
EDA132/DATE15, Arti�cial Intelligence, vt09

Assignment 3: Deduction

Jacek Malec, Computer Science, LU

jacek.malec@cs.lth.se

February 24, 2009

Deadline

The report must be handed in for examination before 23:59, Thursday April
2nd, 2009. The report should be put in the box labeled TAI (EDA132 resp.
DATE15) in the stairwells outside the secretary o�ces (LTH resp. NatFak).
If you have any questions, mail me (jacek.malec@cs.lth.se) or ask them
personally.

1 Introduction

In one sentence: you are expected to implement a generic automated proof
procedure for propositional logic. If you wish, you may proceed by extending
your implementation with some interesting features, like search control, that
will make it more e�cient and possibly will allow you to prove more interesting
theorems.

The following set of tasks is intended to let you master your understand-
ing of the simplest of logical languages used for knowledge representation and
reasoning, and the pitfalls of mechanically implementing it. We begin with the
language of propositional logic - simple, decidable, but not very expressive, and
continue with its extensions interesting from the AI point of view. Although
we will limit ourselves to the propositional case, you will have an opportunity
to experiment with a number of formalisms, in particular with classical and
modal logics. The non-compulsory part of the exercise lets you investigate more
advanced issues related to automated reasoning based on logic.

Learning how to use logic is not an easy task. Learning it without making
exercises is an impossible task. Therefore I would like to recommend you to
solve the exercises in the textbook, at least from Chapter 7 and maybe some
more, before attempting to solve the following problems.

In order to get the Assignment passed you need to be able to handle one
formal system de�ned in the Axiomatization section, namely Russell and White-
head's. In order to get higher grade than pass (4 or 5, alt. VG) you need to

1. implement some speed-up strategy for proof search, describe it in the
report, present the results of the speed-up and motivate its use; and

2. address at least one more system de�ned in the Axiomatization section.

1



As usual, you should �le a written report (paper copy, please note that email
submissions are not accepted) describing your solution(s) in su�cient detail to
understand it and possibly copy it. You should provide extracts from test runs
of your software. You should explicitly address the questions asked in the text
of the Assignment. Finally, you should provide the location of your software,
both the source code and the executable, so that I may �nd it and run it without
problems. Please do not include the code in your report, unless you want to
illustrate some speci�c topic in the text | let's save some trees.

Even if you do not intend to solve more than the basic task (Russel and
Whitehead), please read this document to the end: there are some hints and
suggestions in the �nal section that might appear useful while solving the prob-
lem.

2 Motivation

As this question has been asked a number of times before, it should probably
be answered straight away: Why such task and what do I expect you to learn
while solving it? Let me begin with saying what I don't want you to achieve: an
e�cient theorem prover for propositional logics of various sorts. This problem
has been studied for many years and to achieve a decent outcome one needs to
exploit theoretical results well beyond what we can cover here in this course.
I rather see it as a paradigmatical one for the whole �eld of AI: a hard (NP-
complete or worse) search problem, computationally hopeless without using
heuristics. In a sense, I want you to feel this hopelesness by trying to solve
the problem in a straightforward way, and then realise that a heuristics, even
a simple one, is always better than nothing (provided, of course, that it is
introduced in a reasonable way). So the outcome of this assignment is not any
particular insight into how theorem proving should be done, but rather into the
need of heuristics in any non-trivial search, and an attempt to create one out
of the problem descripton, without knowing much more about the domain. I
expect you to think out some trivial (in the sense quite obvious) heuristics, to
pick one that seems reasonable and to compare it with the brute force approach.

3 The obligatory part of the assignment

Theorem proving has been considered a challenge for AI already at the birth
of this area of research. The �rst program to prove theorems, Logic Theo-

rist, has been written in 1957 by Newell, Shaw and Simon (n.b., Simon was
to become later the Nobel Prize winner) and tested on the propositional calcu-
lus formal system, as de�ned in the book of Russell and Whitehead Principia

Mathematica. You may �nd more information about this program, together
with some interesting considerations of proof strategies, in the book edited by
Feigenbaum and Feldman Computers and Thought, available in our library. You
are expected to make now exactly the same breakthrough in AI research!

3.1 Russell and Whitehead's Axiomatisation

As we have said earlier, the language of propositional logic consists of a number
(in principle arbitrary) of propositional variables (denoted here as p; q; r; p1,

2



p2; : : :), some logical connectives (: standing for negation, _ for disjunction, ^
for conjunction, ! for implication, $ for equivalence, and possibly more) and
parentheses. A well-formed formula (w�) of the propositional calculus is built
according to the following rules:

1. Every propositional variable is a w�;

2. If A and B are w�s then (:A); (A _ B); (A ^ B); (A ! B) and (A $ B)
are w�s;

3. All w�s are built according to the rules 1 and 2 above.

We need only a few connectives to provide a minimal language | the re-
maining ones may be de�ned using the primitive ones. E.g., if we choose : and
_ as the primitive logical connectives, then we can de�ne others as follows:

(A! B)
df
= ((:A) _B) (1)

(A ^B)
df
= (:((:A) _ (:B))) (2)

(A$ B)
df
= ((A! B) ^ (B ! A)) (3)

To get a formal system we need a set of axioms and a number of rules of
inference. Principia Mathematica assumed the following axioms:

((A _A)! A) (4)

(A! (B _A)) (5)

((A _B)! (B _A)) (6)

((A _ (B _ C))! (B _ (A _ C))) (7)

((A! B)! ((C _A)! (C _B))) (8)

It may be surprising, but these �ve axioms su�ce to obtain all the theorems of
the propositional logic.

The rules of inference assumed in Principia are as follows:

Substitution In any theorem, any propositional variable may be substituted
by any w�, provided that all the occurrences of this variable are substi-
tuted.

E.g., Prove ((p _ q)! (q _ (p _ q))).

1. (A! (B _A)) (Axiom 5)

2. ((p _ q)! (B _ (p _ q))) Substitution A) (p _ q)

3. ((p _ q)! (q _ (p _ q))) Substitution B ) q

End of the proof!

De�nition substitution Every connective may be substituted by its de�ni-
tion and vice versa.

E.g., Prove ((:p) _ (q _ p)).

1. (A! (B _A)) (Axiom 5)

2. (p! (B _ p)) Substitution A) p

3



3. (p! (q _ p)) Substitution B ) q

4. ((:p) _ (q _ p)) De�nition Substitution (A ! B) ) ((:A) _ B), with
A = p and B = (q _ p).

End of the proof!

Modus Ponens If A and A! B are theorems then B is a theorem as well.

E.g., Prove ((:p) _ p).

1. ((A! B)! ((C _A)! (C _B))) Axiom 8

2. (((p _ p)! B)! ((C _ (p _ p))! (C _B))) Substitution A) (p _ p)

3. (((p _ p)! p)! ((C _ (p _ p))! (C _ p))) Substitution B ) p

4. (((p_p)! p)! (((:p)_(p_p))! ((:p)_p))) Substitution C ) (:p)

5. ((A _A)! A) Axiom 4

6. ((p _ p)! p) Substitution A) p in 5.

7. (((:p) _ (p _ p))! ((:p) _ p))) Modus Ponens 6 and 4

8. ((p! (p _ p))! ((:p) _ p))) De�nition substitution for !

9. (A! (B _A)) Axiom 5

10. (p! (B _ p)) Substitution A) p in 9.

11. (p! (p _ p)) Substitution B ) p in 10.

12. ((:p) _ p)) Modus Ponens 11 and 8.

End of the proof!

As you can see, even apparently simple theorems may require pretty long
proofs. But a principled application of the three inference rules together with
the axioms (and previous theorems) allows one to prove every theorem of the
propositional logic.

If you are interested in more examples of proofs in this system then please
consult the following web site: http://www.qedeq.org/, and in particular
http://www.qedeq.org/propositional.html.

3.2 Your task:

Ask your program to prove the following theorems (their numbers come from
the original Principia Mathematica:

((p! (:p))! (:p)) (2:01)

(p! (p _ q)) (2:02)

((p! q)! ((q ! r)! (p! r))) (2:06)

(p! (p _ p)) (2:07)

(p! (:(:p))) (2:12)

(((:p)! q)! ((:q)! p)) (2:15)

((p! q)! ((:q)! (:p))) (2:16)

(((:p)! (:q))! (q ! p)) (2:17)

((p _ (q _ r))! ((p _ q) _ r)) (2:31)

((:(p _ q))! (:p)) (2:45)

4



Please make sure that your theorem prover numbers the lines of
the proof and states what rule has been used (and how, if that mat-
ters).

You may get some problems with some theorems - they require rather large
search spaces. If necessary, you might already need to introduce some heuristics
that cut the search tree appropriately. Or maybe backward chaining would help?
How does your pattern matching procedure (used for substitution �nding) look
like? Can you improve the search by choosing a more \intelligent" matching
strategy?

Please note that you are allowed to introduce previously proven theorems as
axioms in the next proof. E.g., when attempting to prove (2.31) you are allowed
to use (2.01){(2.17) (or other theorems you might have obtained on the way) as
axioms.

Some more theorems to test your system with (proper handling of double
negation is a good sign):

(p! p)

(p _ (:p))

(p! (:(:p)))

(p _ (:(:(:p))))

((:(:p))! p)

A bit more advanced theorems (if you would like to do more experiments) can
be found at http://www.qedeq.org/propositional.html in the documents
prophilbert1, prophilbert2, and prophilbert3 (a local copy may be found
on the course page, http://www.cs.lth.se/EDA132).

4 The non-obligatory part of the assignment

Below you will �nd �ve more formal systems of propositional logic. For better
grade make sure that your program can handle at least one of them. Actually,
if it can, then it should be able to handle all of them.

4.1 Hilbert and Ackermann

The axioms from the previous section are exchanged by the following ones:

((A _A)! A) (9)

(A! (A _B)) (10)

((A _B)! (B _A)) (11)

((A! B)! ((C _A)! (C _B))) (12)

You may note that the di�erence consists of omitting Axiom 7 and slightly
changing Axiom 5. Can your theorem prover show all the original theorems?
Please note that for this to hold you just need to prove the Axioms 5 and 7. If
you consult http://www.qedeq.org/propositional.html then you might see
that the proof of Axiom 7 requires about 60 steps. Can your program handle
that?

5



4.2 Mendelson

In this system the only primitive connectives are : and !. Disjunction and
conjunction are de�ned as follows:

(A _B)
df
= ((:A)! B) (13)

(A ^B)
df
= (:(A! (:B))) (14)

and the axioms are

(A! (B ! A)) (15)

((A! (B ! C))! ((A! B)! (A! C))) (16)

(((:B)! (:A))! (((:B)! A)! B)) (17)

The �rst exercise in Mendelson's textbook is to prove the following theorems,
so your prover might as well begin with these:

(((:p)! p)! p) (18)

(((:p)! (:q))! (q ! p)) (19)

Try to prove other theorems as well. E.g., you may try to prove the axioms of the
other systems, or Russell and Whitehead's theorems from Principia. Remember
that the de�nition substitution has to be changed appropriately.

4.3 Kleene

In this system the primitive connectives are :, ^, _ and !. The only de�ned
connective is equivalence.

The axioms in the Kleene's system are

(A! (B ! A)) (20)

((A! (B ! C))! ((A! B)! (A! C))) (21)

((A ^B)! A) (22)

((A ^B)! B) (23)

(A! (B ! (A ^B))) (24)

(A! (A _B)) (25)

(B ! (A _B)) (26)

((A! C)! ((B ! C)! ((A _B)! C))) (27)

((A! B)! ((A! (:B))! (:A))) (28)

((:(:A))! A) (29)

Can you prove the theorems stated earlier using this system? Remember that
the de�nition substitution has to be appropriately limited here even further.

Just for fun, completely outside the scope of the assignment: You
might wish to know that if we replace the axiom ((:(:A))! A) with ((:A)!
(A! B)) then we obtain so called intuitionistic logic, behaving slightly di�er-
ently than the standard one. The intuitionistic logic has very big importance in
philosophy. Can you prove some intuitionistic theorems? Which of the previous
theorems do not hold any longer?

6



4.4 Rasiowa and Sikorski

In this system the primitive connectives are :, ^, _ and !. The only de�ned
connective is equivalence.

The axioms in the Rasiowa and Sikorski's system are

((A! B)! ((B ! C)! (A! C))) (30)

(A! (A _B)) (31)

(B ! (A _B)) (32)

((A! C)! ((B ! C)! ((A _B)! C))) (33)

((A ^B)! A) (34)

((A ^B)! B) (35)

((C ! A)! ((C ! B)! (C ! (A ^B)))) (36)

((A! (B ! C))! ((A ^B)! C)) (37)

(((A ^B)! C)! (A! (B ! C))) (38)

((A ^ (:A))! B) (39)

((A! (A ^ (:A)))! (:A)) (40)

(A _ (:A)) (41)

Can you prove the theorems stated earlier using this system? Remember that
the de�nition substitution has to be appropriately limited here.

Rasiowa and Sikorski's system leads us easily to the formalization of so called
modal logic, equipped with one more unary connective.

4.5 Modal logic

We begin with extending our language with one more connective, namely 2
(sometimes read as \necessarily", often referred to as simply \box", but some-
times interpreted as \it is known that".) The de�nition of a w� is now as
follows:

1. Every propositional variable is a w�;

2. If A and B are w�s then (:A); (2A); (A _ B); (A ^ B); (A ! B) and
(A$ B) are w�s;

3. All w�s are built according to the rules 1 and 2 above.

The set of rules of inference is extended by the following one: If (A! B) is
a theorem then ((2A)! (2B)) is a theorem as well.

Finally, we extend the set of axioms (30){(41) with the following ones:

(((2A) ^ (2B))! (2(A ^B))) (42)

((2A)! A) (43)

((2A)! (2(2A))) (44)

(2(A _ (:A))) (45)

Can you prove ((2(A ^ B)) ! ((2A) ^ (2B))), one of the most famous
theorems in elementary modal logic (sometimes taken as an axiom instead)?

7



Some modal logic theorems for testing purposes (with (3A) de�ned as
(:(2(:A)))):

(((3A)! (2B))! (A! B)) (46)

(A! (3A)) (47)

((2A)! (3A)) (48)

((2(A ^B))! ((2A) ^ (2B))) (49)

((3(A _B))! ((3A) _ (3B))) (50)

((3(A _B))! (3A)) (51)

(((2A) _ (2B))! (2(A _B))) (52)

The utility of modal logic lies in its enormous potential for applications. You
can read 2A as \I know A", or \The robot knows A" | the necessity oper-
ator becomes the \knowledge" operator, and suddenly you may reason about
your own (or your robot's) knowledge, or lack thereof! Another possibility is
to interpret 2 as the \Always in the future" operator, and you get a tempo-
ral logic instead. The applications are multiple, in particular within the more
theoretically-founded AI. But we will leave this topic out here. For more details
please consult the literature, which is enormous.

5 Final notes. Important!

� One of the most popular questions I have got last year was \How should I
represent formulae in my program"? Of course, there are lots of possible
choices, starting with pure strings, for example. A representation that
might happen to be particularly useful is probably the abstract syntax

tree (AST) of the logical formula. Remember, however, that you have to
manipulate original formulae, without transforming them to any of the
\normal forms" (like CNF or DNF).

� The simple solution would already need to make some simple choices: e.g.,
substitution may create in�nite branching in the search tree!

� The simple solution would have methods for performing substitutions,
de�nition substitutions and modus ponens. Then it would iterate over
them, growing the set of formulae (and storing the history in order to
print the proof at the end).

� Putting more than three days of work into this is an overkill!

� You may �nd examples of previous solutions (reports) and other sugges-
tions at the page http://www.cs.lth.se/home/Jacek Malec/eda132/.

� Result to be handed in (for each task you chose to solve, except if stated
otherwise):

1. A presentation of the assignment.

2. A presentation of your implementation and the user interface.

3. The results of your investigations and your reections.

8



4. Information of where to �nd your source and executables and how to
run the executable.

� The report must be handed in on paper, neatly written in Swedish or
English. Neither e-mail nor references to web pages will be accepted. The
resulting programs should remain intact in your directory until you have
been noti�ed of the result, e.g., on the notice board or by e-mail. You
may expect that your report and implementation will be examined within
two weeks. If your report or implementation is unsatisfactory you will be
given one chance to make the corrections and then to hand it in within a
week after you have been noti�ed (on the notice board and/or by e-mail).
Your �nal report will be kept until your �nal grade of the course has been
determined. You may then retrieve it if you wish.

� Your program must be implemented and runnable at the department's
UNIX machines (e.g. login-1.student.lth.se). Remember to make
your programs and all the directories in their path read and execute ac-
cessible to 'others' (chmod 705 �lename).

Have Fun!

Acknowledgement

The formulation of this assignment has been much improved thanks to comments
of Hans Gylling.

9


