keep the features that are best able to predict web spam, since
the performance metric is based on the ability to predict the minority-class examples.
Next, we join these 200 features with the seven engineered features listed in Table 3.
We then add the class labels for the training and validation data using the class
information provided as part of the Web Spam Challenge.

4.3 Semi-Supervised Learning

Once the examples are generated as described in Section 4.2, we use the training data
to build a “rough” classifier. This is then used to classify the nodes not in the training
set. We then use the predicted class labels for these non-training set nodes and the
actual class labels for the training set nodes to determine, for each link in the link
matrix, whether the inbound or outbound side is spam or normal. From this we
construct four new link-based features, which indicate the prevalence of spam for the
neighbors of a node. These features represent, for each node, the number of inbound
(outbound) spam links and the percentage of inbound (outbound) links that are spam.

20

We could use these four newly constructed features to build our final model, but
instead choose to include an additional round of semi-supervised learning, on the
assumption that it will yield superior results. That is, we train a classifier using all
previous features plus these four new ones and then again predict the class labels for
the nodes that are not in the training set. We then recompute these four link-based
features using the updated labels. These link-based feature values are then included
for use in building our final classification model, once the combinatorial feature-
fusion method described in Section 4.4 is used to construct some additional features.

4.4 Use of Combinatorial Feature-Fusion

Next we use our combinatorial feature-fusion strategy to introduce new “fused”
features. Section 2 described how to fuse features and evaluate their performance, but
did not discuss how we decide which features to fuse and how to determine which of
these fused features to keep. In previous work we tried a variety of fusion strategies
[4], but in this paper we simply fuse all pairs of features. Given that we have a total of
211 features, this leads to C(211,2), or 22,155, possible pairings. While restricting the
fusion to only two features is limiting, we will see that it still improves classifier
performance.

We next decide which of the fused features to keep. We order the fused features by
their performance value and then tentatively add them in one by one. After adding
each feature, we regenerate the classifier from the training data and compare the
performance of the classifier on a hold-out set (selected from the training data) with
the performance prior to adding the feature. If the feature yields an improvement in
performance with a t-test confidence of at least .9, then we keep the feature;
otherwise we discard it. Since we measure classifier performance using AUC and the
F-measure, for the purpose of deciding whether to keep a feature or not we measure
performance using the average value of AUC and the F-measure.

5 Results

In this section we report our preliminary results on the validation data provided to us,
using three classifiers, and then present the official Web Spam Challenge results,
calculated by the competition organizers. Our preliminary results are summarized in
Table 4. These results are reported with and without the various enhancements so the
impact of these enhancements can be evaluated. In all cases the seven basic
engineered features from Table 3 are included. The results in Table 4 show that when
neither semi-supervised learning nor feature-fusion is used, the results are not very
good, and that both of these enhancements yield consistent improvements in all
measures of classifier performance. The results also demonstrate that the classifier
generated by ADTree yields the best overall performance, and hence we submit only
the classifiers induced using this algorithm for the Web Spam Challenge.

21

Table 4. Summary of Preliminary Classifier Performance Results. The table shows the results
without any enhancements, then using semi-supervised learning, then using semi-supervised
learning and the feature-fusion method.

Classifier Metric Enhancements

 Initial Semi-supervised
learning

Semi-supervised
learning + fusion

AUC .753 .824 .931
F-Measure .291 .523 .716
Precision .553 .611 .797

ADTree

Recall .370 .457 .649
AUC .581 .613 .628

F-Measure .301 .373 .410
Precision .320 .368 .392

SMO

Recall .285 .247 .284
AUC .703 .762 .772

F-Measure .451 .495 .517
Precision .345 .368 .392

Bayes

Recall .651 .758 .763

The results for the official Web Spam Challenge are provided in Table 5. These
results are presented separately for the validation data and the test data even though
the validation data was not used to train the classifier (the class labels for the test data
were not provided to the competitors). Two sets of results are reported since the
competition permitted two classifiers to be submitted. In our case the differences
were minor in that a few features were ommitted for the second classifier.

Table 5. Summary of our Classifier Perrformance for the Official Competition. All results are
based on the ADTree classifier, using both the semi-supervised and fusion enhancements.

Evaluated
Data AUC Precision Recall Accuracy

(thresh=0.5)
Accuracy

(thresh=optimal)
Validation .889 .766 .438 .839 .850
Validation .884 .794 .338 .821 .838

Test .864 .725 .406 .825 .842
Test .854 .738 .318 .803 .832

The results in Table 5 show reasonable values for AUC, but show relatively low
values for recall. In particular, the values for the validation data in Table 5 are worse
than those for the same data in Table 4. Although some last minute changes that were
made for the competition may have negatively impacted our results, the only change
that we are aware of that should have had a negative impact is that for our
preliminary results the validation data was inadvertently used to calculate the
performance values for the feature fusion method—but not used to train the actual
classifier. It is not clear to us that this should cause a substantial difference in overall
performance.

22

6 Conclusion and Future Work

In this paper we describe a machine learning approach for identifying web spam. Our
approach involves adding human-engineered features and then using semi-supervised
learning to exploit the unlabeled examples that are provided as part of the Web Spam
Challenge data. We also use our combinatorial feature-fusion method in order to
reduce the number of TF-IDF content-based features and to construct new features
that are combinations of these features. We feel that our final results are reasonable
and, perhaps more significantly, we show that both our feature-fusion strategy and
use of semi-supervised learning lead to dramatically improved classification
performance.

We see many opportunities for future work. Many of these opportunities relate to
our feature fusion method. First, we would like to employ a heuristic version of the
feature fusion method so that we can handle more than 200 features and also generate
more complex feature combinations. Also, the rank combination used in our feature
fusion method assigns equal weight to each feature and we would like to learn the
optimal weights for combining these ranks. Since we assign a rank based only on the
positive or negative magnitude of the score value, our method will not handle the
case well where the most predictive value occurs in the middle. We could address this
by binning the numerical values and then ranking the bins based on their predictive
value. Using a similar idea we could also use the feature fusion method to handle
non-numerical values.

We would also like to further study the semi-supervised learning method that we
employed. We would like to try to generate more sophisticated link-based features,
determine how the number of iterations of semi-supervised learning impacts classifier
performance, and determine if the values of the link-based features that we construct
converge after several iterations of semi-supervised learning.

References

1. Ntoulas, A., Najork, M., Manasse, M., Fetterly, D. Detecting spam web pages through
content analysis, Proceedings of the 15th International World Wide Web Conference (2006)

2. Becchetti, L., Castillo, C., Donato, D., Leonardi, S., Baeza-Yates, R. Link Based
Characterization and Detection of Web Spam, Workshop on Adversarial Information
Retrieval on the Web (2006)

3. Hsu, D.F., Chung, Y., Kristal, B. Combinatorial fusion analysis: methods and practices of
combining multiple scoring systems. Advanced Data Mining Technologies in
Bioinformatics. Hershey, PA: Idea Group Publishing; 32–62 (2006)

4. Tian, Y., Weiss, G., Hsu, D.F., Ma, Q. A Combinatorial Fusion Method for Feature Mining,
Proceedings of KDD'07 Workshop on Mining Multiple Information Sources (2007)

5. Weiss, G. M. Mining with rarity: A unifying framework. SIGKDD Explorations, 6(1): 7-19.
6. Chapelle, O., Scholkopf, B., Zien, A. Semi-Supervised Learning. MIT Press, Cambridge,

MA. (2006).
7. Freund, Y., Mason, L. The alternating decision tree learning algorithm. Proceedings of the

Sixteenth International Conference on Machine Learning, 124-133 (1999).
8. Markov, Z., Russell, I. An introduction to the WEKA data mining system. In Proceedings of

the 11th Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education. 367–368 (2006)

23

Web Spam Challenge 2007 Track II
Secure Computing Corporation Research

Yuchun Tang, Yuanchen He, Sven Krasser, and Paul Judge

Secure Computing Corporation
4800 North Point Parkway, Suite 300

Alpharetta, GA 30022, USA
{ytang,yhe,skrasser,pjudge}@securecomputing.com

http://www.trustedsource.org

Abstract. To discriminate spam Web hosts/pages from normal ones,
text-based and link-based data are provided for Web Spam Challenge
Track II. Given a small part of labeled nodes (about 10%) in a Web
linkage graph, the challenge is to predict other nodes’ class to be spam
or normal. We extract features from link-based data, and then combine
them with text-based features. After feature scaling, Support Vector Ma-
chines (SVM) and Random Forests (RF) are modeled in the extremely
high dimensional space with about 5 million features. Stratified 3-fold
cross validation for SVM and out-of-bag estimation for RF are used to
tune the modeling parameters and estimate the generalization capabil-
ity. On the small corpus for Web host classification, the best F-Measure
value is 75.46% and the best AUC value is 95.11%. On the large corpus
for Web page classification, the best F-Measure value is 90.20% and the
best AUC value is 98.92%.

Key words: Web Spam, Web Linkage Graph, Support Vector Machine,
Random Forest

1 Introduction

It is important to detect deliberate actions of deception to increase the ranking of
targeted Web pages or Web hosts on search engines for internet search providers.
Web can be naturally represented by a graph, where each node corresponds to a
Web page/host and a directed edge from node A to node B denotes the number
of hyper links from A to B. The goal of the Web Spam Challenge is to utilize
machine learning methods for automatically labeling nodes to be “spam” or
“normal” in such a graph. The challenge is labeling all nodes of a graph from
a partial labeling of them. In the given datasets, only 10% nodes are manually
labeled by human experts. For the Track II of the challenge, a single standard
set of features has been provided for each node. Readers are suggested to refer
http://webspam.lip6.fr/ for more details.

24

2 Experiments

The experiments are conducted with several steps including text-based feature
preprocessing, link-based feature preprocessing, SVM modeling, dimensionality
reduction, and RF modeling.

2.1 Text-based Feature Preprocessing

On the small corpus, the features are normalized Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) values, and we directly use them for classification
modeling.

On the large corpus, the features are TF values. The maximal TF value in
the corpus is 39041, so we simply divide each value by 39401 to scale each feature
into [0,1].

2.2 Link-based Feature Preprocessing

Given a node A in a Web linkage graph, 9 features are extracted and listed in
Table 1.

Table 1. Link-based Feature Extraction

id name meaning

l01 Od the number of links from A to other nodes
l02 Odn the number of links from A to other known normal nodes
l03 Ods the number of links from A to other known spam nodes
l04 Id the number of links from other nodes to A
l05 Idn the number of links from other known normal nodes to A
l06 Ids the number of links from other known spam nodes to A
l07 Bd the number of other nodes that are connected with A in both directions
l08 Bdn the number of other known normal nodes that are connected with A in both directions
l09 Bds the number of other known spam nodes that are connected with A in both directions

Notice that we remove self-connection links, which otherwise induce noise
when calculating the number of links to and/or from known nodes.

We also extract other 25 features as shown in Table 2.
The value of these 25 features is defined to be 0 if the corresponding denom-

inator is 0.
These 34 link-based features are standardized into [0,1] before being fed into

classification modeling. The standardization formula is (x−min)/(max−min).

2.3 SVM Modeling

Table 3 lists characteristics of the datasets after preprocessing. The small dataset
is for Web host classification while the large one for Web page classification.

25

Table 2. More Link-based Feature Extraction

id meaning

l10 Odn/Od
l11 Ods/Od
l12 Idn/Id
l13 Ids/Id
l14 Odn/(Odn + Ods)
l15 Ods/(Odn + Ods)
l16 Idn/(Idn + Ids)
l17 Ids/(Idn + Ids)
l18 Od + Id
l19 Odn + Idn
l20 Ods + Ids
l21 (Odn + Idn)/(Od + Id)
l22 (Ods + Ids)/(Od + Id)
l23 (Odn + Idn)/(Odn + Idn + Ods + Ids)
l24 (Ods + Ids)/(Odn + Idn + Ods + Ids)
l25 Bd/Od
l26 Bd/Id
l27 Bdn/Odn
l28 Bdn/Idn
l29 Bds/Ods
l30 Bds/Ids
l31 Bdn/Bd
l32 Bds/Bd
l33 Bdn/(Bdn + Bds)
l34 Bds/(Bds + Bds)

Table 3. Characteristics Of Datasets

dataset #features #samples #normal : #spam

small
training

4,924,007
907 701:206

validation 1,800 1,412:388

large
training

4,924,007
40,000 32,083:7,917

validation 80,000 63,874:16,126

26

We select Support Vector Machines (SVM) [1] for classification because it
demonstrates good performance on high dimensional datasets [2]. The LIBSVM
software package, which is available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm), is used for SVM modeling.

We conduct SVM modeling with both linear and RBF kernels. 3-fold cross
validation is conducted on the training dataset for parameter tuning. We tune
the cost parameter c, and the gamma parameter γ if RBF kernel is used. We
also tune the weight parameter w1 while w0 = 1 because there are much more
normal nodes than spam nodes in the training datasets. A value of 0 indicates
the normal class while a value of 1 denotes spam. All other parameters are fixed
at default values in LIBSVM.

On the small corpus for Web host classification, the best F-Measure value is
73.22% and the best AUC value is 93.26%, which are achieved by modeling a
RBF SVM with c = 210, γ = 0.05 and w1 = 2.

On the large corpus for Web page classification, the best F-Measure value is
90.20% and the best AUC value is 98.92%, which are achieved by modeling a
linear SVM with c = 214 and w1 = 4. SVM modeling with RBF kernel cannot
achieve better performance in our experiments.

The ROC curves are shown in Figures 1-2. The dotted and dashed curves
denote 3-fold cross validation performance on the given training datsets while
the solid curves denote prediction performance on the given validation datasets.

It is interesting to observe that linear SVMs have almost the same or even
better performance than RBF SVMs. The reason is that the number of features
is already much higher than the number of samples. Hence, it is not very helpful
to conduct classification modeling in a even higher feature space with RBF
transformation.

2.4 Dimensionality Reduction

With a linear SVM, features can be ranked based on their contribution to SVM
classification. This is the basic idea of the Support Vector Machine - Recursive
Feature Elimination (SVM-RFE) algorithm [3]. By applying SVM-RFE on the
small dataset, 28,051 features are selected from the original 4,924,007 features for
Web host classification. Most of link-based features contribute to classification
as demonstrated in Table 4. Almost the same accuracy can be achieved before
and after feature selection. It seems that dimensionality reduction can improve
efficiency and may also generate more insights for Web spam detection. This is
an interesting future work.

2.5 RF Modeling

We also implement another learning process similar to Random Forests model-
ing [4] on the small dataset with the 28,051 features. Firstly, we generate 100
datasets with 100% bootstrapping. Secondly, we randomly select 1000 features
and remove all other features for each dataset. Thirdly, a C4.5 decision tree

27

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC analysis

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

linear−SVM − 3CV
linear−SVM − validation
RBF−SVM − 3CV
RBF−SVM − validation
Random Forest − validation

Fig. 1. ROC curves for Web host classification on the small dataset

28

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC analysis

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

linear − 3CV

linear − validation

Fig. 2. ROC curves for Web page classification on the large dataset

29

Table 4. Link-based Features are highly ranked in SVM-RFE

id ranking id ranking id ranking

l05 5 l34 490 l31 14020
l04 26 l01 869 l22 16252
l02 88 l06 950 l13 16706
l30 108 l21 1855 l28 17954
l19 116 l12 1876 l26 18122
l20 131 l27 3593 l23 21806
l03 151 l33 3604 l17 21911
l32 239 l15 5380 l14 24149
l11 242 l10 8017 l24 removed
l29 323 l09 10818 l08 removed
l07 326 l25 13970 l16 removed
l18 428

[5] is modeled on each dataset in Weka with default values. Weka is available
at http://www.cs.waikato.ac.nz/ml/weka/. Lastly, the decision values of the
100 decision trees are summed up and averaged for the final decision. Instead
of 3-fold cross validation for SVM modeling, out-of-bag estimation on the train-
ing dataset is used to estimate generalization capability. This modeling method
generates a even better performance with 75.46% F-Measure value and 95.11%
AUC value. In Fig 1, this method demonstrates higher ROC curve than SVM
counterparts. Due to limited computing power, we cannot run SVM-RFE fea-
ture selection and random forest modeling on the large dataset. But a quick
look on the linear SVM shows that only 83,926 features contribute to the SVM
classification.

Table 5 summarizes experiment results. For SVM methods, both 3-fold cross
validation performance on the training dataset and prediction performance on
the validation dataset are reported. For tree and forest methods, we report out-
of-bag performance on the training dataset and prediction performance on the
validation dataset.

Table 5. Experiment Results

Task Method
F-Measure AUC

CV/OB validation testing CV/OB validation testing

host classification
RF with C4.5 78.74% 75.71% 75.46% 96.24% 95.84% 95.11%

RBF SVM 72.50% 72.95% 73.22% 92.74% 93.12% 93.26%

page classification Linear SVM 94.53% 94.96% 90.20% 99.64% 99.66% 98.92%

30

3 Conclusion

The data preprocessing and machine learning methods described in this paper
demonstrate high accuracy on Web Spam Challenge corpora. On the small corpus
for Web host classification, the best F-Measure value is 75.46% and the best
AUC value is 95.11%. On the large corpus for Web page classification, the best
F-Measure value is 90.20% and the best AUC value is 98.92%.

References

1. V. N. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York, 1998.
2. C. J. C. Burges. A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, 2(2):121–167, 1998.
3. I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classi-

fication using support vector machines. Machine Learning, 46(1-3):389–422, 2002.
4. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
5. R. J. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA: Morgan

Kaufmann, 1993.

31

Semi-supervised classification with hyperlinks

J. Abernethy1 and O. Chapelle2

1 Department of Computer Science, UC Berkeley
2 Yahoo! Research

1 Notations

Our method takes as input:

– a set of l labeled examples (x1, y), . . . , (xl, yl), where x denotes the feature
vector and y the ± label.

– a set of u unlabeled examples, (xl+1, yl+1), . . . , (xn, yn), with n = l + u.
– a weighted directed graph whose nodes are x1, . . . ,xn. aij is the weight of

the link from xi to xj .

The goal is to learn a linear classifier f(x) = w · x in an inductive mode,
i.e. such that it can be evaluated on a unseen test example not belonging to the
graph. The graph is thus used only during training and its semantic is problem
dependent. In the case of this competition, the information we have from the
graph is that there is usually no link from a non-spam host to a spam host.

We thus minimize:

λw ·w +
l∑

i=1

max(0, 1− yi(w · xi))2 + γ
∑
i←j

aijΦ(w · xi,w · xj).

The first two terms correspond to a standard linear SVM, while the third one
takes the graph information into account. The function Φ is chosen such that it
penalizes predictions with links from non-spam hosts to spam hosts; we took it
to be:

Φ(a, b) = max(0, b− a)2.

The objective function can be efficiently minimized in the primal, see for
instance [1].

The parameters λ and γ are selected on a validation set.

References

[1] O. Chapelle. Training a support vector machine in the primal. Neural Computation,
2006.

32

Webspam detection via Semi-Supervised Graph
Partitioning

Chris Biemann, Hans Friedrich Witschel

{biem|witschel}@informatik.uni-leipzig.de

Abstract. The aim of our experiments for the WebSpam challenge was
twofold: first to explore a mixture of a link graph and a document simi-
larity graph; and second to adapt an efficient graph clustering algorithm
to a semi-supervised functionality. The results on the validation sets
suggest that page content can be ignored and that the semi-supervised
partitioning works very well, especially on the large set.

1 Graph building

In order to build a mixed content-link graph, we first turned the directed link
graph into an undirected one. Then, a document similarity graph was constructed
in the following way: for each rare term t that occurred nt < n times in the
whole collection of web pages, a list of all documents d1, ..., dnt

containing t was
constructed. The free parameter n defines the notion of “rare term” and depends
on the size of the collection.

The lists d1, ..., dnt were treated as sentences of natural language and fed to
the corpus production engine tinyCC 1 that is usually used for analysis of large
text corpora. TinyCC efficiently computes - for all pairs of words that co-occur in
sentences - whether the number of joint occurrences deviates significantly from
statistical independence.

Applied to the documents of the WebSpam challenge, this produces a list of
pairs (di, dj) of documents that co-occur more often than expected in “document
sentences” d1, ..., dnt

, which means that they share many rare terms. For each
pair, there is also a significance value wcontent(di, dj), which can be used as an
edge weight when interpreting the list of pairs as a document similarity graph.

Mixing of the two graphs was performed by linearly combining edge weights:
w(di, dj) = αwlink(di, dj) + (1 − α)wcontent(di, dj). Since the link graph is orig-
inally unweighted, wlink(di, dj) was set to the average weight of all edges in
the content graph for all document pairs (di, dj) in order to make edge weights
comparable among the two graphs. The parameter α was then varied in order to
determine how much influence should be given to content and links, respectively.

2 Semi-supervised graph partitioning

Orginally, Chinese Whispers [1] is a parameter-free, randomised graph parti-
tioning algorithm that has linear run-time in the number of edges, allowing the
1 http://wortschatz.uni-leipzig.de/˜cbiemann/software/TinyCC2.html

33

processing of very large graphs. For the purpose of web spam detection, the we
employed a yet unpublished semi-supervised version of this algorithm, which is
outlined in the following algorithm on graph G(V,E), training T .

for all vi ∈ V do
class(vi) = −1

end for
for all vi ∈ T do

class(vi) =training class
end for
for it=1 to number-of-iterations do

for all v ∈ V \ T , randomised order do
class(v)=predominant class in neigh(v)

end for
end for
return partition P induced by class labels

The algorithm starts by initialising all nodes according to their training clas-
sification, all other nodes get label −1. Then, for a couple of iterations (we chose
10 in the experiments), all nodes get updated in random order and inherit the
predominant class in the neighbourhood. The dominance per class a for node v
is computed locally in the neighbourhood neigh(v) by:

dominance(a, v) =

∑
w∈neigh(v),class(w)=a ew(v, w) · nw(w)∑

w∈neigh(v) ew(v, w) · nw(w)
.

The initialisation class −1 has always dominance 0. Here, ew(v, w) denotes the
edge weight between nodes v and w as given in the graph, nw(w) is the node
weight. In preliminary experiments, we determined nw(w) = 1

degree(w) , i.e. the
influence of nodes is weighted down linearily with the number of edges to other
nodes. This weighting scheme is motivated by the following: pages that have
many outgoing or ingoing links should be less important when propagating clas-
sifications w.r.t. spamicity.

3 Results

The results on the two validation sets given for the challenge suggest that:
– Content can be ignored: on the small set results were somewhat inconclusive

as to the optimal value of α, but α = 1 was near-optimal for various values
of n. On the large set, α = 1 was always optimal.

– The semi-supervised graph partitioning seems to work very well, especially
on large data sets: the best precision obtained was 88.72% on the small set
and 99.58% (184/63814 errors for non-spam, 151/16126 errors for spam) on
the large set. Spamicity grading is given by dominance(spam, v).

References

1. Chris Biemann. Chinese Whispers - an Efficient Graph Clustering Algorithm and
its Application to Natural Language Processing Problems. In Proceedings of the
HLT-NAACL-06 Workshop on Textgraphs-06, 2006.

34

SpamChallenge 2007 - Track II:
France Telecom R&D Submissions

Pascal Filoche and Tanguy Urvoy and Marc Boullé

France Telecom R&D, Lannion, France

1 Overview

We submitted 2 predictions for each graph:

– First prediction uses a selective bayesian classifier ;
– Second prediction uses graph-based smoothing on first prediction scores.

2 Selective Bayesian classification

We use a naive Bayes classifier with optimal discretization, variable selection and
model averaging. The univariate class conditional probabilities are estimated
using the MODL discretization method [1], which enables to retrieve the most
probable discretization model given the data.

The naive Bayes classifier is based on the assumption that the variables are
independant within each output label. To leverage this asumption, we use the
compression-based averaging method described in [2]. A Bayesian regularization
technique is applied to select the most probable subset of variables compliant
with the naive Bayes assumption. Furthermore, an averaging method is used
to exploit the posterior distribution of the selective naive Bayes models. Ex-
periments show these techniques, optimal preprocessing, variable selection and
model averaging, allow to consistently improve the performance of the naive
Bayes classifier.

This classifier is trained on the 10000 most frequent attributes from TF.IDF
feature vectors and the result of a standard PageRank [4] computation on the
graph. A spamicity score is then computed by the classifier for each node of the
graph.

On the small (hosts) graph data, 1480 features are selected by the classifier
(PageRank is ranked 24th). Evaluation of the score on validation data returns an
optimal F1 measure for spam of 0.723. Evaluation on challenge test data gives
an optimal F1 measure for spam of 0.738.

On the large (URLs) graph data, 5700 features are selected (PageRank is
ranked 32nd). Evaluation of the classifier on validation data returns an optimal

35

F1 measure for spam of 0.937 Evaluation on challenge test data returns an op-
timal F1 measure for spam of 0.935.

3 Graph-based smoothing of classification

During a second phase, the nodes computed spamicities is iteratively smoothed
by neighbourhood in the graph: x → y edges are randomly picked and values
of connected vertices are gradually changed to reduce distance between their
scores:

Sn+1(x) = (1− δ)Sn(x) + δSn(y), and
Sn+1(y) = (1− δ′)Sn(y) + δ′Sn(x).

As in [3], the intuition for this algorithm is that edges between nodes of the same
class outnumber edges between nodes of different classes. As described in Fig. 1,
this property is well verified for the big graph but not for the small one.
Using this method with δ = δ′ = 0.001, optimal F1 on validation reaches 0.75
for the small graph and 0.97 for the large one.

x→ y y normal y spam

x normal 3761 27

x spam 576 501

x→ y y normal y spam

x normal 99703 128

x spam 569 31572

Fig. 1. Edge distribution in training data for small and large graph (ignoring self-
loops). For the small graph the spamicity of the source is less informative: ideally the
smoothing coefficients δ and δ′ should be tuned accordingly.

References

1. Marc Boullé. MODL: a Bayes optimal discretization method for continuous at-
tributes. Machine Learning, 65(1):131–165, 2006.

2. Marc Boullé. Compression-based averaging of selective naive Bayes classifiers. Jour-
nal of Machine Learning Research, 8:1659–1685, 2007.

3. Carlos Castillo, Debora Donato, Aristides Gionis, Vanessa Murdock, and Fabrizio
Silvestri. Know your neighbors: Web spam detection using the web topology. In
Proceedings of ACM SIGIR (to appear), Amsterdam, Netherlands, 2007.

4. Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report, Stanford Digital
Library Technologies Project, 1998.

36

Author Index

Abernethy, Jacob, 32

Benczúr, András A., 1
Biemann, Chris, 33
Boullé, Marc, 35

Chapelle, Olivier, 32
Csalogány, Károly, 1

Filoche, Pascal, 35

He, Yuanchen, 24
Herbster, Mark, 9

Judge, Paul, 24

Krasser, Sven, 24

Lukács, László, 1

Ma, Qiang, 16

Rojas Galeano, Sergio, 9

Siklósi, Dávid, 1

Tang, Yunchun, 24
Tian, Ye, 16

Urvoy, Tanguy, 35

Weiss, Gary M., 16
Witschel, Hans Friedrich, 33

37

