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Preface

Data Mining in Functional Genomics and Proteomics involves a close collaboration be-
tween researchers from a number of diverse areas, such as biology, medicine, genomics
and proteomics to computer science, mathematics and statistics. This collaboration of
disciplines has evolved because of the: (i) advances that have occurred in data pro-
duction and acquisition facilities, such as the introduction of mircroarrays and high
throughput genomics and proteomics, (ii) enormous amounts of data that is generated
every day that cannot be analyzed using ordinary data mining tools and techniques, and
(iii) strong interest from many groups (research institutes, hospitals, academia, pharma-
ceuticals, etc.) who want to benefit from this wealth of data. Many efforts to deal with
these issues are being undertaken by researchers working in this field. The aim of this
workshop was to bring together researchers working on different topics related to data
mining in functional genomics and proteomics. In particular we were interested to fo-
cus on current trends and emphasize on what should be the future directions for generic
and applied research in this field. The main topics addressed during the workshop are
integration methodologies for functional genomics and proteomics and also issues re-
lated to structuring and disseminating all useful knowledge that increasingly becomes
available in this field.

Our call for papers resulted in some very interesting papers that are the contents of
these workshop proceedings. The workshop was organized as part of ECML/PKDD-
2007 conference. We are grateful for the support that we received from the organizers
of this conference. In particular we would like to thank Dr. Marzena Kryszkiewics,
ECML/PKDD 2007 Workshops Chair for accepting our proposal, the program commit-
tee and additional reviewers (Drs. Amira Djebbari, Edwin Wang, and Youlian Pan) who
helped us for the review.

Warsaw, September 2007 A. Fazel Famili (Chair)
Xiaohui Liu (Co-Chair)

José-Marı́a Peña (Co-Chair)
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Evgenii Vityaev (Russian Academy of Science – Russia)



Table of Contents

Combining APRIORI and Bootstrap Techniques for Marker Analysis . . . . . . . . . . 1
Giacomo Gamberoni, Evelina Lamma, Fabrizio Riguzzi, Chiara Scapoli, Ser-
gio Storari

Discovering Informative Genes from Gene Expression Data: A Multi-strategy
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Fazel Famili, Sieu Phan, Ziying Liu, Youlian Pan, Amira Djebbari, Anne
Lenferink, Maureen O’Connor

Breast Cancer Biomarker Selection Using Multiple Offspring Sampling . . . . . . . . 23
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Abstract. In genetic studies, complex diseases are often analyzed search-
ing for marker patterns that play a significant role in the susceptibility to
the disease. In this paper we consider a dataset regarding periodontitis,
that includes the analysis of nine genetic markers for 148 individuals.
We analyze these data by using a novel subgroup discovering algorithm,
named APRIORI-B, that is based on APRIORI and bootstrap tech-
niques. This algorithm can use different metrics for rule selection. Ex-
periments conducted by using as rule metrics novelty and confirmation,
confirmed some previous results published on periodontitis.

1 Introduction

In classical genetics [1], diseases are divided into Mendelian disorders and com-
plex traits. While the former are attributed to single gene mutations with a
simple mode of inheritance, the latter are thought to result from interaction
among multiple genes. The main task in the study of these polygenic diseases is
obviously to find the genetic patterns that increase susceptibility to the diseases.

In machine learning, such task is faced by using subgroup discovery tech-
niques. Their goal is to find subgroups, represented by rules, which describe
subsets of the population that are sufficiently large and statistically unusual
with respect to a target attribute. This task is at the intersection of predictive
and descriptive induction, and has been formulated in [2], [3], [4]. The problem
can be expressed as follows: given a population and a single property of the
individuals, find population subgroups that are statistically “most interesting”.
For example, we may look for groups that are as large as possible and on which
the property of interest has a distribution that is as different as possible with
respect to the distribution over the whole population. In the literature, several
algorithms have been proposed for subgroup discovery (e.g. Explora [2], MIDOS
[3], APRIORI-SD [5], CN2-SD [6]) and for classification rule learning (e.g. CBA
[7]).

In this paper, we present a novel algorithm, named APRIORI-B, that per-
forms subgroup discovery by combining APRIORI [8] and bootstrap techniques
(more precisely the randomization test).
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Our method uses APRIORI for finding frequent itemsets, and then generates
rules from them. In the rule selection post-processing phase, it sorts the gener-
ated rules by using a rule evaluation metric. Then the most significant rules are
selected by using the randomization test [9].

We verified the suitability of APRIORI-B for marker analysis by applying it
on real biological data. In the experiment, we analyzed a dataset used by biolo-
gists to investigate the relation between nine genetic markers and periodontitis.
For this biological dataset we provide some subjective evaluations of the sub-
groups identified.

This paper is organized as follows: Section 2 presents background informa-
tion on APRIORI algorithm and methods for rule evaluation. Section 3 de-
scribes our algorithm. Section 4 illustrates the chosen case study: the analysis of
genetic markers. Section 5 reports the results of applying our algorithm the ge-
netic dataset. Finally, Section 6, presents conclusions and perspectives for future
works.

2 Background

In subgroup discovery, subgroups can be modeled by classification rules. In this
section, we first present association rules and then one of their special case,
represented by classification rules (Section 2.1). Then in Section 2.2, we briefly
describe the APRIORI algorithm [8] for association rule mining.

2.1 Association and classification rules

Association rules. Consider a table D having only discrete attributes. If D has
also numeric attributes, they are discretized. An item is a literal of the form
A = v where A is an attribute of D and v is a value in the domain of A. Let M
be the set of all the possible items. An itemset X is a set of items, i.e. it is such
that X ⊆ M . A k-itemset is an itemset with k elements. We say that a record
r of D contains an itemset X if X ⊆ r or, alternatively, if r satisfies all the
items in X. Let n(X) be the number of records of D that contain X. Let n(X)
be the number of records of D that do not contain X. Let N be the number of
records of D. The support of an itemset X (indicated by Sup(X)) is the fraction
of records in D that contain X. i.e., Sup(X) = n(X)/N . It is also equal to the
probability of a record of D of satisfying X, i.e. p(X) = Sup(X). When X and
Y are two itemsets we use the shorthand notation n(XY ), Sup(XY ) and p(XY )
to mean, respectively, n(X ∪ Y ), Sup(X ∪ Y ) and p(X ∪ Y ).

Association rules are of the form B → H where B and H are itemsets such
that B ∩H = ∅. B and H are respectively called body and head.

Classification rules. Classification rules are association rules whose head is of
the form Class = c where Class is a special attribute of D. In this case, the
records of D are also called examples and a rule B → Class = c covers a record
r if B ⊆ r and correctly covers a record if B ∪ {Class = c} ⊆ r.
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Notice that, for classification rules, a contingency table is a generalization of
a confusion matrix, which is the standard basis for computing rule evaluation
measures in binary classification problems. In the confusion matrix notation,
n(H) is the number of positive examples, n(H) the number of negative exam-
ples, n(B) is the number of examples covered by the rule therefore predicted
as positive, n(B) is the number of the examples not covered by the rule and
therefore predicted as negative, n(BH) = TP is the number of true positives,
n(BH) = TN is the number of true negatives, n(BH) = FP is the number of
false positives, and n(BH) = FN is the number of false negatives.

Rule metrics For association and classification rules a number of quality metrics
can be defined. All rule evaluation measures are defined in terms of frequencies
from the contingency table only (see Table 1).

Table 1. A contingency table.

Body

Head B B

H n(HB) n(HB) n(H)

H n(HB) n(HB) n(H)

n(B) n(B) N

Given a rule R = B → H, we define the following metrics:

– Support: Sup(R) = p(BH) = Sup(BH) = n(BH)
N

– Confidence: Conf (R) = p(H|B) = Sup(BH)
Sup(B) = n(BH)

n(B)

– Novelty: Nov(R) = p(HB)− p(H)p(B)
– Confirmation: Confirmation(R) = p(BH)−p(B)p(H)√

p(B)p(H)p(B)p(H)

Support and Confidence are classical association and classification rule met-
rics. Novelty [10] and Confirmation [11] are examples of more complex rule eval-
uation metrics [12], and we choose to focus the experiments described in this
paper on them.

The definition of novelty states that we are only interested in high support
if that could not be expected from the marginal probabilities, i.e., when p(H)
and/or p(B) are relatively low. It can be demonstrated that −0.25 ≤ Nov(R) ≤
0.25: a strongly positive value indicates a strong association between H and B,
while a strongly negative value indicates a strong association between H and B.

2.2 APRIORI

The task of discovering association rules consists in finding all the association
rules having a minimum support minsup and a minimum confidence minconf .
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In order to discover such rules, the approach proposed in [8] first discovers all the
itemsets with support higher than minsup and then finds the rules from them.
The itemset with support above minsup are called large. The part of APRIORI
that finds large itemsets is shown in Figure 1. Figure 2 shows function apriori-gen
that is used by APRIORI.

Notation:Lk, set of large k-itemset

1. L1 = { large 1-itemsets }
2. for(k=2; Lk−1 6= ∅ ; k + +) do begin
3. Ck=apriori-gen(Lk−1); // new candidates
4. forall records r ∈ D do begin
5. Cr = subset( Ck, r); // candidates contained in r
6. forall candidates c ∈ Cr do
7. c.count + +
8. end
9. Lk = {c ∈ Ck|(c.count/size(D)) > minsup}
10. end
11. Answer = L =

⋃
k

Lk

Fig. 1. Algorithm APRIORI

// Phase 1
Insert into Ck

Select p.item1,p.item2,. . .,p.itemk−1,q.itemk−1

From Lk−1 p, Lk−1 q
Where (p.item1=q.item1) and . . . and
(p.itemk−2=q.itemk−2) and (p.itemk−1 < q.itemk−1)

// Phase 2
forall itemset c ∈ Ck do

forall (k − 1)-subsets s of c do
if s 6∈ Lk−1 then

Delete c from Ck

Fig. 2. Function apriori-gen

APRIORI is based on the fact that X ⊇ Y → Sup(X) ≤ Sup(Y ). Therefore
if Sup(X) < minsup then ∀Y ⊇ X, Sup(Y ) < minsup. So we can discard every
itemset that has a non large subset.
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3 APRIORI-B algorithm

APRIORI-B performs subgroup discovery by learning in several steps a set og
classification rules. Given a dataset D, it:

1. removes the Class attribute from D, obtaining Dnoclass;
2. uses APRIORI (described in Section 2.2) on Dnoclass, to obtain the set of

large itemsets L;
3. for each itemset B ∈ L and for each item H = {Class = c} where c is a

value of the Class attribute, builds the rule R = B → H;
4. for each rule, computes the rule score metric;
5. sorts rules (in descending order of the metric) and filters them (using a lower

bound on the metric minmetric and a maximum number of rules maxrules),
6. evaluates the p-value of each rule, by using the randomization test described

in Section 3.1.
7. filters the rules, considering a p-value threshold, and obtains the final rule

set RS.

APRIORI-B allows the use of several rule evaluation metrics. For the ex-
periment performed in this paper, we used novelty and confirmation (defined in
Section 2.1).

Our algorithm is very close to CBA [7] but while CBA uses APRIORI for
identifying classification rules with a minimum support, APRIORI-B uses APRI-
ORI in the first learning phase for finding itemsets with a minimum support that
are then used as classification rule bodies. Another difference is the following:
our algorithm does not aim to build a classifier. Its goal is to find a set of rules
that can highlight relations between attributes and the class.

Moreover, one of the main distinguishing features of APRIORI-B is the use of
randomization test. The main advantage of using this approach for rule selection
is that we obtain immediately a p-value for each rule. This can be very useful to
assess rules significance.

3.1 Randomization test

In order to select only the rules having a significant value for the considered
metric, we performed a randomization test [9].

First of all, we generated 1000 shuffled dataset, starting from the original one,
by independently shuffling the values inside each column. In this way we obtained
datasets with the same probabilities for each attribute values but without re-
lations between them. This step was performed before the dataset preparation
described in Section 5.1.

We used APRIORI for obtaining the rules, and sorted them using the value
of the metric. Then we re-computed the metric for each of the learned rules using
all the 1000 shuffled dataset. In this way, for each rule, we obtained a statistical
distribution of its metric (i.e. we computed the mean and standard deviation
of the metric). By comparing the value of the metric computed by using the
original dataset with this distribution, we can assess the significance value of a
rule (we considered the values to have a normal distribution).
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4 The case study: Marker Analysis

Most common diseases are complex genetic traits [1], where multiple genetic and
environmental variables contribute to the observed traits. Because of the multi-
factorial nature of complex traits, each individual genetic variant (susceptibility
allele1) generally has only a modest effect, and the interaction of genetic variants
with each other or with environmental factors can potentially be quite important
in determining the observed phenotype2. Genetic association studies, in which
the allele or genotype3 frequencies at markers are determined in affected indi-
viduals and compared with those of controls (case-control study design), may be
an effective approach to detecting the effects of common susceptibility variants.

The most abundant source of genetic variation in the human genome is repre-
sented by single nucleotide polymorphisms (SNPs). SNPs can identify common,
but minute, variations that occur when a single unit in a genome sequence (nu-
cleotide) is altered. These variations can be used to track inheritance in families.

Eleven million SNPs of greater than 1% frequency are estimated to exist in
the genome and the International HapMap Project has as a primary goal the
identification of appropriate sets of tag SNPs that span the genome. These tag
SNPs may be able to capture most of the common genetic variants contributing
to complex human disease.

At the moment, studies and algorithms able to identify non-random correla-
tions between alleles at a pair of SNPs, have been discussed as a general approach
to determine multiple locus involved in human chronic diseases with a genetic
component. Moreover, a quantity of “tagging” algorithms for selecting minimum
informative subsets of SNPs has recently appeared in the literature.

4.1 Experimental Dataset

As an example of complex genetic trait, we choose Generalized Aggressive Pe-
riodontitis (GAP) as case study. Periodonditis is a dental disorder that results
from progression of gingivitis, involving inflammation and infection of the liga-
ments and bones that support the teeth.

The dataset, provided by the Research Center for the Study of Periodontal
Diseases, University of Ferrara, collects data from 46 GAP patients (16 males
and 30 females) and 102 periodontally healthy control subjects. All subjects were
chosen amongst current and permanent residents of the city of Ferrara area. Sys-
temically healthy GAP patients were selected for study among those undergoing
periodontal supportive therapy at the Research Center for the Study of Pe-
riodontal Diseases, University of Ferrara, and the diagnoses were confirmed by

1 Allele: one of several alternative form of a gene or DNA sequence at a specific chro-
mosomal location (locus). At each locus an individual possesses two alleles, one
inherited from the father an one from the mother.

2 Phenotype: the observable attribute(s) of a cell or an individual, brought about by
the interaction of genotype and environment.

3 Genotype: the specific allelic composition of an organism or cell.
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the same clinician. The clinical diagnosis at the time of the initial visit was based
on recent international classification [13]. The periodontally healthy control sub-
jects were selected if they showed no interproximal attachment loss greater than
2 mm at any of the fully erupted teeth. Controls were matched by age and sex
with GAP patients. All GAP patients and controls were Caucasian Italian. The
study design was approved by the local ethical and written informed consent was
provided by all participants in line with the Helsinki Declaration before inclusion
in the study.

The following variants in the IL-1 gene cluster have been tested: IL-1α+4845

(recorded as M1), IL-1β+3953 (M3), IL-1β−511 (M2) and also the minisatellite of
IL-1RN intron 2 (M5). Furthermore, it has been tested a new marker variant at
the IL-1F5 (M6) gene as described in Scapoli et al. [14]. Besides polymorphisms
at IL-1 cluster, other markers have been tested in different pro-inflammatory
cytochine such as IL-6 (variant IL-6−174 (M8) and IL-6−622 (M7)) and TNF-A
(variant TNF-α−308 (M4)). Finally also a polymorphism at the TNF-α receptor
has been tested (TNFRSF1β+196 (M9)).

4.2 Related Studies

Several studies have shown a role for the involvement of interleukin-1 (IL) gene
cluster polymorphisms in the risk of periodontal diseases. In [15] the authors
tested polymorphisms, derived from genes of the IL1 cluster, for association
with generalized aggressive periodontitis (GAP) through both allelic associa-
tion and by constructing a Linkage Disequilibrium map of the 2q13-14 disease
candidate region. For the IL-1RN intron 2 (M5), a statistically significant dif-
ference was found between patients and controls in the genotypic distribution,
but no significant difference was found for allelic distribution. Authors also ob-
served some evidence for an association between GAP and the IL-1β+3953 (M3)
polymorphism.

For the other IL-1 Cluster polymorphisms, no significant differences were
found between patients and controls for both genotypic and allelic frequencies.

Moreover, in [16], the authors showed that allele 1 of the IL-1β+3953 (M3) and
allele 1 of the IL-1RN intron 2 (M5) in combination were significantly elevated
in GAP as compared to controls.

5 Experiments

5.1 Results on GAP dataset

Dataset preparation The application of the algorithms for subgroup discovery
on genetics dataset was performed by an examiner who was blinded as to the
correspondence of the M1, M2,. . . ,M9 variables and the related polymorphisms,
so that the examiner had not information on previous statistical analyses and on
the expected results about IL-1β+3953 (M3), IL-1RN (M5) and TNFRSF1β+196

(M9) markers and the disease status.
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Starting from the blinded dataset originated from the GAP study, we ob-
tained a new dataset on which we ran the experiments. In the original dataset,
each marker can assume three possible values: 11, 12 and 22. 11 and 22 are
homozygote subjects while 12 define the heterozygote status. As an example,
if there are two markers (M1,M2) a possible record of the dataset is (11, 12).
In our analysis we consider the configuration of a single chromosome and we
want to test, for each marker, whether the allele on that chromosome is 1 or 2.
For heterozygote individuals, we do not know on which chromosomes lies the
1: in other words, the allelic configuration for the marker on the two chromo-
somes could be 12 or 21 with equal probability. The new dataset will contain,
for each record from the original dataset all possible configurations of a single
chromosome (haplotype) compatible with the record. Therefore, for each record
in the original dataset, we generate 2k tuples in the new dataset, where k is the
number of marker analyzed. For example, in the case of the record above, the
new dataset will contain the four tuples: (1, 1), (1, 2), (1, 1) and (1, 2).

Results: The dataset obtained (as described in the previous section) was ana-
lyzed by using APRIORI-B with two different rule metric, Novelty and Confir-
mation. The algorithm was configured with the following parameters: minsup
set to 0.3, minmetric set to 0, maxrule set to 100 and p-value threshold set to
0.01 .

Rule learned by APRIORI-B using Novelty are shown in Table 2. For each
learned rule, the table shows:

– Rule Body, the body of a learned rule containing a conjunction of Marker =
Allele tests ;

– State, the disease state associated to the conjunction of Marker = Allele
tests in the Rule Body;

– Novelty, the novelty metric value for the rule;
– Rand. Mean, the mean of the novelty values found in the 1000 randomized

datasets for the classification rule under analysis;
– Rand. Std, the standard deviation of the Novelty values found in the 1000

randomized datasets for the classification rule under analysis;
– p-value, the rule p-value.

Rules learned by APRIORI-B using Confirmation have not been reported as
they are the same learned in the experiment conducted with Novelty even if in
a slightly different order.

Analyzing these results, we noticed that some of the rules are related to the
two markers that have been reported in literature as involved in the pathology:
M3 and M5. The expert confirmed that the correlation between the combination
of M3 and M5 found in rule 3 is confirmed by literature [16]. The role of M9 and
the combination between M8 and M9, and between M1 and M9 needs further
biological investigations.
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Table 2. Rule learned by APRIORI-B using Novelty

# Rule Body State Novelty Rand. Mean Rand. Std p-value

1 M9=1 GAP 0.0498 -0.0006 0.0154 0.000530
2 M5=1 M9=1 GAP 0.0408 -0.0006 0.0153 0.003379
3 M3=1 M5=1 M9=1 GAP 0.0383 0.0000 0.0127 0.001288
4 M3=1 M9=1 GAP 0.0377 -0.0001 0.0131 0.001953
5 M8=1 M9=1 GAP 0.0323 -0.0005 0.0127 0.005038
6 M1=1 M9=1 GAP 0.0310 -0.0001 0.0130 0.008699
7 M1=1 M5=1 M9=1 GAP 0.0305 -0.0001 0.0127 0.008153

6 Conclusion And Future Work

In this paper we described a novel algorithms for subgroup discovery named
APRIORI-B. This algorithm is based on APRIORI for large itemset generation
and randomization test for rule selection.

We developed this algorithm in order to study data obtained from marker
analysis. APRIORI-B performance has been evaluated on a real dataset about
generalized aggressive periodontitis, and the learned rules were judged interest-
ing by the biologist.

Given this set of rules, further investigation could be made identifying the
group of patients which present the marker combination specified by one of the
rules. The comparison of the clinical state of these patient groups can be useful
to conduct a more specific study of the disease (e.g. finding different disease
phenotypes). This will be matter of future works. Moreover, a new dataset about
sclerosis will be analyzed.
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Abstract. This paper discusses the issue of dealing with large volume of high 
throughput genomics data and applying unsupervised multi-strategy methods to 
identify differentially expressed genes. We introduce a novel method that consists of 
8 steps. The approach is applied to a set of genomics data obtained from a cancer 
research study. We demonstrate the effectiveness of our method which includes 
some validation using biological experiments and literature search.  

Keywords: Gene expression data analysis, Multi-strategy learning, Data mining and 
knowledge discovery. 

1   Introduction 

Discovering useful, and ideally, all previously unknown knowledge from historical or 
real-time data obtained from various sources, such as biological experiments or clinical 
information, is a complex and challenging task. This first requires an in-depth 
understanding of the domain and second the development of novel and appropriate 
strategies for data preprocessing and analysis. In high throughput genomics applications, 
knowledge discovery processes support various research and development activities. Two 
examples of these are: (i) discovering relationships between genes and their functions 
based on time-series data (such as drug response over time or developmental stages), and 
(ii) investigating gene responses to various treatments at one discrete time point. Many 
different data mining approaches have been developed and successfully applied to 
biological datasets. However, a method suitable for analyzing one dataset may not be 
successful when used in another dataset. It is well-recognized that different methods for 
the identification of differentially-expressed genes produce different lists of genes. This 
has motivated many researchers to apply several techniques, instead of one. Among the 
questions in that case would be: how to properly combine the results generated from all 
methods without losing any useful information. The objective of this paper is therefore to 
address this question.  
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In this paper we provide an overview of knowledge discovery in genomics and 
emphasize on multi-strategy approaches in which a number of unsupervised learning 
methods are applied to identify differentially-expressed genes from a given dataset. The 
following sections consist of a brief summary of some related works followed by the 
detail of the biological problem which motivated us to consider the multi-strategy 
approach. We then describe our method, provide the results of applying the multi-strategy 
method on a breast cancer related dataset and conclude.  

 

2   Related work 

To properly relate our work to previous research in machine learning and knowledge 
discovery in genomics, we have looked at several areas. First, this research is related to 
multi-strategy methods in both supervised and unsupervised learning, of which the 
ensemble approach is well-known [5]. There is also an extensive research on bagging and 
boosting [5] that is related to our research and is an example of this work. Second, it 
overlaps with feature selection based on multiple methods. And third, there are application 
specific papers that have some commonalities with our work. Following is a brief 
overview of some related works. 

Supervised methods, which are mainly concept learners, generate hypotheses that are 
based on the original set of attributes. In many learning applications, the original learning 
space becomes inadequate. This inadequacy becomes evident through a high degree of 
irregularity in the distribution of instances and the models that are generated as output. 
Bloedorn et al [2] have developed a methodology to apply multiple learners and a range 
of strategies for an automated improvement of the knowledge representation space. A 
system like AQ-17 [2] has been able to significantly extend the machine learning 
capabilities as a multi-mechanism approach and produce a new generation of symbolic 
learning system. Hsu et al [8] proposed a high level optimization system (in the form of a 
wrapper) for relevance determination and constructive induction, and on integrating these 
wrappers with elicited knowledge on attribute relevance and synthesis. Their approach is 
based on using decision support systems when multi-strategy machine learning is applied. 
Similarly Geurts et al [6] proposed a new tree-based ensemble method for supervised 
classification and regression problems. This approach consists of randomizing both 
attribute and cut-point choice while splitting a tree node. In the extreme case, they build 
totally randomized trees whose structures are independent of the output values of the 
learning sample.  

Similar efforts are seen in applying unsupervised methods for multi-strategy learning. 
Amershi and Conati [1] outline a user modeling framework that uses both unsupervised 
and supervised machine learning in order to reduce development costs of building user 
models, and facilitate transferability. They apply a framework to model student learning 
during interaction with the Adaptive Coach for Exploration (ACE) learning environment 
(using both interface and eye-tracking data). Learning from cluster examples (LCE) [10] 
is a hybrid task combining features of two common grouping tasks: learning from 
examples and clustering. In this approach, each training example is a partition of objects. 
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The objective is then to learn from a training set, a rule for partitioning unseen object sets. 
A general method for learning such partitioning rules is useful in any situation where 
explicit algorithms for deriving partitions are hard to formalize, while individual examples 
of correct partitions are easy to specify. In the past, clustering has been applied to such 
problems, despite being essentially unsuited. Multi-clustering is an example that has 
qualitative advantages over standard clustering when applied to vector-data images.  

Of the most relevant research in feature selection based on biological data is the 
comparison and evaluation of ten different feature selection methods by Jeffery et al [9]. 
The authors applied all methods to nine microarray datasets where these methods returned 
dissimilar gene lists. From these datasets, only 8-12% of the genes listed by these methods 
were common. Along the same line Diaz-Uriarte and Alvarez de Andres [4] investigate 
the use of random forest for classification of nine microarray datasets and propose a new 
method for gene selection based on random trees and bootstrapping that produces 
relatively small gene lists. They also compare their approach with a number of other 
classification methods reported in the literature.  

3 The Biological problem and data used for this study 

      The dataset used in this paper was generated by exposing a mouse mammary tumor 
cell line, the JM01 cell line [11], for 24 hours to a treatment with the Transforming 
Growth Factor (TGF-�). TGF-� induces an Epithelial-to-Mesenchymal Transition (EMT) 
in these cells, a phenomenon characterized by significant morphology and motility 
changes, which are thought to be critical for tumor progression. TGF-� can act both as a 
tumor suppressor and tumor promoter depending on the context in which it is expressed. 
Given the opposite actions of TGF-� and the multiplicity of effectors that this growth 
factor utilizes, it is essential to identify those mediators that are specific to its tumor 
promoting or tumor suppressive pathways. Elucidation of the genetic programs underlying 
this EMT should provide a better understanding of the molecular mechanisms involved in 
cancer development and progression.  
     The goal of this study is to identify the TGF-� modulated genes involved in the EMT 
process. This should result into identifying breast cancer specific biomarkers that can lead 
to a better screening and the development of novel drug and therapeutics targeted towards 
personalized medicine. Four experiments were performed each consisting of 4-6 
replicates. The transcriptome changes by TGF-� were monitored using University Health 
Network (UHN) 15.6K mouse cDNA array platform. For demonstration of methodology, 
this paper is devoted to the analysis of one of the four experiments: TGF-� vs. Control 
(Fig. 1).   

4 The multi-strategy approach 

This section provides an overview of the multi-strategy approach (Fig. 2). Microarray 
data are first passed through a basic data preprocessing stage such as normalization,  data 
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Fig. 1. The structure of our data and the biological experiment 
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Fig. 2. Microarray data analysis and multi-strategy approach 

filtering, and missing data handling. Certain steps in data preprocessing require domain 
expertise and additional research. Data preprocessing helps us to better envision the scope 
of knowledge discovery and to ascertain whether or not the experiments have been 
performed properly. The next step in multi-strategy approach is to apply as many data 
analysis methods as desired to obtain the best possible lists of the most informative genes 
for the biological experiment under consideration. The gene lists obtained from all 
methods are then consolidated, based on a novel algorithm that is one of our contributions 
in this study. 

The overall consolidation algorithm is summarized in Fig. 3. After obtaining the gene 
lists from different analysis methods, the first step is to establish a confidence measure to 
select from these gene lists a set of genes to form the core of our final selection. The 
remainder of the genes forms the periphery which is subject to exclusion or inclusion into 
the final selection as described below. Depending on the context of the problem under 
study, there is a variety of ways to define the confidence measure. A simple confidence 
measure could be defined as some kind of voting scheme. Under a unanimity voting 
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scheme, the core consists of genes that are identified by all methods. One could also opt to 
define a less stringent voting strategy by selecting the core as the genes that are selected 
by more than one method.  
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           Fig. 3. Consolidation algorithm 

 
The next step is recruitment of similar genes in the periphery into core. This is done 

based on the principle of characteristic similarity such as gene co-regulation, pathways 
involved, and Gene Ontology (GO) [15] annotation. In order to achieve this, we first 
partition the genes in core into different characteristic groups. The genes in each group 
could:   

i. participate in the same biological pathway (based on, for example, KEGG 
database [16]), 

ii. have the same biological function (based on GO annotation), or 
iii. be regulated by the same mechanism (based on common transcription 

factors) 
We then evaluate the similarity of the genes in periphery to the characteristics of each 

group in core. If a gene in the peripheral region passes the pre-established similarity 
threshold, this gene is recruited into the final gene list.  

The effectiveness of the proposed methodology is demonstrated through its application 
to the JM01 dataset (Section 3). After data preprocessing, a set of data analysis methods 
are applied to search for informative genes through various significance measures in gene 
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expression profiles. Each method produces a different gene list. In this paper, we applied 
Rank Products (RP) [3], SAM [13] and t-test [9] to identify our list of differentially 
expressed genes from the JM01 dataset. In our experiments for RP, the expected RP-
values and False Discovery Rate (FDR) were calculated using 100 random experiments 
(number of permutations) of the same size of the original dataset. We selected genes 
based on the 5% of false discovery rate. As for SAM, a one-class response was applied to 
identify the genes which were highly over- or under-expressed in TGF-� treatment vs. 
control. The false discovery rate for SAM was 5% and the analysis was based on 100 
random permutations. For t-test, the cut point is p ≤ 0.05. To form the core, we selected 
genes that were identified by more than one method. The remaining genes that were 
identified by only one individual method fall into periphery. We used the DAVID 
annotation tool [7] to partition the genes in the core based on similar characteristics, such 
as biological pathway, biological function, sub-cellular location, protein domain, and gene 
regulation mechanism. A p ≤ 0.05 threshold was applied to each annotation in the 
enrichment analysis. We used 0.35 for the grouping similarity threshold (S) and evaluated 
the similarity between the genes in the periphery and each characteristic group in the core 
region. If the similarity was ≥ S, we recruit the genes into the final gene list.  

 

5  Results 

Fig. 4 shows the summary of the list of differentially expressed genes identified by 
SAM, t-test and Rank Products for up and down modulation, core and periphery. There 
are 554 and 359 genes in core and periphery, respectively. The results of partitioning the 
core and the recruitment are given in Table 1. We should mention that the recruitment is 
based on known genes only. There are 164 known genes in the core which belong to 13 

 
 
Fig. 4. Summary of number of genes identified by each method for up and 
down modulation, and number of genes in core (S4+S5+S6+S7) and 
periphery (S1+S2+S3). 
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functional groups. From the periphery, 127 known genes meet the similarity threshold of 
the functional groups in the core and have been recruited into the final gene list. 

Our results indicate that this consolidation method performs better than any single 
participating method and provides a stronger confidence in the results. This method is 
capable of identifying additional genes that would have been missed if only one method 
were used without incurring too much false identification. For example, the proposed 
methodology has helped us to uncover an important breast cancer gene, FGFR2 that 
would have been missed if the multi-strategy approach were not applied. FGFR2 has 
recently been identified as a biomarker in a genome-wide study conducted by several 
international teams [14]. Exploration on how well the consolidated gene list performs in 
constructing gene networks and by comparing to the gene lists produced by the individual 
methods is under study. The experimental validation of the identified genes is our next 
task in this research. 

Table 2 shows the final gene list for up and down modulated genes identified by 
multi-strategy approach. Initially, there were 155 up, and 399 down modulated genes in 
the core. Through the recruitment from the periphery, 23 up and 40 down modulated 

Table 1. Summary of functional groups and genes recruited into final set from 
periphery that meet the similarity criteria (p ≤ 0.05, S ≥ 0.35) into the final 
gene set.  

Functional group  IDs Description Core*  Periphery*  
1 Grown inhibition 7 2 
2 Cell structure 8 4 
3 & 12 Cell Metabolism 6+13 0 
4 & 11 ATP 24+4 15+0 
5 Mitochondrial 7 9 
6 & 10 DNA binding &Replication 48+25 45+10 
7 Phosphatases 5 4 
8 & 9 Peptidases and Proteases 5+4 21+0 
13 Membrane 8 17 
Sum  164 127 

* The + sign corresponds to the & in the first column, i.e. for DNA binding and 
replication, 48 genes form group 6 and 25 gene form group 10. Similarly, 45 and 10 
genes are recruited based on characteristic of group 6 and 10 from periphery, 
respectively. 
 

 

 

Table 2. Final gene list for up and down modulated genes.   

Identified genes  TGF-� vs. Control 

 Up Down 
Core (# of genes) 155 399 

# of added genes (pathway) 23 40 

# of added genes (annotation) 27 65 

Final gene list (not including overlapped genes) 204 480 
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genes were brought in according to functional annotation clustering. In addition, 27 up 
and 65 down modulated genes were brought in according to pathway information. The 
final list contains 204 up and 480 down modulated genes, which did not include the 
overlapped genes. 

To demonstrate the effectiveness of our recruitment strategy, Table 3 and 4 show the 
genes that are recruited from periphery and their importance based on biological evidence.  
These genes are either related to morphology and mortality changes, e.g. beta-catenin 
(Ctnnb1) and CXCR4, or alterations in the cell cycle, e.g. Cyclin I (Ccni) and Cyclin D2 
(Ccnd2), which are important in cancer development and progression. Some of the genes 
are known as breast cancer related or involved in EMT/TGF-� signaling pathway such as  

 

Table 3. Important genes that are brought in from periphery: morphology and motility 
related. 

Gene Relevance 

Up-modulated genes
Actg1 Reorganized during EMT; cytoskeletal 
Ctnnb1 Translocated in EMT; cytoskeletal 
Cxcr4 Important role in chemotaxis cancer cells and tumour metastasis 
Flna Cytoskeletal function 
Flnb Cytoskeletal function 
Fn1 Cell adhesion, extracellular matrix 
Itgb1 Reported to be involved in TGF-� induced EMT 
Itm2b, Ralb  
Jarid1b Embryonic development 
Map1lc3b Cytoskeletal reorganization 
Msn Involved in actin filament/plasma membrane interaction that is regulated 

by Rho 
Pard3 Reported to be involved in TGF-� induced EMT NMuMG cells 
Pdgfc Structurally more similar to VEGF-A than to PDGF-B 
Rhob Cytoskeletal reorganization 
Sdc3 Cell-cell interaction regulating heparan sulfate proteoglycans 
Sgce, Tmem59  
Sgk Close homolog Akt; phosphorylates Forkhead 
Zyx Influences integrin-dependent cell motility and actin stress fiber 

remodeling 
Down-modulated genes
Tcof1  
Tubb5 Putative function; cytoskeleton and motility 
Rdx Cytoskeletal protein 
Dmpk Role in myogenic differentiation 
Mylk Phosphorylates 20-kDa myosin light chains in a Ca2+/calmodulin-

d d tDiap3 Binds to Cdc42 and remodels the actin cytoskeleton 
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Table 4. Important genes that are brought in from periphery: cell cycle associated.  

Gene Relevance 
Up-modulated genes
Clk1, Ccni  
Down-modulated genes
Ccnd2 Overexpression in transgenic mice induces thymic and 

epidermal hyperplasia  
Cdc20 A key regulator of the mitotic anaphase-promoting 

lCdk8, Pa2g4, Prim1, Topbp1  
Chaf1a Essential for chromatin assembly in eukaryotes 
Pak2 Growth Inhibition TGF-� 
Plk4 Marker for cellular proliferation. 
Ybx1 Transcription factor 

    

 

Table 5. Important genes that are brought in from periphery: known to be related to breast 
cancer or TGF-� treatment. 

Gene Relevance 

Up-modulated genes
Pdgfc Structurally more similar to VEGF-A than to PDGF-B 
Gadd45g Clinicopathological significance in human familial breast carcinoma. 
Down-modulated genes 
Cdc20 A key regulator of the mitotic anaphase-promoting complex 
Dapk1 TGF-� induces apoptosis through Smad -mediated expression of DAP-kinase 
Egr1 Capable of stimulating the activity of the murine TbetaR-II promoter 
Fgfr2 Transforming potential of alternatively spliced variants in human mammary 

epithelial cells. 
Fosl1 Transcription factor through which TGF-� regulates Clusterin (amongst other 

genes) 
Ly6e Established protooncogene in T cell  
Map3k12 Regulates radial cell migration via microtubule-based events 
Mylk Phosphorylates 20-kDa myosin light chains in a Ca2+/calmodulin-dependent 

manner 
Pkm2 Role in glycolysis 
Ppp1cc Enhances cellular glycogen levels 
Prkx Highly distinctive expression pattern during neuronal development 
Rps6ka3 Regulator Eralpha phosphorylation, docking and transcriptional activation 
Senp2 Promotes nuclear accumulation and metabolic stability of tumor suppressor 

Smad4 
Shmt1 Catalyzes the reversible conversion of serine and tetrahydrofolate to glycine and  

methylenetetrahydrofolate 

Suv39h1 Role in myogenic differentiation 
Ybx1 Transcription factor 
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PDGFC and GADD45g (Table 5). The real value of this gene selection process in terms of 
important genes becomes known when extensive biological validation is performed. 

A Gene Set Enrichment Analysis was conducted using GSEA software [12]. Given an 
a priori defined set of genes Z (e.g. genes encoding products in a metabolic pathway, 
located in the same cytogenetic band, or sharing the same GO category), GSEA 
determines whether the members of gene set Z are randomly distributed throughout the 
input gene list L or primarily found at the top or bottom. Functional sets were applied in 
this study. A summary of the results from GSEA are given in Table 6 which shows that 
the up-modulated gene list generated through the multi-strategy method is much more 
enriched in gene sets that are related to breast cancer, EMT or the TGF-� signaling 
pathway compared to the other three methods. For the down-modulated gene lists, the 
multi-strategy method performed equally to the RP, slightly better than SAM and much 
better than the t-test. 

Reverse transcriptase polymerase chain reaction (RT-PCR) and quantitative RT-PCR 
experiments confirmed some of the genes selected through our multi-strategy method. 
Table 7 shows all of the genes that were confirmed and which were modulated by TGF-�. 
These results show that if only SAM were applied, two genes would have been missed. 
The number of missed genes would have been four if only t-test were applied and one if 
only RP were applied. If we only consider the core set, then three genes will be missed. 
However, multi-strategy approach helped us to identify many important genes. Union set 
of all the three methods will contain too many false positive. 

Table 6. Summary of GSEA results (only a small subset selected). 
Gene set enriched for up modulated genes 

(p< 0.01 & FDR < 0.25) 
Multi-strategy 

method  
SAM t-test RP 

BREAST_CANCER_ 
ESTROGEN_SIGNALING 

x     x 

TGFBETA_EARLY_UP x     x 
… … … … … 
# of gene set (which are related to breast cancer, or 
EMT/TGF-� signaling pathway) enrichment to each 
gene lists 

9 2 1 7 

 
Gene set enriched for down modulated genes 

(Top20 & p<0.001) 
Multi-strategy 

method 
SAM T-

Test 
RP 

BREAST_CANCER_ 
ESTROGEN_SIGNALING 

x     x 

BRCA_ER_NEG     x   
… … … … … 

 # of gene set (which are related to breast cancer, or 
EMT/TGF-� signaling pathway) enrichment to each 
gene lists  

10 9 6 10 
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Table 7. Biological validation by RT-PCR or SQ-RT-PCR on certain selected genes

Core Multi- Real-time SQ-

Strategy PCR RT-PCR

H3108A04 Clusterin x x x x x x x

H3003A10 CTLA-2 x x x x x x

H3112A08 Matrilin x x x x x x

H3124A01 Tenascin x x x x x x

H3017E12 Syndecan-3 x x x

H3054C02 Gadd45γ x x

H3089D06 Caveolin-1 x x x x x x

H3099E11 Makorin x x x

H3118G02 Ptpn13 x x x x x

H3151A04 Integrin α 6 x x x x x x

TGF-β modulated, selected by different method Biological confirmation

CloneID Gene Name SAM T-Test RP

x

 
 
 
6 Conclusions 

Many methods have been developed to identify lists of differentially expressed genes 
when comparing stages, treatments, etc. of a biological system. It is well known that 
relying on the results that were obtained through a single analysis method is highly risky. 
We therefore propose a multi-strategy analysis method that takes into account and 
integrates the output of all participating methods. Applying our multi-strategy method to 
the JM01 microarray data indicates promising results, and has encouraged us to apply this 
method to other biological data, including perhaps, a proteomics data set. The main 
challenge in all multi-strategy methods is to consolidate and interpret the results. We 
strongly believe that, given the objectives of this research and the biological problem, 
applying multiple methods has produced better results than any single method. The two 
most important questions arising from this analysis are, given a biological dataset of this 
type, and having the same objectives that we had in this research, and knowing that 
different datasets normally contain different characteristics, (i) what are the most 
appropriate methods to search for informative genes that would lead us to identifying 
biomarkers, and (ii) how to combine the results. We would like to pursue this research by 
applying this approach to more datasets, and also consider other comparison methods. The 
novelty of our approach is in employing data mining concepts, refining them and 
combining them with other methods to discover useful information from biological data. 
Our contribution is in the area of unsupervised learning. 
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Abstract. Biomarkers are biochemical facets that can be used to measure differ-
ent aspects of a disease. In the last years, there has been much interest in biomark-
ers of different cancer variants for predicting future patterns of disease. However,
DNA Biomarker selection is a difficult task as it involves dealing with a special
type of datasets, microarrays, that consists of a large number of features with
small number of samples. This paper proposes a new approach for biomarkers
selection by means of an innovative parallel evolutionary algorithm that performs
wrapper feature selection from thousands of genes to achieve a small set of most
relevant ones. To test our method, the well known Van’t Veer dataset on Breast
Cancer [1] has been considered. Preliminary results outperform those reported by
Van’t Veer both in accuracy and the number of genes selected.

1 Introduction

Biomarkers are biochemical facets or features that can be used to measure different
aspects of a disease, like the risk to develop it, its progress or the effects of particu-
lar treatments. Disease markers can be studied at many molecular levels, ranged from
genomic, epigenomic, proteomics, cellular and morphologic, to genetic factors. These
factors predispose patients to the disease or indicate its occurrence. In particular, ge-
netic biomarkers are DNA subsequences that have biological significance, in terms of
disease evolution, drug tolerance or response to specific treatments.

There has been much interest in biomarkers of cancer variants in predicting future
patterns of disease, especially as cancer treatment has made such positive strides in the
last few years. The hope that prognosis and disease treatment could be predicted using
these information patterns pushes forward the research in this particular field.

During the last few years, early cancer diagnosis has been based on the concentra-
tion of serum antigens, like CEA (Carcinoembryonic antigen), in blood [2]. CEA and
other antigens are nonspecific for cancer and can be produced by normal organs as well.
Their application is restricted in use and no treatment is ever based solely on a CEA.
Usually, alterations above normal can spur further diagnostic testing to catch the disease
at an early stage. These serum biomarkers can be partially effective in preliminary di-
agnosis or, additionally, as a way of determining the adequacy of postoperative therapy
[3].
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As an alternative to serum antigens, DNA biomarkers could provide predictive ca-
pabilities in the evaluation of the evolution of the disease and prognosis [4]. In addition,
and even more important, they could lead us to the development of effective treatments
using appropriate drugs and therapies.

DNA biomarker selection is difficult to perform. The machine learning analogy for
biomarkers selection is feature subset selection (FSS) on microrrays. Microarrays are
datasets with the problem of curse of dimensionality (large number of features with
small number of samples). FSS approaches are divided into wrapper and filter methods.
Wrapper methods provide better results but they have two major issues to be considered:
(i) a robust and coherent validation method should be applied to ensure quality and fair-
ness of the internal classifier, and (ii) the size of the search space grows exponentially
according to the number of features.

In this paper, a new approach is presented on biomarkers selection. This approach
is based on an innovative parallel evolutionary algorithm that performs wrapper feature
selection from thousands of genes to achieve a small set of most relevant ones, keep-
ing the best prediction quality. This new technique is a two-stage method (depicted on
figure 1). Preliminary feature filtering and data preprocessing is followed by the ac-
tual biomarkers selection using Multiple Offspring Sampling (MOS). This method has
been tested using the well known Van’t Veer dataset on Breast Cancer [1]. The selec-
tion obtained includes fewer genes than the ones reported by Van’t Veer getting better
prediction results.

Fig. 1. Overview of MOS applied to Biomarker Selection

2 Feature Subset Selection (FSS)

The FSS problem [5,6,7] deals with the search of the best subset of variables to train a
classifier. This is a very important issue in several areas of knowledge discovery such
as machine learning, optimization, pattern recognition and statistics. The goal behind
FSS is the appropriate selection of a relevant subset of features upon which to focus
the attention of a classification algorithm, while ignoring the rest. The FSS problem
is based on the fact that the inclusion of more variables in a training dataset does not
necessarily improve the performance of the model. We can distinguish two different
kinds of variables:

Irrelevant features. This variable has no relation with the target of the classifier.
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Redundant features. There exist subsets of variables with variables whose informa-
tion can be deduced from other variables from that subset. The inclusion of all
variables within one of those sets will not improve the final model.

2.1 Classical Solutions

The literature describes several approaches to solve this problem. To achieve the best
possible performance with a particular learning algorithm on a particular training set, a
feature subset selection method should consider how the algorithm and the training set
interact. There are two alternatives to consider this interaction which have been called
filters or wrappers, respectively.

Filter methods [8,9] are mathematical expressions that evaluate each available fea-
ture. We can sort all features using this evaluation to obtain a ranking of features and
cut this rank when desired. Correlation between each feature and the target variable is a
classical example of a filter measure. Filter FSS is based on an estimation of the perfor-
mance of the algorithm (without its actual execution) based on statistical or information-
based relationships among the selected features, including the classification label.

Wrapper methods [7,10] use the induction algorithm itself to evaluate the perfor-
mance of each subset. We train the model with each candidate subset of features and
use any resulting quality measure to evaluate each candidate feature selection. In the
wrapper approach, FSS becomes an optimization problem for finding the best set of
features, using the induction algorithm as a black box.

Filter methods are, in practice, faster than wrapper ones and obtain good enough
results in some datasets. Wrapper methods potentially achieve better feature selections
but their computational cost is higher. There are two main aspects that deeply influ-
ence the computational cost of these techniques: (i) the optimization algorithm could
be more or less exhaustive. For example, forward selection, backward elimination, and
their stepwise variants can be viewed as simple hill-climbing techniques in the space of
feature subsets; (ii) the robustness of the validation method applied to evaluate the qual-
ity of the results obtained by each candidate selection. It includes the measure to use,
but also the validation schema (leave-one-out, cross-validation, bootstrap, . . . ). These
validation methods behave differently in terms of variance, bias, and complexity.

An accurate FSS technique based on wrapper approaches that combines both a pow-
erful search method and a robust validation approach is still a challenge, particularly in
high dimensional datasets. An appropriate alternative is using a hybrid approach. The
most common one is the use of a filter to reduce the number of features (features are
ranked based on their representativness and the worst are removed), and a wrapper to
perform the final selection. This represents a balance between the number of features
to make the wrapper technique reasonable in computational time and the number of
features included in the optimal subset selection.

2.2 Heuristic Wrapper Approaches

As it has been said before, wrapper methods use the final model as an internal evaluation
step for feature selection. The wrapper trains a model and uses the accuracy of the model
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as the fitness value of the subset used for training. These methods need a search schema
that guides the generation and selection of subsets of features.

An exhaustive search generates and evaluates all possible subsets of features and so
the algorithm always finds the best subset. The main disadvantage of this approach is
its complexity. The application of this algorithm is unfeasible even with small-medium
size datasets.

Most common approaches are greedy algorithms due to its low computational cost
and good results in general. Four greedy approaches can be distinguished [11,12]:

Sequential Forward Selection. The search starts with an empty subset and adds the
best feature in each step until no improvement can be done.

Sequential Backward Elimination. This approach starts with all features selected and
deletes the worst one. The deletion of variables stops when no improvement can be
done.

Sequential Floating Forward Selection. The algorithm starts with an empty subset
and the best feature is added in each step (the same as SFS). After adding the
variables it tries to delete one of the previously selected ones (a backward step) if
this improves the current solution.

Sequential Floating Backward Elimination. It starts with all features and deletes the
worst. After deleting each variable, the algorithm tries to add one of the previously
discarded ones.

Genetic Algorithms [13,14] have been proposed as an alternative to FSS in regular
datasets. Although it is a more powerful explorative method, the results with standard
datasets are similar to the greedy alternatives. However, these algorithms may behave
differently with horizontal datasets (e.g. microarrays).

2.3 FSS applied to Microarray Analysis

The analysis of gene expression using microarray data has become popular in the past
few years. Microarrays are applied to a wide variety of problems in life and medical
sciences. An important issue is patients’ diagnosis for some specific disease. Because
of the cost and effort required to gather this information, microarray datasets have only
a low number of samples or observations (10-100). However, each sample has a large
number of numerical expression levels of genes (10000-30000). This extreme asym-
metry, referred as the “curse of dimensionality” [15], is the typical property of most
microarray datasets, and needs modified computational techniques to be analyzed.

An important task in classification is to reduce the high dimensionality feature
space, that is, for example, applying dimensionality reduction or feature subset selection
techniques.

Feature selection applied to microarray data has primarily been studied in a super-
vised learning context, where predictive accuracy is commonly used to evaluate feature
subsets. Specifically, (penalized or non-penalized) logistic regression algorithms were
used by [16,17]. Even new algorithms based on logistic regression (Recursive Feature
Elimination) were proposed [18] to obtain the best genes selection. Other supervised
methods have also been considered [19,1] for cancer diseases.
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Considering both wrapper and filter feature selection, Inza and Larrañaga present a
comparison between both models in DNA microarray domains [20]. Different methods
using both models have been proposed [21,22,1] trying to exploit benefits from both
approaches with significative results.

3 Breast cancer dataset description

Van’t Veer dataset [1] on Breast Cancer 3 has been considered to validate our approach.
As we know, Van’t Veer researches were approved by FDA (Food and Drug Adminis-
tration) and were applied in a genetic test, named MammaPrint, that predicts whether
patients will suffer breast cancer relapse or not.

Data is divided into two groups, learning and validation instances. The training data
consists of 78 patients, 34 of which are patients that developed distance metastases
within 5 years (poor prognosis). The rest of the dataset (44 patients) are the ones who
remained healthy from the disease after their initial diagnosis for an interval of 5 years
(good prognosis). The second group of patients (validation dataset) consists of 19 pa-
tients, 12 patients with poor prognosis and 7 with good prognosis.

DNA microarray analysis was used to determine the mRNA expression levels of
approximately 24500 genes for each patient. All the tumours were hybridized against a
reference pool made by pooling equal amounts of RNA from each patient.

3.1 Preprocessing

Obviously, the original data contains many redundancies and also incorrect or missing
values, depending on some factors. So, as a first step, certain preprocessing was per-
formed in order to clean up and prepare the data. Variables with low internal variance
or low correlation with outcome were also discarded.

Several preprocessing algorithms have been carried out through the training data.
Firstly, replicated genes are discarded. Next, patients with more than 80% of missing
gene values are also discarded. All data have been background corrected, normalized
and log-transformed using Lowess Normalization [23]. Missing values were estimated
using a 15-weighted nearest neighbours algorithm [24] (kNN Impute).

3.2 Preliminary Filtering

Filter scoring tries to identify genes that are differentially expressed in the categories
of the problem. The first step of the filter procedure is to rank the features in terms of
the values of the used univariate scoring metric. In a second step, the d features with
the highest scoring metric are chosen to induce the LR model. For this contribution,
Pearson measure has been selected.

r (j) =
∑N

i=1 (xij − xj) · (yi − y)
(n − 1) · sj · sy

(1)

3 available at http://www.rii.com/publications/2002/vantveer.html
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where xi is the mean value, sj is the standard deviation of expression levels, and yi

and y are the class value and class mean respectively.
Next, a ranking list ordered by Pearson correlation is generated. With this list, a

group of 1000 best genes has been selected. A large number of pre-candidate genes has
been selected to provide enough alternatives to the wrapper search in the second stage.
As mentioned before, this means that the search space in the wrapper method is large
and potentially very complex. The proposed wrapper method to select biomarkers from
a 1000 candidate genes is based on an innovative evolutionary technique that allows
optimal values to be found on complex and large search spaces.

4 MOS: Multiple Offspring Sampling

Multiple Offspring Sampling is introduced as a variant of classic population-based evo-
lutionary algorithms. This new approach proposes the simultaneous use of different
techniques (a proper definition of technique in the context of MOS will be given in
subsection 4.2) to create new individuals (candidate solutions).

To show how MOS modifies the behaviour of classic Evolutionary Algorithms (EA),
we should first present a general schema of EA functioning, which will be given in the
next subsection. Afterwards, Multiple Offspring Sampling will be presented.

4.1 Evolutionary Algorithms

Evolutionary algorithms (like Genetic Algorithms (GAs)), in a general schema, are di-
vided into different phases:

À Creation of the initial population P0.
Á Evaluation of the initial population P0.
Â Checking of the algorithm termination (convergence or generation limit), if so then

finish, otherwise continue.
Ã Generation, using some individuals from Pi, of new individuals for the next gener-

ation, called offspring population Oi.
Ä Evaluation of the new individuals in Oi.
Å Combination of offspring and previous population to define the next population

Pi+1.
Æ Go back to Â.

Based on this schema, different evolutionary algorithms and approaches have been
developed. For example, in step Å classical GAs take the offspring as the next popula-
tion (Pi+1 = Oi). Other approaches, like steady state algorithms generate only one off-
spring individual that replaces the worst individual in Pi, and intermediate approaches,
based on elitism, take the best individuals from both Oi and Pi to generate Pi+1.

In step Ã, there have been also many different approaches in the literature. Some ex-
amples are based on selecting different genetic operators, or using statistical approaches
for modelling the population and later sampling the offspring (e.g. estimation of distri-
bution algorithms by [25]).
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4.2 Multiple Offspring Basics

We introduce Multiple Offspring Sampling (MOS) approach as a combined alternative
in the way steps Ã and Å are performed. MOS proposes the definition of multiple
mechanisms to generate new individuals, and make them compete during the evolution
process. Each mechanism creates its own offspring O

(j)
i (i is the generation and j is the

mechanism).
These MOS mechanisms, or techniques, as they are named at the beginning of sec-

tion 4, could be defined as a mechanism to create new individuals, i.e., (a) a particular
evolutionary algorithm model, (b) with an appropriate coding, (c) using specific opera-
tors (if required) and (d) configured with its necessary parameters.

According to the above definition we can consider different parameters and thus
divide MOS into several categories. A rough taxonomy of how MOS can be divided
could be:

– Algorithm-based MOS: different algorithms (GAs, EDAs) are used to create new
individuals.

– Coding-based MOS: different codings (genotypes) can be used to represent one
candidate solution (phenotype) of the problem.

– Operator-based MOS: for a single coding of candidate solutions there could exist
different genetic operators (if working with GAs) that could be used simultane-
ously.

– Parameter-based MOS: different values for evolutionary parameters (crossover and
mutation ratios, selection mechanisms, etc.) are used within each technique.

– Hybrid MOS: a combination of any of the previous.

In the particular case of the experimentation performed for this study, two different
genotype encodings are considered.

As a solution, the phenotype, can participate in multiple genotype recombinations, a
group of functions is required to transform genotypes between two different encodings.

Once the offspring population is created by each of the techniques being used, the
quality of these populations is evaluated by means of several possible measures. The
most obvious of these measures is the average fitness of the population, but more so-
phisticated measures could be proposed to take into account not only the current per-
formance of the technique but its capability.

Finally, in phase Å, previous population Pi and all the offsprings O
(j)
i are merged

to produce the next population Pi+1. This process is usually done by using an elitist
population merge function.

The calculation of the amount of new individuals created in each generation, for n
different offspring sampling methods, is obtained using a Participation Function (PF).
Different functions have been proposed in other scenarios by [26], where the first ap-
proach to Algorithm-MOS was introduced under the combination of two different Evo-
lutionary Algorithms: GAs and EDAs. From these functions, a dynamic one was se-
lected for being used in our studies. This function dynamically adjusts the participation
of each technique according to the quality of the offspring populations calculated be-
fore.
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4.3 MOS for Biomarker Selection

Previous subsections have introduced MOS as an innovative parallel genetic algorithm
that is able to exploit the benefits of using different techniques to produce a new off-
spring based on current population. In the case of this study, two different codings were
used.

First coding is simply a binary vector of length the number of features in the learning
dataset. Each of these binary values tells if that feature will or will not be selected by
the algorithm.

Second coding is a condensed version of the first one, consisting of a vector of
integer numbers where each number represents a gene being selected by the algorithm.
This messy coding was firstly introduced by [27] and since then reliably applied to a
wide range of optimization problems [28,29].

These two codings coexist all along the evolutionary process, each of them taking
more participation in different phases of the execution of the genetic algorithm and
helping the GA to outperform itself when using just a single genetic representation
(coding).

Fig. 2. A detailed view of MOS applied to Biomarker Selection

5 Experimentation scenario, results and discussion

This section provides an overview of the whole process followed in this research along
with the results obtained and a discussion about these results.

Figure 4.3 clearly depicts the followed process:
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À Firstly, a preprocessing phase is performed to select the best 1000 genes consider-
ing their position in a ranked list ordered by Pearson correlation, as explained in
section 3.2.

Á Then, a MOS algorithm is executed to select most relevant genes from these 1000
genes previously selected. MOS will evaluate each generated individual with a
bootstrap (200 iterations) using a KNN algorithm, trying to optimize a fitness "mea-
sure", the AUC in this experimentation, as it has empirically demonstrated to be-
have quite well for this problem. For KNN, two different distance measures have
been considered: traditional Euclidean distance and Chebyshev distance. First one
has been selected because it has been widely used in previous works and that lets
us to fairly compare our approach with others. Second one has been used due to
its capability to penalize selections of genes with large distance among only few of
them (even between just two of them), a characteristic we wanted to exploit in our
experiments.

Â Finally, an external validation process is performed considering only selecting genes
to learn a KNN algorithm and a validation dataset different from that used to learn
and not seen by the algorithm until now.

The experiments were executed on a 13 dual Xeon cluster at 2.40 GHz, using a
parallel asynchronous genetic algorithm implemented in GAEDALib coded by [30]
with the configuration described in table 1(b).

Table 1. Experimental scenario

(a) GA configuration

(Global) Pop. size 390

Termination Pop. convergence
Convergence % 98 %

Individuals selection Roulette wheel
Crossover % 90 %
Mutation % 1 %

(b) Parallel configuration

Paradigm islands model
Model asynchronous

Topology mesh
Migration rate 10 gens.
Migration pop. Top 20 %

Nodes 26

Table 2 summarizes the results obtained in this experimentation. Fourteen different
configurations were tested. For each of the two distance measures considered, seven
different fitness functions were tested. First function only tried to maximize the AUC,
regardless of the number of selected genes. With such a great degree of freedom the al-
gorithm tends to select a huge number of genes. For this reason, a new fitness function
was introduced (see equation 2) that tries to avoid this problem. This fitness function
tries to lower the number of variables as much as possible but not more than the pivot
value that acts as a center of gravity for the number of variables. Then, six new config-
urations were executed, with the only difference being in the pivot value.

fitness = AUC ∗ 1
abs(#genes − pivot) + 1

(2)
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Results, in general, outperform those of Van’t Veer both in prediction accuracy and
smaller number of genes selected. Best results are achieved with Chebyshev distance
and the penalized fitness function with pivot equal to 40, although there are not great
differences among all the configurations with penalized fitness function regardless of
the distance measure used. This makes us think that the optimal number of genes must
be within this range ([20, 60]).

Table 2 presents the average results of ten executions for each configuration. Sev-
eral executions of the algorithm (with different configurations) returned a selection of
genes with an impressive 94% of accuracy in external validation and with just 20 genes
selected in the best case.

From table 2 we can also observe that there exists a strong correlation between the
optimization measure (AUC) and the validation measure (accuracy) (0.92 for Pearson
correlation). This property is quite desirable for an optimization measure when training
an algorithm that will be validated with unknown data.

Finally, the penalizing method appears to be very restrictive and makes the algo-
rithm to adjust perfectly to the selected value of pivot. This behaviour must be studied
and some modifications may be introduced to allow a certain level of flexibility for the
number of features selected.

Table 2. Summary of results: all reported values are the average of ten executions

AUC Accuracy Size
Chebyshev Distance - Not Penalized 0.75 0.79 317.70

Chebyshev Distance - Penalized (centered on 0) 0.60 0.71 2.45
Chebyshev Distance - Penalized (centered on 20) 0.76 0.81 20.00
Chebyshev Distance - Penalized (centered on 30) 0.73 0.79 30.00
Chebyshev Distance - Penalized (centered on 40) 0.76 0.84 40.00
Chebyshev Distance - Penalized (centered on 50) 0.75 0.81 50.00
Chebyshev Distance - Penalized (centered on 60) 0.75 0.81 60.00

Euclidean Distance - Not Penalized 0.74 0.77 131.25
Euclidean Distance - Penalized (centered on 0) 0.66 0.73 2.35

Euclidean Distance - Penalized (centered on 20) 0.76 0.80 20.00
Euclidean Distance - Penalized (centered on 30) 0.75 0.82 30.00
Euclidean Distance - Penalized (centered on 40) 0.75 0.81 40.00
Euclidean Distance - Penalized (centered on 50) 0.80 0.82 50.00
Euclidean Distance - Penalized (centered on 60) 0.76 0.81 60.00

6 Conclusions and future work

This paper introduces an innovative and robust method to perform FSS on large mi-
croarray data sets (1000 features or more).

It also presents a validation mechanism that consists of: (i) an internal validation
process to avoid overfitting to learning data (bootstrap with 200 iterations in this ex-
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perimentation) and (ii) an external validation to evaluate the quality of the selection of
genes.

Results demonstrate the effectiveness of this method, with an average accuracy of
84% in the best configuration, and several selections of genes with an accuracy of 94%.
The number of genes selected is also fewer than those reported by Van’t Veer, which
makes this approach outperform previous works both in accuracy and selections of
genes’ size.

Future works will include analysis of the relations among different selections of
genes with similar performance and a study of the behaviour of the algorithm when
learning with measures others than AUC.
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P.O. Box 408, SE-541 28, Skövde, Sweden
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Abstract. Dimensionality reduction can often improve the performance
of the k-nearest neighbor classifier (kNN) for high-dimensional data sets,
such as microarrays. The effect of the choice of dimensionality reduction
method on the predictive performance of kNN for classifying microarray
data is an open issue, and four common dimensionality reduction meth-
ods, Principal Component Analysis (PCA), Random Projection (RP),
Partial Least Squares (PLS) and Information Gain(IG), are compared on
eight microarray data sets. It is observed that all dimensionality reduc-
tion methods result in more accurate classifiers than what is obtained
from using the raw attributes. Furthermore, it is observed that both
PCA and PLS reach their best accuracies with fewer components than
the other two methods, and that RP needs far more components than
the others to outperform kNN on the non-reduced dataset. None of the
dimensionality reduction methods can be concluded to generally outper-
form the others, although PLS is shown to be superior on all four binary
classification tasks, but the main conclusion from the study is that the
choice of dimensionality reduction method can be of major importance
when classifying microarrays using kNN.

1 Introduction

Microarray gene-expression technology has spread across the research commu-
nity with immense speed during the last decade [1]. Being able to effectively
learn from data generated through this technology is important for many rea-
sons, including allowing for early accurate diagnoses which might lead to proper
choice of treatments and therapies [2, 3]. On the other hand, this type of high-
dimensional data, often involving thousands of attributes, creates challenges for
many learning algorithms, including the well-known k-nearest neighbor classifier
(kNN) [4].
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The kNN has a very simple strategy as a learner: instead of generating an
explicit model, it keeps all training instances. A classification is made by measur-
ing the distances from the test instance to all training instances, most commonly
using the Euclidean distance. Finally, the majority class among the k nearest
instances is assigned to the test instance. This simple form of kNN can however
be both inefficient and ineffective for high-dimensional data sets due to presence
of irrelevant and redundant attributes. Therefore the classification accuracy of
kNN often decreases with an increase in dimensionality. One possible remedy
to this problem that earlier has shown to be successful is to use dimensionality
reduction [5].

The kNN has earlier been demonstrated to allow for successful classification
of microarrays [2] and it has also been shown that dimensionality reduction can
further improve the performance of kNN for this task [5]. However, it is an open
question if the choice of dimensionality reduction technique has any impact of
the performance, and for this purpose, four commonly employed dimensionality
reduction methods are compared in this study when used in conjunction with
kNN for microarray classification.

The organization of the paper is as follows. In the next section, we briefly
present the four dimensionality reduction methods used in the study. In section 3,
details of the experimental setup are provided, and the results of the comparison
on eight microarray data sets are given. Finally, we give some concluding remarks
and outline directions for future work.

2 Dimensionality Reduction

2.1 Principal Component Analysis (PCA)

PCA uses a linear transformation to obtain a simplified data set retaining the
characteristics of the original data set.

Assume that the original matrix contains d dimensions and n observations
and that one wants to reduce the matrix into a k dimensional subspace. This
transformation can be given by[6]:

Y = ET X (1)

where Ed×k is the projection matrix containing k eigen vectors corresponding
to the k highest eigen values, and Xd×n is the mean centered data matrix.

2.2 Random Projection (RP)

By RP, the original data set is transformed into a lower dimensional subspace
by using a random matrix [7, 8].

Assume that one wants to reduce the d dimensional data set into a k dimen-
sional set where number of instances are n. The transformation is then given
by:
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Y = R X (2)

where Rk×d is the random matrix and Xd×n is the original data matrix. The
original idea behind the RP is based on the Johnson-Lindenstrauss lemma (JL)
[9] which states that n points can be projected from Rd → Rk while preserving
the Euclidean distance between the points within an arbitrarily small factor. For
more details on the method, see [8].

This random matrix can be created in several ways and the one we have used
is introduced by Achlioptas [10], by which the random matrix is generated as
follows.

rij =

⎧⎨
⎩

+
√

3 with Pr = 1
6 ;

0 with Pr = 2
3 ;

−√3 with Pr = 1
6 .

(3)

2.3 Partial Least Squares (PLS)

PLS was originally developed within the social sciences and has later been used
extensively in chemometrics as a regression method[11]. It seeks for a linear com-
bination of attributes whose correlation with the class attribute is maximized.
In PLS regression the task is to build a linear model, Ȳ = BX + E, where B
is the matrix of regression coefficients and E is the matrix of error coefficients.
In PLS, this is done via the factor score matrix Y = WX with an appropri-
ate weight matrix W . Then it considers the linear model, Ȳ = QY + E, where
Q is the matrix of regression coefficients for Y . Computation of Q will yield
Ȳ = BX + E, where B = WQ. However, we are interested in dimensionality
reduction using PLS and used the SIMPLS algorithm [12, 13]. In SIMPLS, the
weights are calculated by maximizing the covariance of the score vectors ya and
ȳa where a = 1, . . . , A (where A is the selected numbers of PLS components)
under some conditions. For more details of the method and its use, see [12, 14]

2.4 Information Gain (IG)

Information Gain (IG) can be used to measure the information content in a
feature [15], and is commonly used for decision tree induction. Maximizing IG
is equivalent to minimizing:

V∑
i=1

ni

N

K∑
j=1

−nij

ni
log2

nij

ni

where K is the number of classes, V is the number of values of the attribute,
N is the total number of examples, ni is the number of examples having the
ith value of the attribute and nij is the number of examples in the latter group
belonging to the jth class.
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3 Empirical Study

3.1 Data Sets

The following eight micorarray data sets are used in this study:

– Colon Tumor [16], which consists of 40 tumor and 22 normal colon samples.
– Leukemia [17], which contains 72 samples of two types of leukemia: 25 acute

myeloid leukemia (AML) and 47 acute lymphoblastic leukemia (ALL).
– Central Nervous System [18], which consists of 60 patient samples of sur-

vivors (39) and failures (21) after treatment of the medulloblastomas tumor
(This is data set C from [18]).

– SRBCT [3], which contains four diagnostic categories of small, round blue-
cell tumors as neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin
lymphoma (NHL) and the Ewing family of tumors (EWS).

– Lymphoma [19], which contains 42 samples of diffuse large B-cell lymphoma
(DLBCL), 9 follicular lymphoma (FL) and 11 chronic lymphocytic leukemia
(CLL).

– Brain [18] contains 42 patient samples of five different brain tumor types:
medulloblastomas (10), malignant gliomas (10), AT/RTs (10), PNETs (8)
and normal cerebella (4). (This is the data set A from [18].)

– NCI60 [20], which contains eight different tumor types. These are breast, cen-
tral nervous system, colon, leukemia, melanoma, non-small lung carcinoma,
ovarian and renal tumors.

– Prostate [2], which consists of 52 prostate tumor and 50 normal specimens.

The first three data sets come from Kent Ridge Bio-medical Data Set Reposi-
tory[21] and the remaining five from [22]. The data sets are summarized in Table
1.

Table 1. Description of data

Data set Attributes Instances # of Classes

Colon Tumor 2000 62 2
Leukemia 7129 38 2
Central Nervous 7129 60 2
SRBCT 2308 63 4
Lymphoma 4026 62 3
Brain 5597 42 5
NCI60 5244 61 8
Prostate 6033 102 2

3.2 Experimental Setup

We have used Matlab to transform raw attributes to both PLS and PCA com-
ponents. The PCA transformation is performed using the Matlab’s Statistics
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Toolbox whereas the PLS transformation is performed using the BDK-SOMPLS
toolbox[23, 24], which uses the SIMPLS algorithm. The WEKA data mining
toolkit [15] is used for the RP and IG methods, as well as for the actual near-
est neighbor classification. Default parameters are used with kNN, i.e. distance
weighting is not considered in voting.

Both PLS and IG are supervised methods which uses class information for
their transformations. Therefore, to generate the PLS components for test sets,
the weight matrix generated for the training set has to be used. For IG, attributes
in the training set is ranked based on the information content in a decreasing
manner and the same attributes are selected for the test set. As earlier explained,
attributes generated using RP are of a random nature since a random matrix
is used for the transformation. For this reason, we have averaged results of RP
from 30 runs to reduce the variance.

The optimal number of neighbors (i.e., k) could be specific to different data
sets and dimensionality reduction methods. Therefore, we have investigated the
effect of different values of k, namely 1, 3, 5, 7 and 9.

Stratified 10-fold cross validation[15] is employed to obtain measures of ac-
curacy, which has been chosen as the performance measure in this study. For
PCA, PLS and IG same training and testing sets are generated with the same
seed.

3.3 Experimental Results

The results are summarized in Fig. 1 and Fig. 2. It can be observed that both
PLS and PCA obtain their best classification accuracies with relatively few di-
mensions, while more dimensions are required for IG and many more for RP.

None of the methods turns out as a clear winner, except perhaps PLS on
the binary classification tasks. However, all methods outperform not using di-
mensionality reduction, and the difference in performance between the best and
worst method can vary greatly for a particular dataset, leading to the conclusion
that the choice of dimensionality reduction to be used in conjunction with kNN
for microarray classification can be of major importance.

In most of the cases, simply setting k = 1 gives the best result. However, for
IG it seems that one should consider choosing higher values for k which improves
the classification accuracy by at least 1% for 5 out of 8 datasets. For PCA, the
choice of a higher k value yields at least a 1% improvement for 3 out of 8 data
sets whereas for PLS, an improvement of at least 1% is obtained for 4 out of 8
datasets.

4 Concluding Remarks

Four dimensionality reduction methods are compared for classifying microarrays
with the nearest neighbor classifier. Experiments with eight microarray datasets
show that dimensionality reduction indeed is effective for nearest neighbor clas-
sification.
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Fig. 1. Predictive performance with the change of numbers of dimensions using PCA,
PLS, RP and IG with Nearest Neighbor (IB1) for Colon Tumor, Brain, NCI60, Prostate,
Leukemia and Lymphoma data sets.
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Fig. 2. Predictive performance with the change of numbers of dimensions using PCA,
PLS, RP and IG with Nearest Neighbor (IB1) for Central Nervous and SRBCT data
sets.
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Fig. 3. Predictive accuracy with different k values for nearest neighbor classifier for
Brain dataset
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Table 2. Order of k values w.r.t averaged accuracy

Decreasing order of accuracy

IG PCA PLS

Colon Tumor 7,5,9,3,1 5,9,7,3,1 7,9,5,3,1
Leukemia 1,3,5,7,9 1,3,5,7,9 3,1,5,7,9
Central Nervous 7,9,5,1,3 3,7,9,5,1 9,7,5,3,1
SRBCT 3,5,1,7,9 1,9,3,7,5 9,7,5,3,1
Lymphoma 5,9,1,7,5 1,3,5,7,9 1,3,5,7,9
Brain 3,1,5,7,9 1,3,5,7,9 1,3,5,7,9
NCI60 9,7,1,5,3 1,3,5,7,9 1,3,5,7,9
Prostate 3,7,9,5,1 9,5,7,3,1 9,3,1,7,5

However, none of the methods used in the study consistently gives the best
accuracy on all data sets. Generally, both PCA and PLS results in the high-
est accuracy for few dimensions whereas RP and IG require more dimensions.
Compared to the other three methods, PCA is shown to be more sensitive to
the choice of dimensionality, and typically gives poor results in higher dimen-
sions. It can be observed that PLS outperforms the other methods for binary
classification problems (Colon, Leukemia, Central Nervous and Prostate).

We have also investigated the accuracy of kNN for different values of k.
Generally, k=1 seems to be the best choice for PCA and PLS, while higher
values are required for IG.

There are a number of issues that need further exploration. First, additional
binary microarray classification tasks could be investigated to test the finding
that PLS appears to be superior in these cases. Second, further characterizations
of the situations in which the different dimensionality reduction methods are
successful could be identified. Furthermore, the possibility of combining several
reduced features sets generated by different reduction methods could also be
investigated.
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Abstract In this paper, we provide initial Data Mining results on four 
sets of genetic data, collected in the context of the new European 
Embryonal Tumour Pipeline project. These data sets provide different 
views on the genetic processes involved in the genesis and development 
of a specific type of tumour, known as neuroblastoma. Although the 
project involves other types of tumours as well, with potentially similar 
underlying causal processes, neuroblastoma is currently the only 
disease for which sufficient data has been collected to analyse. We 
provide results on this data using systems developed at two Data 
Mining groups in Europe, with the aim of introducing the different Data 
Mining challenges involved, and outlining the approach we intend to 
apply throughout the project. Our descriptions focus on the analysis of 
individual data sets, stemming from separate analysis platforms (e.g. 
Affymetrix microarrays). Additionally, we provide some pointers for 
doing cross-platform analysis in the future. 

1 Introduction 

In this paper we give an overview of the many Data Mining challenges involved in 
a new EU-funded project called the European Embryonal Tumour Pipeline (EET 
Pipeline in short). The EET Pipeline attempts to improve treatment of a group of 
cancers affecting infants and small children through channelling information extracted 
from high-throughput molecular profiling of these tumours into pipelines to validate 
targets for novel therapy and diagnostic development. As cancer is the second cause 
of deaths (after accidents) among children in Europe, this is an important goal, and 
Data Mining will play a crucial role in the extraction of knowledge from the large 
quantities of data produced in this project. As the project has started only recently, we 
do not intend to give a complete report of the results obtained, but rather provide 
insights in the intended approach, and show promising initial results. The aim of this 
paper is to outline the types of data available, the Data Mining challenges that result 
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from this data, and some of the techniques we are employing to deal with these 
challenges. Specifically, we are considering the embryonal tumour neuroblastoma 
(reviewed in [3]), for which extensive molecular data is already available within the 
project. In Section 5 of this paper, we provide initial results for this illness. As the 
remaining tumour types will involve similar types of data, the results reported here 
will give a good indication of the activities that will be performed throughout the 
project. However, data for these other tumour types will only become available in 
later stages of the project. 

One of the main characteristics of the project is its integrated approach towards 
embryonal tumours. This integration takes the form of a unified approach across 
tumour types. Furthermore, for all tumours, we are gathering data through a range of 
high-throughput analysis platforms, providing multiple views on the biological 
processes involved in the development of tumours. The analysis platforms include 
microarrays for gene and microRNA expression, ArrayCGH for chromosomal 
deletion and multiplication, and mass-spectrometry for proteomics. The diverse nature 
of these different data sources, in terms of data structure, is a first challenge, which 
we address in this paper by demonstrating how our analysis techniques can be applied 
to individual data sources. Further challenges lie of course in the integrated analysis 
of data across analytic platforms, either by combining data sources into rich unified 
descriptions of patients and tumour tissue, or by integrating the knowledge that is 
extracted using platform-specific techniques. We provide some pointers as to these 
activities in Section 6. 

The two analysis systems we are employing are the results of years of Data 
Mining research at Utrecht University and the Jožef Stefan Institute (JSI) respectively 
(affiliations 1 and 2 in the author list). Both flavours of Data Mining can be 
characterised by a strong emphasis on interpretability of the models created. We are 
focusing on results that make sense to a domain expert and that lead to new insights 
about the underlying genetic processes, rather than on inducing a black box with high 
predictive accuracy per se. Both systems are generic Data Ming tools, with broader 
application than just biology. The first system, Safarii [7, 11], was developed at 
Utrecht University and Kiminkii, a Dutch company owned by the last author. It is 
based on the discovery of patterns such as rules and interesting subgroups, and 
combining these patterns into classifiers using a number of techniques such as Pattern 
Teams [8] or Support Vector Machines. A specific forte of Safarii is the support for 
Multi-Relational Data Mining, a technique that allows the integration of data from 
different sources. The second system, developed in cooperation between the 
Katholieke Universiteit Leuven and the JSI, implements a tree-based approach known 
as Predictive Clustering Trees (PCTs) [1]. Such trees combine the benefits of 
clustering with those of tree-based classification methods. Of specific interest in this 
context is the ability to induce multi-target PCTs, trees that are optimised for multiple 
targets (e.g. tumour subtype and developmental stage) at the same time. We describe 
and demonstrate both systems in Section 4. 

2 Neuroblastoma 

Neuroblastoma is the most common extracranial solid tumour of childhood, and 
88% of neuroblastoma patients are 5 years or younger. Neuroblastoma demonstrates 
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many features of common interest to cancer, such as spreading of the cancer and the 
development of resistance to chemotherapy. However, due to its manifestation early 
in life, it presents an excellent model to study genetically based changes leading to 
cancer, relatively free from the influence of environmental factors. Additionally, the 
embryonal tumours, to which neuroblastoma belongs, also are unique in the high 
incidence of spontaneous regression and differentiation of the tumours. The 
understanding of how this "self-cure" mechanism works may also be applicable to 
develop new treatment strategies for other cancers. Treatment of neuroblastomas with 
polychemotherapy provokes good initial response, regardless of tumour stage. 
However, two major problems of the current treatment regimen exist. Disseminated 
(cancer spread throughout the body) stage 4 tumours frequently relapse due to 
minimal residual disease arising from a few resistant tumour cells, resulting in poor 
overall survival rates (<35%). On the other hand, overtreatment of MYCN-
nonamplified stage 2 or 3 tumours causes most of the surviving patients to suffer from 
significant organ toxicity or develop secondary malignancies later in life, reducing 
their quality of life. Novel strategies to more precisely diagnose and treat 
neuroblastoma are urgently needed to improve this situation. With the recent advent 
of high-throughput technologies, it is now possible to assess the tumour at multiple 
biological levels, including the genome, transcriptome and proteome. The large 
amounts of molecular information resulting from these analyses holds the promise of 
not only a better understanding of neuroblastoma biology and progression, but also 
the identification of molecules that can be targeted for therapy and used to better 
tailor treatment for a personalised diagnosis. 

3 Data Sources 

For neuroblastoma tumour samples and patient serum, a total of four data sets 
have been collected (being ArrayCGH, Affymetrix microarray, MicroRNA and 
SELDI Mass Spectrometry data). In this section, we will discuss the characteristics of 
each of these separately, and assess their potential and problems. First, we will give a 
description of the target concepts that we want to investigate. Then we will address 
the characteristics of each data set. 

Target concepts for Investigation 
The data from the EET Pipeline project leads to a range of potentially interesting 

target concepts for Data Mining. With space limitations in mind, we have selected 
two targets for this paper that are of interest to the domain experts: clinical course 
(NBstatus) and neuroblastoma stage (Stage).  

Clinical Course: Domain experts rate this as being one of the most interesting 
target concepts for investigation. The clinical course NBstatus lists the patients last 
recorded follow up status, being either ‘alive without event’, ‘alive with 
relapse/primary tumour’ or ‘deceased’. Since only deceased patients in the data who 
died as result of a relapse or primary tumour were chosen for analysis here, we can 
make a binary comparison by testing ‘alive without event’ versus the rest. 

If Data Mining can succeed in showing correlations between, for example, gene 
expression levels in the tumour or protein levels in the blood and relapse, an ‘early 
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warning system’ can be constructed, identifying patients with a high risk of relapse 
before they actually suffer from it. 

Stage: The INSS staging system developed for neuroblastoma tumours is the 
standard in Europe, the U.S. and Japan [4]. It categorises tumours into several stages 
based on clinical characteristics, numbered 1 through 4 with 4 being the most severe. 
All tumours from children under one year of age but limited metastases to liver, bone 
marrow or skin (never bone) are classified into a special stage, known as 4s. These 
patients have a very good prognosis for recovery. The majority of tumours from this 
patient subset undergo spontaneous regression even with little or no chemotherapy 
treatment. Patients diagnosed with stage 4 tumours, however, often succumb to their 
disease despite aggressive multimodal therapy. We attempt to determine whether Data 
Mining can deliver more information about molecular characteristics specific for 
certain clinical subgroups of neuroblastoma. As a starting point, we will only consider 
the task of distinguishing less severe neuroblastoma subgroups (stages 1, 2, 3 and 4s) 
from stage 4. 

Data Sets 
Affymetrix Expression Profiling Affymetrix is one type of array platform to 

conduct expression profiling. The probes on the microarray recognise one or more 
short areas of a specific gene transcript. The signals measured give information about 
how many RNA transcripts of which genes are present in the sample, which is a 
measure of gene activity. Expression was analysed in 63 primary neuroblastomas 
using the Affymetrix U95Av2 oligonucleotide microarrays. These data are included in 
the 68 patients analysed in [12]. This array measures the expression levels for a total 
of 12625 probes (genes). 

ArrayCGH Array-based Comparative Genomic Hybridization (ArrayCGH) 
analyses the status of the whole genome of a tissue sample. It is known that certain 
segments of the DNA in the chromosomes are often altered in neuroblastomas [14, 9]. 
Possible genomic alterations include amplifications or deletions in distinct areas of 
certain chromosomes (including several genes) and even multiple copies of the 
complete chromosome complement in the cell (trisomy). ArrayCGH utilizes DNA 
probes of varying sizes to represent all areas of the genome in different levels of 
detail. These probes are Bacterial Artificial Chromosomes (BAC's), and analysis 
detects the number of copies of the DNA region corresponding to a BAC that is 
present in the tumour sample relative to the normal DNA complement of two copies. 
The data is represented as negative or positive real numbers, showing deletion or 
amplification, respectively. 

Our data set includes ArrayCGH analysis of 19 primary neuroblastomas. These 19 
tumours were among the 23 analysed in [14]. Unfortunately, four patients had to be 
disregarded in the current analysis, since Stage and NBstatus information could not be 
obtained. For each tumour there are 6228 attributes (the BAC's). However, the data 
contain many missing values. Specifically, data for certain BAC's are missing for all 
tumours analysed. Removing those, we end up with only 4820 attributes that have a 
value for at least one patient. 

MicroRNA Expression Profiling The expression of small, non-coding regulatory 
RNAs, or microRNAs (miRNAs), can also be analysed using a microarray platform. 
MicroRNAs inhibit the expression of specific groups of genes via sequence specific 
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binding of the mRNA molecule, inhibiting translation into the protein. The probes on 
these types of array measure the expression of miRNAs, which are short RNA 
molecules (about 21-23 nucleotides long).  

The data set contains measurements from 25 primary neuroblastomas. The 
tumours were analysed on a 2-channel cDNA array with probes for 384 miRNAs 
[13].  Two records come from different tissue samples from the same tumour (so there 
are 24 unique patients). For all patients we have the Stage information. Unfortunately, 
there is NBstatus information available for only 13 patients. Each patient is 
characterised by 384 attributes (miRNAs) indicating the deviation in activity from the 
average case. 

SELDI Mass Spectrometry Surface-Enhanced, Laser Desorption/Ionisation 
Mass Spectrometry (SELDI MS) data is a different type of data. The mass 
spectrometer measures the amount and size (in Daltons) of all proteins in a complex 
protein mixture using time-of-flight (TOF) detection. The serum from 43 
neuroblastoma patients at the time of diagnosis were fractionated on anion-exchange 
columns and profiled on metal-binding arrays (IMAC-Cu++) using SELDI-MS. Both 
Stage and NBstatus information were available for these patients. Data from this 
analysis is expressed as mass-to-charge ratios (m/z). Mapping these m/z data to a 
specific protein identity is a non-trivial task requiring further chemical purifications 
and analyses of a larger sample amount. Only data produced from serum fraction 1 
were used here. 

4 Methods 

Predictive Clustering Trees 
Predictive modelling aims at constructing models that can predict a target property 

of an object from a description of the object. Predictive models are learned from sets 
of examples, where each example has the form (D, T), with D being an object 
description (or set of attributes of that object) and T a target property value. While a 
variety of representations ranging from propositional to first order logic have been 
used for D, T is almost always considered to consist of a single target attribute called 
the class, which is either discrete (classification problem) or continuous (regression 
problem). 

Clustering, on the other hand, is concerned with grouping objects into subsets of 
objects (called clusters) that are similar with respect to their description D. There is no 
target property defined in clustering tasks. In conventional clustering, the notion of a 
distance (or conversely, similarity) is crucial: examples are considered to be points in 
a metric space and clusters are constructed such that examples in the same cluster are 
close according to a particular distance metric.  

Predictive clustering [1], the analysis paradigm of our interest, combines elements 
from both prediction and clustering. As in clustering, we seek clusters of examples 
that are similar to each other, but in general taking both the descriptive part and the 
target property into account. In addition, a predictive model must be associated to 
each cluster. The predictive model assigns new instances to clusters based on their 
description D and provides a prediction for the target property T. It should be noted 
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that in this predictive clustering setting, the target T is not necessarily a single value, 
but rather a set of target attributes. 

Also a distinction is made between the target attributes T and clustering attributes 
C. The distance measure is calculated on C ∪ T, i.e., we produce models that are 
trying to correctly predict the attributes in both T and C. The difference between the T 
and C attributes is purely in the semantic for the end-user.  The user is interested in 
the accuracy of the target attributes T, while the clustering attributes are included in 
the model building process in order to improve it. That is why in the results section 
we only report the accuracy of the obtained models for the target attributes T.  

A well-known type of model which is used for the predictive clustering paradigm 
is a decision tree [10]. A decision tree that is used for predictive clustering is called a 
predictive clustering tree (PCT). Each node of a PCT represents a cluster. The 
conjunction of conditions on the path from the root to that node gives a description of 
the cluster. Essentially, each cluster has a symbolic description in the form of a rule 
(IF conjunction of conditions THEN cluster), while the tree structure represents the 
hierarchy of clusters. 

A generic system for constructing PCTs is available in the Clus system, which can 
be obtained at “http://www.cs.kuleuven.be/~dtai/clus”. 

Safarii 
Safarii [11] is a Multi-Relational Data Mining system that has been developed 

over the last year at Utrecht University and Kiminkii, primarily by the last author and 
colleagues. It includes a range of Data Mining techniques, as well as general facilities 
for dealing with large (multi-relational) data stored in relational databases. The 
primary approach for data analysis that is relevant to the domain at hand is centred 
around the discovery of regularities such as rules or interesting subgroups, which we 
will refer to in general as patterns [5, 12]. Such patterns may capture interesting, but 
possibly incomplete, knowledge concerning the influence of specific genes on a 
selected target (e.g. neuroblastoma vs. healthy), or the interaction of two or more 
genes, to name but a few examples. After such patterns have been discovered, they 
can be combined into more ambitious models of the biological processes that involve 
multiple patterns. Such global models can be used as classifiers in a black-box setting, 
for example to aid the diagnosis of tissue from new (suspected) patients. More 
importantly, by focussing on fairly simple and understandable patterns and the 
interaction between them, our approach aims to produce useful insights into the 
dynamics of the domain. 

For combining patterns into global models, Safarii offers a number of reasonably 
well-known classifiers, notably Support Vector Machines (SVM) and Decision Table 
Majority (DTM) classifiers [8]. It is important to note that we are applying these 
classifiers not directly to the original data, but rather to the set of patterns that was 
previously discovered. In a sense, the patterns are treated as new constructed features, 
which are guaranteed to be predictive because they are the result of a mining 
operation themselves. The benefit of this approach is that the classifiers are 
constructed of pieces of knowledge that are intelligible and informative, compared to, 
for example, the application of SVMs to the data directly, which produces classifiers 
that are notoriously hard to interpret. 
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A possible downside of the pattern discovery approach is the potentially large 
number of patterns reported. Especially in genetic data, where it is not uncommon for 
many genes to be correlated, many possible patterns may be found, involving a range 
of genes that essentially capture the same aspect of the biological process. Safarii 
offers substantial facilities for dealing with this redundancy in sets of patterns. A 
technique known as Pattern Teams [8] selects out of the original large set of patterns, 
a small but informative subset of patterns, where each pattern adds something unique 
to the team. 

Due to the small volumes of data, we are forced to work with fairly simple 
patterns, typically only including a single gene or location in the mass-spectrum. With 
larger data sets, and therefore less risk of overfitting, there is nothing that would 
prevent us from discovering more complex patterns. Note that possible interactions 
between genes are also captured during the combination into classifiers or teams, 
reducing the need for finding these interactions immediately. As a further limit on the 
complexity and expressiveness of our models, we will build Pattern Teams involving 
only few patterns. Small teams have the further advantage that they can be easily 
visualised, aiding the understanding and communication of findings. 

5 Results 

We have analysed all four dataset with the two systems at our disposal. In the interest 
of space however, we only demonstrate the results for two arbitrarily selected datasets 
per analysis technique: MicroRNA and SELDI-MS in the case of Safarii, and 
Affymetrix microarray and ArrayCGH in the case of Predictive Clustering Trees. 
Predictive models were built for NBstatus and Stage attributes. Additionally, we 
utilised the ability of PCTs for multi-target prediction and constructed predictive 
models which take into account other patient information (e.g. MYCN amplification). 
Comparisons were made between the single and multi-target prediction models.  

Affymetrix (PCTs) When analysing the Affymetrix microarray data, two target 
attributes were taken into account: NBstatus and Stage. As it can be seen in Table 1 
and Table 2, when trying to do a single target prediction for NBstatus and Stage, the 
accuracy obtained from the ten-fold cross-validation was a little better (for NBstatus) 
or worse (for Stage) than the default distribution. 

In order to improve the performance when building PCTs, we included as 
clustering attributes other patient information which was previously shown [9] to be 
connected to the outcome of the disease. Those attributes were deletion of the 1p 
chromosome region and amplification of the MYCN gene. Figure 1 shows a PCT 
which is built when considering NBstatus as target and 1p deletion as a clustering 
attribute. As any decision tree model, a PCT can be easily interpreted. The first node 
of the tree, with attribute 40235_at (TNK2, ‘tyrosine kinase, non-receptor, 2’), splits 
the samples into two groups. In the first group there are patients with ‘alive without 
event’ and ‘no deletion’ of the 1p chromosome region. The remaining group is split 
by a node (34480_at, CDH16, ‘cadherin 16, KSP-cadherin’) of the PCT that 
essentially distinguishes between patients that have/do not have a 1p deletion. The last 
node (g32415_at, IFNA5, ‘interferon, alpha 5’) further differentiates between the 
patients with 1p deletion that had a relapse (i.e., ‘alive with relapse/primary tumour’ 
or ‘deceased’) or are ‘alive without event’. 
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From Table 1 it can be seen that including 1p deletion and MYCN amplification as 
clustering attributes significantly improved the predictive performance of the 
constructed PCTs. The results in Table 2 show that for Stage, it is extremely difficult 
to build a predictive model which will surpass the default distribution (probability of 
the majority class), except for the last case when as a clustering attribute NBstatus is 
included. Considering the initial distribution, which is skewed, and the few Stage 4 
cases, the learning of a predictive model is a difficult task. 

 

Figure 1. PCT constructed for T = NB status and C = 1p 

Table 1. Results from a 10-fold cross-validation for NBstatus 

Target and Clustering attributes default acc. (%) PCTs acc. (%) 
T = NBstatus 71.4 74.6 
T = NBstatus, C = 1p 71.4 90.5 
T = NBstatus, C = MYCN 71.4 84.1 
T = NBstatus, C = 1p, MYCN 71.4 74.6 
T = NBstatus, C = Stage 71.4 82.5 

Table 2. Results from a 10-fold cross-validation for Stage 

Target and Clustering attributes default acc. (%) PCTs acc. (%) 
T = Stage 79.3 77.7 
T = Stage, C = 1p 79.3 73.0 
T = Stage, C = MYCN 79.3 74.6 
T = Stage, C = 1p, MYCN 79.3 77.7 
T = Stage, C = NBstatus 79.3 80.9 

 
ArrayCGH (PCTs) For the ArrayCGH data, a similar analysis was performed. 

The same target and clustering attributes were taken into account. As is evident from 
the results in Table 3 and Table 4, it proved to be very difficult to build PCTs with 
accuracy higher than the default. Including multiple attributes did not significantly 
improve the accuracy. The small sample size (19) and the initial class distribution 
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(only 3 “Stage4” samples) of this particular dataset make building accurate PCTs and 
predictive models difficult.  

Table 3 Results from a 10 fold cross validation for NBstatus 

Target and Clustering attributes default acc. (%) PCTs acc. (%) 
T = NBstatus 73.6 73.6 
T = NBstatus, C = 1p 73.6 78.9 
T = NBstatus, C = MYCN 73.6 73.6 
T = NBstatus, C = 1p, MYCN 73.6 73.6 

Table 4 Results from a 10-fold cross-validation for Stage 

Target and Clustering attributes default acc. (%) PCTs acc. (%) 
T = Stage 84.2 89.4 
T = Stage, C = 1p 84.2 89.4 
T = Stage, C = MYCN 84.2 84.2 
T = Stage, C = MYCN, 1p 84.2 84.2 
T = Stage, C = NBstatus 84.2 84.2 

 
MicroRNA (Safarii) As a demonstration of the kind of knowledge that can be 

discovered with Safarii, we show some results for Stage. For the MicroRNA data, the 
top 100 patterns (in this case most differentially expressed probes) were identified 
using Safarii’s Subgroup Discovery algorithm. The resulting patterns are ranked 
according to the novelty measure (a.k.a ‘weighted relative accuracy’) [5, 7]. A 
minimum coverage of 6 patients was applied. For reducing the redundancy, we then 
applied the Pattern Team technique to the 100 patterns, producing a team of two 
essential probes. It reports a combination of the 2nd and 96th pattern: 

 
Pattern Rank Coverage Novelty Condition list 

2 9 0.14 hsa-mir-92 ≥ -1.04 
96 6 0.096 ambi-mir-7102 ≥ 0.07 

 
A Pattern Team of size two can be easily visualised in a scatter plot, as 

demonstrated below. The two thresholds for the patterns involved are shown as the 
horizontal and vertical lines. Clearly, the lines separate the patients into three distinct 
clusters that appear to coincide with the target concept specified. This plot clearly 
demonstrates how the selected approach finds multivariate interactions that are 
relevant to this tumour type. Analysis of these array results using the SAM algorithm 
also identified hsa-mir-92 part as the most important miRNA associated with MYCN-
amplified neuroblastomas (submitted). This miRNA was also identified as the first 
"oncomir", or miRNA which can act as an oncogene to potentially induce several 
tumour types [6]. 

Analogous results can of course be obtained for the NBstatus, our second target 
concept. 
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SELDI-MS (Safarii) For the SELDI-MS data some extra pre-processing was 

required. To reduce the effects of noise in the data as a consequence of the 
measurement process, a data smoothing procedure was applied, based on a Gaussian 
Kernel. We used the approach given by [2]. For our analyses, the kernel width was set 
to 101 data points (50 below the data point we want to smooth, the point itself, and 50 
above). After that we reduced the resolution of the total spectrum, since it has around 
56000 data points for each patient. We did this by selecting every 25th data point from 
the smoothed spectrum, resulting in a little over 2200 data points for each serum. 

Again, the Subgroup Discovery algorithm was run with the same settings as for 
the MicroRNA data, creating 100 patterns for Stage 4 versus other stages. In the 
figure below, we show part of the (pre-processed) spectrum in the area of one of the 
patterns discovered, as an example. The two curves represent the averages of the stage 
4 group (the lower line) and the remaining stages (the upper line). The vertical line 
corresponds to the second pattern found: 

 
Pattern Rank Coverage Novelty Condition list 

2 13 0.11 2981.60 m/z ≤ 15.0 
 
It is interesting to observe that our method does not necessarily select locations 

corresponding to peaks in the spectrum. Although peaks obviously correspond to 
specific proteins, some of which may be related to the difference between stages, 
apparently the exact optimum of such a peak is not guaranteed to be the most 
informative. As the figure demonstrates, peaks overlap to some degree, and subtle 
peaks may therefore not appear as actual optimums in the spectrum. The upper line in 
this figure shows a bump between the two adjacent peaks which is clearly missing in 
the stage 4 patients. Although this location does not seem promising at first hand, our 
method is able to identify such cases. This is in contrast to other methods (statistical 
and modified SVM) that have been used to analyse these data, which were incapable 
of analysing differences between neuroblastoma subtypes and could only be used to 
analyse neuroblastoma vs. healthy or related tumour patients (different targets). 
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We would like to add that simply taking the average over a group (as is done in 

the figure) does not necessarily give good insight into the distribution of individual 
values. As an alternative, we again show a scatter plot for a predictive pair of patterns:  

 
Pattern Rank Coverage Novelty Condition list 

3 19 0.11 12146.17 m/z ≥ 7.4 
24 21 0.10 9820.63 m/z ≤ 13.28 
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6 Conclusion and Future Developments 

We have presented initial Data Mining results for a number of data sets related to 
neuroblastoma, in the context of the EET Pipeline project. For some of these, the 
methods that we used were able to construct good predictive models for the targets of 
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interest. For others, the small sample size and the prior distribution made the task of 
constructing good predictive models challenging. At this stage, we have only 
considered the analysis of data sets separately. The ultimate goal of the project is to 
combine data sets and thus obtain knowledge that spans different biological levels. As 
was demonstrated, there is still a considerable mismatch between the patient sets used 
for the different analysis platforms. This not only hinders the analysis of individual 
data sets, as data samples are often small, but also the integration of data sets, because 
the intersection of samples is even smaller. Still, with data sets becoming more 
complete as the project continues, integrated analysis will become important. An 
obvious way of integrating is to simply join data sets (over patient or tissue 
identifiers). Apart from scalability problems, this will be a straightforward step that 
will ideally lead to findings that involve cross-platform combinations of patterns. An 
alternative approach involves integration on the level of discovered knowledge rather 
than on the data level. For example, all data sets, except the SELDI-MS data, in some 
way map to loci on the genome. This means that if multiple data sets independently 
produce patterns involving the same locus, this will improve the evidence for this 
locus being involved in the biological process under investigation. 

References 

1. Blockeel, H., De Raedt, L., Ramon, J., Top-down induction of clustering trees. In 
Proceedings of ICML ’98, p. 55-63, 1998 

2. Brett, M., An Introduction to Smoothing,  
http://imaging.mrc-cbu.cam.ac.uk/imaging/PrinciplesSmoothing, 2006 

3. Brodeur, G.M., Neuroblastoma: Biological insights into a clinical enigma, Nat. Rev. 
Cancer 3:203-216, 2003 

4. Evans, A.E., D'Angio, G.J., Sather, H.N., et al., A comparison of four staging systems 
for localized and regional neuroblastoma: a report from the Childrens Cancer Study 
Group, J. Clin. Oncol. 8:678-688, 1990 

5. Fürnkranz, J., Flach, P., ROC ‘n’ Rule Learning – Towards a Better Understanding of 
Covering Algorithms, Machine Learning, 58, 39–77, Springer, 2005 

6. He, L., Thomson, J., Hemann, M., Hernando-Monge, E., Mu, D., Goodson, S., et al. A 
microRNA polycistron as a potential human oncogene. Nature 435:828-833, 2005 

7. Knobbe, A.J., Multi-Relational Data Mining, Ph.D. dissertation, 2004, 
http://www.kiminkii.com/thesis.pdf 

8. Knobbe, A.J., Ho, E.K.Y., Pattern Teams, in Proceedings PKDD 2006, 2006 
9. Maris, J.M., The biologic basis for neuroblastoma heterogeneity and risk stratification, 

Curr. Opin. Pediatr. 17:7-13, 2005 
10. Quinlan, J.R., C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993 
11. Safarii Multi-Relational Data Mining Environment, 

http://www.kiminkii.com/safarii.html, 2006 
12. Schramm, A., Schulte, J.H., Klein-Hitpass, L., Havers, W., Sieverts, H., Berwanger, B., 

Christiansen, H., et al. Prediction of clinical outcome and biological characterization 
of neuroblastoma by expression profiling, Oncogene 24:7902-7912, 2005 

13. Shingara, J., Keiger, K., Shelton, J., Laosinchai-Wolf, W., Powers, P., Conrad, R., 
Brown, D., Labourier, E., An optimized isolation and labeling platform for accurate 
microRNA expression profiling. RNA 11:1461-1470, 2005 

14. Vandesompele, J., Baudis, M., De Preter, K., Van Roy, N., et al., Unequivocal 
delineation of clinicogenetic subgroups and development of a new model for improved 
outcome prediction in neuroblastoma, J. Clin. Oncol. 23:2280-2299, 2005 

56
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Abstract. Partially supervised or semi-supervised learning refers to ma-
chine learning methods which fall between clustering and classification.
In the context of clustering, labels can specify link and do-not-link con-
straints between data points in different ways and constrain the resulting
clustering solutions. This is a very natural framework for many biological
applications as some labels are often available and even very few labels
greatly improve clustering results.

Context-specific independence models constitute a framework for simul-
taneous mixture estimation and model structure determination to obtain
meaningful models for high-dimensional data with many, possibly unin-
formative, variables. Here we present the first approach for partial learn-
ing of CSI models and demonstrate the effectiveness of modest amounts
of labels for simulated data and for protein sub-family determination.

1 Introduction

Historically, clustering and classification or learning from unlabeled data and
learning from labeled data were considered distinct tasks in machine learning
with little common ground. For several application areas however, problems oc-
cupy a middle ground between them: we will focus on examples from molecular
biology and on improving clustering approaches. For example, disease sub-types
are often defined by clustering patients based on clinical data; clusters and their
representatives are subsequently used for predicting disease outcome or choos-
ing optimal treatment strategies (e.g., [1]). A pure unsupervised approach has to
ignore information about known sub-types, which otherwise, even if incomplete,
at least provides a lower bound on the number of sub-types. Moreover, it will
violate known positive links between patients diagnosed and confirmed to suf-
fer from the same sub-type and negative links between patients diagnosed and
confirmed to be afflicted by distinct sub-types. The incomplete set of sub-type
labels provides constraints which should not be violated in the final clustering
solution.
The same general considerations about clustering and partial information apply,
if we replace patients by genes and disease sub-type by cell cycle phase [2], or
if we replace patients by proteins and disease sub-type by functionally related
sub-group [3]. Generally speaking, pretending complete ignorance about cluster
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Fig. 1. Variants of partially-supervised clustering: The clustering instance of bivari-
ate data (left) becomes easier once labels are introduced (middle). Here data points
connected with a red solid line (positive constraint) share the same label. Negative
constraints, indicated by dashed blue lines, result implicitly from positive constraints.
A more flexible formulation (right) allows explicit specification of positive and negative
constraints and allows to specify weights, indicated by edge weights, for the pair-wise
constraints.

structure is not reflective of the availability of unlabeled mass data and sparse,
labeled high quality data for a wide range of biological settings.
A recent book [4] presents a nice overview of semi-supervised learning. A lot
of the literature concentrates on improving classification motivated by the ob-
servation that decrease in classification error is exponential in the proportion
of labeled data [5]. Since then, a number of approaches followed the same gen-
eral idea. They range from classifying text documents by constructing weighted
graphs [6], partitioning graphs by min-cuts controlled by labeled examples [7],
or inferring the (minimal) sub-manifold from labeled and unlabeled data and us-
ing the labeled samples for classification [8]. Cozman [9] studied how supervised
mixtures get corrupted by unlabeled examples, which can also be interpreted
in the framework of transductive learning [10]. More recently, a framework for
integrating labeled data when learning Hidden Markov Random Fields [11] was
introduced.
For clustering several variants under several names—partially supervised, semi-
supervised learning, respectively constrained clustering—have been proposed.
We will concentrate on clustering with mixture models [12], as mixtures have
been identified as the model of choice for complex data such as gene-expression
time-courses [13] and provide a sound statistical framework for extensions. The
first bioinformatics application for which partial learning was proposed was con-
cerned with improving clustering of gene expression time-courses [14]. A mix-
ture with hidden Markov model components was trained with a variant of the
expectation-maximization (EM) algorithm which essentially implemented a hard
assignment of genes to clusters. The two steps of the EM are, first, computing
posterior probabilities for component models given the data based on current
model parameter estimates and second, estimating updated parameters from

58



the data where the posteriors specify the influence a particular data point has
in the estimation of the parameters (see [15] for details ). Recall that unlike the
k-means algorithm all the data points contribute to the estimation of every com-
ponent; the weighting by posterior means that ill-fitting data points contribute
less. The label can be effectively used in the EM by setting the posterior of data
points with the same label to unity for the same designated component. These
explicit positive constraints (i.e., link these data points, cf. Fig. 1) do not say
anything about the parameters of the designated component, they just make sure
that the labeled points assigned contribute maximally to the estimation of its
parameters. While data points can have distinct labels, each label corresponding
to one specific component, negative constraints only arise implicitly between all
pairs of data points with distinct labels. For example, it is not possible to spec-
ify two negative constraints between two pairs of data points. The advantages
are an easy implementation and that the local convergence results of the EM
still apply [14]. Noteworthy is the very large positive effect on clustering quality
even for small quantities (less than 1%) of labels. Here, clustering quality is with
respect to classification error of the data subgroups defined by the clusters and
the true subgroups present in the data.

The hard assignment can be relaxed to soft assignment by specifying posterior
distributions which do not put all the mass on one component. Both implemen-
tation and theory remain unchanged. However, even for the soft assignment, it
is not possible to directly use information about pair-wise similarity or dissim-
ilarity of data points, a type of information often abundant in bioinformatics,
in the EM. In other words the constraints are not weighted and a reformula-
tion in terms of the posteriors is likely cumbersome. Recently [16, 17] a new
approach was proposed to use additional soft constraints for observations in the
form of pair-wise positive (link) respectively negative (do-not-link) constraints
w+

ij respectively w−
ij ∈ [0, 1], which reflect the degree of linking for each pair of

observations; cf. Fig. 1 (right).

In parallel to this development several approaches and many applications were
introduced which essentially combine mixture estimation and model structure
determination to improve learning on instances with many, possibly uninfor-
mative variables, with sparse data and, ultimately, arrive at more meaningful
models for high-dimensional data. The central idea of these approaches is to au-
tomatically adapt model complexity to the degree of variability present in a given
data set. This notion of context-specific independence (CSI) arose in the Bayesian
network community [18–20] and has been successfully applied in mixture model
framework for application such as clustering of gene expression data [21], tran-
scription factor binding site detection [22], subtype discovery in complex genetic
disease data [23] or clustering and functional annotation of protein families [3].

In the following we propose the first approach to combine CSI structure learning
with the integration of prior knowledge in a partially supervised learning setup,
using hard constraints on the component posteriors for labeled data.
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2 Methods

2.1 CSI Mixture Models

Let X1, ..., Xp be random variables. Given a data set D with N samples, D =
x1, ..., xN with xi = (xi1, ..., xip) a conventional mixture density is defined as

P (xi) =
K∑

k=1

πk fk(xi|θk), (1)

the non-negative πk are the mixture coefficients,
∑K

k=1 πk = 1 and each compo-
nent distribution fk is a product of distributions over each of the Xi,(i = 1, ...,
p) parameterized by parameters θk = (θk1, ..., θkp),

fk(xi|θk) =
p∏

j=1

Pj(xij |θkj). (2)

The full parameterization of the mixture is then given by θ = (π, θ1, ..., θk).
For a data set D of N samples the likelihood under mixture M is simply the
product of the mixture densities of each sample

P (D|M) =
N∏

i=1

P (xi). (3)

The central idea of the CSI extension to the mixture framework is that it is
unnecessary to have unique parameters θkj for all components in each feature.
Rather the number of parameters should be adapted to the degree of variability
observed in the data. This means that multiple components share parameters for
features where there is no discriminatory information for the induced grouping
of the data. The CSI principle is visualized in Fig. 2. On the left side the model
structure of a conventional mixture is visualized. Each cell of the matrix repre-
sents an uniquely parameterized distribution and there is a unique distribution
for each component in each feature. The matrix on the right shows one possible
CSI structure. Here cells spanning multiple rows represent which components
share parameters in each feature. For instance for feature X1 and X3 compo-
nents C4 and C5 share parameters, for feature X2, C1 is uniquely parameterized
and for feature X4 all components share a parameterization.
Formally the CSI mixture model is defined as follows: For the set of K component
indexes C = {1, .., K} and features X1, ..., Xp let G = {gj}(j=1,...,p) be the CSI
structure of the model M . Then gj = (gj1, ...gjZj ) with Zj given by the number
of subgroups for Xj and each gjr, r = 1, ..., Zj is a subset of component indexes
from C. That means, each gj is a partition of C into disjunct subsets where each
gjr represents a subgroup of components with the same distribution for Xj .
The CSI mixture distribution is then obtained by replacing fkj(xij ; θkj) with
fkj(xij ; θgj(k)j) in (2) where gj(k) = r such that k ∈ gjr . Accordingly θM =
(π, θX1|g1r

, ..., θXp|gpr
) is the full model parameterization and θXj |gjr

denotes the
different parameter sets in the structure for feature j. The complete CSI model
M is then given by M = (G, θM ).
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Fig. 2. Model structure matrices for a) conventional mixture model with five compo-
nents over four features and b) corresponding CSI mixture model.

2.2 Partially supervised learning

The learning task in the CSI setup consist of inferring the parameterization of
the mixture Θ and the CSI structure G. For the former, the standard technique
is the Expectation Maximization (EM) algorithm [24], for the latter we apply a
Bayesian approach in the structural EM framework [25, 22]. One central quantity
for both of these algorithms is the posterior of component membership given by

τik =
πk fk(xi|θk)

∑K
k=1 πk fk(xi|θk)

, (4)

i.e., τik is the probability that a sample xi was generated by component k.
In the EM algorithm the posterior is essentially a weight that determines the
contribution of a sample to the parameters of a component. In the structure
learning the posterior is used to compute the expected sufficient statistics of
candidate structures, which then can be evaluated by the model posterior in an
efficient manner (see [22] for details).
For the partially supervised case, a number of samples is assigned to components
a priori by the labels. For a labeled sample xi with label l this means τik = 1 for
k = l and 0 for all other k. This binds the contribution of the sample to parameter
estimation and structure learning to a specific component. In the same way that
this modification of the posterior implements partially supervised learning for the
parametric EM, it gives rise to the partially supervised Structural EM algorithm
in the CSI structure learning framework [21, 25, 22].

3 Results

3.1 Simulation study

In order to demonstrate the impact of a small number of labels on parameter es-
timation and structure learning we compared the performance of models trained
with and without labels on simulated data. The generating model G was a Gaus-
sian mixture with uniform weights on the three components over 12 features. The
first two features were informative for the discrimination of the components, the
remaining ten were uninformative with equal randomly chosen parameters for
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Fig. 3. Example simulated data for the first two informative features. The distinct
classes are indicated by carets, rectangles and circles respectively.

all components. An example data set for the informative components is shown in
Fig. 3. Two components were rather compact with diagonal covariance matrices
and diagonal entries 0.5, the other component was more spread out (diagonal
covariance with diagonal entries 1.5). The components with smaller variance
each overlapped to a degree with the central large-variance component. The ten
uninformative features provided the opportunity for the structure learning to
adapt model complexity in the learned models.

We sampled 30 data sets of size 120 from G and trained CSI mixtures with and
without labels. For the former three labels were used for each component. The
average performance of the models over the 30 data sets with respect to the true
component labels is summarized in Tab. 1

Unlabeled Partially Labeled

Sensitivity 92.76% SD 3.96% 92.10% SD 4.13%
Specificity 71.47% SD 15.13% 91.56% SD 4.34%

Table 1. Average sensitivity and specificity for labeled and unlabeled data over 30
simulated data sets.
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Fig. 4. Average sensitivity and specificity of clustering of the nucleotidyl cyclase data
for different numbers of labels. Standard deviations are shown by error bars.

It can be seen that the addition of three labels for each components yields a
considerable increase in specificity of the trained models. To assess the impact
of the labeling on the structure learning we considered the edit distance of the
learned structures to the true structure in G with respect to merge/split oper-
ations in the structure matrix. For instance the edit distance of Fig. 2a) to 2b)
is nine since nine merges are needed to convert a) into b) (the same holds for
splits in the other direction). The average edit distance of the models based on
unlabeled data was 6.3 (SD 4.71), the labeled data yielded an average distance
of 0.17 (SD 0.38). This indicates a greatly increased precision in the structure
learning for the labeled data.

3.2 Protein sequence data

In order to examine the effect of labels in the data on a true data set we applied
CSI mixture models on a multiple sequence alignment of nucleotidyl cyclase
family protein sequences. We used the model extensions previously introduced
for CSI for protein data [3]. The 132 sequences fall into biological subgroups of
guanylyl cyclases (GC) and adenylyl cyclases (AC). We used the true classifica-
tion into these subgroups as labels for the partially supervised learning. Labels
were chosen randomly in equal numbers for GC and AC subgroups in steps of
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five in the range 5–40, i.e. we considered data sets with 5, 10, 15, ..., 40 labels
for each class. The average sensitivity and specificity for the different numbers
of labels is shown in Fig. 4. It can be seen that qualitatively both sensitivity
and specificity increase with the amount of prior knowledge considered, i.e. the
number of labels assigned to the data set. It is noteworthy that for 60 labels
(45% of the data set labeled) there is a drop in performance. This can probably
be attributed to the random choice of labels. If by chance the selection of la-
bels is poor, for instance only labels from one boundary region of a cluster, the
partially supervised approach may actually mislead the parameter estimation.

4 Discussion

The results on the simulated data indicate that a partially supervised setup
even for a small number of labels greatly increases the clustering performance.
While sensitivity was similar for unlabeled and labeled data, the addition of la-
bels yielded greatly increased specificity. This was the expected result from the
literature on partially supervised learning. A more interesting question was how
much the CSI structure learning would be impacted by the labels. The vastly
smaller structure edit distance to the true CSI structure of the generating model
we observed for the partially supervised case, indicates that the structure learn-
ing can also greatly benefit from the addition of labels. While this is encouraging,
in the future a more in-depth evaluation using different generating models, data
set sizes and number of labels will be required.
When applying the partially supervised learning on protein data the picture was
somewhat more noisy, though the advantage of the labeling could still be seen.
The rather high variance in results we observed can probably be attributed to the
inherent noisiness of the data and the random choice of labels. Taken together
the results suggest that the partially supervised learning can bring considerable
improvement to both the parameter estimates and the learned CSI structure but
one should be aware that in order to fulfill its potential the approach requires
high-quality labels.
There are several open questions regarding the objective formulation for partially
supervised learning of CSI models, in particular if pair-wise constraints need to
be included, as the CSI structure controls cluster membership only indirectly
and, more importantly, not variable-wise but rather by all variables simultane-
ously. This suggests that pair-wise constraints could negate the computational
advantages gained by the independence assumption between variables. Never-
theless, the bioinformatics applications directly drive the need for partially su-
pervised learning and our results show that non-trivial improvements can be
realized on realistic instances from applications.
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Abstract. We present an approach for inferring transcriptional regu-
latory modules from genome sequence and gene expression data. Our
method, which is based on symmetric causal independence models, is
both able to model the logic behind transcriptional regulation and to
incorporate uncertainty about the functionality of putative transcrip-
tion factor binding sites. Applying our approach to the deadliest species
of human malaria parasite, Plasmodium falciparum, we obtain several
striking results that deserve further (biological) investigation.

Key words: Transcriptional regulatory networks, symmetric causal in-
dependence models, Plasmodium falciparum

1 Introduction

One of the major challenges facing biologists is to understand the transcriptional
regulation of genes, which is critical for the development, complexity and home-
ostasis of all living organisms. The introduction of DNA microarray technology
[26], which enables researchers to simultaneously measure the concentration of
RNA transcripts from a single sample of cells or tissues, has offered the possibil-
ity to infer large-scale transcriptional regulatory networks for various organisms.
The algorithms developed for this purpose can be grouped into two general
strategies: an influence strategy, which seeks to identify regulatory influences
between RNA transcripts, and a physical strategy, which seeks to identify the
proteins that regulate transcription and the DNA motifs to which the proteins
bind [11]. In this paper, we propose a method following the latter strategy, which
has the advantage of being able to combine genome sequence data and RNA ex-
pression data to enhance the specificity and sensitivity of predicted interactions.

The physical strategy methods that make use of both RNA expression data
and genome sequence data rely on the assumption that genes with similar ex-
pression profiles share common regulatory mechanisms. Based on the way in
which the two sources of data are related, we can distinguish three groups of
these methods. The first group includes the methods that first cluster genes on
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the basis of their expression patterns and then search for putative motifs in the
upstream regions of the genes in each cluster. The early methods following this
approach searched for individual transcription factor binding site patterns in
upstream regions of the coexpressed genes (see e.g. [5, 8, 28]), while the more
recent algorithms search for DNA target sites for cooperatively binding tran-
scription factors [12, 18]. The methods in the second group work in the opposite
direction, first identifying a set of candidate motifs and then trying to explain
RNA expression using these motifs [7, 15, 22]. Finally, the algorithms in the last
group use both sources of data together. These methods use one or more itera-
tions of the following procedure: first, genes are clustered or grouped according
to their expression data, then the search for motifs in the upstream regions of
the coexpressed genes is performed, and, finally, the motifs identified are used
to build models that predict the expression pattern of the gene (see e.g. [2, 27]).

A key feature of transcriptional regulation of gene expression in eukaryotes
is that genes are often regulated by more than one transcription factor [30]. A
number of approaches have been proposed to address the combinatorial nature
of transcriptional regulation. One approach is based on the assumption that the
influence of different transcription factors on gene expression is additive. The
studies based on this approach use a simple linear regression to relate transcrip-
tion factor binding sites to gene expression values [7, 17]. A probabilistic model
by Segal et al. [27] assumes that genes are partitioned into modules, which de-
termine the gene expression profile. The strength of the association of a gene
with a module is the sum of its weighted motifs, where each weight specifies
the extent to which the motif plays a regulatory role in the module. These ap-
proaches, however, cannot identify synergistic motif combinations that control
gene expression patterns. Algorithms have been developed to model the synergy
between two transcription factors that bind to sites located anywhere in the
upstream region [22] or sites that are spatially close to each other [7, 12]. Beer
and Tavazoie [2] present an approach which utilizes AND, OR and NOT logic to
capture combinatorial effects of transcription factors in the regulation of gene ex-
pression. This method is not only able to infer combinatorial rules that involve
more than two transcription factors, but it also includes constraints on motif
strength, orientation and relative position. A similar method has been reported
by Hvidsten et al. [15]. To link transcription factor binding site combinations to
genes with particular expression profiles, the method extracts IF-THEN rules
which correspond to AND logic.

Although the methods that model combinatorial effects of the motifs have
appealing properties, their drawback is their inability to cope with uncertainty
in the transcription factor binding sites that are identified. The robustness of the
method in the face of uncertainty is important, as non-functional transcription
factor binding sites can be readily found throughout the genome, including pro-
moters [31]. We present an approach which is both able to model the logic behind
transcriptional regulation and to incorporate uncertainty about the functionality
of putative transcription factor binding sites. Our probabilistic method, which
is based on symmetric causal independence models, extends the earlier methods
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that infer combinatorial rules in two important directions. First, we use a broad
class of Boolean functions, symmetric Boolean functions, to capture combinato-
rial effects of transcription factors in the regulation of gene expression. Second,
the motifs contribute to the regulation of a gene through hidden variables; thus,
the method is able to cope with non-functional transcription factor binding sites.

In this paper, we apply our method to Plasmodium falciparum, which is
the deadliest species of the parasite that causes malaria in humans. Human
malaria infects between 300 and 500 million people and causes up to 2.7 million
deaths annually, mostly among young children in Sub-Saharan Africa [6]. In
many endemic countries, malaria is also responsible for economic stagnation [23].
A good understanding of transcriptional regulation in this organism is important
for devising new ways to disrupt the parasite’s life cycle.

2 Methodology

In this section, we present our approach based on symmetric causal independence
models for inferring transcriptional regulatory modules from genome sequence
and gene expression data. The underlying assumption in this approach is that
genes in the different clusters share common regulatory mechanisms. When try-
ing to separate the genes in one cluster from all others, we aim to find motifs
and their interactions that are specific to specific regulatory mechanisms. We
start our method (Figure 1) with a ‘data pre-processing’ step, where we use a
motif-finding algorithm to identify putative transcription factor binding motifs
and we cluster genes according to their expression profiles. Then, for each cluster
of genes that exhibited significant changes, we learn a symmetric causal inde-
pendence model, which, given the binding sites of a gene, classifies the gene as
belonging to the cluster or not. Finally, we analyze the results of experiments
and identify potential transcription factors binding to the motifs that play a
regulatory role in gene expression. All these steps are described in detail further
in this section.

Fig. 1. Overview of the proposed approach.
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2.1 Finding transcription factor binding motifs

We extracted the DNA sequence 1000 bp upstream from the initiation codon
of each of 5404 Plasmodium falciparum genes using PlasmoDB release 5.2. In
instances where the upstream regulatory region overlapped with another open
reading frame, we extracted only the sequence between the open reading frames.
To find over-represented motifs, the extracted sequences were analyzed using
the AlignACE program [13]. We set the GC background parameter to 0.13 (the
fractional GC background for these regions), the number of columns to align to
10 and the number of expected sites to 5.

2.2 Clustering of the RNA expression data

We used a Plasmodium falciparum 3D7 strain RNA expression data set [4]. We
downloaded data that were normalized and median-centered and we only used
data for those oligonucleotides that have a corresponding open reading frame
assigned from PlasmoDB. We discarded the genes for which more than 20% of
measurements were missing. A number of open reading frames had more than one
oligonucleotide measured; we averaged the measurements of these open reading
frames. After the data had been log2 transformed, we imputed missing values
using the weighted K-nearest neighbours method. We chose to use this data
imputation method as it has been shown to provide a more robust and sensitive
missing value estimation in microarray data than a singular value decomposition
based method or the commonly used row average method [29]. The weighted K-
nearest neighbours method uses a weighted average of values from the K genes
closest to the gene of interest as an estimate for the missing value. Based on the
results reported in [29], we chose the value of K to be 15 and Euclidean distance
as a metrics for gene similarity.

We used the K-means algorithm [19] with random initializations to cluster
the genes according to their RNA expression data. Since the K-means algorithm
is known to sometimes get stuck in a local optimum, we ran the algorithm 10
times for each number of clusters. To select the optimal number of clusters we
used the so-called C-index [14], which has been shown to outperform 13 other
indices for determining the number of clusters in binary data sets when the data
are clustered using the K-means algorithm [10].

2.3 Learning symmetric causal independence models

The global structure of a symmetric causal independence model is shown in Fig-
ure 2; it expresses the idea that causes C1, . . . , Cn influence a given common effect
E through hidden variables H1, . . . , Hn and a symmetric Boolean function f . All
variables in this model are binary; the hidden variable Hi is considered to be
a contribution of the cause variable Ci to the common effect E. The function
f represents in which way the hidden effects Hi, and indirectly also the causes
Ci, interact to yield the final effect E. To learn more about symmetric causal
independence models and learning them, see [16].
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Fig. 2. Symmetric causal independence model

In this paper, we use symmetric causal independence models as a technique
to model combinatorial effects of transcription factor binding motifs in the reg-
ulation of gene expression. Transcription factor binding sites are causes in this
model, where the positive state of this variable is presence or absence of the
motif, depending on the motif’s effect on expression of genes in the cluster. The
positive state of the effect variable represents gene belonging to the cluster, and
the negative state represents gene belonging to any other cluster.

We used a greedy approach to select the motifs whose absence or presence
contributes to the difference between the expression of genes belonging to a given
cluster and the expression of the other genes. First, we ranked all motifs based
on their mutual information scores, where the mutual information measures the
mutual dependence of the variable M that represents a motif and the class
variable C and is defined as:

I(M ; C) =
∑

m∈M

∑

c∈C

Pr(m, c) log
Pr(m, c)

Pr(m) Pr(c)
.

Then, we built a model from the h highest ranked motifs. We started from a
model containing only a leaky cause, then iteratively added the next highest
ranked motif and evaluated the model thus obtained. If the new model did not
have a higher score than the previous model, the motif was removed from the
model. Since there are 2n+1 symmetric Boolean functions for a model with n
variables that represent motifs, evaluating all the resulting models is too expen-
sive computationally. Therefore, we restricted the interaction function space to
the Boolean threshold functions. This restriction means that for every added
motif we only had to evaluate two models, a gene model with the interaction
function τk and a gene model with the interaction function τk+1, where τk is the
interaction function from the model with the highest score. We evaluated each
model using the classification accuracy on the validation set.

To solve the problem of unbalanced data (different class size, see Table 1),
we added as many copies of every gene from the smaller class as was needed
for this class to amount for at least half of the genes. To learn the parameters
of the gene model, we ran 25 iterations of the EM algorithm, computed the
classification accuracy on the validation set after each iteration and chose those
parameters that provided the highest score.
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2.4 Evaluation of the results

We used two error estimation methods, cross-validation and bootstrap, to eval-
uate the models learned. The cross-validation scheme was used to examine the
predictive performance of the models, whereas the bootstrap approach was used
to evaluate the reliability of the model parameters. For both methods, we per-
formed 100 runs, and the data was split into training, validation and test sets.
The validation set was used to choose the number of iterations of the EM algo-
rithm and the threshold function; the results reported were obtained using an
independent test set.

We used the results of the bootstrap approach to test for potential syner-
gistic motif pairs. From the results of the bootstrap approach, we estimated
θ̂ = (θ1, θ2, . . .), where θi is the probability that motif Mi will be chosen as a
feature in the model. We introduce a variable Xjk that specifies four possible
combinations of occurrence of the motifs Mj and Mk. Our null hypothesis was
that Xjk follows multinomial distribution, with each trial resulting in one of 4
possible outcomes with probabilities p1 = (1− θ̂j)(1− θ̂k), p2 = θ̂j(1− θ̂k), p3 =
(1 − θ̂j)θ̂k, p4 = θ̂j θ̂k, and the number of trials n being equal 100. To measure
the discrepancy between the observed and expected counts, we used Pearson’s
chi-square statistic:

X2 =
∑

i

(Oi − Ei)2

Ei

where i is a possible outcome and the expected count Ei = npi.
To compare our classifier to a classifier which assigns all genes to the biggest

class, we used a binomial test described in [24]. The test uses the number of
cases n for which the two classifiers produce a different output, and the number
of cases s where the output of the examined classifier was correct, while the
output of the reference classifier was wrong. Under the null hypothesis that the
two classifiers perform equally well, we compute:

p = 2
n∑

i=s

n!
i!(n− i)!

0.5n.

2.5 Identifying potential transcription factors binding to the motifs

To identify potential transcription factors binding to the motifs, we used com-
parative genome analysis, which is based on the fact that sequence similarity
might reflect functional similarity. Identification, which was done separately for
each motif, involves three steps. Firstly, we used STAMP [20], a web tool for ex-
ploring DNA-binding motif similarities, to find a number of the closest matches
for a given motif in 13 supported databases. Secondly, for each match found,
we checked whether the database where the motif is stored reports a transcrip-
tion factor binding to it. Finally, if the transcription factor is known, we used
BLAST [1, 25] to find the most similar protein sequences from the Plasmodium
falciparum protein database.
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3 Experimental Results

3.1 Transcription factor binding motifs found and clusters obtained

AlignACE found 100 transcription factor binding motifs in the given upstream
sequences. The motifs that were found to be the most important features for
classifying the genes will be discussed later in this section.

We chose the number of clusters to be 5, as the C-index curve had an ‘elbow’
at this value. Figure 3 presents the clusters obtained, which are comparable to
the four characteristic stages of intraerythrocytic parasite morphology discussed
by Bozdech et al. [4], as the vast majority of genes induced in every one of
the stages belong to one of four clusters. Cluster 5 is a cluster of genes whose
expression did not show a significant change. The correspondence among the
characteristic stages and the clusters and the cluster sizes are given in Table 1.
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Fig. 3. Clusters of Plasmodium falciparum RNA expression data.

3.2 Models learned

We learned the models for the first four clusters, i.e. the clusters of genes whose
expression changed throughout the intraerythrocytic stage.

The classification accuracy of the gene models learned using the cross-validation
procedure explained in 2.4 is reported in Table 1. The p-values for the null hy-
pothesis that the gene models perform equally well as a classifier which assigns
all genes to a bigger class are less than 10−10.

Table 2 lists the motifs that were most often selected as features of the gene
model. Due to space limitations, we report only those motifs that were selected as
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Table 1. A brief description of the clusters, the number of the genes assigned, the
corresponding characteristic stage of intraerythrocytic parasite morphology; and clas-
sification accuracy obtained using the cross-validation procedure.

Cluster Number of Corresponding Accuracy Baseline
genes stage obtained (%) accuracy (%)

1 329 schizont 60.48 50.79
2 1033 ring/early trophozoite 61.52 52.52
3 985 trophozoite/early schizont 59.16 50.90
4 144 early ring 63.21 51.30
5 1344 - - -

features of the model in more than 50 bootstrap runs. Some of the motifs appear
in more than one cluster; however, their weighting is different (not shown) and
they can be either ‘present’ or ‘absent’ (the presence or absence is a positive
state of the corresponding variable in the model). Sequence logos of the motifs,
which were generated using the WebLogo program [9], are shown in Figure 4. A
study of the positive states of the variables representing the motifs selected as
features of the model in more than 20 bootstrap runs reveals a distinct pattern.
The variables in models for cluster 2 and cluster 4 represent the absence of the
motifs, while the variables in models for cluster 1 and cluster 3 mainly represent
the presence of the motifs. Even though there are 6 motifs that break this pattern
in clusters 1 and 3, these motifs are found in a very small number of genes (from
1 to 5 % of genes); the other motifs selected are much more common in genes.
The summary of these results is presented in Table 3.

Table 2. Motifs that were selected as features of the model in more than half of the
bootstrap runs; the number of runs the motif was selected is given in parentheses.
‘Present’ motifs are written in roman, ‘absent’ motifs are written in roman.

Cluster Motifs selected more than 50 times

1 Motif 38 (100), Motif 37 (95), Motif 6 (65), Motif 59 (65), Motif 11 (63),
Motif 21 (55)

2 Motif 6 (98), Motif 35 (93), Motif 37 (89), Motif 38 (89), Motif 11
(75), Motif 21 (68), Motif 59 (68), Motif 7 (64), Motif 80 (59)

3 Motif 6 (100), Motif 88 (82), Motif 38 (67), Motif 59 (60), Motif 21 (51)
4 Motif 6 (99), Motif 11 (93), Motif 4 (55)

Interpretation of the probabilities of the hidden variables is somewhat tricky
as they highly depend on the number of input variables and the interaction
function in the model, which currently vary a lot from one bootstrap run to
another. Nevertheless, there is a pattern which suggests that probabilities of
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Fig. 4. Sequence logos of the motifs that were selected as features of the model in more
than half of the bootstrap runs.

Table 3. Positive states of variables representing the motifs that were selected as
features of the model in at least 20 bootstrap runs.

Cluster Motifs selected Positive state: absence Positive state: presence

1 14 2 12
2 14 13 1
3 10 4 6
4 15 15 0

hidden variables contain information about functionality of putative transcrip-
tion factor binding sites. The pattern emerges when we compare probabilities of
hidden variables with the average of probabilities of the other hidden variables
in the model. The probabilities in clusters of ‘absent’ motifs were almost the
same, while the probabilities in clusters of ‘present’ motifs differed much more
and the majority of motifs had the tendency to have corresponding probabilities
below or above the average.

To find statistically significant occurrences of motif pairs, we tested all pos-
sible pairs of the motifs selected as causes in the model in at least 20 bootstrap
runs (see 2.4 for the description of the method). We rejected the null hypothesis
at the significance level of 0.05 (corrected for multiple testing) for two motif
pairs from cluster 4: for the pair of motifs 70 and 72 (with p-value of 0.0055),
and the pair of motifs 4 and 5 (with p-value of 0.0174). These motifs were se-
lected together to be features in the model more often than it would be expected.
Sequence logos for potential synergistic motif pairs are shown in Figure 5.

3.3 Potential transcription factors binding to the motifs

We present the most significant findings for the motifs reported in Figure 4.
Motifs 6, 11 and 35 have the same closest match - the binding site of fruit fly’s

transcription factor Topoisomerase 2, reported in FlyReg database [3]. The most
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Fig. 5. Sequence logos of potential synergistic motif pairs.

significant alignment in Plasmodium falciparum is PF14 0316, putative DNA
topoisomerase 2, whose protein sequence is nearly identical (E value of 0.0).

Another gene of Plasmodium falciparum that is a potential transcription fac-
tor binding to at least two of the motifs discussed is PF14 0175, which is anno-
tated as a hypothetical protein in PlasmoDB. One of the closest matches for mo-
tif 7 is MCM1+SFF M01051 reported in TRANSFAC database [21]. The most
significant alignment for MCM1, which is yeast transcription factor involved in
cell-type-specific transcription and pheromone response and plays a central role
in the formation of both repressor and activator complexes, is PF14 0175 (E
value of 10−5). Another motif to which this transcription factor could bind is
motif 80; this possible connection was found through a different transcription
factor in a different organism. Motif FOXP1 M00987 reported in TRANSFAC is
a close match to motif 80. Mouse transcription factor FOXP1 which binds to this
motif is thought to repress expression of epithelial genes in the lung and reduce
expression from promoters of mouse CC10 gene G002818. The most significant
alignment for variants T04812 and T04813 of FOXP1 in Plasmodium falciparum
is PF14 0175 (E value of 10−8).

A gene which is found as potential transcription factor for one third of the
motifs analyzed is PFL0465c, zinc finger transcription finger (krox1). For motif
4, the connection was found through motif Helios M01004 reported in TRANS-
FAC and mouse transcription factor IKAROS family zinc finger 2, Helios, whose
functions include zinc ion binding, DNA binding and nucleic acid binding (E
value of 7 · 10−6). For motif 21, the connection was found through motif CF2-
II M00012 reported in TRANSFAC and fruit fly transcription factor CF2-II, a
late activator in follicle cells during chorion formation (E value of 10−6).

4 Discussion and Future Work

We have presented an approach which is both able to model the logic behind
transcriptional regulation and to incorporate uncertainty about the functionality
of putative transcription factor binding sites. Another advantage of our technique
is that it does not require other biological knowledge than genome sequence data
and RNA expression data to validate the results. Since we do not use expression
data while searching for putative regulatory motifs, the accuracy of the models
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in predicting gene expression pattern is an unbiased measure of the soundness
of the models learned.

Experimental results revealed the lack of consistency in the properties of the
models learned. This inconsistency could be caused by the lack of additional
constraints on the motifs, such as position relative to the translation start, ori-
entation and functional depth. Therefore, the next step in our research is to
implement normal and binomial approximations to Poisson binomial distribu-
tion, which will help to reduce computational complexity of the EM algorithm.
Reduced computational complexity will enable us to test more interaction func-
tions and to examine the additional constraints on the motifs.

We will also continue our discussions with biologists to find the explanation
to the experimental results, especially, the pattern of clusters of ‘present’ and
‘absent’ motifs, and potential transcription factors binding to the motifs.

Acknowledgments. We would like to thank Michael A. Beer, Saeed Tavazoie,
Zbynek Bozdech and Mahony Shaun for helpful discussions.
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17. Keleş, S., van der Laan, M., Eisen, M.B.: Identification of regulatory elements using
a feature selection method. Bioinformatics 18 (2002) 1167–1175

18. Liu, X., Brutlag, D., Liu, J.S.: BioProspector: discovering conserved DNA motifs
in upstream regulatory regions of coexpressed genes. Pacific Symposium on Bio-
computing (2001) 127–138

19. MacQueen, J.B.: Some methods for classification and analysis of multivariate ob-
servations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability 1 (1967) 281–297

20. Mahony, S., Benos, P.V.: STAMP: a web tool for exploring DNA-binding motif
similarities. Nucleic Acids Research (2007) in press

21. Matys, V., Kel-Margoulis, O.V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie,
A., Reuter, I., Chekmenev, D., Krull, M., Hornischer, K., Voss, N., Stegmaier, P.,
Lewicki-Potapov, B., Saxel, H., Kel, A.E., Wingender, E.: TRANSFAC and its mod-
ule TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids
Research 34 (2006) D108–110

22. Pilpel, Y., Sudarsanam, P., Church, G.M.: Identifying regulatory networks by com-
binatorial analysis of promoter elements. Nature Genetics 29 (2001) 153–159

23. Sachs, J.D., Malaney, P.: The economic and social burden of malaria. Nature 415
(2002) 680–685

24. S. Salzberg: On comparing classifiers: pitfalls to avoid and a recommended ap-
proach, Data Mining and Knowledge Discovery 1 (1997) 317-327
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Abstract. Accurate identification of biological processes and gene regulatory
mechanisms remains an open problem that needs to be addressed, since it
represents a key stepping stone in our path to the goal of systems biology. In
this work, we propose a new methodology for the identification of putative
cooperative regulatory mechanisms in transcription regulatory networks.
Our approach is based on the identification of biclusters in a binary regulation
matrix, where each row corresponds to a given transcription factor, each col-
umn to a target gene and each matrix entry contains the value one if there is
a documented (or potential) regulation between the transcription factor and
the gene that correspond to that entry.
We show that a perfectly homogeneous bicluster in this matrix identifies a
set of transcription factors that jointly regulate a group of genes. Less than
perfectly homogeneous biclusters may also provide new clues about still un-
known regulation processes. Our methodology was tested using data from a
microarray analysis of the early response of the eukaryotic model Saccha-
romyces cerevisiae to the widely used herbicide 2,4-D dichlorophenoxyacetic
acid.
Results obtained with this validation show that the approach has the ability
to uncover groups of genes and transcription factors that are jointly involved
in a number of relevant biological processes. More significantly, our method
has the potential to identify a number of possibly interesting new hypotheses
of regulatory mechanisms, that may be validated experimentally.

1 Introduction

The combinatorial transcriptional regulation of gene expression in eukaryotes is highly
complex and often occurs through the coordinated action of multiple transcription
factors (TFs) [1]. Groups of transcription factors often cooperate in order to regulate
genes controlling different cellular functions under different conditions [2, 3]. These
groups of TFs can be viewed as modules, i.e., functional units that perform specific
functions. Different modules will contain different sets of TFs, but, in general, there
will exist significant overlap between modules.

The identification and study of regulatory modules is very important from a vari-
ety of viewpoints. On one hand, the function of each regulatory module is important
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in itself, and it may be worthwhile to devote a significant effort to understand the
cooperative mechanisms involved in the coordinated regulation of genetic expression.
On the other hand, modules may be preserved across species, and may even be viewed
as basic building blocks of biological systems.

Regrettably, the complex physical and biochemical mechanisms involved in co-
ordinated regulation make it difficult to identify regulatory modules directly from
first principles, and even sophisticated experimental methods are difficult to apply
directly to the identification of cooperative regulatory mechanisms.

For these reasons, computational biology approaches that help researchers iden-
tify and analyze cooperative regulatory mechanisms are essential, and will represent
a fundamental tool in our quest for the understanding of organisms as biological
systems.

In this work, we propose a method that accepts as its input a regulation matrix,
which is a concise way to represent known and potential regulatory associations be-
tween TFs and genes. The regulation matrix is a binary matrix where rows represent
TFs and columns represent genes. A regulatory association between a TF and a gene
is represented by 1 in the corresponding entry of the matrix. If no association exists,
the entry contains the value 0.

The key observation that supports our method is that submatrices (of the regu-
lation matrix) containing only entries with the value 1 correspond to a set of tran-
scription factors that jointly regulate a specific set of genes. Submatrices of this type
have been extensively studied and are usually called biclusters, although many other
designations have been proposed in the literature, such as formal concepts, co-clusters
and subspace clusters [4].

In our experiments, we have used regulation matrices for the yeast S. cerevisiae,
obtained from the information in a publicly available database dedicated to the tran-
scription regulatory associations in this organism, YEASTRACT [5].

2 Related Work

Understanding the complex interactions involved in the regulation of genes is crucial,
if one wishes to understand and model regulatory mechanisms and gene regulatory
networks. It is particularly important to be able to identify regulatory modules,
i.e., closely interconnected sets of transcription factors and target genes that are
commonly active under specific conditions and that are, in many case, reused and
even conserved across species.

2.1 Computational Approaches for the Identification of Regulatory
Mechanisms

Two computational approaches that are essentially independent and orthogonal, but
also complementary, have been pursued to date in order to understand the modular
organization of the transcriptional regulatory networks in different organisms [6–9].

The first approach aims at identifying regulatory mechanisms by analyzing di-
rectly the patterns of gene expression obtained using high throughput techniques,
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such as microarrays. Clustering [10] and blustering [11, 4] have been extensively used
to analyze microarray gene expression data, in an attempt to gain insight into com-
plex regulatory mechanisms.

The second approach aims at identifying regulatory mechanisms by directly ana-
lyzing data obtained from direct analysis of promoter regions, or from know regulation
mechanisms, identified using, for instance, ChIP-chip methods [1]. Computational
methods that look directly at sequence data aim at identifying over-represented mo-
tifs in the promoter regions of the genes of interest [12–15]. By identifying which
transcription factors recognize a specific motif in the promoter regions of genes, it is
possible to identify potential regulatory mechanisms, that can then be biologically
validated. However, this methodology is somewhat limited in its ability to identify
cooperative regulatory mechanisms since it can only tell, at best, whether a specific
pairwise interaction exists between one transcription factor and one gene, and not
whether a set of transcription factors interact to regulate a gene.

Recent research in data collection and analysis [9] has shown that the combination
of these two approaches leds to gain new insights into the network and a better
definition of transcriptional modules.

Our approach uses known information about the interaction of a given transcrip-
tion factor and a gene. However, it goes further than existing methods because it
identifies potential cooperative, joint or alternative regulation mechanisms, by look-
ing not at pairwise interactions between transcription factors and target genes, but
at interactions between groups of transcription factors and groups of target genes.

2.2 Biclustering Algorithms

A large number of approaches has been proposed for the identification of biclusters
in matrices. Biclustering is a non-supervised approach that performs simultaneous
clustering on the row and column dimensions of a data matrix. The concept of bi-
clustering can be traced back to the seventies [16] and was applied to several domains.
The first application of biclustering to computational biology was the work of Cheng
and Church [11]. Since, in its most general setting, biclustering is an NP-complete
problem, heuristic approaches are used to obtain suboptimal solutions using reason-
able computational resources.

Biclustering algorithms may identify one or several biclusters at a time. Several
approaches identify only one bicluster at a time [11, 17], but then mask it with random
noise and repeat the procedure in order to find other biclusters.

Other methods discover several biclusters at once [16, 18], or even all of them in
parallel [19, 20]. In our approach we are interested in the identification of several, po-
tentially overlapping, biclusters in a binary matrix. For this task an algorithm called
TRYBO (Transcriptional RegulatorY Bicluster IndentifcatiOn) was developed.

3 Methods and Algorithms

Our approach is based on the idea that regulatory modules will correspond to specific
structures in the regulation matrix.
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We describe the approach by first defining the regulation matrix and the concept
of biclusters in this matrix, and then showing why these biclusters will correspond
to regulatory mechanisms of interest.

3.1 Biclusters in the Regulation Matrix

Consider an n by m binary (0-1) regulation matrix A, with the set of rows X =
{x1, .., xi, .., xn} and the set of columns Y = {y1, .., yj, .., ym}. Each row i represents
a TF and each column j represents a gene. When TF i regulates gene j, i.e., when
there is a regulatory association, element aij takes the value 1 and it takes the value
0 otherwise.

We use (X, Y ) to denote matrix A. Considering that I ⊆ X and J ⊆ Y are
subsets of rows and columns, respectively, AIJ = (I, J) denotes the sub-matrix of A
that contains only the elements aij belonging to the sub-matrix with the set of rows
I and the columns J .

The data matrix A can be viewed as a representation of a bipartite graph. A
graph G = (V, E) where V is the set of vertexes and E is the set of edges, is said to
be bipartite if its vertexes can be partitioned into two sets L and R such that each
edge of E has one end on L and the other in R. We can say that L is the set of TF,
R is the set of genes and E is the set of regulatory associations between TFs and
genes.

We define a bicluster as a subset of TF and a subset of genes that have regulatory
associations between them. Given a data matrix, A, we want to identify a set of
maximal biclusters Bk = (Ik, Jk). Each maximal bicluster corresponds directly to a
biclique1 in the bipartite graph. Therefore, the problem of finding a maximal bicluster
in a binary matrix is equivalent to the problem of finding a biclique with the maximal
number of edges, which is a known NP-complete problem.

3.2 Biclusters and Cooperative Regulation Mechanisms

Each bicluster, in the regulation matrix, identifies a subset of transcription factors
that regulate a subset of genes, and this can provide evidence that either there exists
a cooperative or coordinated regulation mechanism.

Biclusters in Documented Regulation Matrices We first consider the case
where the regulation matrix is obtained from documented evidence of pairwise reg-
ulations. In this case, there is a 1 in entry i, j of matrix A if there is a known and
documented regulation relationship between TF i and target gene j. It is straightfor-
ward to verify that each submatrix of matrix A that consists solely of ones corresponds
to a group of transcription factors that regulate a given group of genes.

Given what we know of regulation mechanisms and the randomness of evolu-
tionary changes, such a joint regulation will correspond to either a) some form of a
cooperative regulatory mechanism, corresponding to a regulatory module or b) the

1 A biclique is a complete bipartite graph where every vertexes of the first set is connected
to every vertex of the second set.
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replication of a structure in the promoter region, such as a binding site, that is used
by more than one transcription factor to regulate the target genes.

In many cases, other phenomena, including, possibly, RNA interference or post-
transcriptional regulation, may lead to a change in this regulatory module, that will
suppress a particular regulation between a transcription factor and a gene. This means
that not all regulatory modules will correspond to perfect biclusters. Some will corre-
spond to imperfect biclusters that also represent important regulatory mechanisms.

Such imperfect biclusters may also occur in the regulation matrix by another
important reason, namely that the missing regulation exists but is not yet known or
has not yet been documented.

Finding (slightly) imperfect biclusters may, therefore, lead to important insights
in the cooperative gene regulation mechanisms, either by leading researchers to find
novel and previously unknown regulations, or by pointing to pre or post-transcriptional
phenomena that explain why a given regulation that was expected is not in fact
present in the regulation matrix.

Biclusters in Potential Regulation Matrices The situation is somewhat dif-
ferent when one is analyzing potential regulation matrices. In a potential regulation
matrix, there is an entry with value 1 in position (i, j) of matrix A if there is a poten-
tial regulation between transcription factor i and target gene j. The data is obtained
by scanning the promoter regions of the target genes and checking for the existence
of a structure that indicates a possible binding site for a given transcription factor.

The difference between this case and the case with documented regulation matri-
ces arises because available models for the process that leads a transcription factor
to bind to the promoter region are not precise enough to actually determine, with
any significant precision, whether binding will take place. A number of models has
been proposed [12] but they fall mainly into two categories: consensus based and
probabilistic.

Consensus based models define a consensus, i.e., a partially specified sequence
of DNA bases that describes possible binding sites for a given transcription factor.
Probabilistic models use, instead, a Position Weight Matrix (PWM) that describes
the binding site and consider that a binding may take place if the match between the
PWM and the actual DNA sequence in the promoter region is higher than a given
threshold.

In practice, both models are relatively poor predictors of actual bindings, and they
usually err on the optimistic side, predicting that a binding will take place when, in
fact, no such binding exists. This means that, in general, there will exist many entries
in the potential regulation matrix that do not correspond to the actual existence of
regulation between a transcription factor and a gene.

3.3 An Heuristic Approach to Biclustering: TRYBO

As described above, our objective is the identification of (possibly imperfect) biclus-
ters in the regulation matrix. Although a number of approaches could have been
used, the biclustering algorithm selected to support this methodology was TRYBO
(Trancriptional RegulatorY Bicluster identificatOn), inspired in the FLOC method
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[19]. FLOC is an heuristic approach that identifies of several overlapping coherent
biclusters in matrices of real values. Although TRYBO is a FLOC like algorithm, a
new metric was defined to deal with binary matrices. The metric was developed to
direct the algorithm towards the identification of large, close to perfect, biclusters.
TRYBO is also based on the bicluster definition used by Cheng and Church [11],
where a bicluster is a submatrix of constant values. In this context most entries must
be 1. Unlike Cheng and Church method, TRYBO can discover a set of k, possibly
overlapping, biclusters, simultaneously. For these reasons, it was not possible to use
an existing biclustering algorithm and TRYBO was developed specifically for this
purpose.

TRYBO has three phases. In the first phase, k initial biclusters are generated.
For each initial bicluster, each row/column of the matrix is added to the bicluster
with independent probability ρ.

The second phase of the algorithm is an iterative process that continuously im-
proves the quality of these biclusters. During each iteration, each row and column
is examined to determine the best action that can be taken in order to reduce the
average score of biclusters. For each row/column there are k possible actions to take,
that correspond to the change of membership of the row/column in each bicluster: a
row can be added to the bicluster if it is not yet included in it, or can be removed if
it already belongs to it. Each action has a gain associated. The gain of an action is
defined as the difference between the current score of the bicluster and the score of
the new bicluster that is obtained by executing the action. Actions are then tried in
a random order, and the action that leads to a larger gain is selected and applied.

The third and last phase starts when no improvements are observed after a given
number of iterations. The algorithm then enters a final greedy optimization phase,
where each action is tested and the action that exhibits more gain is applied. This
greedy phase continues until no more improvements are observed.

Extensive experimentation has shown that this combination or random action
selection, in phase two, coupled with the greedy method, in phase three, leads to a
more effective method than what is obtained by pursuing a strictly greedy approach.

To direct the algorithm towards the identification of nearly constant biclusters, we
used the following merit function, M , to evaluate the value of a given set of biclusters:

M =
∑

k

mk, (1)

where mk is the value of each individual bicluster k, given by

mk =
∑

i∈Ik,j∈Jk

aij − Vkσk

μk
, (2)

where Ik and Jk are, respectively, the rows and columns in bicluster k, Vk is the
volume (number of rows times number of columns in bicluster k) of the bicluster, σk

is the standard deviation of the elements in the bicluster, and μk is the average value
of the elements in bicluster k,

μk =

∑
i∈Ik,j∈Jk

aij

Vk
. (3)
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This metric takes a maximum value of
∑

i∈Ik,j∈Jk
aij for a perfect bicluster where

all entries in (Ik, Jk) are 1. This maximum value increases with the size of the biclus-
ter and decreases with added variation within the bicluster, directing the algorithm
towards large, close to perfect, biclusters.

3.4 Statistical Significance of Biclusters

Since the method may generate a large number of biclusters, it is important to be able
to assess the relative importance of each bicluster. For each bicluster, we computed a
p-value, by computing the probability that, under the null hypothesis of independent
entries in the regulation matrix, a bicluster of that size is generated. The Bonferroni’s
correction for multiple testing was used.

For this, we compute p,

p =
|Ik|∑

i=1

Gi

N
, (4)

where Gi is number of genes regulated by transcription factor i and N the total
number of genes, in the matrix A, and obtain the p-value by computing the tail of
the binomial distribution,

p− value =
N∑

j=|Jk|+1

(
N
j

)
pj(1 − p)N−j. (5)

4 Experiments and Results

This section describes the application of the proposed methodology to data ob-
tained from a microarray analysis of the early response of Saccharomyces cerevisiae
to a sudden aggression with toxic concentrations of the widely used herbicide 2,4-
dichlorophenoxyacetic acid (2,4-D) [21]. This environmental genomics approach has
provided mechanistic insights into the toxicity and resistance to this widely used
herbicide [22].

A dataset was created from the treated microarray data, including the yeast genes
whose transcript level increased at least 1.5 fold in response to stress induced by 2,4-
D. This dataset includes 1126 genes and 102 transcription factors. To generate the
documented and potential matrices, we used the utility Generate Regulation Matrix
from the YEASTRACT database [5].

4.1 Analysis of the Biclusters in the Documented Matrix

The documented matrix contains 102 rows, corresponding to all the characterized
transcription factors listed in the YEASTRACT database, and 1126 columns, corre-
sponding to the genes that have shown significant response to the herbicide 2,4-D.
Figure 1 illustrates the documented regulation matrix obtained.
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Fig. 1. Illustration of the documented regulation matrix for the 2,4-D aggression experi-
mental data.

The TRYBO algorithm has identified 64 biclusters2. These biclusters were the
object of analysis, with the aim of identifying relevant phenomena, either new or
known.

The biclusters obtained with higher scores (lower p-values), group homologous
transcription factors and the corresponding shared target genes. One of these biclus-
ters (bicluster 1) includes the transcription regulators Hap2p, Hap3p, Hap4p and
Hap5p which are subunits of a single operational transcription factor and, thus, reg-
ulate precisely the same target genes. The remaining high score bi-clusters group
pairs of homologue transcription factors (e.g. Msn2p and Msn4p, Pdr1p and Pdr3p,
Nrg1p and Nrg2p or Stp1p and Stp2p), whose target genes are mostly overlapping.
Although expected, these high score biclusters validate the accuracy and efficacy of
the approach proposed in this work and suggest that these transcription factors do
play a role in the yeast response to 2,4-D. Interestingly, the main regulators of the En-
vironmental Stress Response (ESR) program, Msn2p and Msn4p, were shown to play
a role in the resistance to 2,4-D, controlling the expression of approximately 20% of
the up-regulated genes, most of them encoding general stress responsive genes, heat
shock proteins, chaperones and antioxidant enzymes [23]. The homologous transcrip-
tion factors Pdr1p and Pdr3p, implicated in Pleiotropic Drug Resistance (PDR) and
determinants of yeast resistance to 2,4-D, promote the transcription of the TPO1

2 The complete list of biclusters obtained is available as supplementary material, at
http://tahoe.inesc-id.pt/ecml07/documented.html.
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and PDR5 genes. These encode two multidrug resistance (MDR) transporters of the
Major Facilitator and ATP-Binding Cassette superfamilies, postulated to actively
export the herbicide counterion, thus reducing the intracellular concentration of the
toxicant [24]. Stp1p and Stp2p are involved in yeast response to amino acid availabil-
ity that is strongly limited in yeast cells challenged with the herbicide [25]. The pair
of homologous transcription factors Nrg1p and Nrg2p and the transcription factor
complex comprised of Hap2p, Hap3p, Hap4p and Hap5p are involved in the response
to glucose exhaustion, a phenomenon that appears to be sensed by 2,4-D challenged
cells.

A very interesting set of biclusters are those clustering the two pairs of tran-
scription factors, Yap1p and Hsf1p and Yap1p and Rpn4p. Yap1p is associated with
the oxidative stress response, Hsf1p regulates the heat shock response and Rpn4p
controls the biosynthesis of subunits of the proteosome and may regulate multidrug
resistance via the proteosome protein genes, which is consistent with conceivable pro-
tein inactivation by 2,4-D, with the consequent increased protein degradation via the
26S proteosome. Although a significant cooperation between these transcription fac-
tors could not be anticipated, the application of TRYBO led to the suggestion that
Yap1p may interplay with Hsf1p and Rpn4p in the yeast response to 2,4-D. Yap1p
and Hsf1p are pointed out as co-regulators of 17 of the 2,4-D-induced genes, most
of them encoding heat shock proteins with chaperone activity. These proteins play
an important role in protein protection and renaturation both in the heat shock re-
sponse, mediated by Hsf1p, and in the oxidative stress response, mediated by Yap1p.
The appearance of RPN4 and UBI4, encoding the ubiquitin which binds to proteins
marking them for selective degradation, among the genes co-regulated by Yap1p and
Hsf1p is also noteworthy, since it assigns to Yap1p and Hsf1 a cooperative role in pro-
tein degradation through the proteosome. Yap1p to Rpn4p were clustered together
with 19 of the 2,4-D-induced genes, including 2 involved in pleiotropic drug resistance
(CIN5 and TPO4 ) and 3 involved in protein degradation (LAP4, RPN4 and UBI4 ).
This group also includes a large number of uncharacterized ORFs, whose functional
analysis may profit from all these indications.

In agreement with the indications provided by the biclustering data, the associ-
ation of Yap1p and Hsf1p was described for the first time during 2006, in a study
focused on the participation of both transcription factors in the regulation of mul-
tidrug resistance and protein degradation through the transcription factors Pdr3p
and Rpn4p [3]. The same study also associates Yap1p with Rpn4p, in agreement
with this biclustering analysis.

4.2 Analysis of the Biclusters in the Potential Matrix

We have also obtained the potential regulation matrix for this group of genes and
transcription factors, and performed a (necessarily limited in scope) analysis of the
biclusters obtained. To generate this matrix, we considered that a transcription factor
regulates a gene if the (known) consensus factor of that transcription factor appears
at least twice in the promoter region of a target gene. This matrix was also generated
using the facility available in the YEASTRACT database.
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The analysis of the 94 biclusters obtained by applying TRYBO to the potential
regulatory matrix3 revealed a particularly interesting case, bicluster 7, with a low p-
value of 1.5E-15, grouping the transcription factors Pdr1p, Pdr3p and Pdr8p with 19
potential target genes. The three transcription factors are members of the Zn2Cys6
family of transcription regulators and play an important role in the control of the
Multiple or Pleiotropic Drug Resistance (PDR) phenomenon in yeast [26, 27]. Based
on microarrays analysis, Pdr1p and Pdr3p are documented regulators of over one
hundred genes, while the more recently described Pdr8p appears to regulate a nar-
row range of target genes [27]. Among the 19 target genes emerging from this analysis
only two, PDR15 and YGR035C, are documented targets of the 3 transcription fac-
tors [27], while 12 are documented targets of both Pdr1p and Pdr3p. There are four
other documented targets of the three transcription factors [27] that failed detection
through our analysis, due to the fact that they do not fit in the more restricted defini-
tion of potential target genes used in this work. Indeed, in order to decrease the false
positives in the potential regulation matrix and increase the reliability of the obtained
biclusters, the definition of potential target genes was restricted to those presenting
at least two copies of each transcription factor binding site in their promoter region
and the missing genes only have one binding site in their promoter regions. This
indicates that the imposed restriction, although considered necessary, may lead to
false negatives. The functional role of the 19 target genes is also consistent with the
biological role of the associated transcription factors. One half of the obtained target
genes of known function are involved in MDR, including two transcription factors
(PDR3 – known to be autoregulated - and RPN4 ), three multidrug transporters of
the ABC (ATP-Binding Cassette) Superfamily, (PDR5, PDR10 and PDR15 ), and
two genes involved in phospholipid transport, (PDR16 and RSB1 ).

Although a number of the clustered genes appears to have cellular functions not
directly related with the PDR phenomenon, a possible connection was recently estab-
lished for Rpn4p. This transcription factor, described as a regulator of proteosome
biogenesis, was recently shown to be, itself, under the regulation of Pdr1p and Pdr3p,
thus relating proteosomal activity with drug resistance [28]. Guided by this biclus-
tering analysis, it may be postulated that the biological function of 7 of the 19 genes
in this bicluster, still classified as “of unknown function”, may also be related with
the PDR phenomenon.

5 Conclusions and Future Directions

In this work, we proposed a new method for the identification of cooperative regula-
tory mechanisms, that uses a non-supervised learning approach based in biclustering
techniques to find sets of genes that are cooperatively or jointly regulated by sets of
transcription factors. The results have shown that the application of this methodol-
ogy to data obtained from microarray analysis of the early response of the eukaryotic
model Saccharomyces cerevisiae to a widely used herbicide 2,4-D dichlorophenoxy-
acetic acid was able to discover interesting patterns, that, when analyzed, are mean-

3 The complete list of biclusters is available as supplementary material at
http://tahoe.inesc-id.pt/ecml07/potential.html.
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ingful and related with interesting phenomena, both well known or recently discov-
ered. Other patterns are likely to correspond to still unknown regulatory mechanisms,
and deserve further experimental analysis.

The most interesting direction for future work is related with the integration of
biological knowledge with sequence and expression data, in order to identify, with
high accuracy and good coverage, regulatory modules. From a biological standpoint,
we also plan to pursue a more detailed analysis of some of the hypotheses that were
raised by the application of the methodology proposed in this work.
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Abstract. Existing regulatory network models attempt to copy the “in
vivo” regulatory principles by reproducing founded biological results ”in
silico”. These models sometimes don’t reflect the biological principal of
protein regulation and they don’t take into account the organisms evo-
lution. An innovative approach is presented on this contribution, based
on the analyze of the existing models. Biological principles of regulatory
networks have been considered. In fact, this new model will provide the
tools to study regulatory networks emergency and evolution and to ac-
quire knowledge from generated time series. Studying networks in silico
provide us the tools for controlling the environment and a better behavior
analysis.

Key words: evolutionary algorithm, regulatory networks, protein tran-
scription, network emergency, dynamical properties, artificial data gen-
eration

1 Introduction

Genetic regulatory networks are part of many cellular processes and the study
of these networks and their evolution over the time can provide us a tool to un-
derstand cellular mechanisms. However, these networks cannot be easily studied
by “in vitro” tools, due to their kinetic aspect and the impossibility of studying
evolution in living systems. So, many authors have estimated the evolutionary
mechanism by using bio-informatic tools and models [1,2].

Most of these models treat directly the question of genetic networks evolu-
tion, separately from cellular evolution and kinetic. Yet, the Genetic Network is
neither directly selected nor directly subjected to mutations: It doesn’t evolve
by itself. Genetic networks can only evolve as part of an individual and as an
inferred system from genome (subjected to mutations).

Functional parts of particular regions of the genome are known to have
complex relationships with different biological processes (for example, differ-
ent pathways). In general, the construction of regulatory networks to represent
transcription/translation influence of genes is hard to study on living organisms.
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As a required step to deal with the most complex regulatory networks, for ex-
ample those related to disease evolution or treatment response, it is necessary
to understand how these networks arise and evolve. Some authors have worked
about genetic networks artificial generation for studied topology [3,4]. They cre-
ate random networks following some desirable characteristics already known.
Unfortunately, generated data are not issued by evolution itself and they are
biased to the chosen properties.

In this paper we propose an integrated model of Regulatory Networks to
take into account these two aspects in order to study the evolution of Genetic
Networks. Our model integrates a genome, who’s going to subject mutations, a
regulatory network (which evolution will be studied) and an evaluation process
based on phenotype characteristics. This model will provide us data to study
the genome structure evolution by applying data mining principles.

2 Genetic Regulation

2.1 Principles

Fig. 1. Example about protein binding over regulatory sites

As it has been formulated by F. Crick in the 1960’s, (in the “Central dogma
of molecular biology”) the DNA decoding is described as a two steps process:
transcription (from DNA to RNA) and translation (from RNA to amino-acid
sequence). However this process has quickly been extraordinarily complexified
by the discovery of the regulatory principles (Jacob, Monod): some proteins
can bind on specific DNA locations (Fig 1), interact with them and with the
transcription complex, and finally modify the genes transcription close to the
binding region.

The regulation activity of the transcription factor also depends on the DNA
sequence on the binding sites. Not all the proteins have the same binding site
affinity and the transcription level of genes depends on this. The more affin-
ity between transcription factor and binding site, the more gene transcription
corresponding to the gene binded site, in the case of enhancer proteins, and
in the case of inhibitor proteins,the more affinity the less transcription. Thus,
the overall transcription process can be represented as a network (Fig 2. Each
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node represents a protein and each arc represents the influence of a protein over
the transcription of another one. The weight in the arcs define the regulatory
level (enhancing or inhibition) between a given protein and the regulated one.
Gene networks are conceptual models of genetic regulation where each gene is
considered to be directly affected by a number of other genes [4].

Fig. 2. Regulation in Artificial Evolution. Protein P could be binded in a binding
region R, to regulate the transcription of genes G in the T-region

The dynamic of gene network is supposed to explain most of the cellular
behaviors as cell differentiation, cell response to stress or cell proliferation in
cancer. Regulation activity is the core of cell behavior and it could become a
key element in many research lines, either in specific cells/organisms or in more
general way (e.g. by studying small world properties of the network structure
[5])

Regulatory networks, like many other biological networks, are not randomly
connected: they follow a power-law distribution [5]. These networks show clus-
tering and modularity phenomena [6] but don’t show random distribution. In
these networks sometimes motifs emergency have been detected [7,8]. This con-
nectivity is probably fundamental for the cell activity. Thus, the understanding
of both causes and consequences of these specific wiring schemata, is one of the
main questions of contemporary biology.

2.2 Evolution of Genetic Networks

As Dobzhansky [9] said 30 years ago: “Nothing in biology makes sense except
in the light of evolution”. Following this idea, we wonder how networks have
evolved to their current topology i.e. what is the evolutionary origin of network
structure. It is known that the wiring process has a strong influence on the final
network structure and dynamic (See for example preferential attachment from
[5]), but the formation process of genetic networks remains mainly unknown.

There exist multiple open issues in the literature of this domain: what’s the
origin of regulatory networks? Why regulatory networks appear during evolu-
tion? How networks evolve over time? Studying the inclusion of new nodes in
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already existing regulatory networks, and studying the development of new reg-
ulatory networks could help us to answer some of these questions thus providing
us a better understanding on their evolution.

In some specific conditions the modularity phenomenon can appear in evolved
regulatory networks [6,10]. The main question is what are the conditions to make
networks evolve? We can also ask what’s the origin of these patterns, or if they
play a role during evolution.

However, for studying network evolution and emergency, we cannot tests
our hypothesis on living systems. The solution is to develop a biological model
“in silico” that will provide us tools to infer knowledge from artificial network
evolution, and to explain how networks evolve.

2.3 Models of Regulatory Networks

There is an impressive amount of literature on the question of regulatory net-
works modeling. However most of this activity relates to networks kinetic or the
inference of genetic regulatory networks from transcriptomic analysis of organ-
isms. As long as evolution of regulatory networks is concerned, authors have
mainly focus their works on the question of topology evolution [7,8,6], robust-
ness [11,12,13] and evolution of artificial functions [14,15,16,17]. Nevertheless we
claim that most of these models are not realistic enough because they consider
direct evolution of the genetic network (i.e. direct encoding of the network) or
direct selection on the basis of the network property.

Other authors have focused their work on the study of network evolution from
the kinetic point of view [18,10,19,14]. They obtain mathematical equations from
analytical models which defines the kinetic behavior of regulatory network, after
that an analysis of network evolution has been performed: convergence to steady
states, oscillations, . . .

When we want to study evolution in biological systems “in silico”, we use
models which gather the main basis of evolution: mutations, genotype-phenotype
mapping, and selection. Moreover if the goal is to study evolution of regulatory
networks, we should take into account that mutations don’t affect directly the
network obviously, mutation occurs on the genome, thus modifying indirectly
the genome network. As a consequence the genetic network is not submitted
to a direct selection pressure (e.g. for connectivity of activity properties). The
network contributes to the cell phenotype. So it is indirectly selected if it pro-
duces sufficient effect on phenotype. While many evolutionary studies directly
select the individuals for its topological (e.g. small world or scale free) or kinetic
properties (e.g. stability or robustness) it is not clear whether such properties
have a real impact on the phenotype. Maybe, they are not selected at all.

If we want to study evolution in regulatory networks, we need to create
an integrated model that will include evolution of genome-phenotype mapping
and that it will provide us tools to study and analyze the evolution of a genetic
networks inside such a system. This biological model should also collects the main
biological bases about regulation. It should be stratified on different organization
levels from genome to organism’s phenotype and it should be compliant with
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some minimal characteristics of real regulatory networks: different activation
levels, auto-regulation, different degrees of protein production, different binding
levels, or genotype-phenotype differentiation.

3 Regulation in Artificial Evolution, the Raevol Model

In order to build such a model we use an integrative evolutionary model previ-
ously defined in our team: the Aevol Model [20,21,22].

This model is well suited for our study because it integrates a genotype-
phenotype mapping, different codification between genes and proteins, and pro-
duction levels depending the promoter affinity. It integrates all these features
and managing different individual’s evolution in a population, there is an evo-
lutionary process: a population with a set of artificial organisms subjecting to
a selection process. This process handles individuals in population to achieve a
set of metabolic processes.

Aevol has been initially developed to study robustness and evolvability in
artificial organisms. However for the sake of simplicity it doesn’t include a reg-
ulation level.

In Aevol model, the artificial genome is made of a variable number of genes
separated by non-coding sequences. The genome is organized as a circular double-
strand binary string. Mutations can then change the genome structure. Protein
production levels are not predefined, and they are non-dependent on the gene
position in the sequence. Even initial protein concentration is determined by
the basal level. This level is calculated from the matching level between protein
promoter and a reference promoter pattern. The phenotype is the result from
the interactions of basic functional elements encoded by genes.

For studying evolution of regulatory networks a regulatory system has been
included to Aevol, developing in this way the Regulatory-Aevol Model (Raevol).

In Raevol model, protein’s production level is calculated from the matching
level between protein promoter and a promoter pattern. The main actor in our
model is the protein. It can behave in two different roles: after transcription
the genetic code will determine its regulatory capacity, being able to modify
the protein’s production level, whereas after translation the functional code will
define the protein function in metabolic processes.The phenotype is the result
from the interactions of basic functional elements encoded by genes (Fig. 3).

3.1 From Genome to Phenotype

The first step is the genome decoding. The genome sequence is parsed to find
out promoter position. Once we have localized the promoter regions and the
Start protein codon, we extract the binary code of protein. This binary code
is translated into a protein sequence by using a functional code. This protein
sequence has two tasks: first of all being translated into a protein function,
contributing to the phenotype, secondly, compute the regulatory activity of the
protein (see Fig 3).
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Each protein can be considered as a fuzzy function, represented by a triangle
described by three parameters: the mean m, the width w and the maximal height
H. From gene sequence and using the genetic code, we can determine a Gray
binary value associated to the different parameters of this fuzzy logic. Protein
achieve a subset of metabolic processes [21].

When we have translated all proteins in the genome, we have to calculate
the interactions between proteins and binding regions to obtain the regulatory
graph and calculate the protein production rate (Section 3.2).

Organisms must reach an objective function thanks to an evolutionary algo-
rithm to simulate organisms evolution, so we have to define a phenotype and a
fitness function. The phenotype is computed as a fuzzy set of processes [21]. If
we represent the set of activation functions as Ai and the set of inhibition func-
tions (negative h) as Ij the phenotype can be represented as P = (∪iAi)∩(∪jIj).
For this purpose we have used the Lukasiewicz functions, W (A1(x), A2(x)) =
max(0, A1(x)+A2(x)−1) for the junction and W ′(A1(x), A2(x)) = min(1, A1(x)+
A2(x)) for the intersection.Ai(x) represents the concentration of protein i in the
last time step (See Section 3.2)

Fitness: the goal is to compute the individual adaptation to the environ-
ment. The objective function is also represented as a set of fuzzy functions. This
set can be seen as a set of process E(x) [21]. We measure the gap g between the
objective function and the individual phenotype, more gap is found less offspring
the organism will have.

3.2 Regulation in genome transcription

To obtain the protein production rate, we should calculate the regulatory capac-
ity of each protein in the individual. By comparing the functional sequence and
the binding site (using a regulatory code) we can obtain the protein influence
over the regulated protein production (See Fig. 3).

Fig. 3. General schema about steps in DNA-Transcription-Translation and protein
behavior levels
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To know exactly how a protein influences the other proteins production, we
compare the protein sequence with the DNA regulatory region associated with
each promoter. Comparing the functional sequence, and the binding site by using
a comparison table 3 we can compute the protein affinity with the binding site,
thus extracting its influence over the regulated protein concentration.

From each comparison we obtain a value who means how this base can po-
tentially influence the production of regulated protein. Once obtained all the
comparison results, mean is calculated. The obtained value enables us to com-
pute how the regulated protein is going to be enhanced or inhibited.

Once we have obtained all binding values, we can build the regulatory graph,
and simulate the network behavior. We compute the network concentrations in
the cell during twenty time steps. To determine the protein concentration in
every time step we use the same equations as in [15]. They provide us a way
to reflect the different enhancing/inhibition levels. In these equations protein
production is determined by the influence of all proteins over it.

ei = 1
N

∑
j cje

β(u+
j −u+

max)

ini = 1
N

∑
j cje

β(u−j −u−max)

where i = 1 . . . n, is the protein number and N the maximum number of pro-
teins. u+

max and u−max are the maximum match achievable between protein and
binding region, for enhancer and inhibitor proteins respectively. uj represents
the matching value (or binding value) between protein j and the binding region
of protein i.

Giving this equations, the produced protein i follows the equation:
∂ci

∂t = basal level(1 + (ei − ini) · ci)− φ
Where φ is the protein degradation factor.
The initial concentration of each protein is given by its basal level. It cor-

responds to the matching level between the promoter of the protein and the
promoter matching model. For more details see [21].

To calculate individual’s phenotype fitness, we take the protein concentra-
tion levels for each individual to obtain the metabolic functions achieved by the
individual (organism phenotype) and we compare them with the objective func-
tion. With comparison value we will be able to select the best individuals in
population (See Section 3.1).

3.3 Evolutionary Algorithm

As in classical genetic algorithms population evolves by individual mutation.
Individual fitness is computed and individuals are selected for reproduction us-
ing sampling with replacement. When new individuals are created by parents
crossover, they replace parents in population.

Achieved mutations can affect only a few bits (local mutations) or a huge
genomic segment. Three types of local mutations can be applied: switching a

3 this table gather the protein codon-DNA base affinity. It has been created following
a random normal function and filling half cases with null values
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position (from 0 to 1 or vice-versa) , inserting a few bases (from 1 to 6) in a
position, and deleting from 1 to 6 bases. Mutations applied over huge genomic
segments can be deletion, duplication , translocation or inversion of long strings
[21]. These mutations affect only genome, so they will modify indirectly the
protein network topology.

4 Proposed Scenario

To study network emergence, we have simulated the bacterial behavior in a
steady state. Any external protein or influence is going to modify the bacterial
metabolic functions. Organisms must reach a set of biological processes(objective
function).

We have simulated the evolution in a population of 1000 individuals with a
mutation rate of 1e− 5 base/genome, different seeds, and the same parameters
used in [14]. These parameters have been chosen to obtain protein concentration
stabilization in the last time steps in bacterial life.

Fig. 4. Left: mean fitness curve of all individuals in the population over 5000 gen-
erations. Right: mean fitness curve of all individuals in the population over 10000
generations, following the external protein influence

After 5000 generation we can see in Figure 4(left) how individuals in different
simulations reach the objective function. In the Raevol model, the lower the
fitness, the more adapted the individuals. Here we see that the fitness value is
continuously decreasing, showing that individuals improves their achieving task.

Obtained networks are highly and completely connected (See in Fig. 5, aver.
active links) and the network size increases as number of genes does (See in
Fig. 5,average number of genes per genome). However, the links value’s histogram
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Fig. 5. On the left, average number of active links during generations. On the right,
average number of genes per genome. 5 simulations with 5 different seeds during 5000
generations.

Fig. 6. On the left: Histogram about links values in regulatory network for the best
individual at generation 5000. On the right: Evolution of average links values in regu-
latory network during generations for five simulations with five different seeds.

(Fig 6) shows that most of these links are close to zero and can thus be considered
as inactive links in the network. This is probably due to the stable fitness function
we used in this experiment: since the organisms only need to achieve a unique
metabolic function, they evolve a weakly connected network.

In these simulations, individuals have to reach a steady function. They de-
velop mainly negative links (See histogram Fig 6) and they converge to a steady
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negative value (about -0.025) near to zero (See graphic about mean links in
Fig 6).

We have tested the algorithm in a new context. The individual must achieve
a set of biological processes, but when an external protein arrives to the nucleus,
the organisms must change its behavior and stop achieving a subset of biological
processes. This external protein should have the inhibitor role in the regula-
tory network created by the individual. In this case, individuals must adapt
themselves not only to develop the first set of processes but they must also
adapt their binding sites to the new protein to inhibit the necessary biological
functions. More precisely, first of all individuals must reach a set of metabolic
functions, during its life period, an external protein arrive to the cells, modi-
fying the objective function.The new external protein should have a repression
activity. For this scenario, we have simulated during 10000 generations to wait
for stabilization, maintaining the mutation rate and individuals population.

As we can see in Fig. 4 the algorithm reach the objective functions decreasing
it fitness curve. The approximation is as good as the first scenario, when any
external protein influence the cell behavior.

For this scenario, obtained networks are also highly and completely connected
(See in Fig. 7, aver. active links) and the network size increases as number of
genes does (See in Fig. 7,average number of genes per genome). Contrary to the
first experiment, we can see how genome size and number of links in the graph
tends to stabilize to a reasonable size after some increasing generations (Fig.7).
In first generations, algorithm search the best solution in the fitness landscape,
exploring all possibilities by adding genes to the genome. Selection will erase the
non adapted features to reach the objective function.

Fig. 7. On the left, average number of active links during generations. On the right,
average number of genes per genome. 5 simulations with 5 different seeds during 5000
generations.
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Individuals should adapt their regulatory network to inhibit the set of process
that differs from the first set of metabolic functions. For this purpose, individuals
regulatory network must contain negative links who should inhibit the subset of
metabolic processes not covered by the second objective function. In Fig. 8 we
can see observe the regulatory values distribution. Most of values are between
[-0.1,0.1], these leak values cannot have a big influence in network, but as we
can see in histogram, a set of inhibitory links appear (between [-0.3,-0.1]). This
means that individuals have been able to adapt themselves to the new objective
function, inhibiting the set of metabolic processes that differs from the first
function.

Looking at evolution of mean links values, we see it tends to zero (Fig. 8).
Taking into account above conclusions, it means that enhancer proteins will
bind the inhibitor protein sites, activating in this way the repression. This could
explain the big number of positive links (activators) appeared in the histogram
(contrary to expected).
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Fig. 8. On the left: Histogram about links values in regulatory network for the best
individual at generation 5000. On the right: Evolution of average links values in reg-
ulatory network during generations for five simulations with five different seeds, when
external protein influences behavior.

5 Open issues and Future Works

Although preliminary, these results show that evolution of regulatory networks
is not fully random: some emerged features are repetitive over the different sim-
ulations. We can also conclude that our model works and that he’s able to adapt
himself and it regulatory network to functions requested. These are a very inter-
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esting result because networks are not directly selected and it opens a big study
field.

Data from real laboratory experiments are biased by noise and by the fact
that phenomena observation can change the observed phenomena. In silico ex-
periments are a good solution for easy data generation, noise management and
controlled experiment environment.

The model will provide data about the genome structure during different
steps in evolution. Studying these data, we could localize the emerged patterns,
and how they evolve: together, deviating and later derivation after duplication,
. . . [2]

In this model we have realized that the mechanisms used in first stages of
evolution is duplication. We would like to know if for this exploratory phase,
promoters and genes evolve together and if they are duplicated together. Only
comparing the different binary genome structures during time, we could be able
to answer to these questions.

Studying the genome’s structure applying data mining principles can answer
the questions about genome structure emergency and evolution. We should also
find a system to study more precisely the topology of emerged networks.

Although “in silico” evolution provides controlled environments, it requires
a simplified version of the actual biological model. We should be aware that
a mimicry for biological models should be realistic enough to make extracted
results worthy. Previous results were based on very simple models and then
limited in the scope of their results. Our proposal would look further and it dare
also propose more ambitious goals.

Further experiences will test the influence of mutation rate over the network
emergency and evolution. They should also modify the network topology. A
mathematical study is foreseen. We’ll analyze if mathematical equations that
define the concentrations levels, are the most adapted for our purpose.
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Abstract. Control of gene expression at the level of transcription is achieved by 
nuclear factors that bind to regulatory elements, short DNA sequence motifs, 
called transcription factor binding sites. The development of reliable methods 
for binding site recognition is an important step in large-scale genome analysis. 
The Data Mining approaches adapted to bioinformatics tasks show high 
efficiency. Yet the specificity of the regulatory region analysis task consists in 
the high false-positive rates. In this paper the program system ‘Discovery’ was 
applied to tasks of binding site recognition. ‘Discovery’ makes a semantic 
probabilistic inference and finds the statistically significant probabilistic rules. 
The hypothesis class is defined by the expert in dialog mode. In this paper we 
demonstrate that ‘Discovery’ is consistently more accurate than the traditional 
weight matrices in binding site prediction task, as was established for three 
families of transcription factors.  

Keywords: semantic probabilistic inference, probabilistic rule, transcription 
factor binding sites, prediction. 

1   Introduction 

Analysis of gene transcription regulatory regions is of great importance for 
understanding molecular mechanisms of transcription. 

The task of transcription factor binding sites (TFBS) prediction is 
methodologically difficult due to a high variety of DNA binding proteins and the 
degeneracy of TFBSs conferred on them by the tissue- and stage-specific regulatory 
mechanisms. These sequences vary in length, position, redundancy, orientation in the 
DNA chain, and bases. As a direct consequence, the problem of a large number of 
false-positives necessarily takes place manifesting itself in the poor predictive 
performance of the corresponding software. 
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The problem of regulatory region analysis challenges the Data Mining and Machine 
Learning approaches. Machine Learning algorithms intended for addressing 
bioinformatics tasks are: hidden markov models, decision trees, neural network, 
genetic algorithms, etc. [1]. 

The traditional approach to predict TFBSs is the positional weight matrix, PWM, a 
very powerful tool, but still with some drawbacks and limitations [2]. PWM and 
consensus-based methods involve an explicit assumption that the contribution of each 
nucleotide position to the binding affinity is independent and the effect produced on 
the binding strength is cumulative. In PWM, elements simply correspond to the 
probabilities of observing each nucleotide at each position. Numerous works [3, 4, 5, 
6] indicate that the nucleotides of TFBSs cannot be treated independently. This 
assumption is invalid and contradicts the processes underlying the biological model. 
Predictions can be further improved by taking into account the sequence context in 
which a predicted site is located. 

Despite an evident importance of noncoding sequences to gene regulation, our 
ability to describe and properly localize them is extremely limited. The known 
approaches are rather restricted as they are confronted with the lack of sufficient 
training data and the degeneracy of the biological objects under analysis. 

In this paper we applied ‘Discovery’ system to knowledge acquisition tasks on 
DNA sequences. Unlike PWM and consensus methods, ‘Discovery’ reveals mutual 
interdependences among the nucleotides which, in the general case, are rather distant 
from one another. 

In this paper we demonstrate that ‘Discovery’ is consistently more accurate than 
the traditional weight matrices in TFBS prediction tasks, as was established for three 
families of binding factors. 

2   ‘Discovery’ as Implemented for Bioinformatics 

As the training data for ‘Discovery’ system we used the samples of nucleotide 
sequences, putative TFBSs, that were organized in the data table. Each table row 
contained the binding site name and its nucleotide sequence. For example, 

 
>S1916  gtccgtgggt 
>S4809  ttgggggcga 
>S6067  gagggggcgg 
>S6069  gcgggggcgg 
>S5824  acggaggcgg 
 

The ‘Discovery’ system reveals the probabilistic rules of the form: 
 

( ) & ( ) &...& ( ) ( )1 2 k
1 1 2 2 k kPos C Pos C Pos C Class 1ε ε ε= = = → = . (1) 
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where ( i )Pos C ε=  – is a predicate, denoting that the sequence position i contains (if 

= 1ε ) or doesn’t contain (if = 0ε ) the symbol { }, , ,∈C a t g c ; ( )Class 1=  – target 

predicate, which implies that the nucleotide sequence is one of the binding sites of a 
particular transcription factor. 

In general, ‘Discovery’ system makes a semantic probabilistic inference [7, 8], 
which allows the user to find all statistically significant rules  that 

predict the predicate  with the highest probability.  

&...& →1 mP P 0P

0P
P

0P
The semantic probabilistic inference is based on the definition of the probabilistic 

rule, which is as follows. The rule  is a probabilistic rule, if for any 

rule  such that {  the conditional 

probability satisfies the inequality

&...& →1 mP P
&...& →i 1 ik 0P P ,..., } { ,..., }⊂i1 ik 1 mP P P P

( | &...& ) ( | &...& )<0 i1 ik 0 1 mp P P P p P P P . 

Let us introduce the correction to the rule. The rule  is a 

correction to the rule , if the former rule was created by adding an 

any predicate  to the statement of the rule . 

&...& & + →1 m m 1P P P 0P

0P

0P

0P

&...& →1 mP P

+m 1P &...& →1 mP P
Consider the algorithm of making semantic probabilistic inference. 
The algorithm provides a successive introduction of corrections to the rules and a 

consistent check for conformity to the criterion of being probabilistic rule. Checking 
all possible rules is a difficult, time-consuming computational task, and for that 
reason semantic probabilistic inference in practice involves two successive checks: 
the basic check and the advanced check. 

The algorithm of making semantic probabilistic inference. 
1. At the first step, a set of probabilistic rules  is generated by the exhaustive 

search of all the rules  for 
1REG

&...& →1 mP P 1 m d≤ ≤  and checking for 

conformity to the criterion of being probabilistic. That is, { }1 iREG R= , where 

, , 1i I∈ &...&= →i 1 m 0R P P P 1 m d≤ ≤

0

,  is the probabilistic rule. This 

step is referred to as a basic check, and the value d is referred to as the depth of 
the basic check. 

iR

2. At the k-th (k > 1) step, a set of probabilistic rules  is generated by 

correcting all the rules that were found at the previous step and checking for 
conformity to the criterion of being probabilistic rule. That is, , 

, , 

kREG

{ }k iREG R=

ki I∈ &...&= →i 1 mR P P P ( )m d k 1= + − ,  is a probabilistic rule, 

, where  is the set of all corrections to the 

rules in . 

iR
(i kR Spec REG −∈ )1 )( k 1Spec REG −

k 1REG −

3. The algorithm stops when no further correction to any rule is possible. The 
ultimate set of all rules REG  is equal to the union of all : kREG

k
k

REG REG= U . 

The depth of the basic check, that is, the maximum length of the rules that will be 
subject to the basic check, is specified by the user. In practice, the depth of the basic 
check is normally equal to 2 or 3. 
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As the algorithm proceeds, the conditional probability of the rules is assessed 
using a training set. To prevent the rules that fail to achieve significance, additional 
criteria are normally applied to assess statistical significance among the rules. We 
used the exact Fisher criterion applied to contingency tables [9]. The rules that fail to 
meet criteria are to be discarded even if they prove highly accurate on the training set. 

The calculation of object score is critical for decision making if the nucleotide 
sequence is one of the binding sites of a particular transcription factor. ‘Discovery’ 
supports several procedures for calculating the score. For TFBS recognition purposes, 
we used the following procedure: 

 

( )

( )
R TR

R AR

p R
score

p R
∈

∈

∑
=

∑
. 

(2) 

 
where p(R) – conditional probability of the rule R, AR  – all the rules discovered by 
the system, TR  – all the rules that are applicable to the object. 

Further the sequence score is compared to the threshold [ , ]0 1δ ∈ . If the object 

score is higher than the threshold, then the object is one of the TFBSs. We defined the 
false positive (FP) rates based on false negative (FN) rate using the standard jackknife 
procedure. 

3   Experimental Data Analysis 

We analyzed the DNA targets of three protein families: sterol regulatory element 
binding protein (SREBP), early growth response factor 1 (EGR1), and Hepatocyte 
nuclear factor 4 (HNF4). The training data sets (sequences of TFBSs with flanks) 
were retrieved from the TRRD database [10]. 

We performed the accuracy comparison of ‘Discovery’ and PWM according to the 
standard jackknife procedure [11]. Totally, the data sets contained 38 sequences of 
SREBP binding sites, 22 (EGR1), 30 (HNF4) (Table 1). First of all, we tried PWM on 
different sequence lengths to reach the highest PWM recognition accuracy. When the 
optimal sequence lengths for PWM were found to be 18 nucleotides for SREBP data, 
10 for EGR1 and 13 for HNF4, we prepared positive training sets containing 
sequences of binding sites 18, 10, and 13 nucleotides in length. The negative training 
set consisted of randomly generated sequences with the same frequencies as in the 
positive set. 

 
Table 1. Samples of nucleotide sequences, recognition accuracy of the ‘Discovery’ system 

and PWM for TFBS SREBP, EGR1 and HNF4. False positive rates at the stringent threshold 
are defined by the false negative rate equal to 50%. 

 
TFBS Power of TFBSs 

Set 
Sequence 
length, nt 

FP rate 
PWM 

FP rate 
‘Discovery’ 
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SREBP 38 18 4.70E-04 3.90E-04 
EGR1 22 10 4.06E-03 2.39E-03 
HNF4 30 13 2.14E-04 7.00E-05 

 
During each jackknife iteration methods were trained on the data set of sequences 

leaving exactly one for the control. The trained methods were applied to the rest 
sequence, estimating the FP error; the control negative sample was randomly 
generated with the nucleotide frequencies as in the positive samples and contained 
100 000 sequences. Totally the number of jackknife iterations in each case was equal 
to the number of sequences in the data sets. We arranged the control sites according to 
the FP rates. Figure 1 depicts the correlations between the true positive (TP) and FP 
rates for the HNF4 binding sites data. ‘Discovery’ outperforms PWM at any error 
cutoff. 

The obtained result for the rest families of transcription factors (EGR1 and 
SREBP) is analogous to the HNF4, ‘Discovery’ favorably competes with the PWM. 
We produce the FP rates for both algorithms at the stringent threshold defined by the 
FN rate equal to 50% (table 1). 

 

 
 

Fig. 1. Recognition performance of ‘Discovery’ system and PWM for HNF4 binding sites. 
The best six HNF4 binding sites are recognized at the FP rate lower then 1.E-07. 
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