
THE 18TH EUROPEAN CONFERENCE ON MACHINE LEARNING
AND

THE 11TH EUROPEAN CONFERENCE ON PRINCIPLES AND PRACTICE
OF KNOWLEDGE DISCOVERY IN DATABASES

INTERNATIONAL WORKSHOP ON

CONSTRAINT-BASED MINING AND
LEARNING

AT ECML/PKDD 2007

CMILE’07

September 21, 2007

Warsaw, Poland

Editors:
Siegfried Nijssen
Katholieke Universiteit Leuven
Luc De Raedt
Katholieke Universiteit Leuven

Preface

In many applications of machine learning and data mining the most interesting results
are not obtained by a single run of a single algorithm. It is often necessary that a user
be able to express constraints and preferences on the models and patterns that the al-
gorithms have to output. This workshop intends to bring together researchers in data
mining and machine learning that have an interest in mining and learning algorithms
that explicitly offer users the possibility to express multiple types of constraints and
preferences, and who believe that general ways to deal with —sometimes conflicting—
constraints are necessary. Results of this kind have been obtained in constraint-based
pattern mining algorithms, algorithms that learn decision trees under constraints and
constraint-based clustering algorithms; also issues such as the language in which to ex-
press constraints, and approaches for dealing with multiple conflicting constraints, are
important.

This workshop is the successor of the workshop on Knowledge Discovery in In-
ductive Databases (KDID). Constraint-based mining methods are a core component of
Inductive Databases. The new name of the workshop reflects that we believe that con-
straints are not only important in data mining, but also in machine learning.

We decided to have four types of presentations. Besides invited presentations, we
have presentations of abstracts and of full papers. In the abstract presentations work is
presented that was previously published in other conferences, but which is of interest
to the topic of the workshop. By including abstract presentations we hope to reduce
the barrier for submitting high quality work to the workshop. In the paper presentations
work is presented that was submitted to CMILE and reviewed by the program commit-
tee of the workshop. Depending on the enthousiasm of the program committee, these
papers were accepted either as full presentations or as short presentations.

We look forward to an interesting workshop.

Leuven, August 2007 Siegfried Nijssen
Luc De Raedt

Workshop Organization

Workshop Chairs

Siegfried Nijssen (Katholieke Universiteit Leuven)
Luc De Raedt (Katholieke Universiteit Leuven)

ECML/PKDD Workshop Chair

Marzena Kryszkiewicz (Warsaw University of Technology)

Workshop Program Committee

Hiroki Arimura
Hendrik Blockeel
Francesco Bonchi
Jean-François Boulicaut
Toon Calders
Ian Davidson
Saso Dzeroski
Peter Flach
Minos Garofalakis
Thomas Gärtner
Fosca Giannotti
Bart Goethals
Jiawei Han
Tomer Hertz
Kristian Kersting

Ross D. King
Joost N. Kok
Stefan Kramer
Tilman Lange
Taneli Mielikäinen
Jan Struyf
Rosa Meo
Shinichi Morishita
Céline Robardet
Arno Siebes
Kiri Wagstaff
Takashi Washio
Philip S. Yu
Xifeng Yan
Mohammed Zaki

Table of Contents

I Full Presentations – Abstracts

Anytime Learning of Cost-sensitive Decision Trees . 3
Saher Esmeir and Shaul Markovitch

Constraint Based Hierarchical Clustering for Text Documents 4
Korinna Bade

The Chosen Few: On Identifying Valuable Patterns . 5
Björn Bringmann and Albrecht Zimmermann

II Full Presentations – Papers

A Fast Algorithm for Mining Utility-Frequent Itemsets . 9
Vid Podpečan, Nada Lavrač and Igor Kononenko

Mining Views: Database Views for Data Mining . 21
Hendrik Blockeel, Toon Calders, Elisa Fromont, Bart Goethals and Adriana
Prado

III Short Presentations – Papers

Onto4AR: a framework for mining association rules . 37
Cláudia Antunes

Iterative Constraints in Support Vector Classification with Uncertain Information . 49
Jianqiang Yang and Steve Gunn

Multitarget Polynomial Regression . 61
Aleksandar Pečkov, Sašo Džeroski and Ljupčo Todorovski

Author Index . 73

Part I

Full Presentations – Abstracts

Anytime Learning of Cost-sensitive Decision Trees

Saher Esmeir and Shaul Markovitch

Computer Science Department, Technion-IIT, Isreal

Abstract. Machine learning techniques are increasingly being used to produce
a wide-range of classifiers for complex real-world applications that involve dif-
ferent constraints both on the resources allocated for the learning process and on
the resources used by the induced model for future classification. As the com-
plexity of these applications grows, the management of these resources becomes
a challenging task. In this work we introduce ACT (Anytime Cost-sensitive Tree
learner), a novel framework for operating in such environments. ACT is an any-
time algorithm that allows trading computation time for lower classification costs.
It builds a tree top-down and exploits additional time resources to obtain better
estimations for the utility of the different candidate splits. Using sampling tech-
niques ACT approximates for each candidate split the utility of the subtree under
it and favors a split with the best evaluation. Due to its stochastic nature ACT is
expected to be able to escape local minima, into which greedy methods may be
trapped. ACT can be applied in two anytime setups: the contract setup where the
allocation of resources is known in advance, and the interruptible setup where the
algorithm might be queried for a solution at any point of time. Experiments with a
variety of datasets were conducted to compare the performance of ACT to that of
the state of the art decision tree learners. The results show that for most domains
ACT produces significantly better trees. In the cost-insensitive setup, where test
costs are ignored, ACT could produce smaller and more accurate trees. When
test costs are involved, the ACT trees were significantly more efficient for clas-
sification. ACT is also shown to exhibit good anytime behavior with diminishing
returns.

S. Esmeir and S. Markovitch. Anytime Learning of Decision Trees. Journal of Machine Learning
Research (JMLR), 8, 2007.

S. Esmeir and S. Markovitch. Occam’s Razor Just Got Sharper. In Proceedings of The 20th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-2007), 2007.

S. Esmeir and S. Markovitch. Anytime Induction of Decision Trees: An Iterative Improvement
Approach. In Proceedings of The 21st National Conference on Artificial Intelligence (AAAI-
2006), 2006.

S. Esmeir and S. Markovitch. When a Decision Tree Learner Has Plenty of Time. In Proceedings
of The 21st National Conference on Artificial Intelligence (AAAI-2006), 2006.

S. Esmeir and S. Markovitch. Lookahead-based Algorithms for Anytime Induction of Decision
Trees. In Proceedings of the 21st International Conference on Machine Learning (ICML-2004),
2004.

Constraint Based Hierarchical Clustering for Text
Documents

Korinna Bade

University of Magdeburg, Germany

Abstract. This presentation deals with constraint based clustering in a hierarchi-
cal clustering scenario. The explicit goal is to derive a hierarchical structure of
clusters that is constrained by a partially known hierarchy. In the presentation, re-
lated work in the field of constraint based clustering is analyzed, pointing out ma-
jor drawbacks of the current approaches, especially when applied to a hierarchi-
cal scenario. Furthermore, special attention is drawn to problems concerning the
clustering of text documents. Once problems are identified, two different types of
approaches as well as their combination are presented that specifically target at
finding a hierarchical cluster structure for text documents under constraints. Re-
sults of a first evaluation on a hierarchical dataset of text documents are shown,
considering different aspects like unevenly distributed constraints. The presenta-
tion ends with proposals for future research in this area.

K. Bade and A. Nürnberger. Personalized hierarchical clustering. In: Proceedings of the 2006
IEEE/WIC/ACM Int. Conference on Web Intelligence, 2006.

The Chosen Few: On Identifying Valuable Patterns

Björn Bringmann and Albrecht Zimmermann

Katholieke Universiteit Leuven, Belgium

Abstract. Pattern search is one of the main topics in data mining. In the last years
different types of pattern languages were developed in order to be able to deal
with the ever new challenges of new and hopefully valuable representations for
all kind of data. Most algorithms developed handle the usually computationally
intensive task in a decent way enabling us to extract millions of patterns from
even small datasets. These patterns are then presented to the user or they are used
as features such that each instance of the original database can be converted into
a binary vector, each bit encoding the presence or absence of the pattern.
Due to the fact that interestingness (i.e. constraint satisfaction) of patterns is eval-
uated for each pattern individually, the amount of patterns to be considered by a
user is often too large. Furthermore, when presenting the binary vector data to a
machine learning technique, an overabundance of features does not help in the
learning task, possibly even “confusing” the algorithm, leading to overfitting.
The aim of our work is to select a small, human-interpretable subset con- taining
little redundancy from a larger set of patterns while retaining as much information
as possible encoded in the full set.
We define the information of a pattern set as the partition it induces on the
database, with all instances sharing the exact same subset of patterns belonging
uniquely to one block. Thus, information is obtained from the composition of all
patterns, contrary to e.g. the notion of closed patterns. Closedness only considers
patterns having different covers; thus two mutually exclusive patterns are closed
but induce the same partition.
Since the high amount of patterns leads to an exponentially large search space
of possible subsets, we present a heuristic technique to tackle the problem. The
pattern set is processed in a given order and only patterns that effect a change to
the current partition are selected. Besides arbitrary orderings, our rather general
algorithm furthermore allows for different techniques for measuring the effect of
the pattern, thus allowing intuitive descriptions of the selection step or even of
properties for the final subset.
We give some rather intuitive examples for selection criteria and combine them
with straight-forward ordering strategies. When evaluated on several UCI data
sets the techniques reduce the set of closed patterns severely.

B. Bringmann and A. Zimmermann. The Chosen Few: On Identifying Valuable Patterns. In:
Proceedings of the 6th IEEE International Conference on Data Mining (ICDM), 2007.

Part II

Full Presentations – Papers

A Fast Algorithm for Mining Utility-Frequent

Itemsets

Vid Podpečan1, Nada Lavrač1,2, and Igor Kononenko3

1 Jozef Stefan Institute, Ljubljana, Slovenia
2 University of Nova Gorica, Nova Gorica, Slovenia

3 University of Ljubljana, Faculty of Computer and Information Science, Ljubljana,
Slovenia

vid.podpecan@gmail.com
nada.lavrac@ijs.si

igor.kononenko@fri.uni-lj.si

Abstract. Utility-based data mining is a new research area interested
in all types of utility factors in data mining processes and targeted at in-
corporating utility considerations in both predictive and descriptive data
mining tasks. High utility itemset mining is a research area of utility-
based descriptive data mining, aimed at finding itemsets that contribute
most to the total utility. A specialized form of high utility itemset min-
ing is utility-frequent itemset mining, which – in addition to subjectively
defined utility – also takes into account itemset frequencies. This paper
presents a novel efficient algorithm FUFM (Fast Utility-Frequent Min-
ing) which finds all utility-frequent itemsets within the given utility and
support constraints threshold. It is faster and simpler than the original
2P-UF algorithm (2 Phase Utility-Frequent), as it is based on efficient
methods for frequent itemset mining. Experimental evaluation on artifi-
cial datasets show that, in contrast with 2P-UF, our algorithm can also
be applied to mine large databases.

1 Introduction

Utility-based data mining [10–12] is a broad topic that covers all aspects of eco-
nomic utility in data mining. It encompasses predictive and descriptive methods
for data mining, among the later especially detection of rare events of high util-
ity (e.g. high utility patterns). This paper describes methods for itemset mining
or more specifically, mining utility-frequent itemsets which is a special form of
high utility itemset mining [13, 14].

Standard methods for association rule mining [1, 14] are based on support
and confidence measures. The goal of the first phase of assoc. rule mining is to
find all frequent itemsets and the goal of the second phase is to build rules based
of frequent itemsets. We use support measure because we assume that the user
is interested only in statistically important patterns.

However, frequency of an itemset alone does not assure its interestingness
because it does not contain information on its subjectively defined utility such

10 Vid Podpečan, Nada Lavrač, Igor Kononenko

as profit in euros or some other variety of utility. Mining high utility itemsets
thus upgrades the standard frequent itemset mining framework as it employs
subjectively defined utility instead of statistics-based support measure. User-
defined utility is based on information not available in the transaction dataset. It
often reflects user preference and can be represented by an external utility table
or utility function. Utility table (or function) defines utilities of all items in a
given database (we can also treat them as weights). Besides subjective external
utility we also need transaction dependent internal utilities (e.g. quantities of
items in transactions). Utility function we use to compute utility of an itemset
takes into account both internal and external utility of all items in a itemset. The
most usual form that is also used in this paper is defined as a sum of products of
internal and external utilities of present items. The goal of high utility itemset
mining is to find all itemsets that give utility greater or equal to the user specified
threshold.

The deficiency of this approach is that it does not consider the statistical
aspect of itemsets. Utility-based measures should incorporate user-defined utility
as well as raw statistical aspects of data [14]. Consequently, it is meaningful to
define a specialized form of high utility itemsets, utility-frequent itemsets [15]
which are a subset of high utility itemsets as well as frequent itemsets. Example 1
indicates differences between frequent, high utility and utility-frequent itemsets.

Example 1. As an example let us analyze sales in a large retail store. We can
find that itemset {bread,milk} is frequent, itemset {caviar, champagne} is of
high utility and itemset {beer} is utility frequent. A smart manager should pay
special attention to itemset {beer} as it is frequent and of high utility. On the
other side, itemset {bread,milk} is frequent but not of high utility and itemset
{caviar, champagne} gives high utility but is not frequent.

First algorithm 2P-UF for mining utility-frequent itemsets was introduced
together with formal definition of this novel area [15] of utility-based itemset
mining. It is based on a quasi support, a special measure that solves the problem
of nonexistence of anti-monotone property of joined support-utility measure.
2P-UF is proven to find all utility-frequent itemsets but it has some properties
that render it impossible to use in practice on large databases. In this paper
we present a new algorithm that treats utility-frequent itemsets as a special
form of frequent itemsets which is in contrast with 2P-UF algorithm since it
treats them as a special form of high utility itemsets. Our approach proves to
be efficient because support measure has anti-monotone property and assures
efficient mining approach. Moreover, it is possible to use existent, very efficient
methods for mining frequent itemsets, that can significantly speed up the mining
process.

The remainder of this paper is organized as follows. In Section 2 we briefly
survey work on frequent and high utility itemset mining as it forms a formal theo-
retical background for our algorithm. In Section 3 we describe our new algoritm
and its advantages in comparison with 2P-UF algorithm. Section 4 describes
and comments our implementation and results of experiments on synthetical

A Fast Algorithm for Mining Utility-Frequent Itemsets 11

databases. Finally, conclusions are drawn in Section 5 where we also indicate
possible directions of future work.

2 Mining High Utility Itemsets

A frequent itemset is a set of items that appears at least in a pre-specified
number of transactions. Formally, let I = {i1, i2, . . . , im} be a set of items and
DB = {T1, T2, ..., Tn} a set of transactions where every transaction is also a set
of items (i.e. itemset). Given a minimum support threshold minSup an itemset
S is frequent iff:

|{T |S ⊆ T, T ⊆ DB, S ⊆ I}|

|DB|
≥ minSup .

Frequent itemset mining is the first and the most time consuming step of mining
association rules. During the search for frequent itemsets the anti-monotone
property is used.

Definition 1. Let D be the domain of a function f. f has the anti-monotone
property when ∀ x, y ∈ D : x ≤ y ⇒ f(y) ≤ f(x).

In the case of mining frequent itemsets the anti-monotone property assures
that no superset of an infrequent itemset is frequent. Consequently, infrequent
candidates can be discarded during the candidate generation phase. The first
efficient frequent itemset mining algorithm APriori was developed by Agrawal
et. al. [1], but later many faster methods were developed (FP-trees [5], ECLAT
[16], Relim [2]). For the sake of simplicity, our implementation uses the APriori
algorithm, however, any other more efficient algorithm could be used.

2.1 High Utility Itemsets

A high-utility itemset mining model was defined by Yao, Hamilton and Butz [13].
It is a generalization of the share-mining model [3, 4]. The goal of high utility
itemset mining process is to find all itemsets that give utility greater or equal to
the user specified threshold. The following is the set of definitions given in [13]
which we shall illustrate on a small example.

Definition 2. The external utility of an item ip is a numerical value yp defined
by the user. It is transaction independent and reflects importance (usually profit)
of the item. External utilities are stored in an utility table. For example, external
utility of item B in Table 2 is 10.

Definition 3. The internal utility of an item ip is a numerical value xp which
is transaction dependent. In most cases it is defined as the quantity of an item
in transaction. For example, internal utility of item E in transaction T5 is 2 (see
Table 1).

12 Vid Podpečan, Nada Lavrač, Igor Kononenko

Table 1. Database with 10 transactions and 5 distinct items.

TID A B C D E

1 0 0 18 0 1

2 0 6 0 1 1

3 2 0 1 0 1

4 1 0 0 1 1

5 0 0 4 0 2

6 1 1 0 0 0

7 0 10 0 1 1

8 3 0 25 3 1

9 1 1 0 0 0

10 0 6 2 0 2

Table 2. External utilities of items from database in Table 1.

item A B C D E

profit (e) 3 10 1 6 5

Definition 4. Utility function f is a function of two variables:
f(x, y) : (R+,R+) → R+. The most common form also used in this paper is
the product of internal and external utility: xp ∗ yp.

Definition 5. The utility of item ip in transaction T is the quantitative measure
computed with utility function from Definition 4: u(ip, T) = f(xp, yp), ip ∈ T .
For example: utility of item E in transaction T5 is 2 ∗ 5 = 10.

Definition 6. The utility of itemset S in transaction T is defined as
u(S, T) =

∑

ip∈S

u(ip, T), S ⊆ T . For example: utility of itemset {B,E} in trans-

action T2 is u({B,E} , T2) = u({B} , T2) + u({E} , T2) = 6 ∗ 10 + 1 ∗ 5 = 65.

Definition 7. The utility of item ip in itemset S is defined as
u(ip, S) =

∑

T∈DB, S⊆T

u(ip, T). For example, utility of item E in itemset {B,E}

is u(E, {B,E}) = u(E, T2) + u(E, T7) + u(E, T10) = 20.

Definition 8. The utility of itemset S in database DB is defined as
u(S) =

∑

T∈DB, S⊆T

u(S, T) =
∑

T∈DB, S⊆T

∑

ip∈S

f(xp, yp).

For example, utility of itemset {A,E} in database from Table 1 is u({A,E}) =
u({A,E} , T3) + u({A,E} , T4) + u({A,E} , T8) = 33.

Definition 9. The utility of transaction T is defined as u(T) =
∑

ip∈T

u(ip, T).

For example: utility of transaction T10 is u(T10) = u({B} , T10)+u({C} , T10)+
u({E} , T10) = 72.

A Fast Algorithm for Mining Utility-Frequent Itemsets 13

Definition 10. The utility of database DB is defined as u(DB) =
∑

T∈DB

u(T).

For example, utility of database DB from Table 1 is u(DB) = u(T1) + . . . +
u(T10) = 23 + . . . + 72 = 400.

Definition 11. The utility share of itemset S in database DB is defined as

U(S) = u(S)
u(DB) . For example, utility share of itemset {A,D,E} in database from

Table 1 is U({A,D,E}) = 46
400 = 0.115 = 11.5%.

Finally, on the basis of definitions 2–11 we can formally define high utility
itemset and the general problem of high utility itemset mining.

Definition 12. Itemset S is of high utility iff U(S) ≥ minUtil where minUtil
is user defined utility threshold in percents of the total utility of the database.

Definition 13. High utility itemset mining is the problem of finding set H de-
fined as H = {S|S ⊆ I, U(S) ≥ minUtil} where I is the set of items (at-
tributes).

Utility function from Definition 4 is neither monotone or anti-monotone
which can be proven with a counter example based on database from Table 1:
{A,E} ⊆ {A,D,E} , u({A,E}) ≤ u({A,D,E}) and {B} ⊆ {B,C} , u({B}) ≥
u({B,C}).

Because of the nonexistence of anti-monotone property of utility function
efficient high utility itemset mining algorithms [7, 8] employ critical function,
a special function that estimates the utility of all possible supersets of a given
itemset. It has the anti-monotone property which ensures the existence of a sys-
tematic non-exhaustive mining method. Critical function of itemset S is simply
utility (see Definition 10) of database DBS (a subset of DB with only those
transactions that contain S). It is used to reduce the number of candidates by
discarding low quality itemsets (all their supersets are of low utility) during the
candidate generation phase of the high utility itemset mining process.

2.2 Utility-Frequent Itemsets

Utility-frequent itemsets are a special form of high utiltity itemsets, therefore,
all quoted definitions also apply. For a given utility threshold µ each itemset S
is associated with a set of transactions defined as
τS,µ = {T |S ⊆ T ∧ u(S, T) ≥ µ ∧ T ∈ DB}. On the basis of this set of trans-

actions an extended support measure can be identified: support(S, µ) =
|τS,µ|
|DB| .

Definition 14. Itemset S is utility-frequent if for a given utility threshold µ

and support threshold s the extended support measure support(S, µ) is greater or
equal to s.

The measure of extended support is obviously not anti-mnotone as it is based
on a non-monotone utility function (see Definition 4 and counter example). It is

14 Vid Podpečan, Nada Lavrač, Igor Kononenko

possible to use critical function and algorithms for high utility itemset mining
(i.e. DCG [7], ShFSM [8]), however, they are highly impractical and inefficient
since the utility threshold is defined at transaction level instead of database level
(see definition of the set τS,µ) and thus much smaller.

Because the utility threshold has direct influence on the number of candidates
in DCG and ShFSM algorithm, they generate many high utility candidates (with
respect to a given threshold). However, only a small fraction of them are also
utility frequent. To tackle this problem, authors of the utility-frequent itemset
mining model defined quasi support, the basis of their 2P-UF algorithm [15].

Definition 15. Quasi support is a special form of extended support defined

as quasiSupport(S, µ) =
|τ ′

S,µ|
|DB| where τ ′S,µ is a set of transactions τ ′S,µ =

{T |u(S, T) ≥ µ ∧ T ∈ DB}.

We should remind the reader that it is not necessary for an itemset S to
be a true subset of transaction T when computing its quasi support. It can
be only partially contained as long as it gives desired minimum utility. Quasi
support has the monotone property which ensures the existence of systematic
non-exhaustive mining method. However, in comparison with the use of an anti-
monotone function the process runs in the opposite direction.

Proof (monotonicity of the quasi support measure). Let X and Y be subsets of the
set I (set of all items in a database) and let X ⊆ Y and let X be utility-frequent.
Obviously, for each transaction T ⊆ τ ′X,µ holds u(Y, T) ≥ u(X,T) because X is
a subset of Y. Thus, |τ ′Y,µ| ≥ |τ ′X,µ|, quasiSupport(Y, µ) ≥ quasiSupport(X,µ)
and Y is utility frequent. ⊓⊔

2P-UF algoritm is based on the fact that every utility-frequent itemset is also
quasi utility-frequent. Figure 1 briefly describes the 2P-UF algorithm. In the first
phase of the algorithm all quasi frequent itemsets are collected and in the second
phase all quasi utility-frequent but not utility-frequent are discarded. Function
QUF − APriori(·, ·, ·) starts with itemsets of length n − 1 (n is the number of
items in DB). It computes intersection of each itemset with all other itemsets.
Candidates of length n− 2 which do not have quasi utility-infrequent supersets
(monotone property) and satisfy the given utility threshold are appened to the
set of quasi utility-frequent itemsets and used in the next iteration to find all
quasi utility-frequent itemsets of length n − 3. The process repeats until can-
didates of length 1 are generated and checked or the new set of candidates is
empty and no shorter candidates can be produced. Further details of the 2P-UF
algorithm and detailed description of the function QUF −APriori(·, ·, ·) can be
found in [15].

Mining of high utility and utility-frequent itemsets should be organized sim-
ilar to mining of frequent itemsets. We start with conservative (high) thresholds
and lower them as long as we are not contended with the number of itemsets
found.

A Fast Algorithm for Mining Utility-Frequent Itemsets 15

Algorithm 2P-UF

Input:

- database DB

- constraints minUtil and minSup

Output:

- all utility-frequent itemsets

/* Phase 1: find all quasi utility-frequent itemsets */

[1] CandidateSet = QUF-APriori(DB, minUtil, minSup)

/* Phase 2: prune utility-infrequent itemsets */

[2] foreach c in CandidateSet:

[3] foreach T in DB:

[4] if c in T and u(c,T) >= minUtil:

[5] c.count += 1

[6] return {c in CandidateSet | c.count >= minSup}

Fig. 1. Pseudo code of the 2P-UF algorithm.

3 A Fast Algorithm for Mining Utility-Frequent Itemsets

2P-UF utility-frequent itemset mining algorithm described in Section 2 is proven
to find all utility-frequent itemsets. However, due to the monotone property of
quasi support measure it has a few disadvantages which render it unusable for
mining of large datasets.

The first weak point is the reversed way of candidate generation. 2P-UF
algorithm wastes time checking long itemsets that are highly unusual to be
utility-frequent. For example, when mining a database with 1000 distict items
(attributes) 2P-UF algorithm first generates and checks all itemsets of length
999, then itemsets of length 998 etc. Short itemsets which have fairly large
probability to be utility-frequent, come at the very end.

Candidate generation function is also slow and inefficient as it computes
intersection of every pair of candidates in each iteration. Moreover, computation
of quasi support measure is also inefficient because special data structures (hash
trees) can not be used and we have to scan database once for every candidate.

Finally, the two-phase form of the algorithm is space consuming since we
have to store all quasi utility-frequent candidates from the first phase to filter
them in the second phase. It is possible to avoid this waste of space by merging
both phases and filter non utility-frequent candidates in every iteration of the
algorithm.

It is obvious that 2P-UF algorithm can not be used in practice where data-
bases usually consist of millions of transactions and thousands of items. Our new
algorithm [9] FUFM (Fast Utility-Frequent Mining) is based on the fact that
utility-frequent itemsets are a special form of frequent itemsets. Moreover, the
support measure is always greater or equal to the extended support measure.
Proof is trivial because when computing extended support we count only those
transaction containing given itemset S that also gives minimum utility on S,

16 Vid Podpečan, Nada Lavrač, Igor Kononenko

but when computing ”ordinary” support we count all transactions containing
S. The practical consequence of this statement is that frequent itemset mining
algorithms can be used to mine utility-frequent itemsets. These algorithms are
well studied and also very efficient.

For this reason, our FUFM algorithm is very simple and fast because the main
part is the ”external” frequent itemset mining algorithm. It is straightfoward to
find utility-frequent itemsets among frequent itemsets because all that is needed
is to build a hash tree. This data structure [1] is used to compute supersets
(i.e. transactions) for all candidates and, with this information, utilities of all
candidates. Figure 2 shows pseudo code of our FUFM algorithm.

Algorithm FUFM

Input:

- database DB

- constraints minUtil and minSup

Output:

- all utility-frequent itemsets

[1] L = 1

[2] find the set of candidates of length L with support >= minSup

[3] compute exteded support for all candidates and output utility-

frequent itemsets

[4] L += 1

[5] use the frequent itemset mining algorithm to obtain new set of

frequent candidates of length L from the old set of frequent

candidates

[6] stop if the new set is empty otherwise go to [3]

Fig. 2. Pseudo code of the FUFM algorithm.

Clearly, FUFM algorithm does not have disadvantages and inefficiencies of
the 2P-UF algorithm as its generation phase (step 5 on Fig. 2) is based on
frequent itemset mining methods. Filtering non-utility frequent candidates is
also efficient because we only need to build a hash tree from candidates and
push all transactions down the tree to compute subsets. Consequently, time and
space complexity are both fully determined with the complexity of the frequent
itemsets mining method used.

Comparison of the number of candidates from consequent iterations of 2P-UF
and FUFM algorithms is not trivial, but intuitively we can conclude that in first
iterations of the 2P-UF algorithm there are lots of candidates since quasi support
measure overestimates longer itemsets. In fact, 2P-UF algorithm is efficient only
in case when utility threshold is very high and result is an empty set. In such
case the mining process stops at the very first iterations. Because in our new
algorithm utility threshold does not have influence on the candidate generation

A Fast Algorithm for Mining Utility-Frequent Itemsets 17

phase, FUFM performs worse in this special case as it has to inspect all frequent
itemsets regardless of their utility.

Let us compare the sets of generated candidates with 2P-UF and FUFM
algorithm on a small database with 200 transactions. Utility threshold was set
to 17.94 e (0.5% of the total utility of the database) and support threshold was
fixed on 10%. Both algorithms found all 21 utility-frequent itemsets, FUFM in
8.5 seconds and 2P-UF in 1567.8 seconds. Number of remaining candidates (after
prunning low support / non quasi utility-frequent candidates from all generated
candidates) is represented with a graph on Fig. 3.

Fig. 3. Number of remaining candidates using 2P–UF and FUFM.

Let us point out again that 2P-UF algorithm generates utility-frequent item-
sets in reverse order. Therefore, iteration i of the FUFM algorithm structurally
equalls iteration 15− i of the 2P-UF algorithm.

4 Experiments

Both algorithms were implemented in the Python programming language within
the Orange [17] data mining framework. Our choice of interpreted program-
ming language results in some severe constraints concerning the size of used
databases. However, our implemetation is for testing purposes only and not for
use in practice. All experiments were performed on a PC with AMD 3000+ pro-
cessor, 512MB of main memory, version 2.5 of Python interpreter and Orange
0.99b (17th may 2007).

We used IBM Quest synthetic data generator [1, 6]. It is highly advanced
and considers typical properties of real transactional databases such as high
frequencies of some itemsets, mean length of transactions, etc. This generator
can produce only a binary form of transactional databases. Therefore, internal
and external utilities were generated separately from the log-normal distribution
in range [1, . . . , 10] (internal) and [1, . . . , 20] (external). Figure 4 shows rounded
external utilities for 500 items.

18 Vid Podpečan, Nada Lavrač, Igor Kononenko

Fig. 4. External utility distribution with 500 distinct items (log-normal distribution,
shape parameter = 0.7).

Two databases with 50 000 and 100 000 transactions were used. They can be
formalized in Quest notation as follows: T10.I4.D50000.N750, T10.I4.D100000.-
N1000 where T is the mean length of transaction, I is the mean length of po-
tentially frequent itemsets, D is the number of transactions and N is the number
of distinct items (attributes). 2P-UF algorithm is completely unusable on such
large databases, therefore, we do not show its results as the execution was ter-
minated manually due to extraordinary time complexity. We point the reader to
the former example with 200 transactions to compare time complexity of both
algorithms.

Figure 5 shows the performance of the FUFM algorithm on database T10.I4.-
D50000.N750 with support threshold set to 0.5%.

Fig. 5. Number of utility-frequent itemsets and running time of the FUFM algorithm
(database T10.I4.D50000.N750, minSup = 0.5%).

Red line connecting the columns shows execution time in seconds. As we already
mentioned, the actual number of utility-frequent itemsets does not noticeably

A Fast Algorithm for Mining Utility-Frequent Itemsets 19

influence the total running time of the algorithm. For that reason, the red line
is straight and indicates the total running time of approx. 250 seconds.

Table 3 shows the execution of FUFM algorithm on database T10.I4. -
D100000.N1000. With support threshold set to 0.1% and utility threshold to
147,95 e (0.001% of the total utility of the database) our algorithm finds all 121
utility-frequent itemsets in 1754 seconds. Number of generated candidates can
be quite large (second row of the table), but after prunning all low support can-
didates the remaining number of high support candidates is perfectly acceptable
(third row). For practical use the total time of 1754 seconds would be inaccept-
able, but it should be noted that implementation in C++ could be many times
faster and appropriate for even larger databases. As a further improvement a
faster frequent itemset mining method could be used instead of APriori.

Table 3. Summary of execution of the FUFM algorithm on database T10.I4.-

D100000.N1000. minSup = 0.1%, minUtil = 147,95 e = 0.001% of total utility of
DB.

iteration 1 2 3 4 5 6 7 8 9 10 11

generated candidates 870 320400 42011 5721 3292 1468 500 131 23 2 0

remaining candidates 801 8783 7156 5563 3233 1441 494 131 23 2 0

utility-frequent itemsets 5 3 12 25 26 22 17 10 1 0 0

5 Conclusions and Further Work

In this paper we introduced a novel, fast algorithm for mining all utility-frequent
itemset. It is considerably faster than first algorithm 2P-UF and also much sim-
pler to implement. Because it is based on efficient methods for mining frequent
itemset it also performs well on real-sized databases.

Our FUFM algorithm and 2P-UF algorithm were both implemented in Py-
thon and tested on a few synthetic databases generated with IBM Quest data
generator.

We plan to implement both algoritms in C++ together with a more advanced
method for mining frequent itemsets. We also intend to test our algorithm on a
real dataset from a retail store and analyze the results which could be used in
practice.

References

1. Agrawal R., Imielinski T., Swami A.: Mining association rules between sets of items
in large databases. Proceedings of the ACM SIGMOD Intl. Conf. on Management
of Data, Washington, D.C., may 1993, pp. 207–216.

2. Borgelt C.: Keeping Things Simple: Finding Frequent Item Sets by Recursive Elim-
ination. Workshop Open Source Data Mining Software, ACM Press, New York, pp.
66-70, 2005.

20 Vid Podpečan, Nada Lavrač, Igor Kononenko

3. Carter C, Hamilton H. J., Cercone N.: Share based measures for itemsets. In Proc.
First European Conf. on the Principles of Data Mining and Knowledge Discovery,
pp. 14–24, 1997.

4. Hilderman R. J., Carter C. L., Hamilton H. J., Cercone N.: Mining market basket
data using share measures and characterized itemsets. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pp. 159–170, 1998.

5. Han J., Pei J., Yin Y.: Mining frequent patterns without candidate generation. In
Proceedings of the Int. Conf. on Management of Data, pp. 1–12, 2000.

6. IBM Almaden research center: Synthetic data generation code for associations and
sequential patterns. Available at:
http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data mining
/datasets/syndata.html/#assocSynData

7. Li Y. C., Yeh J. S., Chang, C. C.: Direct candidates generation: a novel algorithm
for discovering complete share-frequent itemsets. In Proceedings of the 2nd Intl.
Conf. on Fuzzy Systems and Knowledge Discovery, pp. 551–560, 2005.

8. Li Y. C., Yeh J. S., Chang, C. C.: Efficient algorithms for mining share-frequent
itemsets. In Proceedings of the 11th World Congress of Intl. Fuzzy Systems Asso-
ciation, pp. 543–539, 2005.

9. Podpečan V.: Utility-based Data Mining. BSc Thesis (in Slovene), University of
Ljubljana, 2007.

10. ACM SIGKDD Workshop on utility-based data mining, 2005. Available at:
http://storm.cis.fordham.edu/˜gweiss/ubdm-kdd05.html

11. 11.ACM SIGKDD Workshop on utility-based data mining, 2006. Available at:
http://www.ic.uff.br/ bianca/ubdm-kdd06.html

12. Weiss G., Zadrozny B., Saar-Tsechansky M.: Utility-based data mining 2006 work-
shop report. SIGKDD Explorations, volume 8, issue 2.

13. Yao H., Hamilton H. J., Butz C. J.: A Foundational Approach to Mining Itemset
Utilities from Databases. In The Fourth SIAM International Conference od Data
Mining SDM, pp. 428–486, 2004.

14. Yao H., Hamilton H. J., Geng L.: A Unified framework for Utility based Measures
for Mining Itemsets. Second International Workshop on Utility-Based Data Mining,
Philadelphia, Pennsylvania, 2006.

15. Yeh J. S., Li, Y. C., Chang C. C.: A Two-Phase Algorithm for Utility-Frequent
Mining. To appear in Lecture Notes in Computer Science, International Workshop
on High Performance Data Mining and Applications, 2007.

16. Zaki M. J., Parthasarathy S., Ogihara M., Li W.: New Algorithms for Fast Dis-
covery of Association rules. In Proceedings of the 3rd Intl. Conf. on Knowledge
discovery and Data Mining, Newport Beach, California, pp. 283–286, 1997.

17. Zupan B., Demšar J., Leban G.: Orange: From Experimental Machine Learning to
Interactive Data Mining. White Paper, (available at: www.ailab.si/orange), Faculty
of Computer and Information Science, University of Ljubljana, 2004.

Mining Views: Database Views for Data Mining

Hendrik Blockeel1, Toon Calders2, Elisa Fromont1,
Bart Goethals3, and Adriana Prado3

1 Katholieke Universiteit Leuven, Belgium
2 Technische Universiteit Eindhoven, The Netherlands

3 Universiteit Antwerpen, Belgium

Abstract. We propose a relational database model towards the inte-
gration of data mining into relational database systems, based on the so
called virtual mining views. We show that several types of patterns and
models over the data, such as itemsets, association rules, decision trees
and clusterings, can be represented and queried using a unifying frame-
work. We describe an algorithm to push constraints from SQL queries
into the specific mining algorithms. Several examples of possible queries
on these mining views, using the standard SQL query language, show
the usefulness and elegance of this approach.

1 Introduction

Data mining is an iterative and interactive process. During the whole discovery
process, typically, many different data mining tasks are performed, their results
are combined, and possibly used as input for other data mining tasks. To support
this knowledge discovery process, there is a need for integrating data mining with
data storage and management. The concept of inductive databases (IDB) has
been proposed as a means of achieving such integration [6].

In an IDB, one can not only query the data stored in the database, but also
the patterns that are implicitly present in these data. The main advantages of
integrating data mining into database systems are threefold: first of all, the data
is mined where the data is: in the database. Hence, the need for transforming
data into an appropriate format is completely removed. Second, in database
systems, there is a clear separation between the logical and the physical level.
This separation shields the user from the physical details, making the technol-
ogy much more accessible for a non-specialist. Ideally, the user of an inductive
database should not be involved with selecting the right algorithm and param-
eter setting, storage format of the patterns, etc., but should instead be able to
specify, in a declarative way, the patterns in which he or she is interested. The
third advantage of an inductive database is the flexibility of ad-hoc querying.
In an inductive database, the user is not limited by the functionality offered by
a limited set of tools. Instead, he or she can specify new types of patterns and
constraints. Notice that data mining suites such as, e.g., Weka [19] and Yale [11]
only share the first advantage of inductive databases by imposing one uniform
data format for a group of algorithms.

22 Hendrik Blockeel et al.

In this paper, we focus our attention on determining how such an inductive
database can be designed in practice. The solution proposed in this paper builds
upon our preliminary work in [2, 3]. In contrast to the numerous proposals for
data mining query languages [4, 7, 8, 10, 15, 17, 18], we propose to integrate data
mining into database systems without extending the query language. Instead,
we extend the database schema with new tables that contain, for instance, as-
sociation rules, decision trees, or other descriptive or predictive models.

One might argue against this approach that tables containing all possible
patterns and models over the data would in most cases be huge. These tables,
however, are in fact implemented as views, called virtual mining views. Whenever
a query is formulated that selects for instance association rules from these tables,
this triggers a run of a data mining algorithm (e.g., Apriori [1]) that computes
the result of the query, in exactly the same way that normal views in databases
are only computed at query time, and only to the extent necessary for answering
the query.

This querying approach naturally integrates constraint-based mining. Within
the query, one can impose conditions on the kind of patterns that one wants to
find. In many cases, these constraints can be pushed into the mining process.

The paper is organized as follows. Section 2 focuses on the related work.
We introduce our new framework and the mining views it uses in Section 3. In
Section 4 we illustrate how standard SQL queries on these views allow us to
search for models fulfilling certain constraints or to apply a given model to a
new dataset. In Section 5, we extend the constraint extraction algorithm from
[2] for decision trees and clusterings. We conclude in Section 6.

2 Related Work

There already exist multiple proposals for extending a query language with some
data mining primitives. The most well-known examples are the SQL-like oper-
ator MINE RULE of Meo et al. [10] for mining association rules, and the data
mining query language DMQL by Han et al. [4]. In both studies, however, the
language constructions only allow to specify the desired output, but this output
is not integrated again into the database. Our proposal goes beyond this, by also
allowing the results to be used as input for further data mining queries, as they
are treated as regular database tables.

In Microsoft’s Data Mining extensions (DMX) of SQL server [15], a classifi-
cation model can be created. This model can be trained and used afterwards to
give predictions, via the so-called prediction joins. However, this framework does
not provide any operations other than browsing and prediction for manipulating
the model, and there is no notion of composing mining operations in their frame-
work. Although the philosophy behind the predictor join is somewhat related to
our proposal, the work presented in this paper goes much further.

Siebes [14] argues in favour of making patterns and models first-class citizens,
and suggests to extend for instance the relational algebra with operations on
models. In our framework, predictive models are already first-class citizens in the

Mining Views: Database Views for Data Mining 23

relational algebra itself, as they are simply relations. As such, the operation of
applying a predictive model M to an instance x simply corresponds to a selection
and projection from M : πY (σX=x(M)); the composition of two predictive models
is their join, etc.

The closest to the work presented in this paper are LDL++ [17] and AT-
LaS [9, 18, 20]. LDL++ and ATLaS are extensions of respectively LDL and SQL
that add the ability of defining new user defined aggregates (UDAs), making
them suitable for data mining. Especially ATLaS is very interesting with re-
spect to our proposal, as it is also based on the principles of relational databases
and query languages. In ATLaS, however, the query language is much more pow-
erful (even Turing complete). In fact, ATLaS is rather a programming language
based on SQL, enabling data mining operations, on top of relational databases.
Hence, in ATLaS, the results of mining have to be encoded into the relational
model, and subsequent queries of found patterns have to deal with decoding
and encoding the found patterns. Also, the ATLaS query language is much less
declarative, making it less attractive for query optimization.

As already pointed out in the introduction, the work presented here builds
upon our own preliminary work on the integration of association rule mining
and decision tree learning into database systems [2, 3]. This paper significantly
improves upon these works in the following way. The representations of associa-
tion rules and decision trees, as proposed in our earlier work, are fairly complex.
In this work, we propose a new unifying representation that is more elegant and
simpler than the originally proposed representations. It focuses more on the se-
mantics of learned models rather than their structure, and as such allows us to
handle conceptual models such as association rules, decision trees and cluster-
ings in a general way. For instance, applying a model to classify a new example
now amounts to a simple join operation, while involving much more complex
queries using the previous representation. Furthermore, the constraint extrac-
tion algorithm of [2] is extended to support queries about predictive models as
well.

3 Framework Representation

Given a table T (A1, . . . , An), let Dom(T) = Dom(A1)× . . .×Dom(An) denote
the domain of T . We create a Concept Table ConceptsT (Cid , A1, . . . , An), such
that for every tuple t in T , there exist 2n unique tuples {t′1, . . . , t

′
2n} in ConceptsT

such that t′i.Aj = t.Aj or t′i.Aj = ′?′ for all i ∈ [1, 2n] and j ∈ [1, n]. We denote
the special value ′?′ as the wildcard value and assume it doesn’t exist in the
domain of any attribute. As each of the concepts can actually cover more than
one tuple in T , a unique identifier Cid is associated to each concept.

A tuple, or concept, (cid , a1, . . . , an) ∈ ConceptsT represents all tuples from
Dom(T) satisfying the condition

∧
i|ai 6=′?′ Ai = ai.

Figure 1 shows a data table for the classic PlayTennis example [12], together
with a sample of its corresponding Concepts table.

24 Hendrik Blockeel et al.

PlayTennis

Day Outlook Temp Humidity Wind Play

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
.

ConceptsPlayTennis

Cid Day Outlook Temp Humidity Wind Play

1 ? Sunny ? High ? No
2 ? Sunny ? Normal ? Yes
3 ? Overcast ? ? ? Yes
4 ? Rain ? ? Strong No
5 ? Rain ? ? Weak Yes
6 ? ? ? ? ? ?

. .

Fig. 1. The PlayTennis data table and its corresponding Concepts table.

3.1 Representing models as sets of concepts

Given a data table T , and its corresponding Concepts table ConceptsT , we now
explain how a variety of models can be represented using so called virtual mining

views [2]. Although all mining views are defined over T , we omit the subscript
T when it is clear from the context.

Itemsets and association rules Obviously, as itemsets in a relational database
are conjunctions of attribute-value pairs, they can be represented as concepts.
The result of frequent itemset mining can therefore be represented by a view
Sets(cid , supp). For each itemset, there is a tuple with cid the identifier of the
itemset (concept) and supp its support. Also other attributes, such as χ2 or any
correlation measure, could be added to the view to describe the itemsets. Sim-
ilarly, association rules can be represented by a view Rules(rid , cida, cidc, cid ,

conf), where rid is the rule identifier, cida and cidc are the identifiers for the
concepts representing the antecedent and the consequent of the rule respectively,
cid is the union (disjunction) of these, and conf is the confidence of the rule.
Again, many other attributes, such as lift, conviction, or gini index, could be
added to describe the rules.

Predictive models In association rule discovery, results typically describe the
dataset itself, but in inductive learning, one is interested in building from the
training set a model of a broader population, from which the training set is a
representative sample. Therefore, it is useful to distinguish T , the table from
which we learn (the training set), Dom(T), the domain of that table (the set
of all conceivable instances), and P , the actual population from which T is a
random sample. P may be a strict subset of Dom(T): not every conceivable
tuple may exist in the real world. For instance, if T (Gender ,Age,Pregnant?) is
the set of all patients currently in some hospital, which is a subset of the set
P of all possible patients, then P ⊂ Dom(T): a tuple with Gender=male and
Pregnant?=true would be in Dom(T) but not in P .

From this point of view, we can describe inductive learning (whether it is
descriptive or predictive) as deriving P from T . Generally, P can be described
as a probability distribution over Dom(T), but here we will focus on the simpler
case where P is a subset of Dom(T). P can then be represented in tabular form,
using exactly the same schema as T , since both are subsets of Dom(T).

Mining Views: Database Views for Data Mining 25

Trees

treeId cid

M1 1

M1 2

M1 3

M1 4

M1 5

Outlook

sunnys
ssss

ss
ss

s overcast rain
HH

HH
H

HHH
HH

Humidity

high
��

�

��
��

normal
99

99

99
99

?>=<89:;Yes Windy

strong

weak

55
5

55
55

?>=<89:;No ?>=<89:;Yes ?>=<89:;No ?>=<89:;Yes

Fig. 2. Decision Tree built to predict the attribute Play.

In practice, machine learning systems would obviously learn P not in tabular
format but, e.g., in the form of a decision tree. Such a tree represents a function
from some attributes of T to a target attribute; this function is a relation, it is
this relation that we call P .

Note that the term “model” may be used for both the representation of a
model and its semantics (the relation it represents). In this text, we will use both
meanings; it will usually be clear from the context what is meant.

We will now use concepts from the Concepts table to describe the seman-
tics, and where possible also part of the structure, of the models learned. For
instance, we represent all decision trees that can be learned from T , by the view
Trees(treeId , cid). A unique identifier treeId is associated to each tree and each
of the trees is described using a set of concepts (each concept describing one
leaf). Figure 2 shows a decision tree built to predict the attribute Play using
all other attributes in the data table, and its representation in the mining view
Trees, using the Concepts table from Figure 1. If the user wants to build a tree
from a subset of the attributes of the data table, he or she should first create a
view on the data table that contains exactly the attributes he or she is interested
in; a Concepts table related to this view can then be used to describe the trees.

Additionally, a view representing several characteristics of a tree learned for
one specific target attribute Ai is added: Trees Charac Ai (treeId , accuracy , size,

cost , . . .). For every tree, there is a tuple with a tree identifier treeId and its
corresponding characteristics.

Clustering In unsupervised learning (clustering), we can see T (A1, . . . , An) as a
projection of a relation T ′(A1, . . . , An, C) onto A1 . . . An (the target attribute,
indicating the class or cluster of each instance, is unobserved). P then has one
more attribute than T , and can be seen as a predictive model over Dom(T ′).

In extensional clustering, where the clusters are assumed to contain just the
elements from the training set, P can be considered to have as many tuples
as T . In intentional clustering, P would generalize over T in a similar way than
predictive models do; i.e., it also assigns previously unseen instances to a cluster.

All possible clusterings that can be learned from T are represented in the
view Clusterings(clusId , clId) and all clusters belonging to all clusterings are
represented in the view Clusters(clId , cid). A unique identifier clusId is asso-

26 Hendrik Blockeel et al.

ciated to each clustering and each of the clusterings is described by a set of
clusters. A unique identifier clId is associated to each cluster and each of the
clusters is described by a set of concepts.

Again, a view representing the characteristics of all clusterings is added:
Clusterings Charac(clusId , size, . . .), with size the number of clusters. Of course
other attributes could be added to this view.

Note that since the Concepts table has a finite number of elements (depending
on the data table), the number of partitions (for clustering) as well as the number
of trees that can be described using these concepts is also finite.

3.2 Discussion

The framework proposed in this paper is conceptually very different from the
ones given in [2, 3] since it focuses on the representation of the semantics of
the models (the function they represent) rather than on its structure (although,
through the use of wild cards, limited information about the model structure is
still available). Advantages of this approach are that it offers a unifying frame-
work for all models, and that certain operations, such as using the model for
prediction, become easier. On the contrary, queries about the structure, such as
asking which attribute is at the root of a learned tree, become cumbersome. But,
we believe that having a representation that is both suited for representing the
complete structure and the semantics of the models is unrealistic. Descriptive or
predictive models can be represented in many different formats (for example the
ones proposed in [2, 3]), and for all these formats, views describing the model
structure should be designed separately from the framework proposed here, and
according to the needs and the preferences of the user.

The views representing the characteristics of a model provide information
that may or may not be derivable from the tables that represent the models
themselves. For instance, one could extend them with a full description of a
decision tree (not just its set of leaves, as described by the Trees table). Including
redundant information in the characteristics tables may simplify the formulation
of constraints as queries.

In our current implementation, the identifiers in the mining views are “system-
generated” values that have no meaning in the real world. Only equality of these
identifiers within a query is well-defined; the same concept in different queries
may have different identifiers, and vice versa. To avoid this, a kind of canoni-
cal encoding for (sets of) concepts would be needed, which is easy if the set of
all concepts is known in advance but not when it depends dynamically on the
extension of the relation, as is the case with our definition.

4 Model Querying

In this section, we give some concrete examples of common data mining tasks
that can be expressed with SQL queries over the mining views. Compared to [2,
3], the new constructs introduced in this paper simplify the expression of queries

Mining Views: Database Views for Data Mining 27

for prediction and allow for a more declarative description of constraints on the
desired models.

4.1 Prediction

In [3], to support decision trees in a relational database, the structure of decision
trees was coded in a relational table. To predict the class of a new example, a
query has to be written that explicitly expresses, almost in a procedural way, how
the tree stored in the relation needs to be used. In our framework, a predictive
model is stored as a set of concepts, capturing instead the semantics of the model.
In order to classify a new example using one or more of the learned classifiers,
one simply looks up the concept that covers the new example. More generally, if
we have a test set S, all predictions of the examples in S are obtained by equi-
joining S with the semantic representation of the classifier. As the concepts table
is just a compact representation of this semantic view, we join S to Concepts

using a variant of the equi-join that requires that either the values are equal, or
there is a wild card.

Consider the classic PlayTennis example. The following query predicts the
attribute Play for all unclassified examples in table Test Set, considering all
possible decision trees of size ≤ 5 in table Trees.

Test Set

Day Outlook Temp Humidity Wind

D7 Sunny Hot High Weak
D8 Rain Hot High Strong
D9 Overcast Hot High Weak
D10 Overcast Mild High Weak
D11 Overcast Cool Normal Weak
D12 Sunny Cool High Strong

select T.treeId, S.*, C.Play
from Test_Set S,

Trees T,
Concepts C,
Trees_Charac_Play D

where T.cid = C.cid
and (S.Outlook = C.Outlook or C.Outlook =’?’)
and (S.Temp = C.Temp or C.Temp = ’?’)
and (S.Humidity = C.Humidity or C.Humidity=’?’)
and (S.Wind = C.Wind or C.Wind=’?’)
and T.treeId = D.treeId
and D.size <= 5

4.2 Constraints

In this section, we discuss how typical constraints on association rules, decision
trees or clusterings can be formulated as part of an SQL query. In our frame-
work, these constraints can be expressed elegantly and more declaratively than
in previous proposals.

For association rules, we consider constraints such as minimal and maximal
support, minimal and maximal confidence, plus the constraints that a certain
item must be in the antecedent, in the consequent, and boolean combinations of
these. For decision trees, we consider the constraints size and accuracy. In addi-
tion to these, we also consider constraints posed on the concepts that describe
the trees. For clusterings, we consider their size (number of clusters) and the
popular constraints must-link (two instances must be in the same cluster) and
cannot-link (two instances must not be in the same cluster) [16]. Next to these
well-known constraints, in our approach, the user has also the ability to come
up with new, ad-hoc constraints. In contrast, other proposals in the literature

28 Hendrik Blockeel et al.

(A)
select R.rid,

C1.*, C2.*,
R.conf

from Sets S,
Rules R,
Concepts C1,
Concepts C2

where R.cid = S.cid
and C1.cid = R.cida
and C2.cid = R.cidc
and S.supp >= 30
and R.conf >= 80

(B)
select T.*
from Trees_charac_Play T
where T.accuracy =
(select max(accuracy)
from Trees_Charac_Play T1
and T1.size <= 5)

and T.size <= 5

(C)
select T1.treeId,

C1.*, C2.*
from Trees T1,

Trees T2,
Concepts C1,
Concepts C2,
Trees_Charac_Play D

where T1.treeId = T2.treeId
and T1.cid = C1.cid
and C1.Outlook= ’Sunny’
and T2.cid = C2.cid
and C2.Wind = ’Weak’
and T1.treeId = D.treeId
and D.size <= 5
and D.accuracy >= 0.8

(D)
select T.treeId, C.*
from Trees T,

Concepts C
where T.cid = C.cid

and not exists
(select *
from Concepts C1
where C1.cid = C.cid

and C1.Temp = ’?’)

(E)
select C.clusId
from Clustering C

Clusters Cl1,
Clusters Cl2,
I_Concepts I1,
I_Concepts I2

where I1.Day = ’D1’
and I2.Day = ’D2’
and C.clId = Cl1.clId
and Cl1.clId= Cl2.clId
and Cl1.cid = I1.cid
and Cl2.cid = I2.cid

(F)
select C1.clusId
from Clustering C1,

Clustering C2,
Clusters Cl1
Clusters Cl2,
I_Concepts I1
I_Concepts I2,

where I1.Day = ’D1’
and I2.Day = ’D2’
and Cl1.cid = I1.cid
and Cl2.cid = I2.cid
and C1.clusId=C2.clusId
and C1.clId = Cl1.clId
and C2.clId = Cl2.clId
and Cl1.clId <> Cl2.clId

Fig. 3. Example mining queries.

that extend the query language, in general do not allow this flexibility; only
those constraints the language designer explicitly added to the language can be
expressed.

Consider, again, the table PlayTennis. Figure 3 illustrates several mining
queries that can be posed in our inductive database. Some constraints can be di-
rectly imposed using the tables Sets, Rules, Trees Charac or Clusterings Charac

as shown in queries (A), (B) and (C). Query (A) asks for association rules having
support of at least 30 and confidence of at least 80%. Query (B) selects decision
trees having the attribute Play as the target attribute, having maximal accu-
racy among all possible decision trees of size ≤ 5. Query (C) asks for decision
trees having a test on “Outlook=Sunny” and on “Wind=Weak”, with a size of
at most 5 and an accuracy of at least 80%.

Some constraints can also be imposed independently from the tables with
the characteristics. For example, Query (D) asks for decision trees where the
attribute Temp is never a wild card.

The popular must-link and cannot-link constraints, for clusterings, can also
be expressed with SQL queries in our approach. Queries (E) and (F), respectively,
are examples of how the user can formulate such constraints. In both queries,
I Concepts(Day, cid) is a view associating every instance in the data table with
its covering concepts, which can be easily created by the user. Hence, query

Mining Views: Database Views for Data Mining 29

(n)πT1.treeId,C1.∗,C2.∗

(m) ⊲⊳T1.treeId=D.treeId

mmmmmmm

JJJJJJJJJJ

(l) ⊲⊳T1.treeId=T2.treeId

mmmmmmm
QQQQQQQ

(i) ⊲⊳C1.cid=T1.cid

nnnnnnn (j) ⊲⊳C2.cid=T2.cid

nnnnnnn (k)σsize≤5

(f)σC1.Outlook=′Sunny′ (g)σC2.W ind=′W eak′ (h)σacc≥80%

Concepts C1 Trees T1 Concepts C2 Trees T2 Trees Charac D

(a) (b) (c) (d) (e)

Fig. 4. An equivalent relational algebra for query (C) in Figure 3.

(E) asks for clusterings in which the instances “D1” and “D2” are in the same
cluster, that is, in which both instances are covered by concepts describing the
same cluster. Query (F) is formulated by using the opposite reasoning.

Hence, many well-known and common constraints can be expressed quite
naturally in our model. In particular, queries that impose semantic restrictions,
such as queries for prediction, or semantic constraints, such as must-link and
cannot-link constraints, can be expressed more declaratively in our new frame-
work. This more declarative nature of the queries also improves the ability to
extract and exploit constraints in the queries imposed by the user for making
the underlying mining operations more efficient.

5 Constraints Extraction

In the proposed framework, the tables are virtual. This means that for answering
a query involving one or more of these views, we first need to instantiate them
with the information needed by the query. Obviously, adding all concepts to the
Concepts table, all trees to the Trees table, etc. is infeasible. However, since we
expect the user to give a reasonable amount of constraints, only a subset of all
tuples will be needed to answer the query correctly. In this section, we propose
an algorithm that extracts constraints on the models needed to be mined from a
given SQL query over the virtual views. These constraints can then be exploited
by the data mining algorithm that is going to compute the result of the query.
Consider for example query (C) in Figure 3. In order to answer that query, not
all decision trees need to be mined, but only those with a size of at most 5, an
accuracy of at least 80%, and node tests “Outlook=Sunny” and “Wind=Weak.”
In this context, the task of the constraint extraction algorithm is to extract
these constraints from the query, such that they can be exploited by the tree
inducer that has to be triggered to compute the result. Our constraint extraction
algorithm finds constraints for all tables in the from-clause of the query, hence
restricting the tuples required in the views to answer the query.

Algorithm The algorithm for extracting the constraints is an extension of
the algorithm presented in [2], which only extracts constraints for itemset and

30 Hendrik Blockeel et al.

association rule queries. It starts by building an equivalent relational algebra
tree. For the example query (C), the tree is given in Figure 4. Notice that the
views in the from-clause of the query correspond to the leaves of the expression
tree. The idea is to find a constraint for each of those nodes while traversing
the expression tree bottom-up. During the traversal, annotations expressing the
constraints are computed for each of the nodes, based on the relational algebra
operator in that node and the annotations of its children in the tree. For a node
n, the annotation expresses the set of tuples needed in order to answer the sub-
query rooted at that node. Hence, the annotation for the root node is the one
we are looking for.

Annotations Consider, e.g., node (f) in the example query given in Figure 4.
The sub-query associated with this node asks for all tuples in the table Concepts

C1 with “Outlook=Sunny”. The annotation for this node is:

C1[Outlook=’Sunny’]

C1.cid

55llllllll
C1.Outlook

OO

C1.Wind

iiSSSSSSSSS
. . .

kkWWWWWWWWWWWWWWWW

The top line in this annotation gives the views needed in order to answer
the sub-query rooted at node (f). Between the square brackets a constraint on
the tuples needed from this view is given. In the example node (f), we only
need those tuples in the view Concepts C1 that satisfy “Outlook=’Sunny’ ”.
The bottom line in the annotation lists all attribute names of the sub-query.
The arrows represent the view they originate from. Notice that an attribute can
originate from more than one view. This occurs, e.g., when two relations were
joined on this attribute. If, later on, an attribute is used in the condition of a
selection in the tree, the constraint(s) of the view(s) from which that attribute
originates will be updated.

The construction procedure of the annotations needed for association rules
and itemsets presented in [2] applies to our new framework as well. For decision
trees and clusterings, however, the rules for constructing the annotations are
more complicated. Indeed, while itemsets are described by a single concept and
association rules are described by two concepts only (i.e., the antecedent and
the consequent), decision trees and clusterings are both described by a priori
unknown sets of concepts. In fact, a tuple (treeId, cid) of the view Trees repre-
sents two objects: the tree identified by treeId and the concept with identifier
cid belonging to it. In our annotation, this is expressed by two variables, one for
the tree and one for the concept. They are connected with a dashed arrow from
the concept to the tree, expressing that this concept belongs to that tree. For
example, the annotation of nodes (b) and (d) are respectively:

C
T1[]

∈
((l _ R

T1[] C
T2[]

∈
((l _ R

T2[]

C
T1.cid

OO

T1.treeId

OO

C
T2.cid

OO

T2.treeId

OO

Mining Views: Database Views for Data Mining 31

In node (i), C1 and T1 are joined on attribute cid, the annotation of node
(i) will express that both concepts C1 and CT1 belong to the tree T1 and that
they are actually the same concept. Every attribute of C1 also belongs to CT1

(and vice versa) and they inherit the constraints between the squared brackets.
Hence, the annotation of (i) is as follows:

C1[Outlook=’sunny’]

∈

((
l

i g e c a _] [Y W U R
P

C
T1

[Outlook=’sunny’]
∈ //___ T1[]

C1.cid

<<zzzzzzzzzzzz

44hhhhhhhhhhhhhhhhhhhhhhhhhhh
C1.outlook

OO 66mmmmmmmmmmmmmmmmmm
. . .

``BBBBBBBBBBBB

=={{{{{{{{{{{{
C

T1.cid

OOhhQQQQQQQQQQQQQQQQQQ

T1.treeId

OO

The annotations for the other nodes are built in the same way, resulting in
the following:

. . .

T1[α] T2[α] D[α] C
T1[β] ∈

∈
vv RTVY[]_acehjl vv

UZ_di
∈

vv _l
C1[β] C

T2[γ] C2[γ]

∈

uu TUVWWXYZZ[\]]^_`aabcddefgghij

T1.treeId

eeKKKKKKK

OO 99ttttttt
C1.cid

OO 77ooooooooo
C1.Outlook

ggOOOOOOOO

OO

. . .

kkWWWWWWWWWWWWWWWWWWW

ffMMMMMMMMM

α = (acc ≥ 80% ∧ size ≤ 5), β = (Outlook = ’Sunny’), γ = (Wind = ’Weak’)

To ease the readability, we did not draw all ∈-arrows, but, actually, from
every variable representing a concept, there is an arrow to T1, T2, and D.
From this final annotation, finding the final constraints on the mining views is
straightforward: for example, for the view T1, we see that not all possible trees
are needed, but only those that satisfy condition α, and, also, have concepts
that satisfy conditions β and γ. These constraints can be exploited directly by
a tree inducer. Also for the other views, constraints can be extracted. For the
Concepts table, e.g., it can be derived that not every concept should be there,
but only concepts belonging to trees in T1.

6 Conclusion and Future Work

In this paper, we proposed a framework towards the integration of (constraint-
based) data mining in a relational database, based on the so-called mining views.
A mining view is a virtual table that contains models of the data. The main
advantage over earlier proposals is that our schema elegantly covers a wider
variety of models in a more uniform way, and that it makes it easier to define
meaningful operations (e.g., predictions of new examples). A key component of

32 Hendrik Blockeel et al.

the proposed approach is the use of the virtual Concepts table, which contains
all conjunctive concepts definable over the relation that is being mined. We have
illustrated how association rules, decision trees and clusterings can uniformly be
expressed in terms of this Concepts table. Furthermore, we have shown how to
formulate constraints in a query, using this structure, and how to automatically
extract constraints from a given query for these different models.

As a proof of concept, the ideas presented in this work have been imple-
mented into PostgreSQL [5]. The system is currently linked to algorithms for
assocation rule discovery and exhaustive decision tree learning [3] (an exhaus-
tive clustering algorithm is not yet available). The prototype shows promising
results, for instance: for the UCI dataset ZOO [13], a query for all association
rules with constraints support≥30 and confidence≥80% is executed in 2.3 sec-
onds; querying for all decision trees with size≤5 (without further constraints)
takes 3.6 seconds.

We identify three directions for further work. First, in the current system,
if the database is modified between two queries, the efficiency of the system
could still be improved by investigating how to reuse the previously computed
predictive models in order to compute new predictive models for the modified
database. Second, it might also be interesting to reuse the results of related
queries posed within the same working session. Finally, the schema described so
far covers association rules, decision trees and clusterings. An obvious direction
for further research is to extend it with other models.

Acknowledgements Hendrik Blockeel is a post-doctoral fellow from the Re-
search Foundation – Flanders (FWO-Vlaanderen). This research was funded
through K.U.Leuven GOA project 2003/8, “Inductive Knowledge bases”, FWO
project “Foundations for inductive databases” and the EU project “Inductive
Queries for Mining Patterns and Models”.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
20th Int. Conf. Very Large Data Bases, VLDB, pages 487–499. Morgan Kaufmann,
12–15 1994.

2. T. Calders, B. Goethals, and A. Prado. Integrating pattern mining in relational
databases. In Proc. 10th European Conference on Principles and Practice of
Knowledge Discovery in Databases, LNCS, pages 454–461. Springer, 2006.

3. E. Fromont and H. Blockeel. Integrating decision tree learning into inductive
databases. In ECML/PKDD-2006 International Workshop on Knowledge Discov-
ery in Inductive Databases (KDID), pages 59–70, 2006.

4. J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. DMQL: A data mining
query language for relational databases. In Workshop on Research Issues in Data
Mining and Knowledge Discovery (DMKD’96), Montreal, Canada, 1996.

5. http://www.postgresql.org/
6. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.

Comm. Of The Acm, 39:58–64, 1996.

Mining Views: Database Views for Data Mining 33

7. T. Imielinski and A. Virmani. Msql: A query language for database mining. Data
Min. Knowl. Discov., 3(4):373–408, 1999.

8. S. Kramer, V. Aufschild, A. Hapfelmeier, A. Jarasch, K. Kessler, S. Reckow,
J. Wicker, and L. Ritcher. Inductive Databases in the Relational Model: the Data
is the Bridge. In ECML/PKDD-2005 International Workshop on Knowledge Dis-
covery in Inductive Databases (KDID), pages 124–138, 2005.

9. Y.-N. Law, H. Wang, and C. Zaniolo. Query languages and data models for
database sequences and data streams. In Proc. VLDB Int. Conf. Very Large Data
Bases, pages 492–503, San Francisco, CA, USA, 2004.

10. R. Meo, G. Psaila, and S. Ceri. An extension to sql for mining association rules.
Data Min. Knowl. Discov., 2(2):195–224, 1998.

11. I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. Yale: Rapid
prototyping for complex data mining tasks, 2006.

12. T. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.
13. D. Newman, S. Hettich, C. Blake, and C. Merz. UCI repository of machine learning

databases, 1998.
14. A. Siebes. Data Mining in Inductive Databases. In ECML/PKDD-2005 Interna-

tional Workshop on Knowledge Discovery in Inductive Databases (KDID), pages
1–23, 2005.

15. Z. H. Tang and J. MacLennan. Data Mining with SQL Server 2005. John Wiley
& Sons, 2005.

16. K. Wagstaff and C. Cardie. Clustering with instance-level constraints. In Proceed-
ings of the 17th Int. Conference on Machine Learning, pages 1103–1110, 2000.

17. H. Wang and C. Zaniolo. Nonmonotonic reasoning in ldl++. Logic-based artificial
intelligence, pages 523–544, 2001.

18. H. Wang and C. Zaniolo. Atlas: A native extension of sql for data mining. In
SIAM Intl. Conf. Data Mining, pages 130–144, 2003.

19. I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, San Francisco, 2nd edition edition, 2005.

20. C. Zaniolo. Mining databases and data streams with query languages and rules. In
ECML/PKDD-2005 International Workshop on Knowledge Discovery in Inductive
Databases (KDID), pages 24–37, 2005.

Part III

Short Presentations – Papers

Onto4AR: a framework for mining association rules

Cláudia Antunes1

1 Instituto Superior Técnico / Technical University of Lisbon
Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal

claudia.antunes@dei.ist.utl.pt

Abstract. Despite the efforts made on last decades to center the process of
knowledge discovery on the user, the balance between the discovery of
unknown and interesting patterns is far from being reached. The discovery of
association rules is a paradigmatic case, where this balance is quite difficult to
establish. In this paper, we propose a new framework for pattern mining – the
Onto4AR. This framework is centered on the use of ontologies, for the
representation and introduction of domain knowledge into the mining process.
By defining constraints based on an ontology, the framework provides a mining
environment independent of the problem domain. With this simplification on
the definition and use of constraints, the framework contributes to reduce the
gap between discovered rules and user expectations.

Keywords: Association rules, Background knowledge, Ontologies, Constraints.

1 Introduction

In the information society, where the communication is instantaneous and the access
to registered data is generalized, one of the major difficulties, faced by organizations,
is related to the management of data abundance and its use on the decision support.
Among the available tools to manage those large amounts of unstructured data, are
association rules. The problem of its discovery was first introduced in 1993 [1], for
finding sets of items purchased in the same transaction a significant number of times.
Since then, association rules have been applied to a variety of domains, from
medicine to marketing, with a fair success. Indeed, and despite the improvements on
the algorithms for this task, the massive number of discovered rules turns their
manual analysis impossible. On the other hand, the discovery of obvious rules
diminishes the interest of users for this technique.

In this manner, a decade later, the discovery of association rules continues to
present several challenges. On one hand, it is important to choose the interesting
patterns to present to the user, filtering obvious rules; and on the other hand, it is
mandatory that the user can control the mining process, in the sense that he should be
able to incorporate his expectations and domain knowledge in the discovery process.
Despite both issues have deserved considerable attention, namely in the definition of
interestingness measures and languages to express constraints, their usage has not
been exported to real situations, as desirable.

38 Cláudia Antunes

In this paper, we propose a new framework for discovering association rules – the
Onto4AR framework. This framework provides an environment for specifying
constraints that enables the user to control the mining process. But instead of using a
specific language to introduce the constraints, it uses an ontology to represent existing
background knowledge. Additionally, the user can choose the kind of constraint to be
applied, both reducing the number of discovered patterns and their scope. The
constraints can be chosen among a set of pre-defined ones based on the relations
among concepts expressed in the ontology. In this manner, the framework provides a
universal environment for mining association rules, since it is able to represent
background knowledge in any domain, and supplies a set of parameterized
constraints, defined independently of the problem context. Moreover, the framework
allows for the definition of any new kind of constraints. In particular it is possible to
introduce other content constraints, given that they are defined over the structure of
ontologies.

The rest of the paper is organized as follows: next (in section 2), we overview a
few interesting approaches that use background knowledge in the mining process,
followed by a general description of ontologies (in section 3). In section 4, we
describe the entire framework, presenting its main concepts and the adaptation of
pattern mining algorithms to use proposed constraints. The section ends with a
categorization of constraints that can be defined in the framework. The paper ends
with the discussion of the benefits of the described approach and some guidelines for
future work.

2 MINING RULES WITH CONSTRAINTS

The problem of mining association rules is defined as the discovery of “all association
rules that have support and confidence greater than the user-specified minimum
support and minimum confidence respectively”. With an association rule
corresponding to an implication of the form A B, where A and B are propositions
(sets of pairs attribute/value, most of the times named items), and expresses that when
A occurs, B also occurs with a certain probability. This probability is known as the
rule confidence and is given by the conditional probability P(B|A). The support of the
same rule is given by the number of transactions that include A and B, simultaneously.
In basket analysis, one of the major applications of association analysis, A and B
correspond to itemsets, and the rule A⇒B means that if A is transacted, then B will
also be transacted at the same time, with a certain probability. The problem includes
two separate phases: the discovery of frequent patterns and the generation of rules
from those patterns. Since the second step demands the generation of all possible
combinations among the items that constitute each pattern, research has been focused
on the discovery of frequent patterns.

Since its definition, several algorithms have been proposed that efficiently deal
with this problem, but most of them did not give any contribution to reduce the
number of discovered rules. For example, most recent algorithms that find closed
patterns (see for example CLOSET+ [15]), retrieve exactly the same patterns as
traditional algorithms, like Apriori [1], despite they generate considerable less

Onto4AR: a framework for mining association rules 39

patterns than those algorithms. In fact, the most effective technique to reduce the
number of discovered patterns is the use of constraints. As pointed by Bayardo,
constraints play a critical role in solving the trade-offs of the generality of data mining
algorithms, by focusing "the algorithm on regions of the trade-off curves (or space)
known (or believed) to be most promising" [5]. By using constraints, the user assumes
the responsibility of choosing which of those aspects are most important for the
current task.

In the problem of mining association rules, we can distinguish between two main
categories of constraints: interestingness measures and content constraints.
Interestingness measures rank the discovered patterns or rules, by quantifying the
usefulness and utility of them, discarding those with an evaluation less than a user-
specified threshold. Examples of such measures are confidence, lift or the minimum
improvement [4]. With these constraints, it is possible to both improve the
performance of the algorithms, by pruning uninteresting patterns, and reduce the
number of discovered patterns. The other category of constraints, content constraints,
can be seen as filters over the content of the discovered patterns, instead of its
relevance. While interestingness measures are quantitative metrics, content
constraints are predicates on the powerset of the set of items [14]. In some sense, they
capture application semantics and introduce it into the mining process. An example of
such constraints is the item constraint, as proposed by Srikant et al [16]. Despite the
advantages coupled to the use of content constraints, by allowing the incorporation of
domain knowledge, they have been applied seldom.

Despite the difficulties in applying existing background knowledge in real
situations, in the last decade, there were a few proposals that contribute to develop
this area. The first contribution was made by Srikant et al [16], which besides
proposing item constraints, introduced the use of taxonomies to discover generalized
patterns. A taxonomy is a is-a hierarchy defined over the domain in analysis and is
often available as the unique background knowledge. By making use of taxonomies
and specifying the items of interest, it is possible to focus the process on the user,
either by transferring the control to him or by introducing part of his background
knowledge in the mining process. With the same goal, but in the context of sequential
pattern mining, Garofalakis [8] and Antunes [2] proposed the use of regular and
context-free languages to constrain the discovery. Note that in areas, like sequential
pattern mining, where constraints can be specified with such restrictive power, the
risk of turning the mining process in a simple hypothesis-test becomes a reality. In
order to solve this antagonism, more recently, the use of constraint relaxations was
proposed [3].

Another important research way in the specification of constraints is the use of
logic-based languages. Usually, these languages combine inductive and deductive
perspectives of data mining and provide the means to introduce constraints in the
mining process. The work by Bonchi [6] gives a good overview of such languages.
These languages can also be used as a filter the number of discovered patterns, in a
post-processing step, like the mine rule operator [7]. Again with post-processing in
mind, Vanzin [17] proposed the use of Ontologies to manage the discovered patterns.
In this work, the user can navigate over the patterns, following the knowledge
represented in a domain ontology. With a wider range, some other works propose the

40 Cláudia Antunes

use of ontologies for guiding the knowledge discovery process (KDD). The work by
Češpivová et al. [8] shows that ontologies can be used in all KDD phases, from
business and data understanding to modeling, evaluation and deployment phases.
Another example is the MiningMart system [10], which provides the tools for pre-
processing data in order to facilitate the evaluation and usage of the mining results.

Next, we describe succinctly the core concepts in ontologies, and exemplify its use
in the domain of basket analysis.

3. Ontologies

One of the great problems related to the use of background knowledge is the difficulty
to acquire it complete and effectively, since, business agents usually have some
difficulties on expressing their knowledge. Fortunately, the recent developments in
the area of knowledge management make possible the representation of background
knowledge as Ontologies.

An ontology is an explicit specification of a conceptualization, which means that is
a specification of an abstract, simplified view of the domain. Formally, and in
accordance with [12], an ontology is a 5-tuple O:={C, R, HC, rel, AO}, where C is a
set of concepts, who represent the entities in the ontology domain; R is a set of
relations defined among concepts; HC is a taxonomy or concept-hierarchy, which
defines the is-a relations among concepts (HC (C1, C2) means that C1 is a sub-concept
of C2, or in other words C2 is a parent of C1); rel is a function, rel: R C×C, that
specifies the relations on R (if R∈R, rel(R)=(C1, C2) is also written as R(C1, C2), and
means that C1 is related to C2, but the inverse is not necessarily true); and finally, AO
is a set of axioms, usually expressed in a logical language, that describe constraints on
the ontology, expliciting implicit facts.

In the counterpart of ontologies are knowledge bases, which specify existing
instantiations for a particular ontology. Formally, a knowledge base is a 4-tuple
KB:={O, I, inst, instr}, where O is a ontology as defined above; I a set of instances;
inst a function from C to 2I called concept instantiation (with C, the set of concepts
in O) and instr the relation instantiation function defined from R to 2I×I. (It is usual
to designate the concept instantiated by an instance, as its class). In this manner, while
ontologies try “to capture the conceptual structures of a domain of interest” [12],
defining its elements, and describing the relations among them; a knowledge base
defines a set of elements, which can be interpreted and understand with respect to an
ontology.

With the developments of the ontology research and the semantic web, several
ontology specification languages have been proposed. See the work by Corcho et
al [8] for an overview and comparison of such languages.

3.1 An Example

Fig. 1 illustrates a simple knowledge base KB constituted by a simple ontology O,
which main concepts are alimentary products and meals. The knowledge base is

Onto4AR: a framework for mining association rules 41

represented in UML, where concepts are represented by ellipses, is-a relations as
non-named arrows, and other relations by named stronger arrows. Double-sided
arrows represent two inverse relations (just for draw simplification). Instances are
represented by shadowed ellipses and instantiations by dotted arrows.

Thing

Alcoholical

Product

Beverage

Spice

Fish

Non-
Alcoholical

Wine

LiquorWhite

Dried
Herbs

Produce

Vegetable

Condiment for
Flavored by

Dairy

Baking

Flour

Sugar

Sweetners

Eggs

Served with white wine
Accompany Fish

Salt Garlic HalibutLettuce WaterCake
flour PortBancroft

Chardonnay

Main
Ingredient

Ingredient

Mixed with
Diluted in Enhance

flavor of

Dessert

Meal

Hot

Frozen

Frozen
dessert

Prepared
with dairy

Prepared
with baking

Ice
creamPasta

Fig. 1 Example of a knowledge base for alimentary products and meals

If we use the notation presented above, we can define the ontology as O:={C, R,
HC, rel, AO}. With C:={Thing, Product, Beverage, Non-Alcoholical, Alcoholical, Wine,
White wine, Liquor, Ingredients, Dairy, Baking, Sweeteners, Flour, Main ingrediants, Fish,
Produce, Vegetable, Spice, Dried herbs, Dessert, Frozen dessert, Meal, Frozen, Hot}, with
Thing the concept, from whom all other concepts descend. The set of relations
R:={Condiment for, Flavored by, Enhance flavor of, Mixed with, Diluted in, Prepared with
baking, Served with white wine, Accompany fish}. The taxonomy HC:={(Meal, Thing),
(Frozen, Meal), (Hot, Meal), (Product, Thing), (Beverage, Product), (Non-Alcoholical,
Product), (Alcoholical, Product), (Wine, Alcoholical), (White wine, Wine), (Ingredient,
Product), (Dairy, Ingredient), (Baking, Ingredient), (Sweeteners, Baking), (Flour, Baking),
(Ingredient, Product), (Fish, ingredient), (Produce, Ingredient), (Vegetable, Produce), (Spice,
Ingredient), (Dried herbs, Spice), (Dessert, Product), (Frozen dessert, Dessert), (Frozen
dessert, Frozen)}. Finally, since there is no axiom, rel is defined by {Condiment
for (Spice, Main Ingredient), Flavored by (Vegetables, Spice), Enhance flavor of (Main
Ingredient, Spice), Prepared with baking (Prepared dessert, Baking), Served with white
wine (Fish dish, White wine), Accompany fish (White wine, Fish)}.

The knowledge base KB:={O, I, inst, instr}, with O defined as above,
I:={Sugar, Eggs, Cake flour, Port, Bancroft Chardonnay, Water, Lettuce, Halibut, Salt,
Garlic} and inst:={(Sugar, Baking), (Eggs, Dairy), (Cake flour, Flour), (Port, Liquor),
(Bancroft Chardonnay, White wine), (Water, Non-alcoholical (Lettuce, Vegetable), (Halibut,
Fish), (Salt, Spice), (Garlic, Dried herbs), (Pasta, Hot), (Ice cream, Frozen dessert)}. Note
that there is no relation instantiation.

From these, and above all, from the picture on Fig. 1, it is easy to understand that
the ontology has two main concepts: Product and Meal. Moreover, among products
Ingredient, Dish and Beverage are distinguishable. Each of these concepts has some
sub-concepts, with particular emphasis to Frozen dessert, which derives from two
distinct concepts: Dessert and Frozen.

42 Cláudia Antunes

Most of the instances in the corresponding knowledge base do not correspond to
real products (with brand and model) due to the necessity of simplifying the picture.

4. The Onto4AR framework

Despite the developments on the creation of ontologies and knowledge representation,
the large majority of mining projects does not make use of these well-formed
conceptual models and despise most of the existing knowledge. On the other side, the
improvements on the algorithms for mining association rules, least has contributed to
incorporate background knowledge on the discovery process.

The balance between discovering unknown information and manageable quantities
of patterns is far from being reached. But, as been shown, the incorporation of
constraints (both in the form of interestingness measures and content constraints) is
one of the few effective approaches to achieve that goal.

The Onto4AR framework, proposed in this paper, is a significant step in that
pathway, since it defines a formal environment for incorporating background
knowledge into the pattern mining process, that is independent on the problem
domain, or the nature of the data. The framework is centered in a precisely definition
of constraint and the problem of constrained pattern mining, based on the notions of
ontology and knowledge base, presented before.

Next, the problem of mining association rules in the presence of background
knowledge is defined.

4.1 Problem Statement

Consider a set of items I, and an itemset A as a subset of I (A⊆I), and a
transaction as an itemset that occurred in a particular instant of time. Additionally,
consider that the I set corresponds to the set of instances of a knowledge base
(KB:={O, I, inst, instr}), that references an ontology O. Suppose that inst is
defined, which means that the concept implemented by each instance is known. The
problem of mining association rules in the context of the Onto4AR framework can
now be stated as:

Given a set of instances I from a specific knowledge base KB={O, I, inst, instr}, and a
set of transactions D, find all rules of the form A B, where A and B are disjoint itemsets
of I that may occur in the transactions of D, and the itemsets A and B satisfy a set of
constraints CO, defined over the ontology O.

Note that this definition only differs from the usual one, because both support and
confidence are constraints, included in the set of constraints CO. Also note that with
this statement, there is no imposition on the relation between A and B (beside that
they do not contain repeated items and all of them belong to the set of instances),
neither on the number of times that they occur together or the confidence of the rule.
All depends on the constraints imposed by CO. As in the rest of literature (see [13]), in
the context of the Onto4AR framework, a constraint is a predicate on the powerset of
the set of items I, which means, that it is a function c: 2I {true, false}. An itemset

Onto4AR: a framework for mining association rules 43

S is said to satisfy c, if and only if, c(S) is true. In this manner, a constraint imposes
some condition over the elements of the itemset, or the relations among them. These
predicates can establish either qualitative or quantitative conditions. Indeed, at a first
glance, two different categories of constraints can be distinguished: interestingness
constraints (also known as interestingness measures) and content constraints.

4.2. Interestingness Measures

Interestingness measures are constraints that impose quantitative conditions over the
set of items in the rule, like the number of times that the set of items are transacted
together, or the novelty introduced by the discovery of the rule. Formally, an
interestingness measure is a composed function f= fθ o g [f(x)=g (fθ (x))] , with
g: 2I R and fθ: R {true, false}, defined by the comparison of its argument with θ,
a threshold value.

A special interestingness measure is the existential constraint, usually known as
support. For the rule A B, it is simply defined by substituting g with the function
frequency and fθ with the function >=θ. Where the function frequency counts the
number of transactions in the dataset that contain both the items of A and B, and the
function >=θ that returns true if and only if its argument is greater than or equal to θ,
and false otherwise. Another usual interestingness measure is confidence, which in the
Onto4AR framework can be defined by instantiating the g function by the conditional
probability and the function fθ again by >=θ. With the definition of these two
interestingness measures, the problem of mining association rules as initially
proposed [1] can be addressed in the Onto4AR framework, without any difficulty,
since the set of items and the set of instances are the same things.

4.3. Content Constraints

Although interestingness constraints play a fundamental role on pattern mining, they
only capture the knowledge about some quantity that is significant for the specific
business. As such, they are not able to represent any other knowledge about the
business domain. In order to go beyond this difficulty, content constraints introduce
the ability of imposing that items in the rule have some specific characteristics. These
characteristics can be selected among the ones represented in the domain ontology for
the mining problem.

Formally, a content constraint can be defined as a predicate cO: 2I {true, false}
that impose some qualitative condition on the items of its argument, expressed based
in the domain knowledge represented in the ontology O. For the rest of this section,
consider the knowledge base KB:={O, I, inst, instr}, with O the ontology defined by
the tuple {C, R, HC, rel, AO}.

The first kind of content constraint that can be defined in this framework is the
item constraint. As defined by Srikant [16], an item constraint is a “Boolean
expression over the presence or absence of items in the rule”. And in order to be able
to use abstract concepts to define the scope of item constraints in the new context,

44 Cláudia Antunes

some additional notions are needed: parent, child, descendant and ancestor, like in
that work [16]. In the Onto4AR context, child is a predicate defined over the concepts
in the ontology O, and child (x, y) is true if and only if HC(x, y) is defined in the
ontology. Parent is the inverse of child, and then parent (x, y) is true if and only if
child (y, x) is true. The predicate descendant can be defined in a recursive way:

descendant(x,y) ⇔ child(x,y)∨[∃z∈C:child(x,z)∧descendant(z,y)],
which means that either x is child of y or exists a third concept z that is parent of x,
and is descendant of y, simultaneously. With these definitions, it is now possible to
define item constraints in a generic form. In the new context, an item constraint is a
content constraint cS, implemented by the predicate ∈S, and then it only returns true if
some items of its argument belong to the user-defined subset S of I. Let an itemset
X∈2I, it is said that

X satisfies an item constraint cS ⇔ ∃x∈X: x∈S
Note that it does not deal with the absence of some items, and the specification of

S has to be entered manually by the user, as it was with the specification of the
Boolean expression. This specification can be done either by enumerating all accepted
instances, or by describing its elements properties. For example, using the ontology
described on section 3, the item constraint defined over the set {x∈I: inst-

1(x) = Liquor} will only accept patterns that include some liquors (with inst -1 the
inverse function of inst). Additionally, consider the notion of nth cousin. An item is a
nth cousin of another item, if they are connected by a n degree collateral relation.
More specifically,

⎩
⎨
⎧

−

=
⇔=∈∈∀

otherwise1),nparent(y),cousin(x,n
0nif,parent(y))(x,descendant

truen)y,cousin(x,n:NnI;yx, th
th

For example, x is a 0th cousin of y if it descends from y’s parent (x is either his
“brother” or his “nephew”); x is a 1st cousin of y, if it descends from y’s grandparent
(one degree of collaterality); x is a 2nd cousin of y, if it descends from y’s great-
grandparent (two degrees of collaterality), and so on.

We can say that an item X is at least an nth-cousin of another item Y if there is
some m≤n such X is an mth-cousin of Y. With these definitions, it is possible to define
a new category of constraints – named family constraints. As expected, these
constraints are implemented by the nth-cousin and at least nth-cousin predicates. From
this category of constraints, it is possible to identify the same-familyn constraint,
which accepts an itemset if all their items share a common ancestor and all of them
are at least nth cousins to each other. This means that

X satisfies same-familyn ⇔ ∀x,y∈X ∃m∈N: x≠y ∧ m≤n ∧ nthcousin(x,y,m)
Again, using the ontology described on section 3, the itemset {Cake flour, Sugar}

satisfies the same-family constraint with n=0, since they share the same parent, and
{Port, Water} satisfies the same-family constraint with n=2, since Water descends
from the great-grandparent of Port (Beverage). But {Port, Salt} does not satisfy the
constraint same-family with n=2, only for n=3. Note that every itemset satisfies the
same-family constraint for unlimited n, since all concepts descend from the concept
Thing. Similarly, the close-familyn constraint accepts an itemset if every item in the
set satisfies the at least an nth-cousin predicate with another item in the set.

X satisfies close-familyn ⇔ ∀x∈X ∃y∈X ∃m∈N: x≠y∧ m≤n ∧ nthcousin(x,y,m)

Onto4AR: a framework for mining association rules 45

In order to have an itemset that satisfies the close-family constraint and does not
satisfy the same-family constraint, the itemset has to contain some instantiation of a
concept that derives from more than one concept, this is, it has to have multiple
parents. In previous ontology, only itemsets that contain instantiations of Frozen
dessert, can satisfy the close-family constraint. For example the itemset {Salt, Ice
cream, Pasta} satisfies the close-family constraint with n=1, because Salt is a 1st-
cousin of Ice cream, and Ice cream is a 1st-cousin of Pasta. Note that Salt and Pasta
are only 3rd-cousins. Note that both item constraints and family constraints can be
defined using the taxonomy on the ontology, so they are examples of taxonomical
constraints. It is important to note that item constraints are non-anti monotonic, but
both the same-family and close-family constraints are.

The incorporation of an ontology in the mining process, instead of a simple
taxonomy, allows for the definition of other constraints that extend the notion of item
constraint. Those new constraints are based on the relations among concepts,
described in the ontology. Consider some additional predicates over items and
itemsets with two or more items (consider an itemset X∈2I), needed for defining
those new constraints. First, two items are related if there is a known non-
taxonomical relation r (with r∈R) among their classes. Formally,

∀x,y∈I: related(x,y)=true ⇔ ∃r∈R: r(inst-1(x), inst-1(y)).
Based on this notion, an itemset is weakly connected if all its items are related with

at least another item in the set. This is,
X is weakly connected ⇔∀x∈X ∃y∈X: x≠y ∧ related(x,y)

The itemset {Halibut, Garlic, Lettuce} is weakly connected in the context of the
ontology described on section 3, since there is the relation Condiment for from Spice
to Main Ingredient, and another Enhance flavor from Spice to Vegetable. On the
contrary, the itemset {Halibut, Port} is not accepted since there is no relation between
Fish and Liquor. An itemset can either be softly connected. This happens when there
is a chain of relations among all its items. More specifically

X is softly connected ⇔ ∃x,y∈X: x≠y ∧ related(x,y) ∧ X \{x} is softly connected
In the context of the same ontology and knowledge base, the itemset {Halibut,

Garlic, Lettuce} is also softly connected, because there is a relation from Halibut to
Garlic (Flavored by) and from Garlic to Lettuce (Enhance flavor), which means there
is a chain of relations among the items.

A third predicate is the strongly connected. An itemset is strongly connected if all
its items are related to all the other items in the set, which can be stated as follows:

X is strongly connected ⇔∀x,y∈X: x≠y related(x,y)
In the same context, an itemset that is strongly connected is {Halibut, Bancroft

Chardonnay}, and the combinations among Bakery and Dairy instances such as
{Eggs, Sugar}. Note that for example, the itemset {Garlic, Halibut, Bancroft
Chardonnay} is not strongly connected only because there is no relation from White
wine and Spice.

These three predicates can be used to define new content constraints: weak, soft
and strong constraints, respectively. All of them can be categorized as non-
taxonomical constraints, since they are based on non-taxonomical relations. From
these, only weakly connected is non-anti monotonic.

46 Cláudia Antunes

Beside the existence of taxonomical and non-taxonomical constraints, the Onto4AR
framework provides another important artifact – the composition of content
constraints. Again the composition can be weak or strong.

The weak composition of two content constraints, say f and g, results in a new
content constraint, f o g, which only accepts itemsets accepted by at least one of the
original constraints. Consider an itemset X∈2I,

f o g:2I {true,false} with f o g(X)=true⇔ f (X)=true ∨ g(X)=true
On the other hand, the strong composition of two content constraints, say f and g,

results in a new content constraint, f o g, which only accepts itemsets accepted by
both original constraints. Consider an itemset X∈2I,

f o g:2I {true,false} with f o g(X)=true⇔ f (X)=true ∧ g(X)=true
It is important to note that the composition of any pair of the non-taxonomical

constraints proposed above, always result in the most restrictive of the constraints.
For example, composing weak and soft constraints will result on the last one, since all
itemsets accepted by a soft constraint are also accepted by weak constraints. Indeed,
the soft constraint is more restrictive than the weak constraint, and the strong
constraint is more restrictive than the soft constraint. Interesting compositions can
result from combining non-taxonomical with taxonomical constraints. For example,
the composition of weak and item constraints would only accept itemsets that have
some specific items and, simultaneously, all their items are related with at least
another item in the set. In addition to the composition of content constraints, the
Onto4AR framework allows the definition of other constraints, either as subclasses of
proposed ones or by defining new kinds of constraints with different scopes.
Examples of the last ones are temporal and structural constraints, used to identify
relevant temporal patterns and to identify structured patterns, like frequent sequences
or graphs. In order to extend the framework, it is only need to stat the new constraints
in accordance to the definitions presented above. In this manner, the categorization of
the constraints proposed in this paper, illustrated in Fig. 2, is just a small picture of the
potentialities introduced by the Onto4AR framework.

Constraint

Interestingness
Measure

Content
Constraint

Support Confidence Taxonomical
Constraint

Non-taxonomical
Constraint

Item
Constraint

Family
Constraint

Same-Family Close-Family

Weakly
Connected

Softly
Connected

Strongly
Connected

Fig. 2. Categorization of proposed constraints

4.4. Algorithms

As in the rest of pattern mining area, efficient algorithms for identifying accepted
patterns is mandatory in this framework. The algorithm for this purpose should be

Onto4AR: a framework for mining association rules 47

similar to general algorithms for pattern mining, which means that it would filter
patterns that satisfy the imposed constraint in an internal pruning step. In this manner,
the processing time would be significantly reduced due to the reduction on the
explosion of discovered patterns.

It is important to note that this pruning step wouldn’t require the navigation over
the entire ontology. For each potential pattern (call it candidate) we need to verify if
the candidate satisfies the constraint, this means, verifying if its items are linked
among them, which only requires to follow the relations among their concepts in the
ontology.

The last issue refers to candidate generation, since some of proposed constraints
(namely item and weakly-connected constraints) are non-anti monotonic. The
simplest solution is to extend frequent k-patterns with frequent items, like it is done in
constrained sequential pattern mining [11] and [3]. Fig. 3 presents the pseudo-code
for an apriori-based algorithm able to deal with Onto4AR constraints.
Procedure Onto4AR-apriori (Dataset D, Constraint C)
 L :={frequent items in D} 1

 k:=2
 while (Lk≠∅) do
 Ck’:=join(Lk, L1, C} //candidate generation
 Ck:={p∈Ck’: p.satisfies(C) //candidate pruning
 L :={frequent patterns in Ck k} //support-based pruning
 k:=k+1
return ∪kLk

Fig. 3. Algorithm for mining pattern in the Onto4AR framework
 It is important to note that recent work on sequential pattern mining using more complex
algorithms and constraints (deterministic finite and push-down automata) [3] demonstrates
experimentally that the reduction on the number of discovered patterns has more impact in the
performance, than the verification of the constraint satisfaction for each candidate. Moreover,
the Onto4AR just use the correspondence between instances and concepts, and the ontology
structure – relations among concepts (axioms and instance relations are not used). In this
manner, the ontology almost corresponds to an acyclic graph, which makes the verification
process similar to the ones referred.

5. Conclusions

The recent advances in the area of knowledge representation makes possible to
represent background knowledge, in an effective way, through the construction of
ontologies. Since one of the main drawbacks of data mining, in general, and of pattern
mining, in particular, is to ignore existing domain knowledge, with those advances, it
is time to surpass that feature. This paper presents a framework that incorporates
background knowledge in the core of the mining process, by using domain ontologies
and by defining a set of constraints above them, which can guide the discovery
process. This guidance can be conducted by the expert domain or simply by the user,
who establishes the level of constraints to be applied to the process.

48 Cláudia Antunes

The great advantages of the new framework are related to its extensibility, since it
is possible to define other constraints based on domain ontologies. In particular,
proposed constraints are universal and can be applied to any problem domain, given
that there is some corresponding domain ontology.

References

1. Agrawal, R., Imielinsky, T., Swami, A. Mining Association Rules between Sets of Items
in Large Databases. In Proc. ACM SIGMOD Conf. Management of Data, (1993) 207-216

2. Antunes, C., Oliveira, A., Using Context-Free Grammars to Constrain Apriori-Based
Algorithms for Mining Temporal Association Rules. In Proc. Workshop on Temporal
Data Mining (2002).

3. Antunes, C., Oliveira, A.L., Constraint Relaxations for Discovering Unknown Sequential
Patterns. In Knowledge Discovery in Inductive Databases, Springer, (2005), 11-32

4. Bayardo, R.J., Agrawal, R., Gunopulos, D., Constraint-Based Rule Mining in Large,
Dense Databases. In Proc. Int’l Conf. Knowledge Discovery and Data Mining, ACM
Press, (1999) 145-154

5. Bayardo, R.J., The Many Roles of Constraints in Data Mining. In SIGKDD Explorations,
vol. 4, nr. 1 pp. i-ii (2002).

6. Bonchi, F. Frequent Pattern Queries: Language and Optimizations. PhD Thesis,
Università di Pisa, 2003.

7. Boulicaut, J.-F., Klemettinen, M., Mannila, H., Querying inductive databases: a case study
on the MINE RULE operator. In Proc. Conf. Principles and Practice of Knowledge
Discovery, Springer, (1998). 194-202

8. Češpivová, H., Rauch, J., Vojtĕch, S., Kejkula, M. and Tomĕcková, M., Roles of Medical
Ontology in Association Mining CRISP-DM Cycle. In Proc. Workshop on Knowledge
Discovery and Ontologies. (2004). 1-12

9. Corcho, O., Gómez-Pérez, A., A Roadmap to Ontology Specification Languages. In Proc.
Int’l Conf. Knowledge Engineering and Knowledge Management, Springer. (2000). 80-96

10. Euler, T., Scholz, M., Using Ontologies in a KDD Workbench. In Proc. Workshop
Knowledge Discovery and Ontologies (2004). 103-108

11. Garofalakis, M.N., Rastogi, R., Shim, K., SPIRIT: Sequential Pattern Mining with Regular
Expression Constraints. In Proc. Very Large Databases Conference. (1999), 223-234

12. Maedche, A., Ontology Learning for the Semantic Web, Kluwer Publishers, (2002).
13. Pei, J., Han, J., Lakshmanan, L.V.S.. Mining Frequent Itemsets with Convertible

Constraints. In Proc. IEEE Int’l Conf. Data Engineering (2001). 433–332.
14. Pei, J., Han, J., Constrained frequent pattern mining: a pattern-growth view. In SIGKDD

Explorations, vol. 4, nr. 1. ACM Press, (2002). 31-39
15. Wang, J., Han, J., Pei, J., CLOSET+: Searching the Best Strategies for Mining Frequent

Closed Itemsets. In Proc. Int’l Conf. Knowledge Discovery and Data Mining. ACM Press,
(2003). 236-245

16. Srikant, R., Vu, Q., Agrawal, R. Mining Association Rules with Item Constraints. In Proc.
Int’l Conf. Knowledge Discovery and Data mining. ACM Press, (1997). 67-73

17. Vanzin, M., Becker, K., Exploiting Knowledge Representation for Pattern Interpretation.
In Proc. Workshop on Knowledge Discovery and Ontologies. 2004. 61-72

Iterative Constraints in Support Vector

Classification with Uncertain Information

Jianqiang Yang and Steve Gunn

School of Electronics and Computer Science, University of Southampton
Building 1, Highfield Campus, Southampton, SO17 1BJ, UK

{jy03r,srg}@ecs.soton.ac.uk

Abstract. This paper proposes a new iterative approach of input un-
certainty classification, which incorporates input uncertainty informa-
tion and exploits adaptive constraints extracted from uncertain inputs
statistically and geometrically to extend the traditional support vector
classification (SVC). Kernel functions can be implemented by a novel ker-
nelized formulation to generalize this proposed technique to non-linear
models and the resulting optimization problem is a second order cone
program (SOCP) with a unique solution. Results demonstrate how this
technique has an improved performance and is more robust than the
traditional algorithms when uncertain information is available.

Key words: SVC, iterative constraints, uncertain, kernel functions

1 Introduction

Uncertain information associated with data is often ignored in traditional ma-
chine learning algorithms. Many approaches attempt to model any uncertainty
in the form of additive noise on the target, which can be effective for simple mod-
els. However, for more complex non-linear models and where a richer description
of anisotropic uncertainty in the input space is available, these approaches can
suffer. For instance, the traditional support vector classification (SVC) can only
accommodate isotropic uncertainty information in the input space.

Recent advances in machine learning methods have seen significant con-
tribution from kernel-based approaches. These have many advantages, includ-
ing strong theory and convex optimization formulation. Support vector ma-
chines (SVMs) are one approach that have been extended to incorporate un-
certain data. Many other algorithms are also focusing on input uncertainty clas-
sification by implementing their own constraints. The rest of the paper explores
an extension to SVC to provide a more robust algorithm, which enables uncertain
information in the inputs to be incorporated iteratively into the constraints. The
resulting algorithm is formulated as a second order cone programming (SOCP)
optimization problem with adaptive constraints driven by the uncertainties.

The paper is organized as follows: section 2 presents the input uncertainty
formulation for the classification task. In Sect. 3, the dual problem is derived
by introducing noise-specific covariance information as additional constraints

50 Jianqiang Yang, Steve Gunn

and the approach is extended to non-linear classification by a novel kernelized
formulation. It is then shown how these geometric and statistical characteristics
can be extended to generate two more efficient iterative algorithms in Sect. 4. In
Sect. 5, some kernel functions are introduced along with the experimental results
of these new approaches to compare with traditional algorithms.

2 Input Uncertainty Classification

Definition 1. Let D = {zi, yi}, i = 1, . . . , l denote the observed inputs, where

yi ∈ {−1,+1}, zi ∈ IRn and zi ∼ N (xi,Mi), in which N is a Gaussian distri-

bution with mean xi ∈ IRn and covariance Mi ∈ IRn×n.

Separating
hyperplane

Z��� Z���
ρ
2

1

ρ
2

1

w
r

ix

iM

iZ

Fig. 1. The classification of Gaussian uncertainties in the input space (n = 2).

The input uncertainties in Definition 1 are shown in Fig. 1 [10], in which the
ellipsoids represent the Gaussian distributions of the input uncertainties, ρ rep-
resents the margin between the closest edges of the ellipsoids to the optimal
hyperplane, zmax and zmin represent those points, at which the hyperplanes
parallel to the optimal hyperplane are tangent to the edges of the ellipsoids.

2.1 Geometric Interpretation

Let E(A,a) ⊆ IRn denote an ellipsoid, A ∈ IRn×n
+ , a ∈ IRn and E(A,a) := {x ∈

IRn | (x − a)T A−1(x − a) ≤ 1}. Setting Qi = M
1/2
i , according to Definition 1

and the theorem [4], which shows that every ellipsoid is the image of the unit
ball around zero under a bijective affine transformation, we have

max
w
{wT zi |zi ∈ E(Mi,xi)} = max

w
{wT QiQ

−1
i zi |Q−1

i zi ∈ Q−1
i E(Mi,xi)}

= wT 1
√

wT Miw
Miw + wT xi ,

(1)

Iterative Constraints in SVC with Uncertain Information 51

where the optimal result is zmax = xi+
1√

wT Miw
Miw, zmin = xi− 1√

wT Miw
Miw

and consequently, zi = xi + r 1√
wT Miw

Miw, −1 ≤ r ≤ 1. Figure 1 shows how

zi follows its Gaussian distribution represented by an ellipsoid Mi as r varies.
The next section introduces a theorem on probabilistic linear inequalities, which
enables a formulation of the extended uncertainty information.

2.2 Minimax Probability Machine

The minimax probability machine (MPM)[7] is a recent method introduced for
pattern classification. MPM chooses a discriminative approach to minimize the
misclassification probability of the future inputs without the prior knowledge of
the distributions of inputs. MPM uses a theorem [1], which provides the stronger
upper optimal bounds in probability than the result in Chebyshev’s inequality, to
derive an approach, transforming the probability inequality infu∼(ū,Σu) Pr{aT u ≤
h} ≥ α to the following expression without the probability in the inequality.

h− aT ū ≥ κ(α)
√

aT Σua where κ(α) =

√

α

1− α
. (2)

where aT u ≤ h represents a hyperplane, a,u ∈ IRn, h ∈ IR, α is the inferior
probability of the correctly classified inputs, ū ∈ IRn is the mean and Σu ∈ IRn×n

is the covariance of the inputs of a class.

2.3 Statistical Approach

First, we exploit theorem [1] to develop a formulation in which the probability of
misclassification is minimized under this extended uncertainty description. We
can use (2) to extend SVC to incorporate the uncertainty in Definition 1,

yi(w
T xi + b)− 1 + ξi ≥ κ(α)

√

wT Miw , (3)

where κ(α) =
√

α
1−α . Furthermore, we can consider a Gaussian model for the

uncertainties on the inputs, we can transform infu∼(ū,Σu) Pr{aT u ≤ h} to

inf
zi∼N (xi,Mi)

Pr{−yiw
T zi ≤ yib− 1 + ξi} = Φ

(

yi(w
T xi + b)− 1 + ξi
√

wT Miw

)

≥ α ,

(4)
where Φ(v) = 1√

2π

∫ v

−∞ exp(−s2/2)ds is the cumulative distribution function for

a standard normal Gaussian distribution. Since Φ(v) is monotone increasing, we
can write (4) as:

yi(w
T xi + b)− 1 + ξi ≥ Φ−1(α)

√

wT Miw . (5)

We can generate SVC constraints independent of the distributions of the uncer-
tain inputs by combining (3) and (5),

yi(w
T xi + b)− 1 + ξi ≥ r

√

wT Miw , (6)

52 Jianqiang Yang, Steve Gunn

where r ∈ IR is the probability confidence. Although the distribution is assumed
to be Gaussian in this paper, (6) provides us with a way to exploit other distri-
butions of the uncertain inputs when this information is available.

2.4 Missing Features

In some cases, uncertainties may be partially unknown [8]. Consider the Gaus-
sian distribution N (xi,Mi) introduced in Definition 1 where some features
of xi are missing, and as the result, only part of the covariance matrix Mi

is known. We then can extend the Gaussian approximation from [3] to esti-
mate the unknown components. Let xik and xim denote the known features
and the missing features of xi, and xi = [xT

ik,xT
im]T . Introducing function

f(z) = z, z ∈ IRj , j = 1, . . . , n, we then obtain

f(xi) ∼ N (µxi
,Σxi

) = N (xi,Mi)

Cov(f(xp), f(xq)) = Cov(xp,xq) ,
(7)

where xp,xq ∈ IRm, m ≤ n are parts of xi, and the covariance matrix Cov(xp,xq)
is part of Mi. Then the distribution p(xik,xim |xik) is a Gaussian distribution
with mean [xT

ik,xT
im]T and covariance matrix Mi, which is shown as follows:

Mi =

[

K k

kT k

]

, (8)

where K, k and k are the covariance matrices of xik, xik and xim, and xim

respectively. The predictive distribution of xim is

xim |xik ∼ N (µ(xik),Σ(xik)) , (9)

where µ(xik) and Σ(xik) are obtained by:

µ(xik) = xim + kT K−1(xk − xik)

Σ(xik) = k − kT K−1k .
(10)

An iterated algorithm to approximate the missing features is shown as follows:

Algorithm 1. Missing Features Approximation

When xik converge to xk, µ(xik) and Σ(xik) are what we want:

1. Initialize xi = [xT
iko,x

T
imo]

T and Mi;
2. Let xk = xik, xik = xiko and xim = ximo, obtain K, k, k from Mi and

compute (10);
3. Recompute and collect the new value of xi and Mi by using the completed

data, allocate the new value to xiko and ximo, then return to step 2;

3 Uncertainty Support Vector Classification

In this section we derive the primal and dual formulations of the input un-
certainty classification which is named uncertainty support vector classifica-
tion (USVC).

Iterative Constraints in SVC with Uncertain Information 53

3.1 Linear Case

The primal problem of USVC is obtained by introducing the constraints from
(6) as:

min
w,b,ξi

‖w‖2
2

+ C
l
∑

i=1

ξi

s.t. r‖M1/2
i w‖ ≤ yi(w

T xi + b)− 1 + ξi

r ≥ 0 ξi ≥ 0 i = 1, . . . , l

(11)

where r needs to be set in advance in the optimization. USVC is a second or-
der cone program (SOCP). Following the Lagrangian method, we have w =
∑l

i=1 αiyixi +
∑l

i=1(M
1/2
i)T βi, in which the dual variables, βi ∈ IRn, i =

1, . . . , l control the influence of the covariance matrices describing the distri-
butions of the uncertain inputs, while the dual variables, αi ∈ IR, i = 1, . . . , l,
behave in a similar manner to the SVC. When r = 0, meaning that the probabil-
ity of the examples being correctly classified is set to 0.5 in the classification, or
Mi = 0, i = 1, . . . , l, meaning that there is no uncertainty information, USVC
degenerates to the SVC solution.

3.2 Extension to Non-linear Case

Generally in real life, data to be classified will require a non-linear separation.
USVC needs to be extended to non-linear case. Let φ : IRn 7→ IRm denote a
mapping of the data of input space IRn to a high dimensional space IRm. Since the
mapped ellipsoid of an uncertain input in the input space may lead to an irregular
shape in the feature space, the Taylor Series expansion is introduced and can
be expanded based on the inputs xi and xj . Set φ(xi) = zi = [zi1, . . . , zim]

T ∈
IRm and xi = [xi1, . . . , xin]

T ∈ IRn, we have φ(xj) = φ(xi) + J(xj − xi) +

O
(

1
2

∂2z
∂x2 (xj − xi) + . . .

)

where J is Jacobian matrix which is made up of the

first order partial derivatives and can be used to approximately map a tiny
line segment ‖xi − xj‖ in the input space to ‖φ(xi) − φ(xj)‖ in the feature
space. The Taylor series of φ(xj) can be simplified by ignoring the higher order
partial derivatives, we have△φ(xj) ≃ J△xj . Furthermore, the expression can be
extended to accommodate the geometric polygonal mapping of the input space,
[

△φ(x1)
T · · · △φ(xl)

T
]T

=
[

△xT
1 · · · △xT

l

]T

JT , where △φ(xi) ∈
IRm and △xi ∈ IRn. The covariance matrix Mi represents the ith uncertainty

distribution of the input space. The tiny line segment△xi is related to O(M
1/2
i),

which can be represented as Mi = (M
1/2
i)T M

1/2
i ∼ △xi△xT

i Therefore, the
related geometric mapping of Mi in the feature space can be formed by the
Jacobian matrix

φ(M
1/2
i) = M

1/2
i JT (12)

According to the definition K(xi,xj) = φ(xi)
T φ(xj), φ(xi) and φ(xj) can

be seen as independent functions during the derivatives over the kernel function,

54 Jianqiang Yang, Steve Gunn

so the first and second derivatives of the kernel function can be retrieved by
the inner product of the mapping function φ and its derivative. Therefore, the
optimization problem of USVC is given by:

max
α,β

l
∑

i=1

αi −
1

2

l
∑

i=1

l
∑

j=1

αiαjyiyjK(xi,xj)−
1

2

(

l
∑

i=1

l
∑

j=1

αiyi

[

∂K(xi,xj)

∂xj

]T

(M
1/2
j)T βj +

l
∑

i=1

l
∑

j=1

αjyjβi
T M

1/2
i

∂K(xi,xj)

∂xi

+

l
∑

i=1

l
∑

j=1

βi
T M

1/2
i

∂2K(xi,xj)

∂xi∂xj
(M

1/2
j)T βj

)

s.t.
l
∑

i=1

αiyi = 0 ‖βi‖ ≤ rαi r ≥ 0 0 ≤ αi ≤ C i = 1, . . . , l

(13)

where
∂K(xi,xj)

∂xi
= ∂φ(xi)

∂xi
·φ(xj),

[

∂K(xi,xj)
∂xj

]T

= φ(xi) · ∂φ(xj)
∂xj

and
∂2K(xi,xj)

∂xi∂xj
=

∂φ(xi)
∂xi

· ∂φ(xj)
∂xj

.

4 Minimax Probability Support Vector Classification

4.1 Total Support Vector Classification

In 2004, [2] proposed a formulation of support vector classification called to-
tal support vector classification (TSVC), which can accommodate uncertainties
in the inputs. Without loss of generality, δ‖w‖ in [2] can be transformed to

‖M1/2
i w‖ in this paper under the definition of the uncertain inputs in Definition

1. As the result, the constraints of the problem of TSVC becomes to

−‖M1/2
i w‖ ≤ yi(w

T xi + b)− 1 + ξi . (14)

TSVCW

USVC
W

Fig. 2. Geometric Interpretation of TSVC
and USVC.

Equation (14) actually can be de-
rived from (6) with r = −1. Figure 2
shows the original figure from [2] with
the USVC solution at the setting of
r = 1 superimposed to illustrate the
different geometric interpretation be-
tween TSVC and USVC. In Fig. 2, the
ellipses with circle points on and the
ellipses with triangle points on repre-
sent the examples from two different
classes where yi = ±1. In the classifi-

cation, TSVC uses the farthest points (solid points) in the distributions of the
uncertain inputs as a reference to obtain the optimal hyperplane (wTSV C , solid

Iterative Constraints in SVC with Uncertain Information 55

line), while USVC uses the nearest points (hollow points) in the distributions
of the uncertain inputs to the optimal hyperplane (wUSV C , dashed line) to com-
pute the classifier. According to the characteristics of support vectors and convex
optimization, it can be proved that TSVC is neither a convex optimization nor
a SOCP problem.

4.2 Adaptive Constraints in Uncertainty Support Vector

Classification

Although TSVC is not a convex optimization, input uncertainty classification
can benefit from the characteristics of its low probability confidence. An itera-
tive algorithm is proposed here to combine TSVC and USVC to achieve a better
overall performance. This new method is termed adaptive uncertainty support
vector classification (AUSVC), in which, the misclassified inputs decrease their
probability confidence to accommodate the misclassification in each step, while
the probability confidence of correctly classified inputs remain unvaried. There-
fore, individual probability confidence ri is chosen here for each uncertainty
instead of selecting a general probability confidence r for all uncertainties in
USVC. In order to remain convex in AUSVC, the optimization problem selects
the probability confidence ri ≥ 0 and r ∈ IR, so that the probability confidence
of some misclassified inputs finally achieve 0 when AUSVC converges. Geomet-
rically, AUSVC is a method of searching the optimal points from the nearest
points to the central points of different input uncertainties respectively.

The optimization problem of AUSVC can be rewritten from (13) by simply
replacing ‖βi‖ ≤ rαi with ‖βi‖ ≤ riαi. Its iterative algorithm is shown below:

Algorithm 2. AUSVC

Initialize ri = 1, i = 1, . . . , l, repeat the following three steps until rinew =
ri, i = 1, . . . , l:

1. Fix ri, i = 1, . . . , l to the current value, solve (13) for the parameters αj , βj ,
and b;

2. Substitute the obtained parameters αj , βj , b and the training inputs (xi, yi)
into

g(xi, yi) = sgn

yi

l
∑

j=1

αjyjK(xj ,xi) +

l
∑

j=1

βT
j M

1/2
j

∂K(xj ,xi)

∂xj
+ b

(15)
respectively to determine whether the inputs are misclassified, g(xi, yi) < 0
or correctly classified, g(xi, yi) ≥ 0. If correctly classified, their probabil-
ity confidence ri remain unchanged, otherwise, a predefined positive scalar
(normally 0.1) is deducted from its probability confidence ri, the changed
probability confidence is saved in rinew;

3. If rinew = ri, the optimal results of αi, βi, and b are achieved, otherwise,
ri = rinew and return to step 1;

56 Jianqiang Yang, Steve Gunn

4.3 Minimax Probability Support Vector Classification

MPM not only derives a discriminative method to classify inputs without prior
knowledge of the distributions of inputs, but also as the result introduces a mea-
sure to compare the different algorithms. This measure is named minimax prob-
ability error (MPE), which adds up together the possible maximal misclassifed
probability of every input uncertainty, which is supzi∼(xi,Mi) Pr{yi(w

T zi +b) ≤
0} = 1

1+d2 , and d2 = infyi(wT zi+b)≤0(zi − xi)
T M−1

i (zi − xi). To incorporate
ri < 0 into the optimization problem to provide lower probability confidence, we
introduce MPE to generate a new optimization problem as follows:

min
w,b

l
∑

i=1

1

1 + d2
i

s.t. d2
i =

{

(wT xi+b)2

wT Miw
yi(w

T xi + b) > 0

0 yi(w
T xi + b) ≤ 0

(16)

Geometrically, when the uncertainty is misclassified by a hyperplane, then
di = 0 and its possible maximal misclassified probability on this hyperplane is 1.
Otherwise, di is equal to the distance between the center xi and the hyperplane,
and its possible maximal misclassified probability on this hyperplane is 1

1+d2

i

.

Since this approach is motivated by MPM and SVC, we call this proposed
algorithm minimax probability support vector classification (MPSVC). However,
the contribution of the maximal misclassified probability of each input is differ-
ent in the optimization problem. Inspired by [6], in which the prior probability
of each class is introduced in the optimization when the worst-case accuracies for
two classes are not the same, additional parameters θi are introduced with dif-
ferent values set adaptively for the inputs misclassified and correctly classified to
formulate a cost sensitive optimization problem. Introducing the previous results

from USVC, w =
∑l

i=1 αiyixi +
∑l

i=1(M
1/2
i)T βi, and the previous results from

(6) into (16), kernel functions can be exploited to extend MPSVC to non-linear
input uncertainty classification. Equation (16) can be rewritten as:

max
αi,βi,b,ri

l
∑

i=1

θiri

s.t. yi

l
∑

j=1

αjyjK(xj ,xi) +

l
∑

j=1

βT
j M

1/2
j

∂K(xj ,xi)

∂xj
+ b

 ≥ ri

∥

∥

∥

∥

∥

∥

l
∑

j=1

αjyjM
1/2
i

∂K(xi,xj)

∂xi
+

l
∑

j=1

M
1/2
i

∂2K(xi,xj)

∂xi∂xj
(M

1/2
j)T βj

∥

∥

∥

∥

∥

∥

≤ C

ri ≥ Di i = 1, . . . , l

(17)

where θi ∈ IR are penalty coefficients, C is a constant, ri ∈ IR is the probability
confidence of the ith uncertainty, the lower bound of ri is provided by Di ∈ IR,

Iterative Constraints in SVC with Uncertain Information 57

which can be set positive or negative depending on the uncertain inputs and
the optimal hyperplane. For those which are misclassified by the hyperplane,
Di will be set negative to decrease the probability confidence of those inputs,
otherwise, Di will be positive. In general, Di extends the geometric search area
of the optimal solution from ri ≥ 0 in AUSVC to both ri ≥ 0 and ri < 0 in
MPSVC while this optimization problem remains a convex and SOCP problem.
MPSVC provides a way of searching input uncertainty classification solutions in
a specific scope by implementing the optimal solution of AUSVC as additional
constraints. Its iterative algorithm is shown below:

Algorithm 3. MPSVC

When MPE converges, MPSVC achieves its optimum.

1. Run Algorithm 2 of AUSVC for the parameters αj , βj , and b;
2. Substitute the obtained parameters αj , βj , b and the training inputs (xi, yi)

into (15) to determine whether the inputs (xi, yi) are misclassified. If cor-
rectly classified, their Di are set to equal to the average value of di of these
correctly classified inputs, otherwise, Di = −1, use (16) to calculate MPEold;

3. Fix θi = 1, i = 1, . . . , l, solve (17) for the parameters αj , βj , and b;
4. Substitute the parameters αj , βj , b and the training inputs (xi, yi) into

h(xi, yi) = sgn

yi

l
∑

j=1

αjyjK(xj ,xi) +

l
∑

j=1

βT
j M

1/2
j

∂K(xj ,xi)

∂xj
+ b

− 1

(18)
to determine whether the inputs (xi, yi) are misclassified (h(xi, yi) < 0). If
correctly classified, θi = θi/λ, otherwise, θi = θi × λ, λ is a scalar (normally
10);

5. Use (16) to calculate MPEnew. If ‖MPEnew−MPEold‖ < ǫ, MPE converges,
otherwise, MPEold = MPEnew, return to step 4;

5 Experimental Comparisons

Besides the traditional measure, the number of misclassified centers of the uncer-
tainties (NMC) and the new introduced measure MPE, a new parameter which
measures the number of misclassified nearest edges of the uncertainties to the
optimal hyperplane is introduced as an additional performance measure in the
experiments. This new measure is named as the number of misclassified edges
of the uncertainties (NME). NME provides a new viewpoint which includes the
uncertainties in the performance comparison of different algorithms.

We reproduced the experiments from [2] to test the performance of these al-
gorithms by following the exact prescription described in [2]. In the experiments
with toy data sets in two dimensions, l = 100 training examples xi were gener-
ated from the uniform distribution on [−5, 5]2 by the random number generator.
Binary classification problems were created with original separating function
x2

1 + x2
2 = Ra2, where Ra ∈ [3, 4] and x = [x1, x2]

T . All the algorithms were

58 Jianqiang Yang, Steve Gunn

trained with the quadratic kernel (xT
i xj)

2 in the experiments. The input vectors
xi were contaminated by Gaussian noise with mean [0, 0] and covariance matrix
Σ = δiI where δi was randomly chosen from [0.1, 0.8]. I is a 2×2 identity matrix.
We randomly chose 0.1l from the first 0.2l examples after examples were ordered
in an ascending order of their distances to the original separating hyperplane.
For these 0.1l examples, noise was generated using a larger δi randomly drawn
from [0.5, 2]. In total 16 input datasets are generated with the results of the
classification of the 6th and 14th dataset shown in Fig. 3 and the 8th and 12th
dataset shown in Fig. 4. The experimental code is based on the MATLAB SVM
toolbox [5] and MATLAB optimization toolbox SeDuMi [9].

(a) Data set 6 (b) Data set 14

Fig. 3. Experimental comparisons. The dashed line represents USVC (r = 1), the dash-
dot line represents AUSVC and MPSVC is represented by the solid line.

Figure 3 shows the experimental comparison of 6th and 14th dataset between
USVC, AUSVC and MPSVC. Both AUSVC and MPSVC perform better than
USVC under all the measures. However, AUSVC can be easily influenced at the
area with low input density (see Fig. 3(a)) or the area where one class dominates
the other class (see Fig. 3(b)). With the advantages of its characteristics, MPSVC
can recover from the adversarial distribution introduced by uncertain inputs.

Because the probability confidence is relatively low from the strategy of the
iterative algorithms in the optimization problems, AUSVC and MPSVC gener-
ally outperform in the experiments with respect to the other methods, especially
when the large uncertainties from one class cross the original boundary to domi-
nate the areas of low input density of the other class. USVC performs worse than
the other methods by choosing the nearest edges of these dominant uncertain-
ties geometrically which causes the optimal hyperplane of USVC to be stretched
to these dominant uncertainties (see Fig. 4(a)). On the contrary, choosing the
farthest edges of the uncertainties geometrically also causes some mistakes in
the classification. In Fig. 4(d), USVC performs better than TSVC in areas of
low input density of both classes. With the iterative algorithm and individually
decreasing probability confidence ri, AUSVC can generally achieve an improved
performance by reducing the influence from some dominant uncertainties in the

Iterative Constraints in SVC with Uncertain Information 59

(a) Dataset 8, S = 1 (b) Dataset 8, S = 5 (c) Dataset 8, S = 0.2

(d) Dataset 12, S = 1 (e) Dataset 12, S = 5 (f) Dataset 12, S = 0.2

Fig. 4. Experimental Comparisons. Different algorithms are compared in the experi-
ments. The covariance matrices Mi are varied as M

′

i = SMi, and the inputs xi are
kept fixed. The dotted line represents SVC, the dashed line represents TSVC, the thin
solid line represents USVC (r = 1), the dash-dot line represents AUSVC and MPSVC
is represented by thick solid line.

classification (see Fig. 4(a) 4(d)). With lower probability confidence and larger
penalty coefficients for misclassified uncertainties, MPSVC can even achieve a
better performance than AUSVC by recovering from the adversarial distribution
introduced by uncertain inputs (see Fig. 4(d)). The experimental comparison of
NMC, NME and MPE of these approaches on the 16 datasets are shown in Fig. 5,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5

10

15

20

25

Data sets

N
M

C

SVC
USVC
TSVC
AUSVC
MPSVC

(a) NMC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10

12

14

16

18

20

22

24

26

28

Data sets

N
M

E

SVC
USVC
TSVC
AUSVC
MPSVC

(b) NME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

14

16

18

20

22

24

26

Data sets

M
P

E

SVC
USVC
TSVC
AUSVC
MPSVC

(c) MPE

Fig. 5. Experimental comparisons of the different measures of SVC, USVC (r = 1),
TSVC, AUSVC and MPSVC.

The influence from the uncertainties with different sizes is compared in the
experiments as well. Let S ∈ IR denote the size factor, the varied uncertain-

ties M
′

i come from M
′

i = SMi. When the uncertainties are amplified by S (see

60 Jianqiang Yang, Steve Gunn

Fig. 4(b) 4(e), S = 5), the performance of USVC deteriorates in Fig. 4(b), and
even more in Fig. 4(e), in which USVC can not accommodate large uncertainties
during the optimization. AUSVC and MPSVC can produce superior results with
its varied probability confidence ri and penalty coefficients θi in iterative algo-
rithms. In the case when the uncertainties decrease (see Fig. 4(c) 4(f), S = 0.2),
AUSVC achieves the best performance around r = 1, which is very close to the
performance of USVC. As S decreases, AUSVC and USVC converge to SVC,
and in the limit (S = 0), the information of the uncertainties is unavailable,
AUSVC and USVC degenerate to SVC. In this case, βi = 0 and ‖βi‖ ≤ αi can
be rewritten as αi ≥ 0 in (13).

6 Conclusions

A new approach, USVC, has been proposed here for classifying data with un-
certain information which has been implemented in this paper as additional
constraints in the optimization. Along with USVC, two novel iterative algo-
rithms AUSVC and MPSVC have been designed by using adaptive constraints
come from the noise-specific covariance information. These methods have been
extended to non-linear models by a novel formulation to accommodate kernel
functions. Experimental comparisons show that these iterative approaches based
around adaptive constraints have greatly improved the performance of input un-
certainty classification.

References

1. Bertsimas, D., Popescu, I., Sethuraman, J.: Moment problems and semidefinite op-
timization. Handbook of Semidefinite Optimization. (2000) 469–509

2. Bi, J., Zhang, T.: Support vector classification with input data uncertainty. Ad-
vances in Neural Information Processing Systems. 16 (2004)

3. Girard, A., Rasmussen, C.E., Quiñonero-Candela, J., Murray-Smith, R.: Gaussian
process priors with uncertain inputs - application to multiple-step ahead time series
forecasting. Advances in Neural Information Processing Systems. 15 (2003)

4. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. 2nd corr. ed.. Springer-Verlag. ISBN: 0-38-756740-2 (1993) 66–73

5. Gunn, S.R.: Support vector machines for classification and regression. Technical
Report. University of Southampton. (1998)

6. Huang, K., Yang, H., King, I., Lyu, M.R., Chan, L.: The minimum error minimax
probability machine. Journal of Machine Learning Research. 5 (2004) 1253–1286

7. Lanckriet, G.R.G., El Ghaoui, L., Bhattacharyya, C., Jordan, M.I.: A robust min-
imax approach to classification. Journal of Machine Learning Research. 3 (2002)
555–582

8. Shivaswamy, P.K., Bhattacharyya, C., Smola, A.J.: Second order cone programming
approaches for handling missing and uncertain data. Journal of Machine Learning
Research. 7 (2006) 1283–1314

9. Sturm, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric
cones. Optimization Methods and Software. 11-12 (1999) 625–653

10. Yang, J., Gunn, S.R.: Input uncertainty in support vector machines. Machine
Learning Workshop, Sheffield, UK, (2004)

Multitarget Polynomial Regression

with Constraints

Aleksandar Pečkov, Sašo Džeroski, and Ljupčo Todorovski

Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Abstract. The paper addresses the task of multi-target polynomial re-
gression, i.e., the task of inducing polynomials that can predict the value
of more then one numeric variable. As in other learning tasks, we face the
problem of finding an optimal trade-off between the complexity of the in-
duced model and its predictive error. We propose a minimal description
length scheme for multi-target polynomial regression, which includes cod-
ing schemes for polynomials and their predictive errors on training data.
The proposed MDL scheme is implemented in an algorithm for poly-
nomial induction that can also take into account language constraints,
i.e., constraints on terms to be included in the induced polynomials. We
empirically compare the multi-target model with the multiple single tar-
get models. The results of the experiments show that there is no loss in
predictive performance when using multi-target models as compared to
multiple target models and that fewer equation structures are considered
in the former case.

1 Introduction

Regression models are used to predict the value of a dependent numeric variable
from the values of independent (predictor) variables. Commonly used regres-
sion models include linear regression and regression trees [1]. While the linear
regression method tries to find a global model of the data (a linear equation),
regression trees are piecewise models that partition the data space into a num-
ber of sub-spaces and induce a simple constant or linear model in each of them.
While linear models tend to be oversimplistic, regression trees can sometimes
overfit the training data. In this paper we address the task of polynomial regres-
sion, i.e., the task of inducing polynomial equations from numeric data that can
be used to predict the value of a numeric variable. Polynomials can also overfit
the data. Namely, it is well known that a data set of n points can be perfectly
interpolated (and often overfitted) with a polynomial of (n− 1)-th degree.

In order to address the problem of overfitting, different approaches to model
selection have been proposed in the literature [3] (pages 193-222). Each ap-
proach tries to find an optimal trade-off between the complexity of the induced
model and its predictive error and thus avoid overfitting. The minimal descrip-
tion length (MDL) principle is one of them. Following the MDL principle, the
quality of a model is estimated by combining the estimate of the model com-
plexity and the predictive error the model makes on the training data. The

62 Aleksandar Pečkov, Sašo Džeroski, Ljupčo Todorovski

complexity of the model and the error are measured in terms of the number of
bits necessary for encoding them.

In this paper we first address the task of polynomial regression and present
a MDL encoding scheme for single target polynomial model. We compare this
encoding scheme with an Akaike like ad-hoc encoding scheme. Also we compare
the better to liner regression, regression trees, and model trees. Then we extend
our approach for multi-target regression by extending our encoding scheme for
multi-target models. Finally, we empirically compare the multi-target approach
with the single target approach.

2 Polynomial Regression

The task of polynomial regression, is to induce a polynomial equation from
numeric data that can predict the value of a numeric variable.

Every polynomial over variables x1, x2, ...xn can be written in the form:

P = c0 +

m
∑

i=1

ci · Ti

where Ti =
∏n

j=1
xj

ai,j , ci , i = 1..m and c0 are constants and ci 6= 0. We say
Ti is a term or monomial in P . The length of P is defined as Len(P) =
∑m

i=1

∑n

j=1
ai,j , while the size of P is Size(P) = m; and the degree of P is

Deg(P) = Maxm
i=1

∑n

j=1
ai,j .

An example polynomial equation is P = 1.2x2y + 3.5xy3 + 5xz + 2. This
equation has size 3 (it has three terms), degree 4 (the maximal term degree is
4) and length 9.

Ciper [7] (Constrained Induction of Polynomial Equations for Regression) is a
beam search algorithm that heuristically searches through the space of candidate
polynomial equations for the ones that fit the data best.

The top-level outline of Ciper algorithm is shown in Table 1. First, the beam
is initialized either with the simplest polynomial equation P = c, or with a
minimal polynomial that follows the given constraints (the constraints will be
described below). In every search iteration, a set of polynomials is generated from
the beam using a refinement operator. The coefficients before the terms are fitted
using linear regression. For each of the polynomials, the value of the minimal
description length (MDL) heuristics is calculated. At the end of the iteration, the
equations with smallest MDL values are retained in the beam. The evaluation
stops when the refinement operator can not generate new equations or when the
content of the beam was unchanged in the last iteration. Such situation occurs
when every polynomial that is generated in the last iteration has worse MDL
estimate than the polynomials already in the beam.

The refinement operator increases the length of an equation by one, either
by adding a first degree term or by multiplying an existing term by a variable
(Figure 1). Starting with the simplest equation, and iteratively applying the
refinement operator, all polynomial equations can be generated.

Multitarget Polynomial Regression 63

Table 1. A top-level outline of the Ciper algorithm. Q and Qr are sets of equations
(the beam).

procedure Ciper(Data, InitialPol, Constraints)
InitialPol = FitParameters(InitialPol, Data)
Q = {InitialPol}
repeat

Qr = refinements of (some) equation structures in Q
foreach equation structure E ∈ Qr do

E = FitParameters(E, Data)
endfor

Q = {best b equations from Q ∪Qr}
until Q unchanged during the last iteration
print Q

Fig. 1. The Ciper refinement operator.

Ciper can take into account two types of constraints on the form of the
induced polynomial equations:

– Language constraints specify structural bounds on the polynomial structures
considered during search: PL and/or PU . These constraints specify that every
candidate equation P should be a super-polynomial of PL, while PU should
be super-polynomial of every P . A polynomial P is a subpolynomial from
a polynomial P ′ if for every term T in P exists a term T ′ in P ′ such that
the degree of every variable in T is larger than or equal to the degree of the
same variable in T ′.

– Complexity constraints constrain the complexity of a polynomial with spec-
ifying the upper bound for the polynomail length, degree, or size.

Our approach is based on the single target Ciper algorithm can take into ac-
count some constraints during induction, most noticeably, language constraints.
This capability is preserved in the multi-target version of Ciper. In the next sec-
tion, we describe the heuristic function used to evaluate every candidate equa-
tion.

64 Aleksandar Pečkov, Sašo Džeroski, Ljupčo Todorovski

3 Minimal Description Length

Following the minimal description length (MDL) principle, among the number
of candidate models, we select the one that represents a good trade-off between
model’s predictive error its complexity. The MDL principle combines two ideas
(or assumptions) about relation between learning and data compression:

– regularities in the data can be used to compress the data, i.e., the more
regularities there are, the more the data can be compressed;

– the more we are able to compress the data, the more we have learned about
the data.

Thus, complexity of the model can be estimated as its ability to compress
data: larger the compression, smaller the complexity of the obtained model. More
specifically, MDL estimate of the model quality is composed of two components:

MDL(H) = L(H) + L(D|H),

where the first component L(H) corresponds to the length of the encoding of
model (hypothesis) H, while the second one L(D|H) is the length of the descrip-
tion of the data when encoded using the model H.

3.1 Encoding polynomial structure

In order to encode the structure of polynomials, we follow the refined MDL
approach [10]. We first partition the space of candidate models into subgroups
Hc of models with equal complexity c. A particular model H ∈ Hc can be then
encoded using N = log|Hc| (note that log stands for binary logarithm) bits,
where |Hc| denotes the number of models in the class Hc.

In case of polynomials, we are going to partition the space of candidate poly-
nomial structures in classes at several levels. At the highest level, we’ll group
together the candidate polynomials with same length l and same number of terms
(size) m. We’ll refer to these classes as G(m, l); for example G(1, 1) contains poly-
nomial structures with one linear term, while G(1, 2) contains polynomial struc-
tures with only one term of second degree. Note that m ≤ l. On the second level,
we partition each G(m, l) in subgroups with fixed term degrees G′(a1, a2, . . . am).
Polynomials in this subgroup have m terms with degrees a1 ≥ a2 ≥ . . . ≥ am.
Note that

∑m

i=1
ai = l. Now we have to calculate how many sub-groups G′ there

are in a single G(m, l) group and also calculate how nany polynomial structures
there are in each G(a1, a2, . . . , am) group.

The number |G′(a1, a2, . . . , am)| can be easily calculated using a procedure
roughly depicted in Figure 2. Given the degree of the first term a1 we have
to choose a1 variables from the set {x1, x2, . . . xn} where variables can appear
in the selection more then once. Thus, the number of possibilities for the first
term equals the number of combinations with repetition where we select a1

elements from a set of given n. This number equals
(

n+a1−1

a1

)

. Continuing the
same reasoning for all m terms, gives us the number of possible structures in

Multitarget Polynomial Regression 65

G′(a1, a2, . . . am) to be
∏m

i=1

(

n+ai−1

ai

)

. However, if there are several ai values
that are equal, we will encounter the same term many times, which means that
the above formula over-estimates the number of possible structures. The remedy
is to divide the number with the factoriel of repetitions observed in the tupple.
For example, when dealing with case G′(5, 5, 3, 2, 2, 2), we have to divide with
2!3!, since value 5 is repeated twice and value 2 is repeated three times. Note
also that each multiplicative term decreases by 1 for each degree value repetition
(see Figure 2).

Fig. 2. Calculating the number of polynomial structures in G′(a1, a2, . . . am). At the
bottom, we have the sets of terms (one with terms of degree b and one with terms of
degree c). In the middle layer, they are combined in equation structures, where s(b)
and s(c) denote the number of repetitions of b and c values respectively.

Having the number of equation structures in each G′ group, we now turn to
a problem of calculating the number of G′ groups within each G(m, l). The size
of G grows according to the recursive formula |G(m, l)| = |G(m − 1, l − 1)| +
|G(m, l−m)|. The first additive term corresponds to the cases when the G′ groups
contain linear terms (there is ai with value 1), while the second corresponds to
the cases when the G′ groups where all ai > 1. In the first case, when removing
the linear term, we obtain polynomials with m − 1 terms and lenght l − 1. In
the second case, we can remove one variable from all the terms, which leads to
polynomials with same number of terms (m) and lenght m− l. Figure 3 depicts
he relationship between G and G′ classes of polynomial structueres.

Now, having this partitioning and number of polynomials in each partition,
we can decompose the code for each candidate polynomial in four components.
First, we have to encode its length l and for this we need log(l) + 2log(log(l))
bits (the second double logarithm term is necessary, since we do not know the
magnitude of l in advance). Second, we encode the number of terms m, for which
we need log(l) bits (remember that m ≤ l). Third, we can identify a particular
G′ class within the class G(m, l) using log(|G(m, l)|) bits. Finally, we identify
the specific polynomial structure within G′ using log(|G′(a1, a2, . . . am)|) bits.

66 Aleksandar Pečkov, Sašo Džeroski, Ljupčo Todorovski

Fig. 3. General overview of the partitioning of polynomial structures. The small sets
correspond to G′ classes (e.g., the set G′(5, 2, 1)). In turn, we group them into a larger
classes of structures G that have same length and size.

Putting these four components together gives us the final formula: L(H) =
2log(l) + 2log(log(l)) + log(|G(n, l)|) + log(G′(a1, a2, . . . an)).
for number of bits necessary to encode the polynomial structure.

3.2 Encoding Data

Rissanen provides a formula for calculating the stochastic complexity of a model
obtained using linear regression [5]:

W = minγ{(N − k)log(τ̂)+ k log(R̂)+ (N − k− 1)log(1

N−k
)− (k− 1)log(k)}

where γ index goes through the all possible subsets of variables involved in the
linear regression, k is the number of elements in γ, N is the size of the dataset, τ̂

is the maximum likelihood estimation of the model error, and R̂ = 1

n
ĉT (XT X)ĉ

(where ĉ = (XT X)−1XT y). The stochastic complexity of the model then is
2W . Intuitively, this corresponds to the length of the code necessary to encode
the errors of the linear regression model (L(D|H)) together with the constant
parameters of the linear model. The later is closely related to the model error and
thus can not be encoded separaterly, that is together with the model strucure,
which is what is mostly done when using (ad-hoc) MDL principle in machine
learning algorithms. For further details, see [5].

4 Single-target Polynomial Regression

The task of single-target polynomial regression is to induce a polynomial equa-
tion from numeric data that can predict the value of a single numeric variable.
Ciper original implementation used an ad-hoc MDL based heuristics function.
In this section we will present the ad-hoc heuristics and compare it with the
improved MDL heuristics (Section 3) on single target datasets.

4.1 Ad-hoc MDL

The ad-hoc MDL heuristic function is given by

MDL(P) = len(P) · log(m) + m · log(MSE(P))

Multitarget Polynomial Regression 67

where P is the polynomial equation being evaluated, len(P) is its length, MSE(P)
is its mean squared error, and m is the number of training examples.

This evaluation function is based on the Akaike and Bayesian information
criteria for regression model selection [3]. The second term of the ad-hoc MDL
heuristic function measures the degree of fit of a given equation and the first
term introduces a penalty for the complexity of the equation. With this penalty
the MDL heuristic function introduces preference toward simpler equations.

4.2 Empirical evaluation for the heuristic functions

The main goal of the performed experiments is to evaluate the predictive per-
formance of Ciper using the different heuristics described above. We compared
them with the standard regression methods, implemented in the data mining
suite Weka [9]. The performance of the methods is evaluated on fifteen data sets
from the UCI Repository [4] and another publicly available collection of regres-
sion data sets [8]. These data sets have been widely used in other comparative
studies.

In all the experiments presented here, we estimate the predictive performance
on unseen examples using 10-fold cross validation. The predictive performance of
a model M is measured in terms of relative root mean squared error (RRMSE).
The Ciper algorithm that uses ad-hoc MDL heuristic will be referred to as ad-
hoc Ciper, and the Ciper algorithm that uses the improved MDL heuristic will
be refereed with MDL Ciper.

The last two columns in Table 2 give the performance comparison between
ad-hoc and improved MDL. It is noticeable that MDL Ciper performs better
then ad-hoc Ciper. The statistical significance is tested using a paired t-test. If
the p-value is smaller then 0.05 then we reject the null hypothesis, and conclude
that the difference is statistically significant. The + sign in the table is used when
the improvements we introduce perform significantly better and the − sign is
used when they perform worse.

We found that ad-hoc Ciper never performs better and MDL Ciper performs
better on six datasets. We can conclude that Ciper with MDL heuristics performs
better then Ciper using ad-hoc heuristics. Ciper clearly outperforms linear re-
gression, and performs much better then regression trees on more datasets. Also
Ciper is comparable to model trees (Ciper was better on three and model trees
on three datasets).

5 Multitarget Polynomial Regression

The task of multi-target polynomial regression is to induce a polynomial equation
from numeric data that can predict the value of several numeric variables.

A multi-target polynomial model can be defined as:

P = C0 +

m
∑

i=1

Ci · Ti

68 Aleksandar Pečkov, Sašo Džeroski, Ljupčo Todorovski

Table 2. Predictive performance in terms of relative root mean square error of com-
monly used regression methods implemented in Weka: linear regression (LR), model
trees (MT), and regression trees (RT). Also comparison of ad-hoc Ciper and MDL
Ciper.

Data set LR RT MT ad-hoc mdl

2dplanes 0.5427 + 0.2272 0.2270 0.2270 0.2270
autoprice 0.4715 + 0.5426 + 0.3659 0.4128 0.3815
bank32nh 0.6858 0.7512 + 0.6739 0.8119 + 0.6751
baskball 0.7737 + 0.8850 + 0.7737 0.7784 0.7738
bodyfat 0.1643 0.3293 + 0.1557 - 0.2834 0.1663
cal-housing 0.6037 0.5177 - 0.4778 - 0.5903 + 0.5767
cpu-small 0.5371 + 0.2247 - 0.1738 + 0.4161 + 0.1628
elusage 0.4781 + 0.6560 + 0.4372 0.4009 0.4009
fried-delve 0.5265 + 0.3550 + 0.2780 + 0.2903 + 0.1996
house-8l 0.7869 + 0.6250 0.5929 0.6097 0.6123
housing 0.5281 + 0.5095 + 0.4286 0.4264 0.4184
kin-8nm 0.7661 + 0.6837 + 0.6093 + 0.8463 + 0.5570
mv 0.4309 + 0.0475 + 0.0131 - 0.0440 + 0.0214
pw-linear 0.4954 + 0.5640 + 0.3258 0.3301 0.3310
vineyard 0.7133 0.8617 0.7458 0.5254 0.6749

where Ti =
∏n

j=1
xj

ai,j are the terms. Here Ci , i = 1..m and C0 are constant
vectors (not constants) and Ci 6= 0. The number of coordinates of these vectors
is the number of targets we want to predict.

An example of a multi-target polynomial equation is P = (1, 2, 5) · x2y +
(3, 5, 7) · xy3 + (2, 3, 10). It is equivalent to three single target polynomial
equations P1 = 1·x2y+3·xy3+2; P2 = 2·x2y+5·xy3+3; P3 = 5·x2y+7·xy3+10,
i.e P = (P1, P2, P3) This equation model predicts three targets.

In this way a single equation can be used for predicting more targets. The
idea is that the complexity of this equation will be smaller then the complexity
of a set of equations (one equation per each target). If the single target equations
depend on the same term then we will need less to encode the multi-target model
then the single target models. Also, in this case we may obtain a model that have
better predictive capabilities because the risk of overfitting will be smaller.

The Ciper algorithm for multi-target polynomial regression goes just the
same as in the single target case (Table 1). The data can be represented as a
matrix M , where the number of rows is the number of instances, and the number
of columns is the number of terms plus one (the first column is filled with ones).
We calculate the coefficients Ci of the equation as

C = (MT ·M)−1 · (MT · Y)

where Y is the matrix of values we are trying to predict. We have introduced some
optimizations for obtaining the coefficients. In this equation the multiplication
is computationally expensive because of the large number of rows. If we have

Multitarget Polynomial Regression 69

terms T1, T2, T3 and T4, such that T1 · T2 = T3 · T4, then the appropriate
elements in matrices MT

T1,T2
·MT1,T2

and MT
T3,T4

·MT3,T4
are equal. We store all

generated elements from the matrices MT · M . We use it later to calculate the
matrices of the subsequently generated polynomials. Even more this matrices
are the same for every target. This optimization considerably lowers the amount
of calculations.

Notice that the language and the complexity constraints mentioned in Sec-
tion 2 can equally be used in the multi-target case.

Because the structure of the polynomial hasn’t changed, the complexity is
the same for the multi-target case like in the single target case. Summing the
stochastic complexities of the linear model for each target with the complexity
of the structure we have the total complexity of the multi-target model.

6 Empirical Evaluation

6.1 Real datasets

The main goal of the performed experiments is to evaluate the predictive per-
formance of Ciper on multi-targets datasets. The performance of the methods is
evaluated on five data sets EDM, SIGMEA-REAL, and SIGMEA-SIM.

EDM dataset describes 154 actions taken by a human operator controlling
two variables (target variables). It contains eight numeric attributes from witch
two are the target attributes. SIGMEA-REAL dataset collects 817 measurements
of the rate of herbicide resistance of two lines of plants (target variables). It has
eight attributes. SIGMEA-SIM dataset describes the effects of the individual
field characteristics and cropping systems on the rate of pollen and the seed
dispersal rate, (target variables). Dataset includes 10368 cases and it has 13
attributes.

A multi-target model is build for each dataset and a single target model
for each of the targets. The predictive performance of a single target model is
measured in terms of relative root mean squared error (RRMSE). The predictive
performance of a multi-target model is presented as an array of the predictive
performance of the appropriate single target models.

In all the experiments presented here, we estimate the predictive performance
on unseen examples using 10-fold cross validation. The statistical significance is
tested using a paired t-test. If the p-value is smaller then 0.05 then we reject
the null hypothesis, and conclude that the difference is statistically significant.
The + sign in the table is used when the improvements we introduce perform
significantly better and the − sign is used when they perform worse.

The results suggest that there is no significant difference in the predictive
capabilities whether we make single target models or multi target models.

We counted the number of equations generated with Ciper. It seems that
the number of equations generated for multi-target Ciper is usually smaller then
the total number of equations needed for building the single target models. The
number of equations in the table 3 is averaged from the number of generated
equations from the 10 folds.

70 Aleksandar Pečkov, Sašo Džeroski, Ljupčo Todorovski

Table 3. Comparison of predictive performance of multi-target and single-target Ciper
in terms of relative root mean square error, and number of tested equations.

dataset target multi-target single-target num. eqs.

EDM
1 0.90703 0.86435 31152
2 0.79134 0.75032 415

num. tested eqs. 458.0 3156.7

SIGMEA-SIM
1 0.07441 0.07509 139045.1
2 0.06141 0.06158 157931.2

num. tested eqs. 202345.9 296976.3

SIGMEA-REAL
1 0.71846 0.71190 1497.2
2 0.64948 0.63467 1812.6

num. tested eqs. 2265.6 3309.8

6.2 Using constraints in modeling chemical reactions

To illustrate the use of constraints in
discovering dynamics, we address the
task of reconstructing a partially specified

{x5,x7} → {x1}; {x1} → {x2, x3}
{x1, x2,x7} → {x3}; {x3} → {x4}
{x4} → {x2,x6}; {x4,x6} → {x2}

network of chemical reactions. The part of the network given in bold is assumed
to be unknown, except for the fact that x6 and x7 are involved in the network.
This is a task of revising an equation-based model. A network of chemical reac-
tions can be modeled with a set of polynomial differential equations. The reaction
rate of a reaction is proportional to the concentrations of inputs involved (prod-
uct, e.g. x5 · x7). It influences the rate of change of all inputs (negatively) and
all outputs (positively). The equation structures (left) / full equations (right),
corresponding to the partial/full network, are given below.

Partial structure/Full equations ẋ1 = 0.8 · x5 · x7 − 0.5 · x1 − 0.7 · x1 · x2 · x7

ẋ2 = 0.7 · x1 + 0.2 · x4 + 0.1 · x4 · x6 − 0.3 · x1 · x2 · x7

ẋ1 = −c · x1 + c · x5 − c · x1 · x2 ẋ3 = 0.4 · x1 + 0.3 · x1 · x2 · x7 − 0.2 · x3

ẋ2 = c · x1 + c · x4 − c · x1 · x2 ẋ4 = 0.5 · x3 − 0.7 · x4 · x6

ẋ3 = c · x1 + c · x1 · x2 − c · x3 ẋ5 = −0.6 · x5 · x7

ẋ4 = c · x3 − c · x4 ẋ6 = 0.2 · x4 − 0.8 · x4 · x6

ẋ5 = −c · x5 ẋ7 = −0.1 · x1 · x2 · x7 − 0.1 · x5 · x7

The full equations were simulated for 1000 time steps of 0.01 from a randomly
generated initial state (each variable randomly initialized in the interval (0,1)),
thus providing a trace of the behavior of the 7 system variables over time.

Subsumption constraints can be used in a natural way. A partially speci-
fied reaction network gives rise to equations that involve subpolynomials of the
polynomials modeling the entire network.

The knowledge of the partial network can be used to constrain the search
through the space of possible equations. The polynomial structures in the equa-
tions for ẋ1 ... ẋ5 in the partial network should be supolynomials of the corre-
sponding equations in the complete network. These subpolynomial constraints

Multitarget Polynomial Regression 71

were given to Ciper together with the behavior trace for all 7 variables. The
subsumption constraint used in multi-target Ciper is x1 + x3 + x1 ·x2 + x4 + x5.

The generated multi-target model is

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

=

−0.50 0.00 0.00 0.00 −0.70 0.81
0.69 −0.01 0.20 0.10 −0.29 0.08
0.40 −0.20 0.00 0.00 0.30 0.00
−0.01 0.50 0.00 −0.70 0.00 0.03
0.00 0.00 0.00 0.00 0.00 −0.61
0.00 0.00 0.20 −0.80 0.00 0.00
0.01 0.00 0.00 0.00 −0.10 −0.12

·

x1

x3

x4

x4 · x6

x1 · x2 · x7

x5 · x7

Ciper successfully reconstructs the equations for the entire network, i.e., for
each of the 7 system variables. Discovery without constraints, however, fails
for 3 equations. However the predictive error of the generated models without
constraints is less then 1 percent as shown in table 4.

Table 4. Comparison of predictive performance of multi-target and single-target Ciper
in terms of relative root mean square error, and number of tested equations.

dataset target multi-target single-target num. eqs.

DYN1

1 + 0.00019 0.00340 71.0
2 0.00539 0.00546 957.0
3 0.00038 + 0.00035 942.5
4 + 0.00202 0.02143 71.0
5 0.00067 0.00067 71.0
6 0.00121 0.00119 71.0
7 + 0.00219 0.01706 71.0

num. tested eqs. 2087.4 2254.5

DYN2

1 0.00020 0.00019 508.2
2 0.00270 0.00269 514.1
3 0.00046 0.00046 485.9
4 0.00065 + 0.00053 465.0
5 0.00021 0.00021 36.0

num. tested eqs. 1177.6 2009.2

7 Discussion

We have proposed an approach for multi-target polynomial regression, i.e., the
task of inducing polynomials that can simultaneously predict the values of several
numeric target variables. To this end, we extend the Ciper system for polynomial
regression that has been recently modified to employ a principled MDL heuristic
in it search for polynomial equations: The latter is empirically shown to perform
better on a number of datasets. We adapt this MDL heuristic to the multi-target
case as well. The multi-target approach can also take into account language
constraints, i.e., constraints on terms to be included in the induced polynomials.

72 Aleksandar Pečkov, Sašo Džeroski, Ljupčo Todorovski

We have empirically compared the multi-target approach to the application
of several single-target models. The results of the experiments show that there is
no loss in predictive performance when using multi-target models as compared
to using multiple single-target models. In addition, the appearance of common
terms in the equations for the different targets in the multi-target model makes
these models more stable. Because the same equation structure must be good
for all targets, and hence the risk of over-fitting is reduced.

Fewer equation structures are considered by multi-target Ciper. We have also
included optimizations that use the fact that there are common calculations for
each target. This makes the multi-target approach faster than the single-target
approach where we build a model separately for each target.

In addition to applying the multi-target approach to several real-world prob-
lems, we also apply it to the task of system identification, i.e., discovering dynam-
ics. Here the task is to induce a system of simultaneous differential equations
that describe the behaviour of a system whose state changes over time: The
state of the system typically consists of a vector of system variables. The time
derivatives of the system variables are typically interdependent and expressed
as functions (polynomials) of the system variables.

We have used this approach to discover dynamics of chemical reaction net-
works. In this domain, subsumption constraints have a natural interpretation.
They can be used to specify, e.g., a partially known network as prior knowledge of
chemical reactions. Constraints proved crucial for the successful reconstruction
of an example network.

References

1. Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J. (1984). Classification and

Regression Trees. Wadsworth International, Belmont, Ca.
2. Grünwald, P., Myung, I., & Pitt, M. (Eds.). (2005). Advances in minimum descrip-

tion length: Theory and applications. Cambridge, Massachusetts: MIT Press.
3. Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learn-

ing. New York: Springer.
4. Newman, D., S. Hettich, C. B., & Merz, C. (1998). UCI repository of machine

learning databases.
5. Rissanen, J. (1999). Mdl denoising. IEEE Transactions on Information Theory, 46,

2537–2543.
6. Robnik, M. (1998). Pruning regression trees with mdl. Proceedings of the European

Conference on Artificial Intelligence (pp. 455–459). Brighton, UK: John Wiley and
Sons.

7. Todorovski, L., Ljubič, P., & Džeroski, S. (2004). Inducing polynomial equations
for regression. Proceedings of the Fifteenth International Conference on Machine

Learning (pp. 441–452).
8. Torgo, L. (1998). Regression datasets.
9. Witten, I. H., & Frank, E. (Eds.). (2005). Data mining: Practical machine learning

tools and techniques. San Francisco: Morgan Kaufmann.
10. Grunwald, P. D., Myung I. J., Pitt M. A. (Eds.) (2004) Advances in Minimum

Description Length: Theory and Applications. MIT Press

Author Index

Antunes, Cláudia , 37

Bade, Korinna, 3
Blockeel, Hendrik , 21
Bringmann, Björn, 4

Calders, Toon, 21

Džeroski, Sašo , 61

Esmeir, Saher, 3

Fromont, Elisa, 21

Goethals, Bart, 21
Gunn, Steve, 49

Kononenko, Igor, 9

Lavrač, Nada, 9

Markovitch, Shaul, 3

Pečkov, Aleksandar, 61
Podpečan, Vid, 9
Prado, Adriana, 21

Todorovski, Ljupčo, 61

Yang, Jianqiang, 49

Zimmermann, Albrecht, 4

