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Abstract
Defender-Attacker Stackelberg games are the foundations of
tools deployed for computing optimal patrolling strategies in
adversarial domains such as the United states Federal Air
Marshals Service and the United States Coast Guard, among
others. In Stackelberg game models of these systems the at-
tacker knows only the probability that each target is covered
by the defender, but is oblivious to the detailed timing of the
coverage schedule. In many real-world situations, however,
the attacker can observe the current location of the defender
and can exploit this knowledge to reason about the defender’s
future moves. We study Stackelberg security games in which
the defender sequentially moves between targets, with moves
constrained by an exogenously specified graph, while the at-
tacker can observe the defender’s current location and his
(stochastic) policy concerning future moves. We offer five
contributions: (1) We model this adversarial patrolling game
(APG) as a stochastic game with special structure and present
several alternative formulations that leverage the general non-
linear programming (NLP) approach for computing equilibria
in zero-sum stochastic games. We show that our formulations
yield significantly better solutions than previous approaches.
(2) We extend the NLP formulation for APG allow for attacks
that may take multiple time steps to unfold. (3) We provide
an approximate MILP formulation that uses discrete defender
move probabilities. (4) We experimentally demonstrate the
efficacy of an NLP-based approach, and systematically study
the impact of network topology on the results. (5) We extend
our model to allow the defender to construct the graph con-
straining his moves, at some cost, and offer novel algorithms
for this setting, finding that a MILP approximation is much
more effective than the exact NLP in this setting.

Introduction
Game theoretic approaches to security based on Stackelberg
game models have received much attention in recent years,
with several finding deployment in real-world settings in-
cluding LAX (Los Angeles International Airport), FAMS
(United States Federal Air Marshals Service), TSA (United
States Transportation Security Agency), and USCG (United
States Coast Guard) (Jain et al. 2010; An et al. 2011). At the
backbone of these applications are defender-attacker Stack-
elberg games in which the defender first commits to a ran-
domized security policy, and the attacker uses surveillance
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to learn about the policy before attacking. The analysis of
Stackelberg security games has focused primarily on com-
puting Strong Stackelberg equilibrium (SSE), i.e., the opti-
mal strategy for the defender (von Stengel and Zamir 2004;
Conitzer and Sandholm 2006; Kiekintveld et al. 2009).

To date, the Stackelberg game models for all real-world
security applications assume that attacker knows the proba-
bility that each target is covered by the defender, but is obliv-
ious to the actual sequence of defender moves. For exam-
ple, the defender may in fact visit targets according to some
fixed (but randomly generated) patrolling schedule, but the
attacker is presumed to be unable to observe the defender’s
location at any point during the patrol. In many realistic set-
tings, such as USCG (An et al. 2011), it is likely that the
attacker can in fact observe the patrol while it is in progress
(e.g., the coast guard ships can be quite overt). Thus, a more
plausible model in such a setting would allow the attacker
to observe both the randomized policy of the defender (i.e.,
probability distribution over moves) as well as current de-
fender location. We formally model this setting as an ad-
versarial patrolling game, or APG, and present methods for
computing an optimal stochastic patrolling policy for the de-
fender when the planning horizon is infinite and the attacker
is impatient (i.e., exponentially discounts future payoffs).
Through most of the paper, we additionally assume that the
game is strictly competitive: that is, the goal of the defender
is to minimize the attacker’s expected (discounted) utility.

This paper provides five contributions in the adversarial
patrolling setting: (1) We present a formal adversarial pa-
trolling game (APG) model, show that it can be easily cast
as a stochastic game (Section ), and offer several alterna-
tive formulations that leverage the general non-linear pro-
gramming approach for computing equilibria in zero-sum
stochastic games (Filar and Vrieze 1997) (Section ). (2) We
extend the NLP formulation to capture settings in which at-
tacks can take an arbitrary number of time steps. (3) We
provide an approximate MILP formulation that uses discrete
defender move probabilities (Section ). (4) We additionally
offer an experimental comparison that demonstrates that an
NLP-based approach is highly efficacious in our setting, and
offer a systematic study of the effect of network topology on
the efficacy of defense (Section ). (5) We present a model of
network design in which the defender can first build edges
along which patrol decisions are subsequently made. We
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present a formal model, as well as algorithms for this set-
ting, and find that a MILP-based approach is much superior
to NLP (Section ).

Related Work
Some of the earliest work on adversarial patrolling set-
tings was done in the context of robotic patrols, but in-
volved a very simple defense decision space (for exam-
ple, with a set of robots moving around a perimeter, and a
single parameter governing the probability that they move
forward or back) (Agmon, Krause, and Kaminka 2008;
Agmon, Urieli, and Stone 2011).

More recent work by Basilico et al. (Basilico, Gatti, and
Amigoni 2009; Basilico et al. 2010; Basilico and Gatti 2011;
Bosansky et al. 2011) studied general-sum patrolling games
in which they assumed that the attacker is infinitely patient,
but the execution of an attack can take an arbitrary number
of time steps. However, the resulting formulations rely in a
fundamental way on the assumption that both players are in-
finitely patient, and cannot be easily generalized to handle an
impatient attacker. Moreover, Basilico et al. only consider a
restricted attacker strategy space, and, additionally, their for-
mulation may involve extraneous constraints which result in
suboptimal solutions. Indeed, our experiments demonstrate
that in the special case of our setting when rewards are undis-
counted, our approach yields substantially higher defender
utility. Finally, we consider, in addition to the baseline pa-
trolling problem, two extensions, one involving network de-
sign, and another in which patrol moves incur costs. To our
knowledge, neither of these extensions has previously been
considered in the context of adversarial patrolling.

Adversarial Patrolling
Formally, an adversarial patrolling game (APG) can be de-
scribed by the tuple {T,U cd(i), Uud (i), U ca(i), Uua (i), δ, G},
where T is the set of n targets patrolled by the defender,
U cd(i) and Uud (i) are the utilities to the defender if an at-
tacker chooses a target i ∈ T when it is patrolled and not,
respectively, while U ca(i) and Uua (i) are the corresponding
attacker utilities, δ ∈ (0, 1) is the discount factor (in some
cases, we also allow δ = 1), and G = (T,E) is a graph with
targets as vertices and E the set of directed edges constrain-
ing defender patrolling moves between targets. It is useful
to consider the representation of this graph as an adjacency
matrix A, where Aij = 1 if and only if there is an edge from
target i to target j. Below we consider a zero-sum game set-
ting, where U cd(i) = −U ca(i) and Uud (i) = −Uua (i).

The game proceeds in a (possibly infinite) sequence of
steps in which the defender moves between targets (subject
to the constraints imposed by G), while the attacker chooses
the time and target of attack. The defender’s (stochastic) pa-
trolling policy is a schedule π which can in general be an ar-
bitrary function from all observed history (i.e., the sequence
of targets patrolled in the past) to a probability distribution
over the targets patrolled in the next iteration. The attacker
is presumed to know the defender’s policy π at the time of
decision. At each time step t the attacker observes the de-
fender’s current location i and may choose to wait or to at-

tack an arbitrary target j ∈ T . If an attacker waits, he re-
ceives no immediate utility, while attacking a target j gains
the attacker U ca(i) if it is covered by the defender at time
t + 1 and Uua (i) if it is not. We denote the attacker’s policy
by a. We say that a policy (π or a) is Markovian if it only
depends on the current location of the defender, and we call
it stationary Markovian if it additionally has no dependence
on time.

We use vi to denote the expected discounted value to the
attacker upon observing the defender at target i. Where rel-
evant, we assume that the defender always starts at target 0,
and the aim of the defender is, consequently, to minimize v0,
which the attacker attempts to maximize.
Example 1. USCG’s Patrolling Problem as an APG:
USCG safeguards important infrastructure at US coasts,
ports, and inland waterway. Given a particular port and
a variety of critical infrastructure that an adversary may
choose to attack, USCG conducts patrols to detect an ad-
versary and protect this infrastructure. However, while the
adversary has the opportunity to observe patrol patterns,
limited security resources imply that USCG patrols cannot
be at every location at all times (An et al. 2011). In the APG
framework, USCG is the defender, while a terrorist group
(for example) is an attacker who can conduct surveillance
and can both observe the current location of patrols and ob-
tain a good estimate of the stochastic patrolling policy de-
ployed.

APG as a Stochastic Game
The adversarial patrolling game can be formulated as a
stochastic game (Filar and Vrieze 1997). A stochastic game
is defined by a set of states, a set of players, each taking
actions from a finite collection, transition probabilities be-
tween states which depend on joint player actions, and, fi-
nally, utility (reward) functions of players determined by
current state and actions jointly selected by the players.

In our setting, states correspond to the set of targets T ,
as well as an absorbing state s. Defender actions in each
state are the targets j that he can move to in a single time
step, while attacker actions are to wait or to attack (for the
moment, we will assume that we can compute expected util-
ities when attacker chooses to attack; we deal with the issue
of which targets are attacked below). The state transitions
are actually deterministic, conditional on player actions: if
the attacker chooses to attack, the system always transitions
to the absorbing state s; otherwise, the next target is com-
pletely determined by the defender’s action. Finally, if the
attacker waits, our baseline model involves zero reward ac-
cruing to both players. Letting Ri denote the expected util-
ity to attacker of attacking in state i; the defender’s utility in
the zero-sum model is then −Ri. The stochastic game has
an infinite horizon, and in our model the attacker’s discount
factor is δ. Figure 1 offers a schematic illustration of APG as
a stochastic game. Since it’s a zero-sum game, the defender
will aim to minimizes the expected attacker utility (starting
from state 0, as we had assumed).

Since the game has an infinite horizon, the policy of the
defender can in general be impossible to represent in fi-
nite space. Fortunately, in two-player discounted stochastic
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Figure 1: Schematic illustration of APG as a stochastic
game, showing example targets-states i and j, as well the
absorbing state s. pij(·) denotes the transition probability,
as a function of the probability πij that the defender moves
from i to j and whether or not the attacker chooses “wait”
or “attack”. Note that if the attacker attacks, the stochastic
game transitions to the absorbing state with probability 1,
independent of πij .

games there exists an equilibrium in stationary Markovian
policies (Filar and Vrieze 1997). Below we therefore focus
exclusively on stationary policies, and denote by πij the (sta-
tionary) probability that the defender moves from target i to
j.

Optimal Patrolling Policies on Networks

Partial Formulation of the Defender’s
Optimization Problem

Since APG is a special case of a stochastic game, we can
adapt the non-linear programming formulation for comput-
ing a Nash equilibrium in general zero-sum stochastic games
by Filar and Vrieze (Filar and Vrieze 1997) to our setting.1
One minor addition to their formulation that we find useful
below is to represent the constraints on the defender’s action
imposed by the graph G as a set of constraints

πij ≤ Aij ∀ i, j ∈ I. (1)

Recalling that Ri is the expected attacker utility from at-
tacking in state i, and vi is the expected attacker value of
starting in state i, we can formulate the defender’s problem
as the following mathematical program, if we suppose that

1Vital to this adaption is the fact that in zero-sum settings which
we focus on below, the distinction between Stackelberg equilibrium
and a Nash equilibrium of the corresponding simultaneous-move
game is not important.

Ri is known:

min
π,v

∑
i

vi (2a)

s.t. :

πij ≥ 0 ∀ i, j ∈ T (2b)∑
j

πij = 1 ∀ i ∈ T (2c)

πij ≤ Aij ∀ i, j ∈ T (2d)
vi ≥ Ri ∀ i ∈ T (2e)

vi ≥ δ
∑
j

πijvj ∀i ∈ T. (2f)

Constraints 2b and 2c simply constrain defender policy to
be a valid probability distribution. The key constraints 2e
and 2f are easiest to think about if we fix defender policy π
and just consider the MDP faced by the attacker. The right-
hand-side of Constraint 2e corresponds to expected utility
of attacking (which is just the immediate reward Ri, since
attack moves the MDP into an absorbing state s and no fur-
ther earnings follow), while right-hand-side of Constraint 2f
is the expected value of waiting (immediate reward is 0 for a
waiting action). The constraints then arise because the state
vi must be the expected utility of making the best action
choice, and minimizing the objective ensures that these val-
ues bind to some action in every state.

Note that formulation 2 contains non-linear non-convex
constraints, and is therefore in general NP-Hard to solve.
Typically, algorithms for such problems compute locally
optimal solutions, and have no global optimality guaran-
tees. Consequently, both the computation speed, and solu-
tion quality are empirical questions, which we explore in
experiments below.

Formulation 2 is partial, since it leaves open the question
of how Ri are computed. We address this question in two
ways below.

Explicitly Representing Attacker Choices
The simplest approach to computing Ri is to explicitly rep-
resent the attacker choice of target in each state i, if he
chooses to attack in that state (recall that we identify targets
with “states”). Let aij = 1 if target j is attacked in state i and
aij = 0 otherwise. Past literature on security games has of-
fered a standard approach for computing the optimal attack
value using a set of constraints (Kiekintveld et al. 2009):

aij ∈ {0, 1} ∀ i ∈ T (3a)∑
j

aij = 1 ∀ i ∈ T (3b)

0 ≤ Ri − [(1− πij)Uua (j) + πijU
c
a(j)] ≤ (1− aij)Z

∀ i, j ∈ T (3c)

where Z is a very large number. Adding these constraints
to the partial formulation 2 gives us the first non-linear pro-
gram for computing optimal defense strategies in APGs, al-
beit with integer variables. We refer to this formulation sim-
ply as MINLP.
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Implicit Attacker Choices
In the MINLP formulation above, the integer variables arise
because we use them to identify the targets chosen by the
attacker in each state. Since we are actually interested in the
defender’s optimization problem, we do not need to know
the specific decisions the attacker would make, but only need
to compute the attacker’s expected value. To do so, let the at-
tacker’s set of actions upon observing defender at target i be
the union of “wait” and the set of targets j to attack. We can
then replace the constraints 2e in the partial formulation 2
with the following set of constraints:

vi ≥ (1− πij)Uua (j) + πijU
c
a(j) ∀ i, j ∈ T.

This removes both the variable Ri, and the need for intro-
ducing integer variables that explicitly represent the choices
of targets to attack. While the resulting program is still non-
convex, it now has no integer variables, and, indeed, many
fewer variables altogether. We refer to this formulation as
NLP.

An important observation about the NLP formulation is
that it only involves n non-linear constraints, far fewer than
a NLP formulation to compute equilibria in general zero-
sum stochastic games. As we demonstrate below, this NLP
therefore scales extremely well with the number of targets.

Attacks Taking Multiple Time Steps
An important assumption in the formulations above is that
once the attacker chooses to attack, the actual attack com-
mences on the next time step. We now consider a general-
ization in which attacks take an arbitrary number of steps
h ≥ 0 to unfold. We extend the above NLP formulation
to account for this, noting that since the extension can no
longer be captured as a stochastic game with targets as states
(modulo the absorbing state), and, therefore, it is an open
question whether stationary Nash equilibria exist. In the for-
mulation below, we assume that stationary defense policies
suffice.

min
π,v,q,qs

∑
i

vi (4a)

s.t. :

πij ≥ 0 ∀ i, j ∈ T (4b)∑
j

πij = 1 ∀ i ∈ T (4c)

πij ≤ Aij ∀ i, j ∈ T (4d)

q1ij = πij ∀ i, j ∈ T (4e)

qtij =
∑
k 6=j

πikq
t−1
ij ∀ i, j ∈ T

t ≤ h (4f)

qsij =
h∑
t=1

qtij ∀ i, j ∈ T (4g)

vi ≥ (1− qsij)Uua (j) + qsijU
c
a(j) ∀ i, j ∈ T (4h)

vi ≥ δ
∑
j

πijvj ∀i ∈ T. (4i)

The formulation is largely the same as above, but involves
several additional constraints. Constraints 4e and 4f compute
the probability qtij that a target j is visited in exactly t steps
(for any t), starting from i. Constraint 4g the computes the
probability qsij that j is visited in 1..h steps. We then use
qsij in place of πij to compute attacker utility from attacking
in modified Constraint 4h.

Observe that stationarity in the space of targets no longer
suffices in general. To see this, consider a simple example
with 3 targets (1, 2, and 3), and suppose that there are edges
between 1 and 2, and between 2 and 3 only. Finally, suppose
that h = 4 and the attacker is infinitely patient. Then a non-
stationary policy in which the defender moves from 1 to 2
to 3 to 2 to 1 is optimal, since the attacker will always be
caught. On the other hand, no stationary policy exists which
guarantees that we always catch the attacker: if the defender
is at target 2, and the policy is deterministic, he will nec-
essarily leave some target uncovered; if the policy at 2 is
stochastic, there is strictly positive probability that the at-
tacker will not be caught.2

Mixed Integer Programming Formulation
Even the simplified formulation above is still non-linear
non-convex, and while there exist solvers for such problems,
there are few guarantees about global solution quality that
can be provided: in general, only a local optimum is found.
Since we seek a globally optimal solution for the defender,
we wish ideally to recast the problem in a form which at least
guarantees that globally optimal solutions are approximately
achieved.

In this section, we arrive at a MILP (mixed integer lin-
ear programming) formulation for an approximate defender
optimization problem by discretizing the unit interval into
which defense move probabilities will fall into L intervals
(L+1 allowable probability levels). Let variables pl ∈ [0, 1]
be the discrete levels in the unit interval with p0 = 0 and
pL = 1, and define dijl ∈ {0, 1} to be binary variables
such that dijl = 1 indicates a particular discrete probability
choice pl. We must naturally have a constraint that only one
such choice can be made:∑

l

dijl = 1.

Next, we replace πij with
∑
l pldijl throughout. While con-

straint 2f remains bi-linear, one of the variables is now bi-
nary, and the constraint can therefore be linearized as fol-
lows. Define a new set of variables wijl and let wijl =
dijlvj . Enforcing the following constraints on wijl replaces
the bi-linear constraint above with an equivalent set of linear
constraints:

vj − Z(1− dijl) ≤wijl ≤ vj + Z(1− dijl) (5a)
−Zdijl ≤wijl ≤ Zdijl. (5b)

Let Rij = (1 −
∑
l pldijl)U

u
a (j) +

∑
l pldijlU

c
a(j). We

can now rewrite the entire leader optimization program as

2We thank Zhengyu Yin for suggesting this example.
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a MILP:

min
d,v,w

∑
i

vi (6a)

s.t. :

dijl ∈ {0, 1} ∀ i, j ∈ T, l ∈ L (6b)∑
l

dijl = 1 ∀i, j ∈ T (6c)∑
j

∑
l

pldijl = 1 ∀ i ∈ T (6d)

∑
l

pldijl ≤ Aij ∀ i, j ∈ T (6e)

vi ≥ Rij ∀ i, j ∈ T (6f)

vi ≥ δ
∑
j

∑
l

plwijl ∀i ∈ T (6g)

− Zdijl ≤ wijl ≤ Zdijl ∀ i, j ∈ T, l ∈ L (6h)
wijl ≥ vj − Z(1− dijl) ∀ i, j ∈ T, l ∈ L (6i)
wijl ≤ vj + Z(1− dijl) ∀ i, j ∈ T, l ∈ L, (6j)

where L = {0, . . . , L}. Constraints 6d-6g correspond di-
rectly to the constraints 2c-2f in the NLP formulation, only
with the discrete probabilities replacing πij . Constraints 6h-
6j linearize the bilinear term. We note that there is an anal-
ogous MILP formulation in which we explicitly represent
the attacked targets, as described in Section . We refer to
the MILP above as MILP (reduced), as compared to MILP
(baseline) which refers to the latter program; MILP without
a modifier refers to the former.

Finite Horizon Problems
An infinite horizon setting that we consider seems at first
glance unrealistic: in typical security domains, there is a set
time frame for patrols, and at the end of this time, the pa-
trol must return to base, at which point the game restarts.
Fortunately, it is not difficult to show that the solution to the
infinite-horizon problem is an arbitrarily accurate approxi-
mation even if the actual time frame is finite.3

Experiments: Patrolling on Exogenous Graphs
In our experimental studies below we use a somewhat sim-
plified model in which U ca(i) = 0 for all targets i ∈ T . We
generate the values of successful attacks Uua (i) i.i.d. from
a uniform distribution on a unit interval. Throughout, we
use δ = 0.95, except where specified otherwise.4 Finally,
we use well-known generative models for networks to gen-
erate random instances of graphs over which the defender
patrols. The first is an Erdos-Renyi model (Newman 2010)
under which every directed link is made with a specified
and fixed probability p; we refer to this model by ER(p),

3Details are at http://aamas.webs.com/appendix apg.pdf.
4We considered other discount factors as well, but this one

strikes the right balance: it creates interesting tradeoffs between
attacking and waiting, and yet creates a setting that is significantly
different from past work which only considers δ = 1.

or simply ER. The second is Preferential Attachment (New-
man 2010), which adds nodes in a fixed sequence, starting
from an arbitrary seed graph with at least two vertices. Each
node i is attached to m others stochastically (unless i ≤ m,
in which case it is connected to all preceding nodes), with
probability of connecting to a node j proportional to the de-
gree of j, dj . In a generalized version of this model that we
consider below, connection probabilities are (dj)γ , such that
when γ = 0 we recover (roughly) the Erdos-Renyi model,
γ = 1 recovers the “standard” PA model, and large values of
γ correspond to highly inhomogeneous degree distributions.
Finally, we also consider simple Cycles.

When the networks are relatively sparse (like a Cycle),
and the number of targets large, the attacker can usually at-
tack the most valuable target at time 0, and not face the trade-
off between the value of time and attack utility that we are
trying to model. In our experiments, we therefore connected
the starting target 0 to every other target, with network topol-
ogy effective only on the rest of the targets. Alternatively, we
may think of target 0 as a base, and the rest of the targets as
initial deployments, which are unconstrained. Since target 0
is a kind of nominal target, we additionally set its utility to
the attacker Uua (0) to be 0.

All computational experiments were performed on a 64
bit Linux 2.6.18-164.el5 computer with 96 GB of RAM and
two quad-core hyperthreaded Intel Xeon 2.93 GHz proces-
sors. We did not make use of any parallel or multi-threading
capabilities, restricting a solver to a single thread, when
relevant. Mixed integer linear programs were solved using
CPLEX version 12.2, mixed integer non-linear programs
were solved using KNITRO version 7.0.0, and we used
IPOPT version 3.9.3 to solve non-linear (non-integer) pro-
grams in most cases (the one exception is identified below,
where we also used KNITRO).

The results we report are based on 100 samples from both
the attacker utility distribution and (when applicable) from
the network generation model. Throughout, we report 95%
confidence intervals, where relevant.

Comparison to Basilico et al.

Basilico et al. (Basilico, Gatti, and Amigoni 2009) pre-
sented a multiple math programming approach to adversar-
ial patrolling for a setting very similar to ours. By setting
δ = 1, and reformulating the algorithm in (Basilico, Gatti,
and Amigoni 2009) in a zero-sum setting and with a single-
step attack, we can make a direct comparison between our
algorithm (using the NLP formulation) and theirs. The re-
sults, shown in Figure 2, suggest that our approach yields
significantly better solutions. The difference becomes less
important as the number of targets increases: since in both
approaches we only allow for one defender resource (de-
fender can protect at most a single target at a time), and
we assign relative values to targets uniformly randomly, on
sparse graphs the attacker becomes increasingly likely to get
the target he wants when the discount factor is 1, since the
defender is eventually at least two hops away from the most
valuable target.
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Figure 2: Comparison between our NLP formulation and
that developed by Basilico et al. The graph is ER(0.1).
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Figure 3: MILP objective value as a function of granularity
of discretization in ER(0.1).

MILP Discretization
The size and, consequently, complexity of the MILP de-
pends greatly on the fineness of discretization of the prob-
ability interval. While we can, perhaps, presume that a fine
enough discretization would get us close to an optimal so-
lution, computationally we cannot in all likelihood afford a
very fine discretization. An important question, therefore, is:
how much is enough? We address this question by consider-
ing a sequence of increasingly fine discretizations, starting
at L = 1 (p0 = 0 and p1 = 1) and going up to L = 50
(pl ∈ {0, 0.02, 0.04, . . . , 1}). To ensure that whatever we
find is not particular to a given setting, we also vary the num-
ber of targets between 5 and 50, as well as the network topol-
ogy (Cycle, Erdos-Renyi, and Preferential Attachment).

The results, shown in Figure 3 for ER(0.1) networks, are
quite reassuring: L = 10 seems to suffice across all the set-
tings shown, and these results are also consistent with those
obtained for Cycle and PA(2,1) networks. From this point
on, results based on MILP formulation use L = 10, unless
otherwise specified.

Comparison of the Alternative Formulations
We offered several alternative formulations of the defender’s
optimization problem: MINLP (the mixed integer non-linear
programming approach in which we explicitly encode at-
tacker target choices), NLP (non-linear program in which
attacker target choices are implicit), and two MILPs, the first
that does encode target choices, which we call “MILP (base-
line)”, and the second that does not, and which we refer to

as “MILP(reduced)”.
We compare all these formulations in terms of objective

value (i.e. average v0 over 100 random realizations of target
values and network topologies) and average running time.
The results in Figure 4 suggest that there is not a signifi-
cant difference in efficacy of the programming approaches
we propose. Running time, however, does in fact differen-
tiate them. Experimentally we found that MINLP running
time diverges rapidly from that of MILP: even with as few as
9 targets, KNITRO solver takes nearly 300 seconds, as com-
pared to under 2 seconds solving the corresponding MILP
approximation using CPLEX. Surprisingly, we found little
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Figure 4: Comparison of average attacker utility achieved
using MINLP, two versions of MILP, and NLP formulations,
using the Cycle topology.

difference in running time between the two MILP formula-
tions, but the difference between MILP and NLP formula-
tions is rather dramatic. Figure 5 shows that the NLP for-
mulation scales considerably better than MILP, solving in-
stances with as many as 1000 targets in under 200 seconds
(MILP already begins to reach its limit by n = 50). Interest-
ingly, graph topology seems to play some role in determin-
ing the difficulty of the problem: Cycle graphs are solved
much faster by NLP than Erdos-Renyi analogs.
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Figure 5: Running time comparison between MILP and NLP
on Cycle and ER(0.1) graphs. We omit MINLP which does
not scale, and the two MILP formulations yield similar re-
sults, so we only present MILP (baseline) here.

The Impact of Network Topology
A perpetually interesting question in network science litera-
ture is how the characteristics of a particular process taking
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place on a graph are affected by the specifics of graph topol-
ogy (Newman 2010). In this section we study graph topolo-
gies from two perspectives: first, the density (the number of
edges relative to number of nodes) of the graph, and sec-
ond, homogeneity of the degree distribution. The (general-
ized) Preferential Attachment generative model of networks
offers a convenient means to study both of these aspects of
networks (Newman 2010), since the parameter m governs
the network density, while γ governs the homogeneity of
the degree distribution.
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Figure 6: Comparison of attacker utility under different net-
work topologies, with 20 targets. All graphs here use the
generalized Preferential Attachment model.

Figure 6 shows the results. As we would expect, increas-
ing the density (m) of the network gives the defender higher
utility (lower to the attacker). Surprisingly, however, homo-
geneity of the degree distribution appears to have little ef-
fect.

Adversarial Patrolling Games:
Network Design

Our experiments showed that network density plays an im-
portant role in determining the efficacy of patrolling. A nat-
ural question is: what if the defender can build the network?
For example, in a border patrol setting, the defender may
choose to build roads or clear certain areas to enable direct
moves between important checkpoints. Such investments to
improve patrolling efficacy will usually be costly (particu-
larly if one includes maintenance costs), but may be well
worth the investment if targets are important enough.

Formally, suppose that the defender will first decide
which edges to construct, with a directed edge from i to j
costing cij . (Observe that we can allow for existing edges
by setting the corresponding costs cij = 0, and can in-
corporate constraints by letting cij = ∞.) Once the graph
is constructed, the adversarial patrolling game commences
just as described above, and, thus, in making the decisions
about which edges to construct, the defender must account
for the impact of the resulting graph on patrolling efficacy.
Fortunately, the decision to build edges can be incorporated
directly into the mathematical programming formulations
above, with Aij now becoming variables, rather than speci-
fied problem parameters.5

5There is a subtle issue in the network design problem: the re-

Baseline Network Design Formulation
One way to solve the network design problem would be to
search exhaustively through all the networks: create a net-
work, solve for defender utility using the approach from Sec-
tion , and iterate. Intuitively, what we do here is short-circuit
this approach by doing the entire optimization in one shot.

Let Aij be binary variables with Aij = 1 if and only if
the defender builds an edge from i to j which he can sub-
sequently use in patrolling decisions. The lone term involv-
ing Aij in all our formulations above is linear in Aij , and
we therefore need to make no further modifications to the
constraints. Since edges have a cost, we must change the ob-
jective to reflect the resulting cost-benefit tradeoffs. Therein
lies a problem: our formulations above used

∑
i vi as an ob-

jective, while the defender’s concern is only about v0. Con-
sequently, if we simply add a total incurred cost to

∑
i vi

in the objective, the cost term will not be given sufficient
weight, and the solution may be suboptimal: in fact, it is
fundamentally the tradeoff between value and cost of build-
ing edges that we are trying to make here. The true objective
of v0 + cost, however, does not work either, since it will fail
to correctly compute the values vi of all states i, which are
necessary to correctly obtain v0: coefficients on all vi must
be strictly positive. We therefore offer the following approx-
imate objective function:

min (1− α)v0 + α
∑
i6=0

vi +
∑
i,j

cijAij ,

where α > 0 is some small real number, and the last term
computes the total cost of building the graph. It can be
shown that α can be scaled low enough to ensure that the
resulting objective is arbitrarily close to optimal.

The modifications above can be made directly to both the
NLP and MILP formulations of the adversarial patrolling
problem. However, the modification introduces integer vari-
ables, which are especially problematic when with start with
a non-linear program. Below we offer an alternative network
design formulation in which no integer variables are present.

NLP Network Design Formulation
Above, we used the graph constraint from the basic APG for-
mulations unchanged, and merely introduced Aij as integer
variables. Alternatively, we can modify the graph constraint
to recover an equivalent formulation of the network design
problem that contains no integer variables.

Consider the set of constraints

πij(1−Aij) = 0 ∀ i, j ∈ I (7)

which are equivalent to those in Equation 1 (when Aij = 0,
πij are forced to be 0). While we have just replaced lin-
ear constraints with those that are non-linear, the win comes
from the fact that we can now relax Aij to be real-valued.

sult that we rely on to allow us to consider only stationary Markov
policies for the defender assumes a zero-sum game, which this no
longer is. However, the setting is a zero-sum game once the edges
have been formed, and that is all that our theorem actually requires.
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Theorem 1. Suppose that Aij ≥ 0 is unrestricted and
cij > 0. Further, suppose that we replace the linear graph
Constraint 1 in the network design formulation with Con-
straint 7. Then an optimal solution Aij is binary-valued.

We note that we can make an analogous modification
to the MILP network design formulation, but must subse-
quently linearize the new set of graph constraints. Never-
theless, we can prove that the resulting linearized version
always results in binary-valued Aij .

Experiments: Network Design
In this section, we compare the MILP formulation for net-
work design, which we refer to as MILP (ND), and the non-
linear programming formulation in Section , which we refer
to as NLP (ND).

The results in Table 1 offer a compelling case for the
MILP network design formulation: attacker values achieved
are not very different, but NLP-based approaches are clearly
quite suboptimal in terms of design costs, building far more
edges than optimal.

method attacker value design cost
MILP (ND) (CPLEX) 0.82±0.014 0.45±0.0058
NLP (ND) (IPOPT) 0.78±0.044 7.35±0.29

NLP (ND) (KNITRO) 0.77±0.021 3.14±0.084

Table 1: Comparison of attacker’s expected value and de-
fender’s network design cost for the NLP (ND) formulation
solved by IPOPT and KNITRO, and the MILP (ND) formu-
lation. For all, the number of targets is 20 and per-edge cost
is 0.02. For KNITRO, we used 4 restarts; we had not tried
more, as even with 4 a significant fraction of instances (be-
tween 5 and 10%) simply stall.

Conclusion
We presented a model of discounted adversarial patrolling
on exogenous networks, and demonstrated how to formalize
it as a highly structured stochastic game. We then adapted a
known non-linear programming formulation to our problem
in two ways: the first introduced integer variables to com-
pute the optimal attack utilities, following an approach com-
monly taken in the literature on Stackelberg games, while
the second incorporated this decision directly into the NLP.
Furthermore, we offered an alternative, albeit approximate,
MILP formulation for this problem. Subsequently, we ex-
tended the baseline adversarial patrolling model to allow
the defender to construct the graph constraining patrolling
moves, at some per-edge cost, and offered NLP and MILP
formulations to solve this problem. Finally, we presented a
model in which the defender can move between an arbitrary
pair of targets, but incurs a cost for each move which de-
pends on the source and destination, and offered NLP and
MILP formulations to solve several variants of this problem.

Our experiments verify that solutions which we compute
are significantly better than those obtained using an alterna-
tive formulation applied to a special case of undiscounted

zero-sum APGs. Overall, both NLP and MILP formula-
tions compute solutions much faster than mixed-integer non-
linear programs, while NLP is much faster than MILP, where
applicable. On the other hand, we found that MILP com-
puted much better solutions than NLP in the network design
problem.
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